Shared diagnostic script code

Code that is shared between multiple diagnostic scripts.

Classes:

Datasets(cfg)

Class to easily access a recipe's datasets in a diagnostic script.

ProvenanceLogger(cfg)

Open the provenance logger.

Variable(short_name, standard_name, ...)

Variable class containing all relevant information.

Variables([cfg])

Class to easily access a recipe's variables in a diagnostic.

Functions:

apply_supermeans(ctrl, exper, obs_list)

Apply supermeans on data components ie MEAN on time.

extract_variables(cfg[, as_iris])

Extract basic variable information from configuration dictionary.

get_cfg([filename])

Read diagnostic script configuration from settings.yml.

get_control_exper_obs(short_name, ...)

Get control, exper and obs datasets.

get_diagnostic_filename(basename, cfg[, ...])

Get a valid path for saving a diagnostic data file.

get_plot_filename(basename, cfg)

Get a valid path for saving a diagnostic plot.

group_metadata(metadata, attribute[, sort])

Group metadata describing preprocessed data by attribute.

run_diagnostic()

Run a Python diagnostic.

save_data(basename, provenance, cfg, cube, ...)

Save the data used to create a plot to file.

save_figure(basename, provenance, cfg[, ...])

Save a figure to file.

select_metadata(metadata, **attributes)

Select specific metadata describing preprocessed data.

sorted_group_metadata(metadata_groups, sort)

Sort grouped metadata.

sorted_metadata(metadata, sort)

Sort a list of metadata describing preprocessed data.

variables_available(cfg, short_names)

Check if data from certain variables is available.

class esmvaltool.diag_scripts.shared.Datasets(cfg)[source]

Bases: object

Class to easily access a recipe’s datasets in a diagnostic script.

Note

This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Examples

Get all variables of a recipe configuration cfg:

datasets = Datasets(cfg)

Access data of a dataset with path dataset_path:

datasets.get_data(path=dataset_path)

Access dataset information of the dataset:

datasets.get_dataset_info(path=dataset_path)

Access the data of all datasets with exp=piControl:

datasets.get_data_list(exp=piControl)

Methods:

add_dataset(path[, data])

Add dataset to class.

add_to_data(data[, path])

Add element to a dataset's data.

get_data([path])

Access a dataset's data.

get_data_list(**dataset_info)

Access the datasets' data in a list.

get_dataset_info([path])

Access a dataset's information.

get_dataset_info_list(**dataset_info)

Access dataset's information in a list.

get_info(key[, path])

Access a 'dataset_info`'s key.

get_info_list(key, **dataset_info)

Access dataset_info's key values.

get_path(**dataset_info)

Access a dataset's path.

get_path_list(**dataset_info)

Access dataset's paths in a list.

set_data(data[, path])

Set element as a dataset's data.

add_dataset(path, data=None, **dataset_info)[source]

Add dataset to class.

Parameters
  • path (str) – (Unique) path to the dataset.

  • data (optional) – Arbitrary object to be saved as data for the dataset.

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

add_to_data(data, path=None, **dataset_info)[source]

Add element to a dataset’s data.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambiguous.

Parameters
  • data – Element to be added to the dataset’s data.

  • path (str, optional) – Path to the dataset

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Raises

RuntimeError – If data given by dataset_info is ambiguous.

get_data(path=None, **dataset_info)[source]

Access a dataset’s data.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambiguous.

Parameters
  • path (str, optional) – Path to the dataset

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

Data of the selected dataset.

Return type

data_object

Raises

RuntimeError – If data given by dataset_info is ambiguous.

get_data_list(**dataset_info)[source]

Access the datasets’ data in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters

**dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

Data of the selected datasets.

Return type

list

get_dataset_info(path=None, **dataset_info)[source]

Access a dataset’s information.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambiguous.

Parameters
  • path (str, optional) – Path to the dataset.

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

All dataset information.

Return type

dict

Raises

RuntimeError – If data given by dataset_info is ambiguous.

get_dataset_info_list(**dataset_info)[source]

Access dataset’s information in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters

**dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

Information dictionaries of the selected datasets.

