
ESMValTool User’s and Developer’s
Guide

Release 2.11.0.dev52+g696097c.d20240424

ESMValTool Development Team

Apr 24, 2024

ESMVALTOOL

I Introduction 1

1 About 3

2 Support 5

3 License 7

II What ESMValTool can do for you 9

4 Data finding 13

5 Data selection 15

6 Data fixing 17

7 Variable derivation 19

8 Run the preprocessor 21

9 Run the diagnostics 23

III Getting started 25

10 Installation 27

11 Configuration 39

12 Running 41

13 Output 43

IV Gallery 47

V Recipes 67

14 General-purpose diagnostics 71

15 Atmosphere 89

i

16 Climate metrics 211

17 Future projections 223

18 IPCC 305

19 Land 367

20 Ocean 405

21 Other 457

22 Broken recipe list 485

VI Obtaining input data 487

23 Models 491

24 Observations 493

25 Datasets in native format 499

VII Making a recipe or diagnostic 501

26 Introduction 503

27 Recipe 505

28 Diagnostic 507

29 Writing a CMORizer script for an additional dataset 509

VIII Contributing to the community 515

30 Contributing code and documentation 519

31 Making a new diagnostic or recipe 527

32 ESMValTool policy on backward compatibility 537

33 Broken recipe policy 541

34 Making a new dataset 543

35 Support for multiple versions of a dataset 547

36 Review of pull requests 549

37 Maintaining a recipe 553

38 Upgrading a namelist (recipe) or diagnostic to ESMValTool v2 555

39 GitHub Workflow 561

40 Moving work from the private to the public repository 567

ii

41 Release strategy and procedure 569

IX Utilities 583

42 Pre-commit 587

43 nclcodestyle 589

44 Colormap samples 591

45 Running multiple recipes 593

46 Overview of recipe runs 597

47 Comparing recipe runs 599

48 Testing recipe settings 601

49 draft_release_notes.py 603

50 Converting Version 1 Namelists to Version 2 Recipes 605

51 Recipe filler 607

52 Extracting a list of input files from the provenance 609

X ESMValTool Code API Documentation 611

53 Shared Diagnostic Code 615

54 Diagnostic Scripts 635

XI Frequently Asked Questions 871

55 Is there a mailing list? 873

56 What is YAML? 875

57 Re-running diagnostics 877

58 Enter interactive mode with iPython 879

59 Use multiple config-user.yml files 881

60 Create a symbolic link to the latest output directory 883

61 Can ESMValTool plot arbitrary model output? 885

XII Changelog 887

62 v2.10.0 889

63 v2.9.0 893

iii

64 v2.8.0 897

65 v2.7.0 903

66 v2.6.0 907

67 v2.5.0 911

68 v2.4.0 915

69 v2.3.0 919

70 v2.2.0 923

71 v2.1.1 927

72 v2.1.0 929

73 v2.0.0 931

74 v2.0.0b4 935

XIII Indices and tables 937

Python Module Index 941

Index 943

iv

Part I

Introduction

1

CHAPTER

ONE

ABOUT

The Earth System Model Evaluation Tool (ESMValTool) is a community-development that aims at improving diag-
nosing and understanding of the causes and effects of model biases and inter-model spread. The ESMValTool is open
to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the
Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond
the state-of-the-art and aims at supporting the activities within CMIP and at individual modelling centers. We envis-
age running the ESMValTool routinely on the CMIP model output utilizing observations available through the Earth
System Grid Federation (ESGF) in standard formats (obs4MIPs) or made available at ESGF nodes.

The goal is to develop a benchmarking and evaluation tool that produces well-established analyses as soon as model
output from CMIP simulations becomes available, e.g., at one of the central repositories of the ESGF. This is realized
through standard recipes that reproduce a certain set of diagnostics and performance metrics that have demonstrated
its importance in benchmarking Earth System Models (ESMs) in a paper or assessment report, such as Chapter 9
of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) (Flato et al., 2013). The
expectation is that in this way a routine and systematic evaluation of model results can be made more efficient, thereby
enabling scientists to focus on developing more innovative methods of analysis rather than constantly having to “reinvent
the wheel”.

In parallel to standardization of model output, the ESGF also hosts observations for Model Intercomparison Projects
(obs4MIPs) and reanalyses data (ana4MIPs). obs4MIPs provides open access data sets of satellite data that are com-
parable in terms of variables, temporal and spatial frequency, and periods to CMIP model output (Taylor et al., 2012).
The ESMValTool utilizes these observations and reanalyses from ana4MIPs plus additionally available observations in
order to evaluate the models performance. In many diagnostics and metrics, more than one observational data set or
meteorological reanalysis is used to assess uncertainties in observations.

The main idea of the ESMValTool is to provide a broad suite of diagnostics which can be performed easily when new
model simulations are run. The suite of diagnostics needs to be broad enough to reflect the diversity and complexity of
Earth System Models, but must also be robust enough to be run routinely or semi-operationally. In order the address
these challenging objectives the ESMValTool is conceived as a framework which allows community contributions to
be bound into a coherent framework.

3

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

4 Chapter 1. About

CHAPTER

TWO

SUPPORT

Support for ESMValTool can be found in ESMValTool Discussions page where users can open an issue and a member
of the User Engagement Team of ESMValTool will reply as soon as possible. This is open for all general and technical
questions on the ESMValTool: installation, application, development, or any other question or comment you may have.

2.1 User mailing list

Subscribe to the ESMValTool announcements mailing list esmvaltool@listserv.dfn.de to stay up to date about new
releases, monthly online meetings, upcoming workshops, and trainings.

To subscribe, send an email to sympa@listserv.dfn.de with the following subject line:

• subscribe esmvaltool

or

• subscribe esmvaltool YOUR_FIRSTNAME YOUR_LASTNAME

The mailing list also has a public archive online.

2.2 Monthly meetings

We have monthly online meetings using zoom, anyone with an interest in the ESMValTool is welcome to join these
meetings to connect with the community. These meetings are always announced in a discussion on the ESMValTool
Community repository and on the mailing-list.

2.3 Core development team

• Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germany (Co-PI)

– ESMValTool Core Co-PI and Developer: contact for requests to use the ESMValTool and for collaboration
with the development team, access to the PRIVATE GitHub repository.

• Met Office, United Kingdom (Co-PI)

• Alfred Wegener institute (AWI) Bremerhaven, Germany

• Barcelona Supercomputing Center (BSC), Spain

• Netherlands eScience Center (NLeSC), The Netherlands

• Ludwig Maximilian University of Munich, Germany

5

https://github.com/ESMValGroup/ESMValTool/discussions
mailto:esmvaltool_user_engagement_team@listserv.dfn.de
mailto:esmvaltool@listserv.dfn.de
mailto:sympa@listserv.dfn.de?subject=subscribe%20esmvaltool
https://www.listserv.dfn.de/sympa/arc/esmvaltool
https://zoom.us/
https://github.com/ESMValGroup/Community/discussions
https://github.com/ESMValGroup/Community/discussions

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Plymouth Marine Laboratory (PML), United Kingdom

• Swedish Meteorological and Hydrological Institute (SMHI), Sweden

• University of Bremen, Germany

• University of Reading, United Kingdom

2.4 Recipes and diagnostics

Contacts for specific diagnostic sets are the respective authors, as listed in the corresponding recipe and diagnostic
documentation and in the source code.

6 Chapter 2. Support

CHAPTER

THREE

LICENSE

The ESMValTool is released under the Apache License, version 2.0. Citation of the ESMValTool paper (“Soft-
ware Documentation Paper”) is kindly requested upon use, alongside with the software DOI for ESMValTool
(doi:10.5281/zenodo.3401363) and ESMValCore (doi:10.5281/zenodo.3387139) and version number:

• Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., Brötz, B., de
Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Loosveldt Tomas,
S., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview, Geosci.
Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, 2020.

Besides the above citation, users are kindly asked to register any journal articles (or other scientific documents) that
use the software at the ESMValTool webpage (http://www.esmvaltool.org/). Citing the Software Documentation Paper
and registering your paper(s) will serve to document the scientific impact of the Software, which is of vital importance
for securing future funding. You should consider this an obligation if you have taken advantage of the ESMValTool,
which represents the end product of considerable effort by the development team.

7

https://doi.org/10.5281/zenodo.3401363
https://doi.org/10.5281/zenodo.3387139
https://doi.org/10.5194/gmd-13-1179-2020
http://www.esmvaltool.org/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

8 Chapter 3. License

Part II

What ESMValTool can do for you

9

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

The ESMValTool applies a great variety of standard diagnostics and metrics, and produces a collection of netCDF and
graphical files (plots). Thus, the tool needs a certain amount of input from the user so that it can:

• establish the correct input and output parameters and the structured workflow;

• acquire the correct data;

• execute the workflow; and

• output the desired collective data and media.

To facilitate these four steps, the user has control over the tool via two main input files: the user configuration file and
the recipe. The configuration file sets user and site-specific parameters (like input and output paths, desired output
graphical formats, logging level, etc.), whereas the recipe file sets data, preprocessing and diagnostic-specific parame-
ters (data parameters grouped in the datasets sections, preprocessing steps for various preprocessors sections, variables’
parameters and diagnostic-specific instructions grouped in the diagnostics sections). The configuration file may be used
for a very large number of runs with very minimal changes since most of the parameters it sets are recyclable; the recipe
file can be used for a large number of applications, since it may include as many datasets, preprocessors and diagnostics
sections as the user deems useful.

Once the user configuration files and the recipe are at hand, the user can start the tool. A schematic overview of the
ESMValTool workflow is depicted in the figure below.

Fig. 1: Schematic of the system architecture.

For a generalized run scenario, the tool will perform the following ordered procedures.

11

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/index.html#recipe

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

12

CHAPTER

FOUR

DATA FINDING

• read the data requirements from the datasets section of the recipe and assemble the data request to locate the
data;

• find the data using the specified root paths and DRS types in the configuration file (note the flexibility allowed
by the data finder);

13

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#datasets
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/find_data.html#findingdata

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14 Chapter 4. Data finding

CHAPTER

FIVE

DATA SELECTION

• data selection is performed using the parameters specified in the datasets section (including e.g. type of experi-
ment, type of ensemble, time boundaries etc); data will be retrieved and selected for each variable that is specified
in the diagnostics section of the recipe;

15

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#datasets
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

16 Chapter 5. Data selection

CHAPTER

SIX

DATA FIXING

• the ESMValTool requires data to be in CMOR format; since errors in the data formatting are not uncommon, the
ESMValTool performs checks against the CMOR library and fixes small irregularities (note that the degree of
leniency is not very high).

17

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html#cmor-check-and-dataset-specific-fixes

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18 Chapter 6. Data fixing

CHAPTER

SEVEN

VARIABLE DERIVATION

• variable derivation (in the case of non CMOR-standard variables, most likely associated with observational
datasets) is performed automatically before running the preprocessor;

• if the variable definitions are already in the database then the user will just have to specify the variable to be
derived in the diagnostics section (as any other standard variable, just setting derive: true).

