Transient Climate Response to Cumulative CO2 Emissions (TCRE)#
Calculate Transient Climate Response to Cumulative CO2 Emissions (TCRE).
Description#
This diagnostics calculates the Transient Climate Response to Cumulative CO2 Emissions (TCRE) and produces relevant plots.
Configuration options in recipe#
- calc_tcre_period: list of int, optional (default: [90, 110])
Period considered to calculate TCRE. This needs to be a sequence of two integers, where the first integer defines the start and the second integer the end of a slice. TCRE is calculated by averaging over a subarray of the temperature change array which is determined by this slice. For example, if the input data are annual means, the values here correspond to the years (measured from simulation start) over which the temperature change is averaged (by default from years 90 to 110).
- exp_control: str, optional (default: ‘esm-piControl’)
Name of the control experiment.
- exp_target: str, optional (default: ‘esm-flat10’)
Name of the target experiment.
- figure_kwargs: dict, optional
Optional keyword arguments for
matplotlib.pyplot.figure()
. By default, usesconstrained_layout: true
.- gridline_kwargs: dict, optional
Optional keyword arguments for grid lines. By default,
color: lightgrey, alpha: 0.5
are used. Usegridline_kwargs: false
to not show grid lines.- groupby_facet: str, optional (default: ‘dataset’)
Facet used to group datasets. TCRE is calculated for each group element individually.
- legend_kwargs: dict, optional
Optional keyword arguments for
matplotlib.pyplot.legend()
. Uselegend_kwargs: false
to not show legends.- matplotlib_rc_params: dict, optional
Optional
matplotlib.RcParams
used to customize matplotlib plots. Options given here will be passed tomatplotlib.rc_context()
and used for all plots produced with this diagnostic.- plot_kwargs: dict, optional
Optional keyword arguments for
iris.plot.plot()
. Dictionary keys are elements identified bygroupby_facet
ordefault
, e.g.,CMIP6
ifgroupby_facet: project
orCESM2
ifgroupby_facet: dataset
. Dictionary values are dictionaries used as keyword arguments foriris.plot.plot()
.- pyplot_kwargs: dict, optional
Optional calls to functions of
matplotlib.pyplot
. Dictionary keys are functions ofmatplotlib.pyplot
. Dictionary values are used as argument(s) for these functions (if values are dictionaries, these are interpreted as keyword arguments; otherwise a single argument is assumed).- savefig_kwargs: dict, optional
Optional keyword arguments for
matplotlib.pyplot.savefig()
. By default, usesbbox_inches: tight, dpi: 300, orientation: landscape
.- seaborn_settings: dict, optional
Options for
seaborn.set_theme()
(affects all plots). By default, usesstyle: ticks
.- var_emissions: str, optional (default: ‘cumulative_fco2antt’)
Short name of the variable describing the cumulative anthropogenic CO2 emissions. This must be the name of the variable given in the recipe. Note that using the
cumulative_sum()
preprendscumulative_
to this name.- var_temperature: str, optional (default: ‘tas’)
Short name of the variable describing the temperature change. This must be the name of the variable given in the recipe.