Return type

list

get_info(key, path=None, **dataset_info)[source]

Access a ‘dataset_info`’s key.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambiguous. If the dataset_info does not contain the key, returns None.

Parameters
  • key (str) – Desired dictionary key.

  • path (str) – Path to the dataset.

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

key information of the given dataset.

Return type

str

Raises

RuntimeError – If data given by dataset_info is ambiguous.

get_info_list(key, **dataset_info)[source]

Access dataset_info’s key values.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters
  • key (str) – Desired dictionary key.

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

key information of the selected datasets.

Return type

list

get_path(**dataset_info)[source]

Access a dataset’s path.

Notes

A unique dataset_info description has to be given. Fails when given information is ambiguous.

Parameters

**dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

Path of the selected dataset.

Return type

str

Raises

RuntimeError – If data given by dataset_info is ambiguous.

get_path_list(**dataset_info)[source]

Access dataset’s paths in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters

**dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns

Paths of the selected datasets.

Return type

list

set_data(data, path=None, **dataset_info)[source]

Set element as a dataset’s data.

Notes

Either path or a unique dataset_info description have to be given. Fails when if given information is ambiguous.

Parameters
  • data – Element to be set as the dataset’s data.

  • path (str, optional) – Path to the dataset.

  • **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Raises

RuntimeError – If data given by dataset_info is ambiguous.

class esmvaltool.diag_scripts.shared.ProvenanceLogger(cfg)[source]

Bases: object

Open the provenance logger.

Parameters

cfg (dict) – Dictionary with diagnostic configuration.

Example

Use as a context manager:

record = {
    'caption': "This is a nice plot.",
    'statistics': ['mean'],
    'domain': ['global'],
    'plot_type': ['zonal'],
    'authors': [
        'first_author',
        'second_author',
    ],
    'references': [
        'author20journal',
    ],
    'ancestors': [
        '/path/to/input_file_1.nc',
        '/path/to/input_file_2.nc',
    ],
}
output_file = '/path/to/result.nc'

with ProvenanceLogger(cfg) as provenance_logger:
    provenance_logger.log(output_file, record)

Methods:

log(filename, record)

Record provenance.

log(filename, record)[source]

Record provenance.

Parameters
  • filename (str) – Name of the file containing the diagnostic data.

  • record (dict) –

    Dictionary with the provenance information to be logged.

    Typical keys are:
    • ancestors

    • authors

    • caption

    • domain

    • plot_type

    • references

    • statistics

Note

See the provenance documentation for more information.

class esmvaltool.diag_scripts.shared.Variable(short_name, standard_name, long_name, units)[source]

Bases: esmvaltool.diag_scripts.shared._diag.Variable

Variable class containing all relevant information.

Note

This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Methods:

count(value, /)

Return number of occurrences of value.

index(value[, start, stop])

Return first index of value.

Attributes:

long_name

Alias for field number 2

short_name

Alias for field number 0

standard_name

Alias for field number 1

units

Alias for field number 3

count(value, /)

Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)

Return first index of value.

Raises ValueError if the value is not present.

long_name

Alias for field number 2

short_name

Alias for field number 0

standard_name

Alias for field number 1

units

Alias for field number 3

class esmvaltool.diag_scripts.shared.Variables(cfg=None, **names)[source]

Bases: object

Class to easily access a recipe’s variables in a diagnostic.

Note

This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Examples

Get all variables of a recipe configuration cfg:

variables = Variables(cfg)

Access information of a variable tas:

variables.short_name('tas')
variables.standard_name('tas')
variables.long_name('tas')
variables.units('tas')

Access iris-suitable dictionary of a variable tas:

variables.iris_dict('tas')

Check if variables tas and pr are available:

variables.vars_available('tas', 'pr')

Methods:

add_vars(**names)

Add custom variables to the class.

iris_dict(var)

Access iris dictionary of the variable.

long_name(var)

Access long name.

modify_var(var, **names)

Modify an already existing variable of the class.

short_name(var)

Access short name.

short_names()

Get list of all short_names.

standard_name(var)

Access standard name.

standard_names()

Get list of all standard_names.

units(var)

Access units.

var_name(var)

Access var name.

vars_available(*args)

Check if given variables are available.

add_vars(**names)[source]

Add custom variables to the class.

