ESMValTool Logo
v2.1.0

ESMValTool

  • Introduction
  • Getting started
  • Gallery
  • Available recipes
  • Obtaining input data
  • Making a recipe or diagnostic
  • Contributing to the community
  • Utilities
  • Diagnostics API Reference
    • Shared diagnostic script code
    • Diagnostic scripts
    • Ocean diagnostics toolkit
    • Machine Learning Regression (MLR) diagnostics
      • Examples
      • Diagnostic scripts
        • Evaluate residuals
        • MLR main diagnostic
        • Multi-model means (MMM)
        • Plotting functionalities
        • Postprocessing functionalities
        • Preprocessing functionalities
        • Rescale data with emergent constraints
      • Auxiliary scripts
        • Auxiliary functions for MLR scripts
        • Custom extensions of sklearn functionalities
        • MLRModel base class
        • Base class for Gradient Boosted Regression models
        • Base class for Linear models
      • Available MLR models
        • Gradient Boosted Regression Trees (sklearn implementation)
        • Gradient Boosted Regression Trees (xgboost implementation)
        • Gaussian Process Regression (sklearn implementation)
        • Huber Regression
        • Kernel Ridge Regression
        • LASSO Regression
        • LASSO Regression with built-in CV
        • LASSO Regression (using Least-angle Regression algorithm) with built-in CV
        • Linear Regression
        • Random Forest Regression
        • Ridge Regression
        • Ridge Regression with built-in CV
        • Support Vector Regression
  • Frequently Asked Questions
  • Changelog

ESMValCore

  • Getting started
  • The recipe format
  • Diagnostic script interfaces
  • Development
  • Contributing
  • ESMValCore API Reference
  • Changelog
ESMValTool
  • Docs »
  • ESMValTool Code API Documentation »
  • Machine Learning Regression (MLR) diagnostics
  • Edit on GitHub

Machine Learning Regression (MLR) diagnostics¶

This module provides various tools to create and evaluate MLR models for arbitrary input variables.

Examples¶

  • Constraining uncertainty in projected gross primary production (GPP) with machine learning: Use Gradient Boosted Regression Tree (GBRT) algorithm to constrain projected Gross Primary Production (GPP) in RCP 8.5 scenario using observations of process-based predictors.

Diagnostic scripts¶

  • Evaluate residuals
  • MLR main diagnostic
  • Multi-model means (MMM)
  • Plotting functionalities
  • Postprocessing functionalities
  • Preprocessing functionalities
  • Rescale data with emergent constraints

Auxiliary scripts¶

  • Auxiliary functions for MLR scripts
  • Custom extensions of sklearn functionalities
  • MLRModel base class
  • Base class for Gradient Boosted Regression models
  • Base class for Linear models

Available MLR models¶

  • Gradient Boosted Regression Trees (sklearn implementation)
  • Gradient Boosted Regression Trees (xgboost implementation)
  • Gaussian Process Regression (sklearn implementation)
  • Huber Regression
  • Kernel Ridge Regression
  • LASSO Regression
  • LASSO Regression with built-in CV
  • LASSO Regression (using Least-angle Regression algorithm) with built-in CV
  • Linear Regression
  • Random Forest Regression
  • Ridge Regression
  • Ridge Regression with built-in CV
  • Support Vector Regression
Next Previous

© Copyright 2020, ESMValTool Development Team Revision e60b8a71.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: v2.1.0
Versions
latest
stable
v2.1.0
v2.0.0
v1.1.0.dev1
doc
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.