19

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html#variable-derivation
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20 Chapter 7. Variable derivation

CHAPTER

EIGHT

RUN THE PREPROCESSOR

• if any preprocessor section is specified in the recipe file, then data will be loaded in memory as iris cubes and
passed through the preprocessing steps required by the user and specified in the preprocessor section, using the
specific preprocessing step parameters provided by the user as keys (for the parameter name) and values (for the
parameter value); the preprocessing order is very important since a number of steps depend on prior execution
of other steps (e.g. multimodel statistics can not be computed unless all models are on a common grid, hence a
prior regridding on a common grid is necessary); the preprocessor steps order can be set by the user as custom
or the default order can be used;

• once preprocessing has finished, the tool writes the data output to disk as netCDF files so that the diagnostics can
pick it up and use it; the user will also be provided with a metadata file containing a summary of the preprocessing
and pointers to its output. Note that writing data to disk between the preprocessing and the diagnostic phase is
required to ensure multi-language support for the latter.

21

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html#preprocessor
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html#multi-model-statistics
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html#horizontal-regridding

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

22 Chapter 8. Run the preprocessor

CHAPTER

NINE

RUN THE DIAGNOSTICS

• the last and most important phase can now be run: using output files from the preprocessor, the diagnostic scripts
are executed using the provided diagnostics parameters.

23

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

24 Chapter 9. Run the diagnostics

Part III

Getting started

25

CHAPTER

TEN

INSTALLATION

Note: ESMValTool now uses mamba instead of conda for the recommended installation. For more information about
the change, have a look at Move to Mamba.

ESMValTool supports Python 3.9 and later and requires Linux or MacOS. Successful usage on Windows has been
reported by following the Linux installation instructions with WSL.

ESMValTool can be installed in multiple ways.

Recommended installation method:

Install the mamba package manager and then follow the instructions for

• ESMValTool installation on Linux

• ESMValTool installation on MacOS.

Further options for installation are:

• From the source code available at https://github.com/ESMValGroup/ESMValTool;

• From pre-installed versions on HPC clusters;

• Deployment through a Docker container (see https://www.docker.com);

• Deployment through a Singularity container (see https://sylabs.io/guides/latest/user-guide/);

• Installation with pip (see https://pypi.org);

• Installation from the conda lock file.

The next sections will detail the procedure to install ESMValTool through each of these methods.

There is also a lesson available in the ESMValTool tutorial that describes the installation of the ESMValTool in more
detail. It can be found here.

See common installation issues if you run into trouble.

27

https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/ESMValGroup/ESMValTool
https://www.docker.com
https://sylabs.io/guides/latest/user-guide/
https://pypi.org
https://tutorial.esmvaltool.org/
https://tutorial.esmvaltool.org/02-installation/index.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

10.1 Mamba/Conda installation

In order to install ESMValTool and its dependencies from conda-forge, you will first need to install the mamba package
manager. We recommend using mamba as a package manager for your conda environments instead of conda because
it is much faster, see move-to-mamba for more information.

For a minimal mamba installation (recommended) go to https://mamba.readthedocs.io/en/latest/installation.html.

Note: It is recommended that you always use the latest version of mamba, as problems have been reported when trying
to use older versions.

Note: Some systems provide a pre-installed version of conda or mamba (e.g. via the module environment). However,
several users reported problems when installing with such versions. It is therefore preferable to use a local, fully user-
controlled mamba installation.

First download the installation file for Linux or MacOSX. After downloading the installation file from one of the links
above, execute it by running (Linux example):

bash Mambaforge-Linux-x86_64.sh

and follow the instructions on your screen.

Note: Make sure to choose an installation location where you have at least 10 GB of disk space available.

During installation, mamba will ask you if you want mamba to be automatically loaded from your .bashrc or .
bash-profile files. It is recommended that you answer yes. If you answered no, you can load the correct paths
and environment variables later by running:

source <prefix>/etc/profile.d/conda.sh

where <prefix> is the installation location of mamba (e.g. /home/$USER/mambaforge if you chose the default
installation path).

If you use another shell than Bash, have a look at the available configurations in the <prefix>/etc/profile.d
directory.

You can check that mamba installed correctly by running

which mamba

this should show the path to your mamba executable, e.g. ~/mambaforge/bin/mamba.

It is recommended to update both mamba and conda after installing:

mamba update --name base mamba conda

28 Chapter 10. Installation

https://conda-forge.org/
https://mamba.readthedocs.io
https://mamba.readthedocs.io
https://mamba.readthedocs.io
https://docs.conda.io/projects/conda/en/stable/
https://mamba.readthedocs.io/en/latest/installation.html
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-MacOSX-x86_64.sh

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

10.1.1 ESMValTool installation on Linux

Once you have installed the mamba package manager, you can install the entire ESMValTool package by running:

mamba create --name esmvaltool esmvaltool

It is also possible to install just a subset of the ESMValTool dependencies by installing one or more of the subpackages
described in the next section.

The command above will create a new conda environment called esmvaltool, and install ESMValTool in it. Of course
it is also possible to choose a different name than esmvaltool for the environment.

Note: Creating a new conda environment is often much faster and more reliable than trying to update an existing
conda environment. Therefore it is recommended that you create a new environment when you want to upgrade to the
latest version.

The next step is to check that the installation works properly.

First activate the environment with the command:

conda activate esmvaltool

and then run the tool with the command:

esmvaltool --help

If everything was installed properly, ESMValTool should have printed a help message to the console.

10.1.2 Installation of subpackages

The diagnostics bundled in ESMValTool are scripts in four different programming languages: Python, NCL, R, and
Julia.

There are three language specific packages available:

• esmvaltool-ncl

• esmvaltool-python

• esmvaltool-r

The main esmvaltool package contains all three subpackages listed above. For the Julia dependencies, there is no
subpackage yet, but there are special installation instructions. If you only need to run a recipe with diagnostics in some
of these languages, it is possible to install only the dependencies needed to do just that. The diagnostic script(s) used
in each recipe, are documented in Recipes. The extension of the diagnostic script can be used to see in which language
a diagnostic script is written (.py for Python, .ncl for NCL, .R for R, and .jl for Julia diagnostics).

To install support for diagnostics written in Python and NCL into an existing environment, run

mamba install esmvaltool-python esmvaltool-ncl

Some of the CMORization scripts are written in Python, while others are written in NCL. Therefore, both
esmvaltool-python and esmvaltool-ncl need to be installed in order to be able to run all CMORization scripts.

Note that the ESMValTool source code is contained in the esmvaltool-python package, so this package will always
be installed as a dependency if you install one or more of the packages for other languages.

10.1. Mamba/Conda installation 29

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-environments

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

10.1.3 Installation of Julia dependencies

If you want to use the ESMValTool Julia functionality, you will also need to install Julia. If you are just getting started,
we suggest that you come back to this step later when, and if you need it. To perform the Julia installation, make sure
that your conda environment is activated and then execute

mamba install julia
esmvaltool install Julia

10.1.4 ESMValTool installation on MacOS

The Python diagnostics of the ESMValTool are supported on MacOS, but Julia, NCL, and R are not. If any of these
are needed, deployment through a Docker container is advised.

The esmvaltool-python diagnostics can be installed as follows:

First, ensure mamba is installed (see install_with_mamba for more details).

Create a new environment with the esmvaltool-python package:

mamba create --name esmvaltool esmvaltool-python

Activate the new environment:

conda activate esmvaltool

Confirm that the ESMValTool is working with:

esmvaltool --help

Note that some recipes may depend on the OpenMP library, which does not install via mamba on MacOS. To install
this library, run:

brew install libomp

to install the library with Homebrew. In case you do not have Homebrew, follow installation instructions here.

10.2 Install from source

Installing the tool from source is recommended if you need the very latest features or if you would like to contribute to
its development.

Obtaining the source code

The ESMValTool source code is available on a public GitHub repository: https://github.com/ESMValGroup/
ESMValTool

The easiest way to obtain it is to clone the repository using git (see https://git-scm.com/). To clone the public repository:

git clone https://github.com/ESMValGroup/ESMValTool

or

git clone git@github.com:ESMValGroup/ESMValTool

30 Chapter 10. Installation

https://brew.sh/
https://github.com/ESMValGroup/ESMValTool
https://github.com/ESMValGroup/ESMValTool
https://git-scm.com/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

if you prefer to connect to the repository over SSH.

The command above will create a folder called ESMValTool containing the source code of the tool in the current
working directory.

Note: Using SSH is much more convenient if you push to the repository regularly (recommended to back up your
work), because then you do not need to type your password over and over again. See this guide for information on how
to set it up if you have not done so yet. If you are developing ESMValTool on a shared compute cluster, you can set up
SSH agent forwarding to use your local SSH keys also from the remote machine.

It is also possible to work in one of the ESMValTool private repositories, e.g.:

git clone https://github.com/ESMValGroup/ESMValTool-private

GitHub also allows one to download the source code in as a tar.gz or zip file. If you choose to use this option,
download the compressed file and extract its contents at the desired location.

Install dependencies

It is recommended to use mamba to manage ESMValTool dependencies. See the mamba installation instructions at the
top of this page for instructions on installing mamba. To simplify the installation process, an environment definition
file is provided in the repository (environment.yml in the root folder).

The ESMValTool conda environment file can also be used as a requirements list for those cases in which a mamba
installation is not possible or advisable. From now on, we will assume that the installation is going to be done through
mamba.

Ideally, you should create a separate conda environment for ESMValTool, so it is independent from any other Python
tools present in the system.

To create an environment, go to the directory containing the ESMValTool source code that you just downloaded. It is
called ESMValTool if you did not choose a different name.

cd ESMValTool

and create a new environment called esmvaltool with the command (when on Linux):

mamba env create --name esmvaltool --file environment.yml

or (when on MacOS)

mamba env create --name esmvaltool --file environment_osx.yml

This will install all of the required development dependencies. Note that the MacOS environment file contains only
Python dependencies, so you will not be able to run NCL, R, or Julia diagnostics with it.

Note: The environment is called esmvaltool in the example above, but it is possible to use the option --name
some_environment_name to define a different name. This can be useful when you have an older ESMValTool instal-
lation that you would like to keep. It is recommended that you create a new environment when updating ESMValTool.

Next, activate the environment by using the command:

conda activate esmvaltool

10.2. Install from source 31

https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/free-pro-team@latest/developers/overview/using-ssh-agent-forwarding

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Attention: From now on, we assume that the conda environment containing the development dependencies for
ESMValTool is activated.

