"""Horizontal and vertical regridding module."""
import importlib
import inspect
import logging
import os
import re
from copy import deepcopy
from decimal import Decimal
from pathlib import Path
from typing import Dict
import iris
import numpy as np
import stratify
from dask import array as da
from geopy.geocoders import Nominatim
from iris.analysis import AreaWeighted, Linear, Nearest, UnstructuredNearest
from iris.util import broadcast_to_shape
from ..cmor._fixes.shared import add_altitude_from_plev, add_plev_from_altitude
from ..cmor.table import CMOR_TABLES
from ._regrid_esmpy import ESMF_REGRID_METHODS
from ._regrid_esmpy import regrid as esmpy_regrid
from ._supplementary_vars import add_ancillary_variable, add_cell_measure
logger = logging.getLogger(__name__)
# Regular expression to parse a "MxN" cell-specification.
_CELL_SPEC = re.compile(
r'''\A
\s*(?P<dlon>\d+(\.\d+)?)\s*
x
\s*(?P<dlat>\d+(\.\d+)?)\s*
\Z
''', re.IGNORECASE | re.VERBOSE)
# Default fill-value.
_MDI = 1e+20
# Stock cube - global grid extents (degrees).
_LAT_MIN = -90.0
_LAT_MAX = 90.0
_LAT_RANGE = _LAT_MAX - _LAT_MIN
_LON_MIN = 0.0
_LON_MAX = 360.0
_LON_RANGE = _LON_MAX - _LON_MIN
# A cached stock of standard horizontal target grids.
_CACHE: Dict[str, iris.cube.Cube] = {}
# Supported point interpolation schemes.
POINT_INTERPOLATION_SCHEMES = {
'linear': Linear(extrapolation_mode='mask'),
'nearest': Nearest(extrapolation_mode='mask'),
}
# Supported horizontal regridding schemes.
HORIZONTAL_SCHEMES = {
'linear': Linear(extrapolation_mode='mask'),
'linear_extrapolate': Linear(extrapolation_mode='extrapolate'),
'nearest': Nearest(extrapolation_mode='mask'),
'area_weighted': AreaWeighted(),
'unstructured_nearest': UnstructuredNearest(),
}
# Supported vertical interpolation schemes.
VERTICAL_SCHEMES = (
'linear',
'nearest',
'linear_extrapolate',
'nearest_extrapolate',
)
def parse_cell_spec(spec):
"""Parse an MxN cell specification string.
Parameters
----------
spec: str
``MxN`` degree cell-specification for the global grid.
Returns
-------
tuple
tuple of (float, float) of parsed (lon, lat)
Raises
------
ValueError
if the MxN cell specification is malformed.
ValueError
invalid longitude and latitude delta in cell specification.
"""
cell_match = _CELL_SPEC.match(spec)
if cell_match is None:
emsg = 'Invalid MxN cell specification for grid, got {!r}.'
raise ValueError(emsg.format(spec))
cell_group = cell_match.groupdict()
dlon = float(cell_group['dlon'])
dlat = float(cell_group['dlat'])
if (np.trunc(_LON_RANGE / dlon) * dlon) != _LON_RANGE:
emsg = ('Invalid longitude delta in MxN cell specification '
'for grid, got {!r}.')
raise ValueError(emsg.format(dlon))
if (np.trunc(_LAT_RANGE / dlat) * dlat) != _LAT_RANGE:
emsg = ('Invalid latitude delta in MxN cell specification '
'for grid, got {!r}.')
raise ValueError(emsg.format(dlat))
return dlon, dlat
def _generate_cube_from_dimcoords(latdata, londata, circular: bool = False):
"""Generate cube from lat/lon points.
Parameters
----------
latdata : np.ndarray
List of latitudes.
londata : np.ndarray
List of longitudes.
circular : bool
Wrap longitudes around the full great circle. Bounds will not be
generated for circular coordinates.