Parameters

**names (dict or Variable, optional) – Keyword arguments of the form short_name=Variable_object where Variable_object can be given as dict or Variable.

iris_dict(var)[source]

Access iris dictionary of the variable.

Parameters

var (str) – (Short) name of the variable.

Returns

Dictionary containing all attributes of the variable which can be used directly in iris (short_name replaced by var_name).

Return type

dict

long_name(var)[source]

Access long name.

Parameters

var (str) – (Short) name of the variable.

Returns

Long name of the variable.

Return type

str

modify_var(var, **names)[source]

Modify an already existing variable of the class.

Parameters
  • var (str) – (Short) name of the existing variable.

  • **names – Keyword arguments of the form short_name=tas.

Raises
  • ValueError – If var is not an existing variable.

  • TypeError – If a non-valid keyword argument is given.

short_name(var)[source]

Access short name.

Parameters

var (str) – (Short) name of the variable.

Returns

Short name of the variable.

Return type

str

short_names()[source]

Get list of all short_names.

Returns

List of all short_names.

Return type

list

standard_name(var)[source]

Access standard name.

Parameters

var (str) – (Short) name of the variable.

Returns

Standard name of the variable.

Return type

str

standard_names()[source]

Get list of all standard_names.

Returns

List of all standard_names.

Return type

list

units(var)[source]

Access units.

Parameters

var (str) – (Short) name of the variable.

Returns

Units of the variable.

Return type

str

var_name(var)[source]

Access var name.

Parameters

var (str) – (Short) name of the variable.

Returns

Var name (=short name) of the variable.

Return type

str

vars_available(*args)[source]

Check if given variables are available.

Parameters

*args – Short names of the variables to be tested.

Returns

True if variables are available, False if not.

Return type

bool

esmvaltool.diag_scripts.shared.apply_supermeans(ctrl, exper, obs_list)[source]

Apply supermeans on data components ie MEAN on time.

This function is an extension of climate_statistics() meant to ease the time-meaning procedure when dealing with CONTROL, EXPERIMENT and OBS (if any) datasets. ctrl: dictionary of CONTROL dataset exper: dictionary of EXPERIMENT dataset obs_lis: list of dicts for OBS datasets (0, 1 or many)

Returns: control and experiment cubes and list of obs cubes

esmvaltool.diag_scripts.shared.extract_variables(cfg, as_iris=False)[source]

Extract basic variable information from configuration dictionary.

Returns short_name, standard_name, long_name and units keys for each variable.

Parameters
  • cfg (dict) – Diagnostic script configuration.

  • as_iris (bool, optional) – Replace short_name by var_name, this can be used directly in iris classes.

Returns

Variable information in dict`s (values) for each `short_name (key).

Return type

dict

esmvaltool.diag_scripts.shared.get_cfg(filename=None)[source]

Read diagnostic script configuration from settings.yml.

esmvaltool.diag_scripts.shared.get_control_exper_obs(short_name, input_data, cfg, cmip_type)[source]

Get control, exper and obs datasets.

This function is used when running recipes that need a clear distinction between a control dataset, an experiment dataset and have optional obs (OBS, obs4MIPs etc) datasets; such recipes include recipe_validation, and all the autoassess ones; short_name: variable short name input_data: dict containing the input data info cfg: config file as used in this module

esmvaltool.diag_scripts.shared.get_diagnostic_filename(basename, cfg, extension='nc')[source]

Get a valid path for saving a diagnostic data file.

Parameters
  • basename (str) – The basename of the file.

  • cfg (dict) – Dictionary with diagnostic configuration.

  • extension (str) – File name extension.

Returns

A valid path for saving a diagnostic data file.

Return type

str

esmvaltool.diag_scripts.shared.get_plot_filename(basename, cfg)[source]

Get a valid path for saving a diagnostic plot.

Parameters
  • basename (str) – The basename of the file.

  • cfg (dict) – Dictionary with diagnostic configuration.

Returns

A valid path for saving a diagnostic plot.