Install ESMValTool

Once all dependencies have been installed, ESMValTool itself can be installed by running the following command in
the directory containing the ESMValTool source code (called ESMValTool if you did not choose a different name):

pip install --editable '.[develop]'

Using the --editable flag will cause the installer to create a symbolic link from the installation location to your
source code, so any changes you make to the source code will immediately be available in the installed version of the
tool.

If you would like to run Julia diagnostic scripts, you will need to install the ESMValTool Julia dependencies:

esmvaltool install Julia

The next step is to check that the installation works properly. To do this, run the tool with:

esmvaltool --help

If everything was installed properly, ESMValTool should have printed a help message to the console.

Note: MacOS users: some recipes may depend on the OpenMP library, which does not install via mamba on MacOS.
Instead run

brew install libomp

to install the library with Homebrew. In case you do not have Homebrew, follow installation instructions here.

For a more complete installation verification, run the automated tests and confirm that no errors are reported:

pytest -m "not installation"

or if you want to run the full test suite remove the -m "not installation" flag; also if you want to run the tests on
multiple threads, making the run faster, use the -n N flag where N is the number of available threads e.g:

pytest -n 4

This concludes the installation from source guide. However, if you would like to do development work on ESMValCore,
please read on.

10.2.1 Using the development version of the ESMValCore package

If you need the latest developments of the ESMValCore package, you can install it from source into the same conda
environment.

Attention: The recipes and diagnostics in the ESMValTool repository are compatible with the latest released
version of the ESMValCore. Using the development version of the ESMValCore package is only recommended
if you are planning to develop new features for the ESMValCore, e.g. you want to implement a new preprocessor
function.

32 Chapter 10. Installation

https://brew.sh/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

First follow the steps in the section above to install ESMValTool from source. Next, go to the place where you would
like to keep the source code and clone the ESMValCore github repository:

git clone https://github.com/ESMValGroup/ESMValCore

or

git clone git@github.com:ESMValGroup/ESMValCore

The command above will create a folder called ESMValCore containing the source code of the tool in the current
working directory.

Go into the folder you just downloaded

cd ESMValCore

and then install ESMValCore in development mode

pip install --editable '.[develop]'

To check that the installation was successful, run

python -c 'import esmvalcore; print(esmvalcore.__path__[0])'

this should show the directory of the source code that you just downloaded.

If the command above shows a directory inside your conda environment instead, e.g. ~/mambaforge/envs/
esmvaltool/lib/python3.9/site-packages/esmvalcore, you may need to manually remove that directory and
run pip install --editable '.[develop]' again.

10.3 Pre-installed versions on HPC clusters / other servers

ESMValTool is available on the HPC clusters CEDA-JASMIN and DKRZ-Levante, and on the Met Office Linux estate,
so there is no need to install ESMValTool if you are just running recipes:

• CEDA-JASMIN: esmvaltool is available on the scientific compute nodes (sciX.jasmin.ac.uk where X = 1, 2, 3,
4, 5) after login and module loading via module load esmvaltool; see the helper page at CEDA .

• DKRZ-Levante: esmvaltool is available on login nodes (levante.dkrz.de) after login and module loading via
module load esmvaltool; the command module help esmvaltool provides some information about the module. A
Jupyter kernel based on the latest module is available from DKRZ-JupyterHub.

• Met Office: esmvaltool is available on the Linux estate after login and module loading via module load; see the
ESMValTool Community of Practice SharePoint site for more details.

The ESMValTool Tutorial provides a quickstart guide that is particularly suited for new users that have an access to
pre-installed version of ESMValTool.

Information on how to request an account at CEDA-JASMIN and DKRZ-Levante and to get started with these HPC
clusters can be found on the setup page of the tutorial here.

10.3. Pre-installed versions on HPC clusters / other servers 33

https://help.jasmin.ac.uk/article/4955-community-software-esmvaltool
https://jupyterhub.dkrz.de/hub/home
https://tutorial.esmvaltool.org/01-quickstart/index.html
https://tutorial.esmvaltool.org/setup.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

10.4 Docker installation

ESMValTool is also provided through DockerHub in the form of docker containers. See https://docs.docker.com for
more information about docker containers and how to run them.

You can get the latest release with

docker pull esmvalgroup/esmvaltool:stable

If you want to use the current main branch, use

docker pull esmvalgroup/esmvaltool:latest

To run a container using those images, use:

docker run esmvalgroup/esmvaltool:stable --help

Note that the container does not see the data or environmental variables available in the host by default. You can make
data available with -v /path:/path/in/container and environmental variables with -e VARNAME.

For example, the following command would run a recipe

docker run -e HOME -v "$HOME":"$HOME" -v /data:/data esmvalgroup/esmvaltool:stable run␣
→˓examples/recipe_python.yml

with the environmental variable $HOME available inside the container and the data in the directories $HOME and /data,
so these can be used to find the configuration file, recipe, and data.

It might be useful to define a bash alias or script to abbreviate the above command, for example

alias esmvaltool="docker run -e HOME -v $HOME:$HOME -v /data:/data esmvalgroup/
→˓esmvaltool:stable"

would allow using the esmvaltool command without even noticing that the tool is running inside a Docker container.

10.5 Singularity installation

Docker is usually forbidden in clusters due to security reasons. However, there is a more secure alternative to run
containers that is usually available on them: Singularity.

Singularity can use docker containers directly from DockerHub with the following command

singularity run docker://esmvalgroup/esmvaltool:stable run examples/recipe_python.yml

Note that the container does not see the data available in the host by default. You can make host data available with -B
/path:/path/in/container.

It might be useful to define a bash alias or script to abbreviate the above command, for example

alias esmvaltool="singularity run -B $HOME:$HOME -B /data:/data docker://esmvalgroup/
→˓esmvaltool:stable"

would allow using the esmvaltool command without even noticing that the tool is running inside a Singularity con-
tainer.

34 Chapter 10. Installation

https://hub.docker.com/u/esmvalgroup/
https://docs.docker.com
https://opensource.com/article/19/7/bash-aliases
https://sylabs.io/guides/3.0/user-guide/quick_start.html
https://opensource.com/article/19/7/bash-aliases

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Some clusters may not allow to connect to external services, in those cases you can first create a singularity image
locally:

singularity build esmvaltool.sif docker://esmvalgroup/esmvaltool:stable

and then upload the image file esmvaltool.sif to the cluster. To run the container using the image file esmvaltool.
sif use:

singularity run esmvaltool.sif run examples/recipe_python.yml

10.6 Pip installation

It is also possible to install ESMValTool from PyPI. However, this requires first installing dependencies that are not
available on PyPI in some other way. The list of required dependencies can be found in environment.yml.

Warning: It is recommended to use the installation with mamba instead, as it may not be easy to install the correct
versions of all dependencies.

After installing the dependencies that are not available from PyPI, install ESMValTool and any remaining Python
dependencies with the command:

pip install esmvaltool

If you would like to run Julia diagnostic scripts, you will also need to install the Julia dependencies:

esmvaltool install Julia

10.7 Installation from the conda lock file

The conda lock file is an alternative to the environment.yml file used in the installation from source instructions. All
other steps in those installation instructions are the same.

The conda lock file can be used to install the dependencies of ESMValTool whenever the conda environment defined
by environment.yml can not be solved for some reason. A conda lock file is a reproducible environment file that
contains links to dependency packages as they are hosted on the Anaconda cloud; these have frozen version numbers,
build hashes, and channel names. These parameters are established at the time of the conda lock file creation, so may
be outdated after a while. Therefore, we regenerate these lock files every 10 days through automatic Pull Requests
(or more frequently, since the automatic generator runs on merges on the main branch too), to minimize the risk of
dependencies becoming outdated.

Conda environment creation from a lock file is done with the following command:

conda create --name esmvaltool --file conda-linux-64.lock

The latest, most up-to-date file can always be downloaded directly from the source code repository, a direct download
link can be found here.

Note: For instructions on how to manually create the lock file, see these instructions.

10.6. Pip installation 35

https://pypi.org/project/ESMValTool/
https://pypi.org/project/ESMValTool/
https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/conda-linux-64.lock
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/install.html#condalock-installation-creation

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

10.8 Common installation problems and their solutions

10.8.1 Mamba fails to solve the environment

If you see the text Solving environment: with the characters -\|/ rotating behind it for more than 10 minutes,
mamba may be having problems finding a working combination of versions of the packages that the ESMValTool
depends on. Because the ESMValTool is a community tool, there is no strict selection of which tools can be used and
installing the ESMValTool requires installing almost any package that is available for processing climate data. To help
mamba solve the environment, you can try the following.

Always use the latest version of mamba, as problems have been reported by people using older versions, to update, run:

mamba update --name base mamba

Usually mamba is much better at solving new environments than updating older environments, so it is often a good
idea to create a new environment if updating does not work.

It can help mamba if you let it know what version of certain packages you want, for example by running

mamba create -n esmvaltool esmvaltool 'python=3.11'

you ask for Python 3.11 specifically and that makes it much easier for mamba to solve the environment, because now it
can ignore any packages that were built for other Python versions. Note that, since the esmvaltool package is built with
Python>=3.9, asking for an older Python version, e.g. python=3.7, in this way, it will result in installation failure.

10.8.2 Problems with proxies

If you are installing ESMValTool from source from behind a proxy that does not trust the usual PyPI URLs you can
declare them with the option --trusted-host, e.g.

pip install --trusted-host=pypi.python.org --trusted-host=pypi.org --trusted-host=files.
→˓pythonhosted.org -e .[develop]

If R packages fail to download, you might be able to solve this by setting the environment variable http_proxy to the
correct value, e.g. in bash:

export http_proxy=http://user:pass@proxy_server:port

the username and password can be omitted if they are not required. See e.g. here for more information.

10.8.3 Anaconda servers connection issues

HTTP connection errors (of e.g. type 404) to the Anaconda servers are rather common, and usually a retry will solve
the problem.

36 Chapter 10. Installation

https://support.rstudio.com/hc/en-us/articles/200488488-Configuring-R-to-Use-an-HTTP-or-HTTPS-Proxy

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

10.8.4 Installation of R packages fails

Problems have been reported if the R interpreter was made available through the module load command in addition
to installation from mamba. If your ESMValTool conda environment is called esmvaltool and you want to use the R
interpreter installed from mamba, the path to the R interpreter should end with mamba/envs/esmvaltool/bin/R or
conda/envs/esmvaltool/bin/R. When the conda environment for ESMValTool is activated, you can check which
R interpreter is used by running

which R

The Modules package is often used by system administrators to make software available to users of scientific com-
pute clusters. To list any currently loaded modules run module list, run module help or man module for more
information about the Modules package.

10.8.5 Problems when using ssh

If you log in to a cluster or other device via SSH and your origin machine sends the locale environment via the SSH
connection, make sure the environment is set correctly, specifically LANG and LC_ALL are set correctly (for GB English
UTF-8 encoding these variables must be set to en_GB.UTF-8; you can set them by adding export LANG=en_GB.
UTF-8 and export LC_ALL=en_GB.UTF-8) in your origin or login machines’ .profile.