Returns
-------
:class:`~iris.cube.Cube`
"""
lats = iris.coords.DimCoord(latdata,
standard_name='latitude',
units='degrees_north',
var_name='lat',
circular=circular)
lons = iris.coords.DimCoord(londata,
standard_name='longitude',
units='degrees_east',
var_name='lon',
circular=circular)
if not circular:
# cannot guess bounds for wrapped coordinates
lats.guess_bounds()
lons.guess_bounds()
# Construct the resultant stock cube, with dummy data.
shape = (latdata.size, londata.size)
dummy = np.empty(shape, dtype=np.dtype('int8'))
coords_spec = [(lats, 0), (lons, 1)]
cube = iris.cube.Cube(dummy, dim_coords_and_dims=coords_spec)
return cube
def _global_stock_cube(spec, lat_offset=True, lon_offset=True):
"""Create a stock cube.
Create a global cube with M degree-east by N degree-north regular grid
cells.
The longitude range is from 0 to 360 degrees. The latitude range is from
-90 to 90 degrees. Each cell grid point is calculated as the mid-point of
the associated MxN cell.
Parameters
----------
spec : str
Specifies the 'MxN' degree cell-specification for the global grid.
lat_offset : bool
Offset the grid centers of the latitude coordinate w.r.t. the
pole by half a grid step. This argument is ignored if `target_grid`
is a cube or file.
lon_offset : bool
Offset the grid centers of the longitude coordinate w.r.t. Greenwich
meridian by half a grid step.
This argument is ignored if `target_grid` is a cube or file.
Returns
-------
:class:`~iris.cube.Cube`
"""
dlon, dlat = parse_cell_spec(spec)
mid_dlon, mid_dlat = dlon / 2, dlat / 2
# Construct the latitude coordinate, with bounds.
if lat_offset:
latdata = np.linspace(_LAT_MIN + mid_dlat, _LAT_MAX - mid_dlat,
int(_LAT_RANGE / dlat))
else:
latdata = np.linspace(_LAT_MIN, _LAT_MAX, int(_LAT_RANGE / dlat) + 1)
# Construct the longitude coordinat, with bounds.
if lon_offset:
londata = np.linspace(_LON_MIN + mid_dlon, _LON_MAX - mid_dlon,
int(_LON_RANGE / dlon))
else:
londata = np.linspace(_LON_MIN, _LON_MAX - dlon,
int(_LON_RANGE / dlon))
cube = _generate_cube_from_dimcoords(latdata=latdata, londata=londata)
return cube
def _spec_to_latlonvals(*, start_latitude: float, end_latitude: float,
step_latitude: float, start_longitude: float,
end_longitude: float, step_longitude: float) -> tuple:
"""Define lat/lon values from spec.
Create a regional cube starting defined by the target specification.
The latitude must be between -90 and +90. The longitude is not bounded, but
wraps around the full great circle.
Parameters
----------
start_latitude : float
Latitude value of the first grid cell center (start point). The grid
includes this value.
end_latitude : float
Latitude value of the last grid cell center (end point). The grid
includes this value only if it falls on a grid point. Otherwise, it
cuts off at the previous value.
step_latitude : float
Latitude distance between the centers of two neighbouring cells.
start_longitude : float
Latitude value of the first grid cell center (start point). The grid
includes this value.
end_longitude : float
Longitude value of the last grid cell center (end point). The grid
includes this value only if it falls on a grid point. Otherwise, it
cuts off at the previous value.
step_longitude : float
Longitude distance between the centers of two neighbouring cells.
Returns
-------
xvals : np.array
List of longitudes
yvals : np.array
List of latitudes
"""
if step_latitude == 0:
raise ValueError('Latitude step cannot be 0, '
f'got step_latitude={step_latitude}.')
if step_longitude == 0:
raise ValueError('Longitude step cannot be 0, '
f'got step_longitude={step_longitude}.')
if (start_latitude < _LAT_MIN) or (end_latitude > _LAT_MAX):
raise ValueError(
f'Latitude values must lie between {_LAT_MIN}:{_LAT_MAX}, '
f'got start_latitude={start_latitude}:end_latitude={end_latitude}.'
)
def get_points(start, stop, step):
"""Calculate grid points."""