Return type

str

esmvaltool.diag_scripts.shared.group_metadata(metadata, attribute, sort=None)[source]

Group metadata describing preprocessed data by attribute.

Parameters
  • metadata (list of dict) – A list of metadata describing preprocessed data.

  • attribute (str) – The attribute name that the metadata should be grouped by.

  • sort – See sorted_group_metadata.

Returns

A dictionary containing the requested groups.

Return type

dict of list of dict

esmvaltool.diag_scripts.shared.run_diagnostic()[source]

Run a Python diagnostic.

This context manager is the main entry point for most Python diagnostics.

Example

See esmvaltool/diag_scripts/examples/diagnostic.py for an extensive example of how to start your diagnostic.

Basic usage is as follows, add these lines at the bottom of your script:

def main(cfg):
    # Your diagnostic code goes here.
    print(cfg)

if __name__ == '__main__':
    with run_diagnostic() as cfg:
        main(cfg)

The cfg dict passed to main contains the script configuration that can be used with the other functions in this module.

esmvaltool.diag_scripts.shared.save_data(basename, provenance, cfg, cube, **kwargs)[source]

Save the data used to create a plot to file.

Parameters
  • basename (str) – The basename of the file.

  • provenance (dict) – The provenance record for the data.

  • cfg (dict) – Dictionary with diagnostic configuration.

  • cube (iris.cube.Cube) – Data cube to save.

  • **kwargs – Extra keyword arguments to pass to iris.save.

See also

ProvenanceLogger

For an example provenance record that can be used with this function.

esmvaltool.diag_scripts.shared.save_figure(basename, provenance, cfg, figure=None, close=True, **kwargs)[source]

Save a figure to file.

Parameters

See also

ProvenanceLogger

For an example provenance record that can be used with this function.

esmvaltool.diag_scripts.shared.select_metadata(metadata, **attributes)[source]

Select specific metadata describing preprocessed data.

Parameters
  • metadata (list of dict) – A list of metadata describing preprocessed data.

  • **attributes – Keyword arguments specifying the required variable attributes and their values. Use the value ‘*’ to select any variable that has the attribute.

Returns

A list of matching metadata.

Return type

list of dict

esmvaltool.diag_scripts.shared.sorted_group_metadata(metadata_groups, sort)[source]

Sort grouped metadata.

Sorting is done on strings and is not case sensitive.

Parameters
  • metadata_groups (dict of list of dict) – Dictionary containing the groups of metadata.

  • sort (bool or str or list of str) – One or more attributes to sort by or True to just sort the groups but not the lists.

Returns

A dictionary containing the requested groups.

Return type

dict of list of dict

esmvaltool.diag_scripts.shared.sorted_metadata(metadata, sort)[source]

Sort a list of metadata describing preprocessed data.

Sorting is done on strings and is not case sensitive.

Parameters
  • metadata (list of dict) – A list of metadata describing preprocessed data.

  • sort (str or list of str) – One or more attributes to sort by.

Returns

The sorted list of variable metadata.

Return type

list of dict

esmvaltool.diag_scripts.shared.variables_available(cfg, short_names)[source]

Check if data from certain variables is available.

Parameters
  • cfg (dict) – Diagnostic script configuration.

  • short_names (list of str) – Variable short_names which should be checked.

Returns

True if all variables available, False if not.

Return type

bool

Iris helper functions

Convenience functions for iris objects.

Functions:

check_coordinate(cubes, coord_name)

Compare coordinate of cubes and raise error if not identical.

convert_to_iris(dict_)

Change all appearances of short_name to var_name.

get_mean_cube(datasets)

Get mean cube of a list of datasets.

intersect_dataset_coordinates(cubes)

Compare dataset coordinates of cubes and match them if necessary.

iris_project_constraint(projects, input_data)

Create iris.Constraint to select specific projects from data.

prepare_cube_for_merging(cube, cube_label)

Prepare single iris.cube.Cube in order to merge it later.

unify_1d_cubes(cubes, coord_name)

Unify 1D cubes by transforming them to identical coordinates.

unify_time_coord(cube[, target_units])

Unify time coordinate of cube in-place.

var_name_constraint(var_name)

iris.Constraint using var_name.

esmvaltool.diag_scripts.shared.iris_helpers.check_coordinate(cubes, coord_name)[source]

Compare coordinate of cubes and raise error if not identical.