10.8.6 Problems when updating the conda environment

Usually mamba is much better at solving new environments than updating older environments, so it is often a good
idea to create a new environment if updating does not work. See also Mamba fails to solve the environment.

Do not run mamba update --update-all in the esmvaltool environment since that will update some packages
that are pinned to specific versions for the correct functionality of the tool.

10.9 Move to Mamba

Mamba is a much faster alternative to conda, and environment creation and updating benefits from the use of a much
faster (C++ backend) dependency solver; tests have been performed to verify the integrity of the esmvaltool environment
built with mamba, and we are now confident that the change will not affect the way ESMValTool is installed and run,
whether it be on a Linux or OS platform. From the user’s perspective, it is a straightforward use change: the CLI
(command line interface) of mamba is identical to conda: any command that was run with conda before will now be
run with mamba instead, keeping all the other command line arguments and flags as they were before. The only place
where conda should not be replaced with mamba at command line level is at the environment activation point: conda
activate will still have to be used.

10.9. Move to Mamba 37

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

38 Chapter 10. Installation

CHAPTER

ELEVEN

CONFIGURATION

The esmvaltool command is provided by the ESMValCore package, the documentation on configuring ESMValCore
can be found here. In particular, it is recommended to read the section on the User configuration file and the section
on Finding data.

To install the default configuration file in the default location, run

esmvaltool config get_config_user

Note that this file needs to be customized using the instructions above, so the esmvaltool command can find the data
on your system, before it can run a recipe.

There is a lesson available in the ESMValTool tutorial that describes how to personalize the configuration file. It can
be found at this site.

39

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#config
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/find_data.html#findingdata
https://tutorial.esmvaltool.org/
https://tutorial.esmvaltool.org/03-configuration/index.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

40 Chapter 11. Configuration

CHAPTER

TWELVE

RUNNING

ESMValTool is mostly used as a command line tool. Whenever your Conda environment for ESMValTool is active, you
can run the command esmvaltool. See running esmvaltool in the ESMValCore documentation for an introduction to
the esmvaltool command.

12.1 Running your first recipe

There is a step-by-step tutorial available in the ESMValTool tutorial on how to run your first recipe. It can be found
here.

An example recipe is available in the ESMValTool installation folder as examples/recipe_python.yml.

This recipe finds data from BCC-ESM1 and CanESM2 and creates two plot types:

• a global map plot that shows the monthly mean 2m surface air temperature in January 2000.

• a time series plot that shows the globally averaged annual mean 2m surface air temperature and compares it to
the one in Amsterdam.

To run this recipe and automatically download the required climate data from ESGF to the local directory ~/
climate_data, run

esmvaltool run examples/recipe_python.yml --search_esgf=when_missing

The --search_esgf=when_missing option tells ESMValTool to search for and download the necessary climate
data files, if they cannot be found locally. The data only needs to be downloaded once, every following run will
re-use previously downloaded data. If you have all required data available locally, you can run the tool with
--search_esgf=never argument (the default). Note that in that case the required data should be located in the
directories specified in your user configuration file. A third option --search_esgf=always is available. With this
option, the tool will first check the ESGF for the needed data, regardless of any local data availability; if the data found
on ESGF is newer than the local data (if any) or the user specifies a version of the data that is available only from
the ESGF, then that data will be downloaded; otherwise, local data will be used. Recall that the chapter Configuring
ESMValTool provides an explanation of how to create your own config-user.yml file.

See running esmvaltool in the ESMValCore documentation for a more complete introduction to the esmvaltool com-
mand.

41

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/run.html#running
https://tutorial.esmvaltool.org/
https://tutorial.esmvaltool.org/04-recipe/index.html
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/run.html#running

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

12.2 Available diagnostics and metrics

Although ESMValTool can be used to download data, analyze it using ESMValCore’s preprocessing modules, and the
creation of your own analysis code, its main purpose is the continuously growing set of diagnostics and metrics that it
directly provides to the user. These metrics and diagnostics are provided as a set of preconfigured recipes that users
can run or customize for their own analysis. The latest list of available recipes can be found here.

In order to make the management of these installed recipes easier, ESMValTool provides the recipes command group
with utilities that help the users in discovering and customizing the provided recipes.

The first command in this group allows users to get the complete list of installed recipes printed to the console:

esmvaltool recipes list

If the user then wants to explore any one of these recipes, they can be printed using the following command

esmvaltool recipes show recipe_name.yml

Note that there is no recipe_name.yml shipped with ESMValTool, replace this with a recipes that is available, for
example examples/recipe_python.yml. Finally, to get a local copy that can then be customized and run, users can run
the following command

esmvaltool recipes get recipe_name.yml

Note that the esmvaltool run recipe_name.yml command will first look if recipe_name.yml is the path to an
existing file. If this is the case, it will run that recipe. If not, it will look if it is a relative path to an existing recipe with
respect to the recipes directory in your ESMValTool installation and run that.

12.3 Running multiple recipes

Have a look at Running multiple recipes if you are interested in running multiple recipes in parallel.

42 Chapter 12. Running

https://docs.esmvaltool.org/en/latest/recipes/index.html#recipes
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/

CHAPTER

THIRTEEN

OUTPUT

ESMValTool automatically generates a new output directory with every run. The location is determined by the out-
put_dir option in the config-user.yml file, the recipe name, and the date and time, using the the format: YYYYM-
MDD_HHMMSS.

For instance, a typical output location would be: output_directory/recipe_ocean_amoc_20190118_1027/

This is effectively produced by the combination: output_dir/recipe_name_YYYYMMDD_HHMMSS/

This directory will contain 4 further subdirectories:

1. Diagnostic output (work): A place for any diagnostic script results that are not plots, e.g. files in NetCDF format
(depends on the diagnostics).

2. Plots: The location for all the plots, split by individual diagnostics and fields.

3. Run: This directory includes all log files, a copy of the recipe, a summary of the resource usage, and the set-
tings.yml interface files and temporary files created by the diagnostic scripts.

4. Preprocessed datasets (preproc): This directory contains all the preprocessed netcdfs data and the metadata.yml
interface files. Note that by default this directory will be deleted after each run, because most users will only
need the results from the diagnostic scripts.

13.1 Preprocessed datasets

The preprocessed datasets will be stored to the preproc/ directory. Each variable in each diagnostic will have its own
the metadata.yml interface files saved in the preproc directory.

If the option save_intermediary_cubes is set to true in the config-user.yml file, then the intermediary cubes will
also be saved here. This option is set to false in the default config-user.yml file.

If the option remove_preproc_dir is set to true in the config-user.yml file, then the preproc directory will be deleted
after the run completes. This option is set to true in the default config-user.yml file.

13.2 Run

The log files in the run directory are automatically generated by ESMValTool and create a record of the output messages
produced by ESMValTool and they are saved in the run directory. They can be helpful for debugging or monitoring the
job, but also allow a record of the job output to screen after the job has been completed.

The run directory will also contain a copy of the recipe and the settings.yml file, described below. The run directory is
also where the diagnostics are executed, and may also contain several temporary files while diagnostics are running.

43

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

13.3 Diagnostic output

The work/ directory will contain all files that are output at the diagnostic stage. Ie, the model data is preprocessed by
ESMValTool and stored in the preproc/ directory. These files are opened by the diagnostic script, then some processing
is applied. Once the diagnostic level processing has been applied, the results should be saved to the work directory.

13.4 Plots

The plots directory is where diagnostics save their output figures. These plots are saved in the format requested by the
option output_file_type in the config-user.yml file.

13.5 Settings.yml

The settings.yml file is automatically generated by ESMValCore. For each diagnostic, a unique settings.yml file will
be produced.

The settings.yml file passes several global level keys to diagnostic scripts. This includes several flags from the config-
user.yml file (such as ‘write_netcdf’, ‘write_plots’, etc. . .), several paths which are specific to the diagnostic being run
(such as ‘plot_dir’ and ‘run_dir’) and the location on disk of the metadata.yml file (described below).

input_files:[[...]recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/
→˓metadata.yml]
log_level: debug
output_file_type: png
plot_dir: [...]recipe_ocean_bgc_20190118_134855/plots/diag_timeseries_scalars/Scalar_
→˓timeseries
profile_diagnostic: false
recipe: recipe_ocean_bgc.yml
run_dir: [...]recipe_ocean_bgc_20190118_134855/run/diag_timeseries_scalars/Scalar_
→˓timeseries
script: Scalar_timeseries
version: 2.0a1
work_dir: [...]recipe_ocean_bgc_20190118_134855/work/diag_timeseries_scalars/Scalar_
→˓timeseries
write_netcdf: true
write_plots: true

The first item in the settings file will be a list of Metadata.yml files. There is a metadata.yml file generated for each
field in each diagnostic.

13.6 Metadata.yml

The metadata.yml files is automatically generated by ESMValTool. Along with the settings.yml file, it passes all the
paths, boolean flags, and additional arguments that your diagnostic needs to know in order to run.

The metadata is loaded from cfg as a dictionary object in python diagnostics.

Here is an example metadata.yml file:

44 Chapter 13. Output

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

?
[...]/recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/CMIP5_

→˓HadGEM2-ES_Omon_historical_r1i1p1_TO0M_mfo_2002-2004.nc
: cmor_table: CMIP5
dataset: HadGEM2-ES
diagnostic: diag_timeseries_scalars
end_year: 2004
ensemble: r1i1p1
exp: historical
field: TO0M
filename: [...]recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/

→˓CMIP5_HadGEM2-ES_Omon_historical_r1i1p1_TO0M_mfo_2002-2004.nc
frequency: mon
institute: [INPE, MOHC]
long_name: Sea Water Transport
mip: Omon
modeling_realm: [ocean]
preprocessor: prep_timeseries_scalar
project: CMIP5
recipe_dataset_index: 0
short_name: mfo
standard_name: sea_water_transport_across_line
start_year: 2002
units: kg s-1
variable_group: mfo

As you can see, this is effectively a dictionary with several items including data paths, metadata and other information.

There are several tools available in python which are built to read and parse these files. The tools are avaialbe in the
shared directory in the diagnostics directory.

13.6. Metadata.yml 45

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

46 Chapter 13. Output

Part IV

Gallery

47

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

This section shows example plots produced by ESMValTool. For more information, click on the footnote below the
image. A website displaying results produced with the latest release of ESMValTool for all available recipes can be
accessed here.