# use Decimal to avoid floating point errors
num = int(Decimal(stop - start) // Decimal(str(step)))
stop = start + num * step
return np.linspace(start, stop, num + 1)
latitudes = get_points(start_latitude, end_latitude, step_latitude)
longitudes = get_points(start_longitude, end_longitude, step_longitude)
return latitudes, longitudes
def _regional_stock_cube(spec: dict):
"""Create a regional stock cube.
Returns
-------
:class:`~iris.cube.Cube`.
"""
latdata, londata = _spec_to_latlonvals(**spec)
cube = _generate_cube_from_dimcoords(latdata=latdata,
londata=londata,
circular=True)
def add_bounds_from_step(coord, step):
"""Calculate bounds from the given step."""
bound = step / 2
points = coord.points
coord.bounds = np.vstack((points - bound, points + bound)).T
add_bounds_from_step(cube.coord('latitude'), spec['step_latitude'])
add_bounds_from_step(cube.coord('longitude'), spec['step_longitude'])
return cube
def _attempt_irregular_regridding(cube, scheme):
"""Check if irregular regridding with ESMF should be used."""
if isinstance(scheme, str) and scheme in ESMF_REGRID_METHODS:
try:
lat_dim = cube.coord('latitude').ndim
lon_dim = cube.coord('longitude').ndim
if lat_dim == lon_dim == 2:
return True
except iris.exceptions.CoordinateNotFoundError:
pass
return False
def is_dataset(dataset):
"""Test if something is an `esmvalcore.dataset.Dataset`."""
# Use this function to avoid circular imports
return hasattr(dataset, 'facets')
[docs]def regrid(cube, target_grid, scheme, lat_offset=True, lon_offset=True):
"""Perform horizontal regridding.
Note that the target grid can be a cube (:py:class:`~iris.cube.Cube`),
path to a cube (``str``), a grid spec (``str``) in the form
of `MxN`, or a ``dict`` specifying the target grid.
For the latter, the ``target_grid`` should be a ``dict`` with the
following keys:
- ``start_longitude``: longitude at the center of the first grid cell.
- ``end_longitude``: longitude at the center of the last grid cell.
- ``step_longitude``: constant longitude distance between grid cell \
centers.
- ``start_latitude``: latitude at the center of the first grid cell.
- ``end_latitude``: longitude at the center of the last grid cell.
- ``step_latitude``: constant latitude distance between grid cell centers.
Parameters
----------
cube : :py:class:`~iris.cube.Cube`
The source cube to be regridded.
target_grid : Cube or str or dict
The (location of a) cube that specifies the target or reference grid
for the regridding operation.
Alternatively, a string cell specification may be provided,
of the form ``MxN``, which specifies the extent of the cell, longitude
by latitude (degrees) for a global, regular target grid.
Alternatively, a dictionary with a regional target grid may
be specified (see above).
scheme : str or dict
The regridding scheme to perform. If both source and target grid are
structured (regular or irregular), can be one of the built-in schemes
``linear``, ``linear_extrapolate``, ``nearest``, ``area_weighted``,
``unstructured_nearest``.
Alternatively, a `dict` that specifies generic regridding (see below).
lat_offset : bool
Offset the grid centers of the latitude coordinate w.r.t. the
pole by half a grid step. This argument is ignored if ``target_grid``
is a cube or file.
lon_offset : bool
Offset the grid centers of the longitude coordinate w.r.t. Greenwich
meridian by half a grid step.
This argument is ignored if ``target_grid`` is a cube or file.
Returns
-------
:py:class:`~iris.cube.Cube`
Regridded cube.
See Also
--------
extract_levels : Perform vertical regridding.
Notes
-----
This preprocessor allows for the use of arbitrary :doc:`Iris <iris:index>`
regridding schemes, that is anything that can be passed as a scheme to
:meth:`iris.cube.Cube.regrid` is possible. This enables the use of further
parameters for existing schemes, as well as the use of more advanced
schemes for example for unstructured meshes.
To use this functionality, a dictionary must be passed for the scheme with
a mandatory entry of ``reference`` in the form specified for the object
reference of the `entry point data model <https://packaging.python.org/en/
latest/specifications/entry-points/#data-model>`_,
i.e. ``importable.module:object.attr``. This is used as a factory for the
scheme. Any further entries in the dictionary are passed as keyword
arguments to the factory.