Parameters
Returns

Points of the coordinate.

Return type

numpy.array

Raises
esmvaltool.diag_scripts.shared.iris_helpers.convert_to_iris(dict_)[source]

Change all appearances of short_name to var_name.

Parameters

dict (dict) – Dictionary to convert.

Returns

Converted dictionary.

Return type

dict

Raises

KeyErrordict contains keys``’short_name’`` and 'var_name'.

esmvaltool.diag_scripts.shared.iris_helpers.get_mean_cube(datasets)[source]

Get mean cube of a list of datasets.

Parameters

datasets (list of dict) – List of datasets (given as metadata dict).

Returns

Mean cube.

Return type

iris.cube.Cube

esmvaltool.diag_scripts.shared.iris_helpers.intersect_dataset_coordinates(cubes)[source]

Compare dataset coordinates of cubes and match them if necessary.

Use intersection of coordinate ‘dataset’ of all given cubes and remove elements which are not given in all cubes.

Parameters

cubes (iris.cube.CubeList) – Cubes to be compared.

Returns

Transformed cubes.

Return type

iris.cube.CubeList

Raises
esmvaltool.diag_scripts.shared.iris_helpers.iris_project_constraint(projects, input_data, negate=False)[source]

Create iris.Constraint to select specific projects from data.

Parameters
  • projects (list of str) – Projects to be selected.

  • input_data (list of dict) – List of dataset metadata used to extract all relevant datasets belonging to given projects.

  • negate (bool, optional (default: False)) – Negate constraint (False: select all elements that fit projects, True`: select all elements that do not fit projects).

Returns

constraint for coordinate dataset.

Return type

iris.Constraint

esmvaltool.diag_scripts.shared.iris_helpers.prepare_cube_for_merging(cube, cube_label)[source]

Prepare single iris.cube.Cube in order to merge it later.

Parameters
  • cube (iris.cube.Cube) – Cube to be pre-processed.

  • cube_label (str) – Label for the new scalar coordinate cube_label.

esmvaltool.diag_scripts.shared.iris_helpers.unify_1d_cubes(cubes, coord_name)[source]

Unify 1D cubes by transforming them to identical coordinates.

Use union of all coordinates as reference and transform other cubes to it by adding missing values.

Parameters
Returns

Transformed cubes.

Return type

iris.cube.CubeList

Raises

ValueError – Cubes are not 1D, coordinate name differs or not all cube coordinates are subsets of longest coordinate.

esmvaltool.diag_scripts.shared.iris_helpers.unify_time_coord(cube, target_units='days since 1850-01-01 00:00:00')[source]

Unify time coordinate of cube in-place.

Parameters
Raises

iris.exceptions.CoordinateNotFoundError – Cube does not contain coordinate time.

esmvaltool.diag_scripts.shared.iris_helpers.var_name_constraint(var_name)[source]

iris.Constraint using var_name.

Warning

Deprecated since version 2.6.0: This function has been deprecated in ESMValTool version 2.6.0 and is scheduled for removal in version 2.8.0. Please use the function iris.NameConstraint with the argument var_name instead: this is an exact replacement.

Parameters

var_name (str) – var_name used for the constraint.

Returns

Constraint.

Return type

iris.Constraint

Plotting

Module that provides common plot functions.

Functions:

get_dataset_style(dataset[, style_file])

Retrieve the style information for the given dataset.

get_path_to_mpl_style([style_file])

Get path to matplotlib style file.

global_contourf(cube[, cbar_center, ...])

Plot global filled contour plot.

global_pcolormesh(cube[, cbar_center, ...])

Plot global color mesh.

multi_dataset_scatterplot(x_data, y_data, ...)

