"""Auxiliary functions for :mod:`iris`."""
from __future__ import annotations
import warnings
from collections.abc import Generator
from contextlib import contextmanager
from typing import Dict, Iterable, List, Literal, Sequence
import dask.array as da
import iris
import iris.cube
import iris.util
import numpy as np
from cf_units import Unit
from iris.coords import Coord
from iris.cube import Cube
from iris.exceptions import CoordinateMultiDimError, CoordinateNotFoundError
from iris.warnings import IrisVagueMetadataWarning
from esmvalcore.typing import NetCDFAttr
[docs]
def add_leading_dim_to_cube(cube, dim_coord):
"""Add new leading dimension to cube.
An input cube with shape ``(x, ..., z)`` will be transformed to a cube with
shape ``(w, x, ..., z)`` where ``w`` is the length of ``dim_coord``. Note
that the data is broadcasted to the new shape.
Parameters
----------
cube: iris.cube.Cube
Input cube.
dim_coord: iris.coords.DimCoord
Dimensional coordinate that is used to describe the new leading
dimension. Needs to be 1D.
Returns
-------
iris.cube.Cube
Transformed input cube with new leading dimension.
Raises
------
iris.exceptions.CoordinateMultiDimError
``dim_coord`` is not 1D.
"""
# Only 1D dim_coords are supported
if dim_coord.ndim > 1:
raise CoordinateMultiDimError(dim_coord)
new_shape = (dim_coord.shape[0], *cube.shape)
# Cache ancillary variables and cell measures (iris.util.new_axis drops
# those) and determine corresponding dimensions in new cube
ancillary_variables = []
for ancillary_variable in cube.ancillary_variables():
new_dims = tuple(
d + 1 for d in cube.ancillary_variable_dims(ancillary_variable)
)
ancillary_variables.append((ancillary_variable, new_dims))
cell_measures = []
for cell_measure in cube.cell_measures():
new_dims = tuple(d + 1 for d in cube.cell_measure_dims(cell_measure))
cell_measures.append((cell_measure, new_dims))
# Transform cube from shape (x, ..., z) to (1, x, ..., z)
cube = iris.util.new_axis(cube)
# Create new cube with shape (w, x, ..., z) where w is length of dim_coord
# and already add ancillary variables and cell measures
new_data = da.broadcast_to(cube.core_data(), new_shape)
new_cube = Cube(
new_data,
ancillary_variables_and_dims=ancillary_variables,
cell_measures_and_dims=cell_measures,
)
# Add metadata
# Note: using cube.coord_dims() for determining the positions for the
# coordinates of the new cube is correct here since cube has the shape (1,
# x, ..., z) at this stage
new_cube.metadata = cube.metadata
new_cube.add_dim_coord(dim_coord, 0)
for coord in cube.coords(dim_coords=True):
new_cube.add_dim_coord(coord, cube.coord_dims(coord))
for coord in cube.coords(dim_coords=False):
new_cube.add_aux_coord(coord, cube.coord_dims(coord))
return new_cube
[docs]
def date2num(date, unit, dtype=np.float64):
"""Convert datetime object into numeric value with requested dtype.
This is a custom version of :meth:`cf_units.Unit.date2num` that
guarantees the correct dtype for the return value.
Parameters
----------
date : :class:`datetime.datetime` or :class:`cftime.datetime`
unit : :class:`cf_units.Unit`
dtype : a numpy dtype
Returns
-------
:class:`numpy.ndarray` of type `dtype`
The return value of ``unit.date2num`` with the requested dtype.
"""
num = unit.date2num(date)
try:
return num.astype(dtype)
except AttributeError:
return dtype(num)
[docs]
def merge_cube_attributes(
cubes: Sequence[Cube],
delimiter: str = " ",
) -> None:
"""Merge attributes of all given cubes in-place.
After this operation, the attributes of all given cubes are equal. This is
useful for operations that combine cubes, such as
:meth:`iris.cube.CubeList.merge_cube` or
:meth:`iris.cube.CubeList.concatenate_cube`.
Note
----
This function differs from :func:`iris.util.equalise_attributes` in this
respect that it does not delete attributes that are not identical but
rather concatenates them (sorted) using the given ``delimiter``. E.g., the
attributes ``exp: historical`` and ``exp: ssp585`` end up as ``exp:
historical ssp585`` using the default ``delimiter = ' '``.
Parameters
----------
cubes:
Input cubes whose attributes will be modified in-place.
delimiter:
Delimiter that is used to concatenate non-identical attributes.