For example, to use the familiar :class:`iris.analysis.Linear` regridding
scheme with a custom extrapolation mode, use
.. code-block:: yaml
my_preprocessor:
regrid:
target: 1x1
scheme:
reference: iris.analysis:Linear
extrapolation_mode: nanmask
To use the area weighted regridder available in
:class:`esmf_regrid.schemes.ESMFAreaWeighted` use
.. code-block:: yaml
my_preprocessor:
regrid:
target: 1x1
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted
"""
if is_dataset(target_grid):
target_grid = target_grid.copy()
target_grid.supplementaries.clear()
target_grid.files = [target_grid.files[0]]
target_grid = target_grid.load()
elif isinstance(target_grid, (str, Path)) and os.path.isfile(target_grid):
target_grid = iris.load_cube(target_grid)
elif isinstance(target_grid, str):
# Generate a target grid from the provided cell-specification,
# and cache the resulting stock cube for later use.
target_grid = _CACHE.setdefault(
target_grid,
_global_stock_cube(target_grid, lat_offset, lon_offset),
)
# Align the target grid coordinate system to the source
# coordinate system.
src_cs = cube.coord_system()
xcoord = target_grid.coord(axis='x', dim_coords=True)
ycoord = target_grid.coord(axis='y', dim_coords=True)
xcoord.coord_system = src_cs
ycoord.coord_system = src_cs
elif isinstance(target_grid, dict):
# Generate a target grid from the provided specification,
target_grid = _regional_stock_cube(target_grid)
if not isinstance(target_grid, iris.cube.Cube):
raise ValueError(f'Expecting a cube, got {target_grid}.')
if isinstance(scheme, dict):
scheme = dict(scheme) # do not overwrite original scheme
try:
object_ref = scheme.pop("reference")
except KeyError as key_err:
raise ValueError(
"No reference specified for generic regridding.") from key_err
module_name, separator, scheme_name = object_ref.partition(":")
try:
obj = importlib.import_module(module_name)
except ImportError as import_err:
raise ValueError(
"Could not import specified generic regridding module. "
"Please double check spelling and that the required module is "
"installed.") from import_err
if separator:
for attr in scheme_name.split('.'):
obj = getattr(obj, attr)
scheme_args = inspect.getfullargspec(obj).args
# Add source and target cubes as arguments if required
if 'src_cube' in scheme_args:
scheme['src_cube'] = cube
if 'grid_cube' in scheme_args:
scheme['grid_cube'] = target_grid
loaded_scheme = obj(**scheme)
else:
loaded_scheme = HORIZONTAL_SCHEMES.get(scheme.lower())
if loaded_scheme is None:
emsg = 'Unknown regridding scheme, got {!r}.'
raise ValueError(emsg.format(scheme))
# Unstructured regridding requires x2 2d spatial coordinates,
# so ensure to purge any 1d native spatial dimension coordinates
# for the regridder.
if scheme == 'unstructured_nearest':
for axis in ['x', 'y']:
coords = cube.coords(axis=axis, dim_coords=True)
if coords:
[coord] = coords
cube.remove_coord(coord)
# Horizontal grids from source and target (almost) match
# -> Return source cube with target coordinates
if _horizontal_grid_is_close(cube, target_grid):
for coord in ['latitude', 'longitude']:
cube.coord(coord).points = target_grid.coord(coord).points
cube.coord(coord).bounds = target_grid.coord(coord).bounds
return cube
# Horizontal grids from source and target do not match
# -> Regrid
if _attempt_irregular_regridding(cube, scheme):
cube = esmpy_regrid(cube, target_grid, scheme)
elif isinstance(loaded_scheme, iris.cube.Cube):
# Return regridded cube in cases in which the
# scheme is a function f(src_cube, grid_cube) -> Cube
cube = loaded_scheme
else:
cube = cube.regrid(target_grid, loaded_scheme)
return cube
def _horizontal_grid_is_close(cube1, cube2):
"""Check if two cubes have the same horizontal grid definition.