1 2

3 4

continues on next page

49

https://esmvaltool.dkrz.de/shared/esmvaltool/stable_release/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

5 6

7 8

9 10

continues on next page

50

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

11 12

13 14

continues on next page

51

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

15 16

17 18

19 20

continues on next page

52

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

21 22

23 24

continues on next page

53

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

25 26

27 28

29 30

continues on next page

54

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

31 32

33 34

continues on next page

55

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

35 36

37 38

39 40

continues on next page

56

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

41 42

43 44

45 46

continues on next page

57

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

47 48

49 50

51 52

continues on next page

58

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

53 54

55 56

57 58

59 60

continues on next page

59

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

61 62

63 64

65 66

continues on next page

60

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

67 68

69 70

71 72

continues on next page

61

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

73 74

75 76

continues on next page

62

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

77 78

79 80

continues on next page

63

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page

81 82

64

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

1 Landcover - Albedo
2 Land and ocean components of the global carbon cycle
3 AOD AeroNET Assess
4 Recipe for evaluating Arctic Ocean
5 Land-surface Permafrost - Autoassess diagnostics
6 Land-surface Soil Moisture - Autoassess diagnostics
7 Land-surface Surface Radiation - Autoassess diagnostics
8 Stratosphere - Autoassess diagnostics
9 Quantifying progress across different CMIP phases

10 Capacity factor of wind power: Ratio of average estimated power to theoretical maximum power
11 Turnover time of carbon over land ecosystems
12 Climate Change Hotspot
13 Climate model Weighting by Independence and Performance (ClimWIP)
14 Clouds
15 Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations, including ESACCI data.
16 IPCC AR5 Chapter 12 (selected figures)
17 Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI)
18 Consecutive dry days
19 Emergent constraint on equilibrium climate sensitivity from global temperature variability
20 Cloud Regime Error Metric (CREM)
21 Climate Variability Diagnostics Package (CVDP)
22 Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations.
23 Diurnal temperature range
24 Eady growth rate
25 Equilibrium climate sensitivity
26 Emergent constraints for equilibrium climate sensitivity
27 Ensemble Clustering - a cluster analysis tool for climate model simulations (EnsClus)
28 ESA CCI LST comparison to Historical Models
29 Ocean chlorophyll in ESMs compared to ESA-CCI observations.
30 Example recipes
31 Extreme Events Indices (ETCCDI)
32 Combined Climate Extreme Index
33 Diagnostics of stratospheric dynamics and chemistry
34 Ozone and associated climate impacts
35 Timeseries for Arctic-Midlatitude Teleconnections
36 Spatially resolved evaluation of ESMs with satellite column-averaged CO2
37 Heat wave and cold wave duration
38 Hydro forcing comparison
39 Hydroclimatic intensity and extremes (HyInt)
40 Implied heat transport from Top of Atmosphere fluxes
41 Quick insights for climate impact researchers
42 IPCC AR5 Chapter 9 (selected figures)
43 IPCC AR6 Chapter 3 (selected figures)
44 KNMI Climate Scenarios 2014
45 Landcover diagnostics
46 Constraining future Indian Summer Monsoon projections with the present-day precipitation over the tropical western Pacific
47 Drought characteristics following Martin (2018)
48 Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models
49 Blocking metrics and indices, teleconnections and weather regimes (MiLES)
50 General model evaluation
51 Modes of variability
52 Monitor
53 Diagnostics of integrated atmospheric methane (XCH4)
54 Multi-model products
55 Ocean diagnostics
56 Performance metrics for essential climate parameters
57 Psyplot Diagnostics
58 Capacity factor for solar photovoltaic (PV) systems
59 Precipitation quantile bias
60 Radiation Budget
61 RainFARM stochastic downscaling
62 Runoff, Precipitation, Evapotranspiration
63 Ocean metrics
64 Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?
65 Constraining uncertainty in projected gross primary production (GPP) with machine learning
66 Sea Surface Salinity Evaluation
67 Seaborn Diagnostics
68 Sea Ice
69 Seaice drift
70 Seaice feedback
71 Shapeselect
72 Single Model Performance Index (SMPI)
73 Emergent constraint on snow-albedo effect
74 Standardized Precipitation-Evapotranspiration Index (SPEI)
75 Transient Climate Response
76 Climate model projections from the ScenarioMIP of CMIP6
77 Thermodynamics of the Climate System - The Diagnostic Tool TheDiaTo v1.0
78 Toymodel
79 Zonal and Meridional Means
80 Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position
81 Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2
82 Stratosphere-troposphere coupling and annular modes indices (ZMNAM)

65

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

66

Part V

Recipes

67

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

A website displaying results produced with the latest release of ESMValTool for all available recipes can be accessed
here.

69

https://esmvaltool.dkrz.de/shared/esmvaltool/stable_release/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

70

CHAPTER

FOURTEEN

GENERAL-PURPOSE DIAGNOSTICS

Recipes that use highly customizable diagnostics which are designed to plot a large variety of input data.

14.1 General model evaluation

14.1.1 Overview

These recipes and diagnostics provide a basic climate model evaluation with observational data. This is especially
useful to get an overview of the performance of a simulation. The diagnostics used here allow plotting arbitrary pre-
processor output, i.e., arbitrary variables from arbitrary datasets.

14.1.2 Available recipes and diagnostics

Recipes are stored in recipes/model_evaluation

• recipe_model_evaluation_basics.yml

• recipe_model_evaluation_clouds_clim.yml

• recipe_model_evaluation_clouds_cycles.yml

• recipe_model_evaluation_precip_zonal.yml

Diagnostics are stored in diag_scripts/monitor/

• multi_datasets.py: Monitoring diagnostic to show multiple datasets in one plot (incl. biases).

14.1.3 User settings

It is recommended to use a vector graphic file type (e.g., SVG) for the output format when running this recipe, i.e.,
run the recipe with the command line option --output_file_type=svg or use output_file_type: svg in your
User configuration file. Note that map and profile plots are rasterized by default. Use rasterize: false in the
recipe to disable this.

71

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Recipe settings

A list of all possible configuration options that can be specified in the recipe is given for each diagnostic individually
(see links given for the available diagnostics in the previous section).

14.1.4 Variables

Any, but the variables’ number of dimensions should match the ones expected by each diagnostic (see links given for
the available diagnostics in the previous section).

14.1.5 Example plots

Global climatology of 2m near-surface air temperature.

Global climatology of the shortwave cloud radiative effect (SWCRE).

Time series of the global mean top-of-the-atmosphere net radiative flux.

Zonal mean precipitation.

Annual cycle of Southern Ocean total cloud cover.

72 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14.1. General model evaluation 73

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

74 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14.2 Monitor

14.2.1 Overview

These recipes and diagnostics allow plotting arbitrary preprocessor output, i.e., arbitrary variables from arbitrary
datasets. In addition, a base class is provided that allows a convenient interface for all monitoring diagnostics.

14.2.2 Available recipes and diagnostics

Recipes are stored in recipes/monitor

• recipe_monitor.yml

• recipe_monitor_with_refs.yml

Diagnostics are stored in diag_scripts/monitor/

• monitor.py: Monitoring diagnostic to plot arbitrary preprocessor output.

• compute_eofs.py: Monitoring diagnostic to plot EOF maps and associated PC timeseries.

• multi_datasets.py: Monitoring diagnostic to show multiple datasets in one plot (incl. biases).

14.2.3 User settings

It is recommended to use a vector graphic file type (e.g., SVG) for the output files when running this recipe, i.e.,
run the recipe with the command line option --output_file_type=svg or use output_file_type: svg in your
User configuration file. Note that map and profile plots are rasterized by default. Use rasterize_maps: false or
rasterize: false (see Recipe settings) in the recipe to disable this.

Recipe settings

A list of all possible configuration options that can be specified in the recipe is given for each diagnostic individually
(see previous section).

Monitor configuration file

In addition, the following diagnostics support the use of a dedicated monitor configuration file:

• monitor.py

• compute_eofs.py

This file is a yaml file that contains map and variable specific options in two dictionaries maps and variables.

Each entry in maps corresponds to a map definition. Example:

maps:
global: # Map name, choose a meaningful one
projection: PlateCarree # Cartopy projection to use
projection_kwargs: # Dictionary with Cartopy's projection keyword arguments.
central_longitude: 285

smooth: true # If true, interpolate values to get smoother maps. If not, all␣
→˓points in a cells will get the exact same color

(continues on next page)

14.2. Monitor 75

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

lon: [-120, -60, 0, 60, 120, 180] # Set longitude ticks
lat: [-90, -60, -30, 0, 30, 60, 90] # Set latitude ticks
colorbar_location: bottom
extent: null # If defined, restrict the projection to a region. Format [lon1, lon2,

→˓ lat1, lat2]
suptitle_pos: 0.87 # Title position in the figure.

Each entry in variables corresponds to a variable definition. Use the default entry to apply generic options to all
variables. Example:

variables:
Define default. Variable definitions completely override the default
not just the values defined. If you want to override only the defined
values, use yaml anchors as shown
default: &default
colors: RdYlBu_r # Matplotlib colormap to use for the colorbar
N: 20 # Number of map intervals to plot
bad: [0.9, 0.9, 0.9] # Color to use when no data

pr:
<<: *default
colors: gist_earth_r
Define bounds of the colorbar, as a list of
bounds: 0-10.5,0.5 # Set colorbar bounds, as a list or in the format min-max,

→˓interval
extend: max # Set extend parameter of mpl colorbar. See https://matplotlib.org/

→˓stable/api/_as_gen/matplotlib.pyplot.colorbar.html
sos:
If default is defined, entries are treated as map specific option.
Missing values in map definitionas are taken from variable's default
definition
default:
<<: *default
bounds: 25-41,1
extend: both

arctic:
bounds: 25-40,1

antarctic:
bounds: 30-40,0.5

nao: &nao
<<: *default
extend: both
Variable definitions can override map parameters. Use with caution.
bounds: [-0.03, -0.025, -0.02, -0.015, -0.01, -0.005, 0., 0.005, 0.01, 0.015, 0.02,

→˓ 0.025, 0.03]
projection: PlateCarree
smooth: true
lon: [-90, -60, -30, 0, 30]
lat: [20, 40, 60, 80]
colorbar_location: bottom
suptitle_pos: 0.87

sam:
<<: *nao

(continues on next page)

76 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

lat: [-90, -80, -70, -60, -50]
projection: SouthPolarStereo
projection_kwargs:
central_longitude: 270

smooth: true
lon: [-120, -60, 0, 60, 120, 180]

14.2.4 Variables

Any, but the variables’ number of dimensions should match the ones expected by each plot.

14.2.5 Example plots

Global climatology of tas.

Seasonal climatology of pr, with a custom colorbar.

Monthly climatology of sivol, only for March and September.

Timeseries of Niño 3.4 index, computed directly with the preprocessor.

Annual cycle of tas.

Timeseries of tas including a reference dataset.

Annual cycle of tas including a reference dataset.

Global climatology of tas including a reference dataset.

14.2. Monitor 77

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

78 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14.2. Monitor 79

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

80 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14.2. Monitor 81

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

82 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Zonal mean profile of ta including a reference dataset.

1D profile of ta including a reference dataset.

Zonal mean pr including a reference dataset.