Plot a multi dataset scatterplot.

quickplot(cube, plot_type[, filename])

Plot a cube using one of the iris.quickplot functions.

scatterplot(x_data, y_data, filepath, **kwargs)

Plot a scatterplot.

esmvaltool.diag_scripts.shared.plot.get_dataset_style(dataset, style_file=None)[source]

Retrieve the style information for the given dataset.

esmvaltool.diag_scripts.shared.plot.get_path_to_mpl_style(style_file=None)[source]

Get path to matplotlib style file.

esmvaltool.diag_scripts.shared.plot.global_contourf(cube, cbar_center=None, cbar_label=None, cbar_range=None, cbar_ticks=None, **kwargs)[source]

Plot global filled contour plot.

Note

This is only possible if the cube is 2D with dimensional coordinates latitude and longitude.

Parameters
  • cube (iris.cube.Cube) – Cube to plot.

  • cbar_center (float, optional) – Central value for the colormap, useful for diverging colormaps. Can only be used if cbar_range is given.

  • cbar_label (str, optional) – Label for the colorbar.

  • cbar_range (list of float, optional) – Range of the colorbar (first and second list element) and number of distinct colors (third element). See numpy.linspace.

  • cbar_ticks (list, optional) – Ticks for the colorbar.

  • **kwargs – Keyword argument for iris.plot.contourf().

Returns

Plot object.

Return type

matplotlib.contour.QuadContourSet

Raises
esmvaltool.diag_scripts.shared.plot.global_pcolormesh(cube, cbar_center=None, cbar_label=None, cbar_ticks=None, **kwargs)[source]

Plot global color mesh.

Note

This is only possible if the cube is 2D with dimensional coordinates latitude and longitude.

Parameters
  • cube (iris.cube.Cube) – Cube to plot.

  • cbar_center (float, optional) – Central value for the colormap, useful for diverging colormaps. Can only be used if vmin and vmax are given.

  • cbar_label (str, optional) – Label for the colorbar.

  • cbar_ticks (list, optional) – Ticks for the colorbar.

  • **kwargs – Keyword argument for iris.plot.pcolormesh().

Returns

Plot object.

Return type

matplotlib.contour.QuadContourSet

Raises
esmvaltool.diag_scripts.shared.plot.multi_dataset_scatterplot(x_data, y_data, datasets, filepath, **kwargs)[source]

Plot a multi dataset scatterplot.

Notes

Allowed keyword arguments:

  • mpl_style_file (str): Path to the matplotlib style file.

  • dataset_style_file (str): Path to the dataset style file.

  • plot_kwargs (array-like): Keyword arguments for the plot (e.g. label, makersize, etc.).

  • save_kwargs (dict): Keyword arguments for saving the plot.

  • axes_functions (dict): Arbitrary functions for axes, i.e. axes.set_title(‘title’).

Parameters
  • x_data (array-like) – x data of each dataset.

  • y_data (array-like) – y data of each dataset.

  • datasets (array-like) – Names of the datasets.

  • filepath (str) – Path to which plot is written.

  • **kwargs – Keyword arguments.

Raises
  • TypeError – A non-valid keyword argument is given or x_data, y_data, datasets or (if given) plot_kwargs is not array-like.

  • ValueErrorx_data, y_data, datasets or plot_kwargs do not have the same size.

esmvaltool.diag_scripts.shared.plot.quickplot(cube, plot_type, filename=None, **kwargs)[source]

Plot a cube using one of the iris.quickplot functions.

esmvaltool.diag_scripts.shared.plot.scatterplot(x_data, y_data, filepath, **kwargs)[source]

Plot a scatterplot.

Notes

Allowed keyword arguments:

  • mpl_style_file (str): Path to the matplotlib style file.

  • plot_kwargs (array-like): Keyword arguments for the plot (e.g. label, makersize, etc.).

  • save_kwargs (dict): Keyword arguments for saving the plot.

  • axes_functions (dict): Arbitrary functions for axes, i.e. axes.set_title(‘title’).

Parameters
  • x_data (array-like) – x data of each dataset.

  • y_data (array-like) – y data of each dataset.

  • filepath (str) – Path to which plot is written.

  • **kwargs – Keyword arguments.

Raises
  • TypeError – A non-valid keyword argument is given or x_data, y_data or (if given) plot_kwargs is not array-like.

  • ValueErrorx_data, y_data or plot_kwargs do not have the same size.