The result of the function is a boolean answer, if both cubes have the
same horizontal grid definition. The function checks both longitude and
latitude, based on extent and resolution.
Parameters
----------
cube1 : cube
The first of the cubes to be checked.
cube2 : cube
The second of the cubes to be checked.
Returns
-------
bool
.. note::
The current implementation checks if the bounds and the
grid shapes are the same.
Exits on first difference.
"""
# Go through the 2 expected horizontal coordinates longitude and latitude.
for coord in ['latitude', 'longitude']:
coord1 = cube1.coord(coord)
coord2 = cube2.coord(coord)
if not coord1.shape == coord2.shape:
return False
if not np.allclose(coord1.bounds, coord2.bounds):
return False
return True
def _create_cube(src_cube, data, src_levels, levels):
"""Generate a new cube with the interpolated data.
The resultant cube is seeded with `src_cube` metadata and coordinates,
excluding any source coordinates that span the associated vertical
dimension. The `levels` of interpolation are used along with the
associated source cube vertical coordinate metadata to add a new
vertical coordinate to the resultant cube.
Parameters
----------
src_cube : cube
The source cube that was vertically interpolated.
data : array
The payload resulting from interpolating the source cube
over the specified levels.
src_levels : array
Vertical levels of the source data
levels : array
The vertical levels of interpolation.
Returns
-------
cube
.. note::
If there is only one level of interpolation, the resultant cube
will be collapsed over the associated vertical dimension, and a
scalar vertical coordinate will be added.
"""
# Get the source cube vertical coordinate and associated dimension.
z_coord = src_cube.coord(axis='z', dim_coords=True)
z_dim, = src_cube.coord_dims(z_coord)
if data.shape[z_dim] != levels.size:
emsg = ('Mismatch between data and levels for data dimension {!r}, '
'got data shape {!r} with levels shape {!r}.')
raise ValueError(emsg.format(z_dim, data.shape, levels.shape))
# Construct the resultant cube with the interpolated data
# and the source cube metadata.
kwargs = deepcopy(src_cube.metadata)._asdict()
result = iris.cube.Cube(data, **kwargs)
# Add the appropriate coordinates to the cube, excluding
# any coordinates that span the z-dimension of interpolation.
for coord in src_cube.dim_coords:
[dim] = src_cube.coord_dims(coord)
if dim != z_dim:
result.add_dim_coord(coord.copy(), dim)
for coord in src_cube.aux_coords:
dims = src_cube.coord_dims(coord)
if z_dim not in dims:
result.add_aux_coord(coord.copy(), dims)
for coord in src_cube.derived_coords:
dims = src_cube.coord_dims(coord)
if z_dim not in dims:
result.add_aux_coord(coord.copy(), dims)
# Construct the new vertical coordinate for the interpolated
# z-dimension, using the associated source coordinate metadata.
metadata = src_levels.metadata
kwargs = {
'standard_name': metadata.standard_name,
'long_name': metadata.long_name,
'var_name': metadata.var_name,
'units': metadata.units,
'attributes': metadata.attributes,
'coord_system': metadata.coord_system,
'climatological': metadata.climatological,
}
try:
coord = iris.coords.DimCoord(levels, **kwargs)
result.add_dim_coord(coord, z_dim)
except ValueError:
coord = iris.coords.AuxCoord(levels, **kwargs)
result.add_aux_coord(coord, z_dim)
# Collapse the z-dimension for the scalar case.
if levels.size == 1:
slicer = [slice(None)] * result.ndim
slicer[z_dim] = 0
result = result[tuple(slicer)]
return result
def _vertical_interpolate(cube, src_levels, levels, interpolation,
extrapolation):
"""Perform vertical interpolation."""