Hovmoeller plot (pressure vs. time) of ta including a reference dataset.

Hovmoeller plot (time vs. latitude) of tas including a reference dataset

14.3 Psyplot Diagnostics

14.3.1 Overview

These recipes showcase the use of the Psyplot diagnostic that provides a high-level interface to Psyplot for ESMValTool
recipes.

14.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_psyplot.yml

Diagnostics are stored in diag_scripts/

• psyplot_diag.py

14.3.3 Variables

Arbitrary variables are supported.

14.3.4 Observations and reformat scripts

Arbitrary datasets are supported.

14.3.5 References

• Sommer, (2017), The psyplot interactive visualization framework, Journal of Open Source Software, 2(16), 363,
doi:10.21105/joss.00363

14.3.6 Example plots

14.4 Seaborn Diagnostics

14.4.1 Overview

These recipes showcase the use of the Seaborn diagnostic that provides a high-level interface to Seaborn for ESMVal-
Tool recipes.

14.3. Psyplot Diagnostics 83

https://psyplot.github.io/
https://seaborn.pydata.org

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

84 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14.4. Seaborn Diagnostics 85

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Historical near-surface air temperature climatology over Europe simulated by CanESM5 between 1995 and
2014. The plot visualizes the invidividual rectangular grid cells of the model’s regular grid.

86 Chapter 14. General-purpose diagnostics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 2: Historical near-surface air temperature climatology over Europe simulated by ICON-ESM-LR between 1995
and 2014. The plot visualizes the invidividual triangular grid cells of the model’s unstructured grid.

14.4.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_seaborn.yml

Diagnostics are stored in diag_scripts/

• seaborn_diag.py

14.4.3 Variables

Arbitrary variables are supported.

14.4.4 Observations and reformat scripts

Arbitrary datasets are supported.

14.4.5 References

• Waskom, M. L. (2021), seaborn: statistical data visualization, Journal of Open Source Software, 6(60), 3021,
doi:10.21105/joss.03021.

14.4.6 Example plots

14.4. Seaborn Diagnostics 87

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: Monthly and zonal mean temperatures vs. latitude in the period 1991-2014 for two Earth system models
(CESM2-WACCM and GFDL-ESM4). Colors visualize the corresponding pressure levels.

Fig. 4: Spatiotemporal distribution of daily precipitation in the period 2005-2014 for six IPCC AR6 regions simulated
by two Earth system models (CESM2-WACCM and GFDL-ESM4). Each day in each grid cell in the corresponding
regions is considered with equal weight.

88 Chapter 14. General-purpose diagnostics

CHAPTER

FIFTEEN

ATMOSPHERE

15.1 Blocking metrics and indices, teleconnections and weather
regimes (MiLES)

15.1.1 Overview

Atmospheric blocking is a recurrent mid-latitude weather pattern identified by a large-amplitude, quasi-stationary,
long-lasting, high-pressure anomaly that “blocks” the westerly flow forcing the jet stream to split or meander (Rex,
1950).

It is typically initiated by the breaking of a Rossby wave in a diffluence region at the exit of the storm track, where it
amplifies the underlying stationary ridge (Tibaldi and Molteni, 1990). Blocking occurs more frequently in the Northern
Hemisphere cold season, with larger frequencies observed over the Euro-Atlantic and North Pacific sectors. Its lifetime
oscillates from a few days up to several weeks (Davini et al., 2012) sometimes leading to winter cold spells or summer
heat waves.

To this end, the MId-Latitude Evaluation System (MiLES) was developed as stand-alone package (https://github.com/
oloapinivad/MiLES) to support analysis of mid-latitude weather patterns in terms of atmospheric blocking, telecon-
nections and weather regimes. The package was then implemented as recipe for ESMValTool.

The tool works on daily 500hPa geopotential height data (with data interpolated on a common 2.5x2.5 grid) and cal-
culates the following diagnostics:

1D Atmospheric Blocking

Tibaldi and Molteni (1990) index for Northern Hemisphere. Computed at fixed latitude of 60N, with delta of -5,-
2.5,0,2.5,5 deg, fiN=80N and fiS=40N. Full timeseries and climatologies are provided in NetCDF4 Zip format.

2D Atmospheric blocking

Following the index by Davini et al. (2012). It is a 2D version of Tibaldi and Molteni (1990) for Northern Hemisphere
atmospheric blocking evaluating meridional gradient reversal at 500hPa. It computes both Instantaneous Blocking
and Blocking Events frequency, where the latter allows the estimation of the each blocking duration. It includes also
two blocking intensity indices, i.e. the Meridional Gradient Index and the Blocking Intensity index. In addition the
orientation (i.e. cyclonic or anticyclonic) of the Rossby wave breaking is computed. A supplementary Instantaneous
Blocking index with the GHGS2 condition (see Davini et al., 2012) is also evaluated. Full timeseries and climatologies
are provided in NetCDF4 Zip format.

89

https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1111%2Fj.2153-3490.1950.tb00331.x
https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1111%2Fj.2153-3490.1950.tb00331.x
https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x
https://doi.org/10.1175/JCLI-D-12-00032.1)
https://github.com/oloapinivad/MiLES
https://github.com/oloapinivad/MiLES
https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x
https://doi.org/10.1175/JCLI-D-12-00032.1
https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x
https://doi.org/10.1175/JCLI-D-12-00032.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Z500 Empirical Orthogonal Functions

Based on SVD. The first 4 EOFs for North Atlantic (over the 90W-40E 20N-85N box) and Northern Hemisphere (20N-
85N) or a custom region are computed. North Atlantic Oscillation, East Atlantic Pattern, and Arctic Oscillation can be
evaluated. Figures showing linear regression of PCs on monthly Z500 are provided. PCs and eigenvectors, as well as
the variances explained are provided in NetCDF4 Zip format.

North Atlantic Weather Regimes

Following k-means clustering of 500hPa geopotential height. 4 weather regimes over North Atlantic (80W-40E 30N-
87.5N) are evaluated using anomalies from daily seasonal cycle. This is done retaining the first North Atlantic EOFs
which explains the 80% of the variance to reduce the phase-space dimensions and then applying k-means clustering
using Hartigan-Wong algorithm with k=4. Figures report patterns and frequencies of occurrence. NetCDF4 Zip data
are saved. Only 4 regimes and DJF supported so far.

15.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_miles_block.yml

• recipe_miles_eof.yml

• recipe_miles_regimes.yml

Diagnostics are stored in diag_scripts/miles/

• miles_block.R

• miles_eof.R

• miles_regimes.R

and subroutines

• basis_functions.R

• block_figures.R

• eof_figures.R

• regimes_figures.R

• block_fast.R

• eof_fast.R

• miles_parameters.R

• regimes_fast.R

miles_parameters.R contains additional internal parameters which affect plot sizes, colortables etc.

90 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.1.3 User settings

1. miles_block.R

Required settings for variables

• reference_dataset: reference dataset for comparison

• reference_exp: optional reference experiment for comparison (to use when comparing two experiments of
the same dataset)

Required settings for script

• seasons: Selected season(‘DJF’,’MAM’,’JJA’,’SON’,’ALL’) or your period as e.g. ‘Jan_Feb_Mar’

2. miles_eof.R

Required settings for variables

• reference_dataset: reference dataset for comparison

• reference_exp: optional reference experiment for comparison (to use when comparing two experiments of
the same dataset)

Required settings for script

• seasons: Selected season(‘DJF’,’MAM’,’JJA’,’SON’,’ALL’) or your period as e.g. ‘Jan_Feb_Mar’

• teles: Select EOFs (‘NAO’,’AO’,’PNA’) or specify custom area as “lon1_lon2_lat1_lat2”

3. miles_regimes.R

Required settings for variables

• reference_dataset: reference dataset

• reference_exp: optional reference experiment for comparison (to use when comparing two ex-
periments of the same dataset)

Required or optional settings for script

• None (the two parameters seasons and nclusters in the recipe should not be changed)

15.1.4 Variables

• zg (atmos, daily mean, longitude latitude time)

15.1.5 Observations and reformat scripts

• ERA-INTERIM

15.1. Blocking metrics and indices, teleconnections and weather regimes (MiLES) 91

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.1.6 References

• REX, D. F. (1950), Blocking Action in the Middle Troposphere and its Effect upon Regional Climate. Tellus, 2:
196-211. doi: http://doi.org/10.1111/j.2153-3490.1950.tb00331.x

• Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra (2012): Bidimensional Diagnostics, Variability, and Trends
of Northern Hemisphere Blocking. J. Climate, 25, 6496–6509, doi: http://doi.org/10.1175/JCLI-D-12-00032.1.

• Tibaldi S, Molteni F.: On the operational predictability of blocking. Tellus A 42(3): 343–365, doi:
10.1034/j.1600- 0870.1990.t01- 2- 00003.x, 1990. https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x

• Paolo Davini. (2018, April 30). MiLES - Mid Latitude Evaluation System (Version v0.51). Zenodo. http:
//doi.org/10.5281/zenodo.1237838

15.1.7 Example plots

Fig. 1: Blocking Events frequency for a CMIP5 EC-Earth historical run (DJF 1980-1989), compared to ERA-Interim.
Units are percentage of blocked days per season.

Fig. 2: North Atlantic Oscillation for a CMIP5 EC-Earth historical run (DJF 1980-1989) compared to ERA-Interim,
shown as the linear regression of the monthly Z500 against the first Principal Component (PC1) of the North Atlantic
region.

92 Chapter 15. Atmosphere

http://doi.org/10.1111/j.2153-3490.1950.tb00331.x
http://doi.org/10.1175/JCLI-D-12-00032.1
https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x
http://doi.org/10.5281/zenodo.1237838
http://doi.org/10.5281/zenodo.1237838

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.2 Clouds

15.2.1 Overview

Four recipes are available to evaluate cloud climatologies from CMIP models.

1) recipe_clouds_bias.yml computes climatologies and creates map plots of multi-model mean, mean bias, absolute
bias and relative bias of a given variable. Similar to IPCC AR5 (ch. 9) fig. 9.2 a/b/c (Flato et al., 2013).

2) recipe_clouds_ipcc.yml computes multi-model mean bias and zonal means of the clouds radiative effect (short-
wave, longwave and net). Similar to IPCC AR5 (ch. 9) fig. 9.5 (Flato et al., 2013).