"""
if len(cubes) <= 1:
return
# Step 1: collect all attribute values in a list
attributes: Dict[str, List[NetCDFAttr]] = {}
for cube in cubes:
for attr, val in cube.attributes.items():
attributes.setdefault(attr, [])
attributes[attr].append(val)
# Step 2: use the first cube in which an attribute occurs to decide if an
# attribute is global or local.
final_attributes = iris.cube.CubeAttrsDict()
for cube in cubes:
for attr, value in cube.attributes.locals.items():
if attr not in final_attributes:
final_attributes.locals[attr] = value
for attr, value in cube.attributes.globals.items():
if attr not in final_attributes:
final_attributes.globals[attr] = value
# Step 3: if values are not equal, first convert them to strings (so that
# set() can be used); then extract unique elements from this list, sort it,
# and use the delimiter to join all elements to a single string.
for attr, vals in attributes.items():
set_of_str = sorted({str(v) for v in vals})
if len(set_of_str) == 1:
final_attributes[attr] = vals[0]
else:
final_attributes[attr] = delimiter.join(set_of_str)
# Step 4: modify the cubes in-place
for cube in cubes:
cube.attributes = final_attributes
def _rechunk(
array: da.core.Array,
complete_dims: list[int],
remaining_dims: int | Literal["auto"],
) -> da.core.Array:
"""Rechunk a given array so that it is not chunked along given dims."""
new_chunks: list[str | int] = [remaining_dims] * array.ndim
for dim in complete_dims:
new_chunks[dim] = -1
return array.rechunk(new_chunks)
def _rechunk_dim_metadata(
cube: Cube,
complete_dims: Iterable[int],
remaining_dims: int | Literal["auto"] = "auto",
) -> None:
"""Rechunk dimensional metadata of a cube (in-place)."""
# Non-dimensional coords that span complete_dims
# Note: dimensional coords are always realized (i.e., numpy arrays), so no
# chunking is necessary
for coord in cube.coords(dim_coords=False):
dims = cube.coord_dims(coord)
complete_dims_ = [dims.index(d) for d in complete_dims if d in dims]
if complete_dims_:
if coord.has_lazy_points():
coord.points = _rechunk(
coord.lazy_points(), complete_dims_, remaining_dims
)
if coord.has_bounds() and coord.has_lazy_bounds():
coord.bounds = _rechunk(
coord.lazy_bounds(), complete_dims_, remaining_dims
)
# Rechunk cell measures that span complete_dims
for measure in cube.cell_measures():
dims = cube.cell_measure_dims(measure)
complete_dims_ = [dims.index(d) for d in complete_dims if d in dims]
if complete_dims_ and measure.has_lazy_data():
measure.data = _rechunk(
measure.lazy_data(), complete_dims_, remaining_dims
)
# Rechunk ancillary variables that span complete_dims
for anc_var in cube.ancillary_variables():
dims = cube.ancillary_variable_dims(anc_var)
complete_dims_ = [dims.index(d) for d in complete_dims if d in dims]
if complete_dims_ and anc_var.has_lazy_data():
anc_var.data = _rechunk(
anc_var.lazy_data(), complete_dims_, remaining_dims
)
[docs]
def rechunk_cube(
cube: Cube,
complete_coords: Iterable[Coord | str],
remaining_dims: int | Literal["auto"] = "auto",
) -> Cube:
"""Rechunk cube so that it is not chunked along given dimensions.
This will rechunk the cube's data, but also all non-dimensional
coordinates, cell measures, and ancillary variables that span at least one
of the given dimensions.
Note
----
This will only rechunk `dask` arrays. `numpy` arrays are not changed.
Parameters
----------
cube:
Input cube.
complete_coords:
(Names of) coordinates along which the output cube should not be
chunked.
remaining_dims:
Chunksize of the remaining dimensions.
Returns
-------
iris.cube.Cube
Rechunked cube. This will always be a copy of the input cube.
"""
cube = cube.copy() # do not modify input cube
complete_dims = []
for coord in complete_coords:
coord = cube.coord(coord)
complete_dims.extend(cube.coord_dims(coord))
complete_dims = list(set(complete_dims))
# Rechunk data
if cube.has_lazy_data():
cube.data = _rechunk(cube.lazy_data(), complete_dims, remaining_dims)
# Rechunk dimensional metadata
_rechunk_dim_metadata(cube, complete_dims, remaining_dims=remaining_dims)
return cube
[docs]
def has_regular_grid(cube: Cube) -> bool:
"""Check if a cube has a regular grid.
"Regular" refers to a rectilinear grid with 1D latitude and 1D longitude
coordinates orthogonal to each other.
Parameters
----------
cube:
Cube to be checked.
Returns
-------
bool
``True`` if input cube has a regular grid, else ``False``.