# Determine the source levels and axis for vertical interpolation.
z_axis, = cube.coord_dims(cube.coord(axis='z', dim_coords=True))
# Broadcast the 1d source cube vertical coordinate to fully
# describe the spatial extent that will be interpolated.
src_levels_broadcast = broadcast_to_shape(src_levels.points, cube.shape,
cube.coord_dims(src_levels))
# force mask onto data as nan's
cube.data = da.ma.filled(cube.core_data(), np.nan)
# Now perform the actual vertical interpolation.
new_data = stratify.interpolate(levels,
src_levels_broadcast,
cube.core_data(),
axis=z_axis,
interpolation=interpolation,
extrapolation=extrapolation)
# Calculate the mask based on the any NaN values in the interpolated data.
mask = np.isnan(new_data)
if np.any(mask):
# Ensure that the data is masked appropriately.
new_data = np.ma.array(new_data, mask=mask, fill_value=_MDI)
# Construct the resulting cube with the interpolated data.
return _create_cube(cube, new_data, src_levels, levels.astype(float))
def _preserve_fx_vars(cube, result):
vertical_dim = set(cube.coord_dims(cube.coord(axis='z', dim_coords=True)))
if cube.cell_measures():
for measure in cube.cell_measures():
measure_dims = set(cube.cell_measure_dims(measure))
if vertical_dim.intersection(measure_dims):
logger.warning(
'Discarding use of z-axis dependent cell measure %s '
'in variable %s, as z-axis has been interpolated',
measure.var_name, result.var_name)
else:
add_cell_measure(result, measure, measure.measure)
if cube.ancillary_variables():
for ancillary_var in cube.ancillary_variables():
ancillary_dims = set(cube.ancillary_variable_dims(ancillary_var))
if vertical_dim.intersection(ancillary_dims):
logger.warning(
'Discarding use of z-axis dependent ancillary variable %s '
'in variable %s, as z-axis has been interpolated',
ancillary_var.var_name, result.var_name)
else:
add_ancillary_variable(result, ancillary_var)
def parse_vertical_scheme(scheme):
"""Parse the scheme provided for level extraction.
Parameters
----------
scheme : str
The vertical interpolation scheme to use. Choose from
'linear',
'nearest',
'linear_extrapolate',
'nearest_extrapolate'.
Returns
-------
(str, str)
A tuple containing the interpolation and extrapolation scheme.
"""
# Check if valid scheme is given
if scheme not in VERTICAL_SCHEMES:
raise ValueError(
f"Unknown vertical interpolation scheme, got '{scheme}', possible "
f"schemes are {VERTICAL_SCHEMES}")
# This allows us to put level 0. to load the ocean surface.
extrap_scheme = 'nan'
if scheme == 'linear_extrapolate':
scheme = 'linear'
extrap_scheme = 'nearest'
if scheme == 'nearest_extrapolate':
scheme = 'nearest'
extrap_scheme = 'nearest'
return scheme, extrap_scheme
def get_cmor_levels(cmor_table, coordinate):
"""Get level definition from a CMOR coordinate.
Parameters
----------
cmor_table: str
CMOR table name
coordinate: str
CMOR coordinate name
Returns
-------
list[int]
Raises
------
ValueError:
If the CMOR table is not defined, the coordinate does not specify any
levels or the string is badly formatted.
"""
if cmor_table not in CMOR_TABLES:
raise ValueError(
f"Level definition cmor_table '{cmor_table}' not available"
)
if coordinate not in CMOR_TABLES[cmor_table].coords:
raise ValueError(
f'Coordinate {coordinate} not available for {cmor_table}'
)
cmor = CMOR_TABLES[cmor_table].coords[coordinate]
if cmor.requested:
return [float(level) for level in cmor.requested]
if cmor.value:
return [float(cmor.value)]
raise ValueError(
f'Coordinate {coordinate} in {cmor_table} does not have requested '
f'values'
)
def get_reference_levels(dataset):
"""Get level definition from a reference dataset.
Parameters
----------
dataset: esmvalcore.dataset.Dataset
Dataset containing the reference files.
Returns
-------
list[float]
Raises
------
ValueError:
If the dataset is not defined, the coordinate does not specify any
levels or the string is badly formatted.
"""
dataset = dataset.copy()
dataset.supplementaries.clear()
dataset.files = [dataset.files[0]]
cube = dataset.load()
try:
coord = cube.coord(axis='Z')
except iris.exceptions.CoordinateNotFoundError as exc:
raise ValueError(f'z-coord not available in {dataset.files}') from exc
return coord.points.tolist()