3) Recipe recipe_lauer13jclim.yml computes the climatology and interannual variability of climate relevant cloud
variables such as cloud radiative forcing (CRE), liquid water path (lwp), cloud amount (clt), and total precip-
itation (pr) reproducing some of the evaluation results of Lauer and Hamilton (2013). The recipe includes a
comparison of the geographical distribution of multi-year average cloud parameters from individual models and
the multi-model mean with satellite observations. Taylor diagrams are generated that show the multi-year annual
or seasonal average performance of individual models and the multi-model mean in reproducing satellite obser-
vations. The diagnostic also facilitates the assessment of the bias of the multi-model mean and zonal averages
of individual models compared with satellite observations. Interannual variability is estimated as the relative
temporal standard deviation from multi-year timeseries of data with the temporal standard deviations calculated
from monthly anomalies after subtracting the climatological mean seasonal cycle. Note that the satellite obser-
vations used in the original recipe (UWisc) is not maintained anymore and has been superseeded by MAC-LWP
(Elsaesser et al., 2017). We recommend using MAC-LWP.

4) Recipe family recipe_lauer22jclim_*.yml is an extension of recipe_lauer13jclim.yml for evaluation of cloud
radiative forcing (CRE), liquid water path (lwp), ice water path (clivi), total cloud amount (clt), cloud liquid
water content (clw), cloud ice water content (cli), cloud fraction (cl) and water vapor path (prw) from CMIP6
models in comparison to CMIP5 results and satellite observations. Wherever possible, the diagnostics use multi-
observational products as reference datasets. The recipe family reproduces all figures from Lauer et al. (2023):
maps of the geographical distribution of multi-year averages, Taylor diagrams for multi-year annual averages,
temporal variability, seasonal cycle amplitude, cloud ice fraction as a function of temperature, zonal means of
3-dim cloud liquid/ice content and cloud fraction, matrices of cloud cover and total cloud water path as a function
of SST and 500 hPa vertical velocity, shortwave CRE and total cloud water path binned by total cloud cover and
pdfs of total cloud cover for selected regions.

15.2.2 Available recipes and diagnostics

Recipes are stored in recipes/clouds

• recipe_clouds_bias.yml

• recipe_clouds_ipcc.yml

• recipe_lauer13jclim.yml

• recipe_lauer22jclim_*.yml (* = fig1_clim_amip, fig1_clim, fig2_taylor_amip, fig2_taylor, fig3-4_zonal,
fig5_lifrac, fig6_interannual, fig7_seas, fig8_dyn, fig9-11ab_scatter, fig9-11c_pdf)

Diagnostics are stored in diag_scripts/clouds/

• clouds.ncl: global maps of (multi-year) annual means including multi-model mean

• clouds_bias.ncl: global maps of the multi-model mean and the multi-model mean bias

• clouds_dyn_matrix.ncl: cloud properties by dynamical regime (SST, omega500)

• clouds_interannual.ncl: global maps of the interannual variability

15.2. Clouds 93

https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter09_FINAL.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter09_FINAL.pdf
https://journals.ametsoc.org/view/journals/clim/26/11/jcli-d-12-00451.1.xml
https://journals.ametsoc.org/view/journals/clim/30/24/jcli-d-16-0902.1.xml
https://journals.ametsoc.org/view/journals/clim/36/2/JCLI-D-22-0181.1.xml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• clouds_ipcc.ncl: global maps of multi-model mean minus observations + zonal averages of individual models,
multi-model mean and observations

• clouds_lifrac_scatter.ncl: cloud liquid water fraction as a function of temperature

• clouds_lifrac_scatter_postproc.ncl: additional plots and diagnostics using the output of clouds_lifrac_scatter.ncl
for given CMIP5/CMIP6 model pairs

• clouds_pdf.ncl: pdf of cloud parameters

• clouds_seasonal_cycle.ncl: seasonal cycle amplitude

• clouds_taylor.ncl: Taylor diagrams as in Lauer and Hamilton (2013)

• clouds_taylor_double.ncl: Taylor diagrams as in Lauer et al. (2023)

• clouds_zonal.ncl: zonal means of 3-dim variables

15.2.3 User settings in recipe

1. Script clouds.ncl

Required settings (scripts)

none

Optional settings (scripts)

• embracesetup: true = 2 plots per line, false = 4 plots per line (default)

• explicit_cn_levels: explicit contour levels (array)

• extralegend: plot legend(s) to extra file(s)

• filename_add: optionally add this string to plot filesnames

• multiobs_exclude: list of observational datasets to be excluded when calculating uncertainty estimates
from multiple observational datasets (see also multiobs_uncertainty)

• multiobs_uncertainty: calculate uncertainty estimates from multiple observational datasets (true, false); by
default, all “obs”, “obs6”, “obs4mips” and “native6” datasets are used; any of such datasets can be explicitly
excluded when also specifying “multiobs_exclude”

• panel_labels: label individual panels (true, false)

• PanelTop: manual override for “@gnsPanelTop” used by panel plot(s)

• projection: map projection for plotting (default = “CylindricalEquidistant”)

• showdiff: calculate and plot differences model - reference (default = false)

• showyears: add start and end years to the plot titles (default = false)

• rel_diff: if showdiff = true, then plot relative differences (%) (default = False)

• ref_diff_min: lower cutoff value in case of calculating relative differences (in units of input variable)

• region: show only selected geographic region given as latmin, latmax, lonmin, lonmax

• timemean: time averaging - “seasonal” = DJF, MAM, JJA, SON), “annual” = annual mean

• treat_var_as_error: treat variable as error when averaging (true, false); true: avg = sqrt(mean(var*var)),
false: avg = mean(var)

• var: short_name of variable to process (default = “” - use first variable in variable list)

94 Chapter 15. Atmosphere

https://journals.ametsoc.org/view/journals/clim/26/11/jcli-d-12-00451.1.xml
https://journals.ametsoc.org/view/journals/clim/36/2/JCLI-D-22-0181.1.xml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Required settings (variables)

none

Optional settings (variables)

• long_name: variable description

• reference_dataset: reference dataset; REQUIRED when calculating differences (showdiff = True)

• units: variable units (for labeling plot only)

Color tables

• variable “lwp”: diag_scripts/shared/plot/rgb/qcm3.rgb

2. Script clouds_bias.ncl

Required settings (scripts)

none

Optional settings (scripts)

• plot_abs_diff: additionally also plot absolute differences (true, false)

• plot_rel_diff: additionally also plot relative differences (true, false)

• projection: map projection, e.g., Mollweide, Mercator

• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

• Required settings (variables)*

• reference_dataset: name of reference datatset

Optional settings (variables)

• long_name: description of variable

Color tables

• variable “tas”: diag_scripts/shared/plot/rgb/ipcc-tas.rgb, diag_scripts/shared/plot/rgb/ipcc-tas-delta.rgb

• variable “pr-mmday”: diag_scripts/shared/plots/rgb/ipcc-precip.rgb, diag_scripts/shared/plot/rgb/ipcc-
precip-delta.rgb

3. Script clouds_dyn_matrix.ncl

Required settings (scripts)

• var_x: short name of variable on x-axis

• var_y: short name of variable on y-axis

• var_z: short name of variable to be binned

• xmin: min x value for generating x bins

• xmax: max x value for generating x bins

• ymin: min y value for generating y bins

• ymax: max y value for generating y bins

Optional settings (scripts)

• clevels: explicit values for probability labelbar (array)

• filename_add: optionally add this string to plot filesnames

15.2. Clouds 95

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• nbins: number of equally spaced bins (var_x), default = 100

• sidepanels: show/hide side panels (default = False)

• xlabel: label overriding variable name for x-axis (e.g. SST)

• ylabel: label overriding variable name for y-axis (e.g. omega500)

• zdmin: min z value for labelbar (difference plots)

• zdmax: max z value for labelbar (difference plots)

• zmin: min z value for labelbar

• zmax: max z value for labelbar

Required settings (variables)

Optional settings (variables)

• reference_dataset: reference dataset

4. Script clouds_interannual.ncl

Required settings (scripts)

none

Optional settings (scripts)

• colormap: e.g., WhiteBlueGreenYellowRed, rainbow

• epsilon: “epsilon” value to be replaced with missing values

• explicit_cn_levels: use these contour levels for plotting

• filename_add: optionally add this string to plot filesnames

• projection: map projection, e.g., Mollweide, Mercator

• var: short_name of variable to process (default = “” - use first variable in variable list)

Required settings (variables)

none

Optional settings (variables)

• long_name: description of variable

• reference_dataset: name of reference datatset

5. Script clouds_ipcc.ncl

Required settings (scripts)

none

Optional settings (scripts)

• explicit_cn_levels: contour levels

• highlight_dataset: name of dataset to highlight (default = “MultiModelMean”)

• mask_ts_sea_ice: true = mask T < 272 K as sea ice (only for variable “ts”); false = no additional grid cells
masked for variable “ts”

• projection: map projection, e.g., Mollweide, Mercator

• styleset: style set for zonal mean plot (“CMIP5”, “DEFAULT”)

96 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

• valid_fraction: used for creating sea ice mask (mask_ts_sea_ice = true): fraction of valid time steps required
to mask grid cell as valid data

Required settings (variables)

• reference_dataset: name of reference data set

Optional settings (variables)

• long_name: description of variable

• units: variable units

Color tables

• variables “pr”, “pr-mmday”: diag_scripts/shared/plot/rgb/ipcc-precip-delta.rgb

6. Script clouds_lifrac_scatter.ncl

Required settings (scripts)

none

Optional settings (scripts)

• filename_add: optionally add this string to plot filesnames

• min_mass: minimum cloud condensate (same units as clw, cli)

• mm_mean_median: calculate multi-model mean and meadian

• nbins: number of equally spaced bins (ta (x-axis)), default = 20

• panel_labels: label individual panels (true, false)

• PanelTop: manual override for “@gnsPanelTop” used by panel plot(s)s

Required settings (variables)

Optional settings (variables)

• reference_dataset: reference dataset

7. Script clouds_lifrac_scatter_postproc.ncl

Required settings (scripts)

• models: array of CMIP5/CMIP6 model pairs to be compared

• refname: name of reference dataset

Optional settings (scripts)

• nbins: number of bins used by clouds_lifrac_scatter.ncl (default = 20)

• reg: region (string) (default = “”)

• t_int: array of temperatures for printing additional diagnostics

Required settings (variables)

none

Optional settings (variables)

none

15.2. Clouds 97

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

8. Script clouds_pdf.ncl

Required settings (scripts)

• xmin: min value for bins (x axis)

• xmax: max value for bins (y axis)

Optional settings (scripts)

• filename_add: optionally add this string to output filenames

• plot_average: show average frequency per bin

• region: show only selected geographic region given as latmin, latmax, lonmin, lonmax

• styleset: “CMIP5”, “DEFAULT”

• ymin: min value for frequencies (%) (y axis)

• ymax: max value for frequencies (%) (y axis)

Required settings (variables)

Optional settings (variables)

• reference_dataset: reference dataset

9. Script clouds_seasonal_cycle.ncl

Required settings (scripts)

none

Optional settings (scripts)

• colormap: e.g., WhiteBlueGreenYellowRed, rainbow

• epsilon: “epsilon” value to be replaced with missing values

• explicit_cn_levels: use these contour levels for plotting

• filename_add: optionally add this string to plot filesnames

• projection: map projection, e.g., Mollweide, Mercator

• showyears: add start and end years to the plot titles (default = false)