"""
try:
lat = cube.coord("latitude")
lon = cube.coord("longitude")
except CoordinateNotFoundError:
return False
if lat.ndim != 1 or lon.ndim != 1:
return False
if cube.coord_dims(lat) == cube.coord_dims(lon):
return False
return True
[docs]
def has_irregular_grid(cube: Cube) -> bool:
"""Check if a cube has an irregular grid.
"Irregular" refers to a general curvilinear grid with 2D latitude and 2D
longitude coordinates with common dimensions.
Parameters
----------
cube:
Cube to be checked.
Returns
-------
bool
``True`` if input cube has an irregular grid, else ``False``.
"""
try:
lat = cube.coord("latitude")
lon = cube.coord("longitude")
except CoordinateNotFoundError:
return False
if lat.ndim == 2 and lon.ndim == 2:
return True
return False
[docs]
def has_unstructured_grid(cube: Cube) -> bool:
"""Check if a cube has an unstructured grid.
"Unstructured" refers to a grid with 1D latitude and 1D longitude
coordinates with common dimensions (i.e., a simple list of points).
Parameters
----------
cube:
Cube to be checked.
Returns
-------
bool
``True`` if input cube has an unstructured grid, else ``False``.
"""
try:
lat = cube.coord("latitude")
lon = cube.coord("longitude")
except CoordinateNotFoundError:
return False
if lat.ndim != 1 or lon.ndim != 1:
return False
if cube.coord_dims(lat) != cube.coord_dims(lon):
return False
return True
# List containing special cases for unit conversion. Each list item is another
# list. Each of these sublists defines one special conversion. Each element in
# the sublists is a tuple (standard_name, units). Note: All units for a single
# special case need to be "physically identical", e.g., 1 kg m-2 s-1 "equals" 1
# mm s-1 for precipitation
_SPECIAL_UNIT_CONVERSIONS = [
[
("precipitation_flux", "kg m-2 s-1"),
("lwe_precipitation_rate", "mm s-1"),
],
[
("equivalent_thickness_at_stp_of_atmosphere_ozone_content", "m"),
("equivalent_thickness_at_stp_of_atmosphere_ozone_content", "1e5 DU"),
],
]
def _try_special_unit_conversions(cube: Cube, units: str | Unit) -> bool:
"""Try special unit conversion (in-place).
Parameters
----------
cube:
Input cube (modified in place).
units:
New units
Returns
-------
bool
``True`` if special unit conversion was successful, ``False`` if not.
"""
for special_case in _SPECIAL_UNIT_CONVERSIONS:
for std_name, special_units in special_case:
# Special unit conversion only works if all of the following
# criteria are met:
# - the cube's standard_name is one of the supported
# standard_names
# - the cube's units are convertible to the ones defined for
# that given standard_name
# - the desired target units are convertible to the units of
# one of the other standard_names in that special case
# Step 1: find suitable source name and units
if cube.standard_name == std_name and cube.units.is_convertible(
special_units
):
for target_std_name, target_units in special_case:
if target_units == special_units:
continue
# Step 2: find suitable target name and units
if Unit(units).is_convertible(target_units):
cube.standard_name = target_std_name
# In order to avoid two calls to cube.convert_units,
# determine the conversion factor between the cube's
# units and the source units first and simply add this
# factor to the target units (remember that the source
# units and the target units should be "physically
# identical").
factor = cube.units.convert(1.0, special_units)
cube.units = f"{factor} {target_units}"
cube.convert_units(units)
return True
# If no special case has been detected, return False
return False
[docs]
def safe_convert_units(cube: Cube, units: str | Unit) -> Cube:
"""Safe unit conversion (change of `standard_name` not allowed; in-place).
This is a safe version of :func:`esmvalcore.preprocessor.convert_units`
that will raise an error if the input cube's
:attr:`~iris.cube.Cube.standard_name` has been changed.
Parameters
----------
cube:
Input cube (modified in place).
units:
New units.
Returns
-------
iris.cube.Cube
Converted cube. Just returned for convenience; input cube is modified
in place.
Raises
------
iris.exceptions.UnitConversionError
Old units are unknown.
ValueError
Old units are not convertible to new units or unit conversion required
change of `standard_name`.
"""
old_units = cube.units
old_standard_name = cube.standard_name
try:
cube.convert_units(units)
except ValueError:
if not _try_special_unit_conversions(cube, units):
raise
if cube.standard_name != old_standard_name:
raise ValueError(
f"Cannot safely convert units from '{old_units}' to '{units}'; "
f"standard_name changed from '{old_standard_name}' to "
f"'{cube.standard_name}'"
)
return cube