• var: short_name of variable to process (default = “” i.e. use first variable in variable list)

Required settings (variables)

Optional settings (variables)

• long_name: description of variable

• reference_dataset: name of reference dataset

10. Script clouds_taylor.ncl

Required settings (scripts)

none

Optional settings (scripts)

• embracelegend: false (default) = include legend in plot, max. 2 columns with dataset names in legend;
true = write extra file with legend, max. 7 dataset names per column in legend, alternative observational
dataset(s) will be plotted as a red star and labeled “altern. ref. dataset” in legend (only if dataset is of class
“OBS”)

98 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• estimate_obs_uncertainty: true = estimate observational uncertainties from mean values (assuming frac-
tions of obs. RMSE from documentation of the obs data); only available for “CERES-EBAF”, “MODIS”,
“MODIS-L3”; false = do not estimate obs. uncertainties from mean values

• filename_add: legacy feature: arbitrary string to be added to all filenames of plots and netcdf output pro-
duced (default = “”)

• legend_filter: do not show individual datasets in legend that are of project “legend_filter” (default = “”)

• mask_ts_sea_ice: true = mask T < 272 K as sea ice (only for variable “ts”); false = no additional grid cells
masked for variable “ts”

• multiobs_exclude: list of observational datasets to be excluded when calculating uncertainty estimates
from multiple observational datasets (see also multiobs_uncertainty)

• multiobs_uncertainty: calculate uncertainty estimates from multiple observational datasets (true, false); by
default, all “obs”, “obs6”, “obs4mips” and “native6” datasets are used; any of such datasets can be explicitly
excluded when also specifying “multiobs_exclude”

• styleset: “CMIP5”, “DEFAULT” (if not set, clouds_taylor.ncl will create a color table and symbols for
plotting)

• timemean: time averaging; annualclim (default) = 1 plot annual mean; seasonalclim = 4 plots (DJF, MAM,
JJA, SON)

• valid_fraction: used for creating sea ice mask (mask_ts_sea_ice = true): fraction of valid time steps required
to mask grid cell as valid data

• var: short_name of variable to process (default = “” - use first variable in variable list)

Required settings (variables)

• reference_dataset: name of reference data set

Optional settings (variables)

none

11. Script clouds_taylor_double.ncl

Required settings (scripts)

none

Optional settings (scripts)

• filename_add: legacy feature: arbitrary string to be added to all filenames of plots and netcdf output pro-
duced (default = “”)

• multiobs_exclude: list of observational datasets to be excluded when calculating uncertainty estimates
from multiple observational datasets (see also multiobs_uncertainty)

• multiobs_uncertainty: calculate uncertainty estimates from multiple observational datasets (true, false);
by default, all “obs”, “obs6”, “obs4mips” and “native6” datasets are used; any of such datasets can be
explicitely excluded when also specifying “multiobs_exclude”

• projectcolors: colors for each projectgroups (e.g. (/”(/0.0, 0.0, 1.0/)”, “(/1.0, 0.0, 0.0/)”/)

• projectgroups: calculated mmm per “projectgroup” (e.g. (/”cmip5”, “cmip6”)/)

• styleset: “CMIP5”, “DEFAULT” (if not set, CLOUDS_TAYLOR_DOUBLE will create a color table and
symbols for plotting)

• timemean: time averaging; annualclim (default) = 1 plot annual mean, seasonalclim = 4 plots (DJF, MAM,
JJA, SON)

15.2. Clouds 99

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• var: short_name of variable to process (default = “” - use first variable in variable list)

Required settings (variables)

• reference_dataset: name of reference data set

Optional settings (variables)

12. Script clouds_zonal.ncl

Required settings (scripts)

none

Optional settings (scripts)

• embracesetup: True = 2 plots per line, False = 4 plots per line (default)

• explicit_cn_levels: explicit contour levels for mean values (array)

• explicit_cn_dlevels: explicit contour levels for differences (array)

• extralegend: plot legend(s) to extra file(s)

• filename_add: optionally add this string to plot filesnames

• panel_labels: label individual panels (true, false)

• PanelTop: manual override for “@gnsPanelTop” used by panel plot(s)

• showdiff: calculate and plot differences (default = False)

• rel_diff: if showdiff = True, then plot relative differences (%) (default = False)

• rel_diff_min: lower cutoff value in case of calculating relative differences (in units of input variable)

• t_test: perform t-test when calculating differences (default = False)

• timemean: time averaging - “seasonal” = DJF, MAM, JJA, SON), “annual” = annual mean

• units_to: target units (automatic conversion)

Required settings (variables)

none

Optional settings (variables)

• long_name: variable description

• reference_dataset: reference dataset; REQUIRED when calculating differences (showdiff = True)

• units: variable units (for labeling plot only)

15.2.4 Variables

• cl (atmos, monthly mean, longitude latitude time)

• clcalipso (atmos, monthly mean, longitude latitude time)

• cli (atmos, monthly mean, longitude latitude time)

• clw (atmos, monthly mean, longitude latitude time)

• clwvi (atmos, monthly mean, longitude latitude time)

• clivi (atmos, monthly mean, longitude latitude time)

• clt (atmos, monthly mean, longitude latitude time)

100 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• pr (atmos, monthly mean, longitude latitude time)

• prw (atmos, monthly mean, longitude latitude time)

• rlut, rlutcs (atmos, monthly mean, longitude latitude time)

• rsut, rsutcs (atmos, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude time)

• wap (atmos, monthly mean, longitude latitude time)

15.2.5 Observations/realanyses

• CALIPSO-GOCCP

• CALIPSO-ICECLOUD

• CERES-EBAF

• CLARA-AVHRR

• CLOUDSAT-L2

• ERA5

• ERA-Interim

• ESACCI-CLOUD

• ESACCI-WATERVAPOUR

• GPCP-SG

• ISCCP-FH

• MAC-LWP

• MODIS

• PATMOS-x

• UWisc

15.2.6 References

• Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring,
C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason and M. Rummukainen, 2013: Evaluation
of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

• Lauer A., and K. Hamilton (2013), Simulating clouds with global climate models: A comparison of CMIP5
results with CMIP3 and satellite data, J. Clim., 26, 3823-3845, doi: 10.1175/JCLI-D-12-00451.1.

• Lauer, A., L. Bock, B. Hassler, M. Schröder, and M. Stengel, Cloud climatologies from global climate models - a
comparison of CMIP5 and CMIP6 models with satellite data, J. Climate, 36(2), doi: 10.1175/JCLI-D-22-0181.1,
2023.

15.2. Clouds 101

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.2.7 Example plots

15.3 Evaluate water vapor short wave radiance absorption schemes
of ESMs with the observations, including ESACCI data.

15.3.1 Overview

The recipe contains several diagnostics to use ESACCI water vapour data to evaluate CMIP models.

The diagnostic deangelisf3f4.py reproduces figures 3 and 4 from DeAngelis et al. (2015): See also
doc/sphinx/source/recipes/recipe_deangelis15nat.rst This paper compares models with different schemes for water va-
por short wave radiance absorption with the observations. Schemes using pseudo-k-distributions with more than 20
exponential terms show the best results.

The diagnostic diag_tropopause.py plots given variable at cold point tropopause height, here Specific Humidity (hus)
is used. This will be calculated from the ESACCI water vapour data CDR-4, which are planed to consist of three-
dimensional vertically resolved monthly mean water vapour data (in ppmv) with spatial resolution of 100 km, covering
the troposphere and lower stratosphere. The envisaged coverage is 2010-2014. The calculation of hus from water
vapour in ppmv will be part of the cmorizer. Here, ERA-Interim data are used.

The diagnostic diag_tropopause_zonalmean.py plots zonal mean for given variable for all pressure levels between
250 and 1hPa and at cold point tropopause height. Here Specific Humidity (hus) is used. This will be calculated
from the ESACCI water vapour data CDR-3, which are planed to contain the vertically resolved water vapour ECV
in units of ppmv (volume mixing ratio) and will be provided as zonal monthly means on the SPARC Data Initiative
latitude/pressure level grid (SPARC, 2017; Hegglin et al., 2013). It covers the vertical range between 250 hPa and 1
hPa, and the time period 1985 to the end of 2019. The calculation of hus from water vapour in ppmv will be part of
the cmorizer. Here, ERA-Interim data are used.

15.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_cmug_h2o.yml

Diagnostics are stored in diag_scripts/

• deangelis15nat/deangelisf3f4.py

• cmug_h2o/diag_tropopause.py

• cmug_h2o/diag_tropopause_zonalmean.py

15.3.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models.

deangelisf3f4.py: For each model, two experiments must be given: a pre industrial control run, and a scenario with
4 times CO2. Possibly, 150 years should be given, but shorter time series work as well. Currently, HOAPS data are
included as place holder for expected ESACCI-WV data, type CDR-2: Gridded monthly time series of TCWV in units
of kg/m2 (corresponds to prw) that cover the global land and ocean areas with a spatial resolution of 0.05° / 0.5° for
the period July 2002 to December 2017.

102 Chapter 15. Atmosphere

https://www.nature.com/articles/nature15770

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: The 20-yr average LWP (1986-2005) from the CMIP5 historical model runs and the multi-model mean in
comparison with the UWisc satellite climatology (1988-2007) based on SSM/I, TMI, and AMSR-E (O’Dell et al.
2008). Produced with recipe_lauer13jclim.yml (diagnostic script clouds.ncl).
15.3. Evaluate water vapor short wave radiance absorption schemes of ESMs with the
observations, including ESACCI data.

103

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 4: Taylor diagram showing the 20-yr annual average performance of CMIP5 models for total cloud fraction as com-
pared to MODIS satellite observations. Produced with recipe_lauer13jclim.yml (diagnostic script clouds_taylor.ncl).

Fig. 5: 20-year average (1986-2005) annual mean cloud radiative effects of CMIP5 models against the CERES-EBAF
(2001–2012). Top row shows the shortwave effect; middle row the longwave effect, and bottom row the net effect.
Multi-model mean biases against CERES-EBAF are shown on the left, whereas the right panels show zonal aver-
ages from CERES-EBAF (thick black), the individual CMIP5 models (thin gray lines) and the multi-model mean
(thick red line). Similar to Figure 9.5 of Flato et al., 2013. Produced with recipe_clouds_ipcc.yml (diagnostic script
clouds_ipcc.ncl).

104 Chapter 15. Atmosphere

https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter09_FINAL.pdf

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 6: Interannual variability of modeled and observed (GPCP) precipitation rates estimated as relative tempo-
ral standard deviation from 20 years (1986-2005) of data. The temporal standard deviations are calculated from
monthly anomalies after subtracting the climatological mean seasonal cycle. Produced with recipe_lauer13jclim.yml
(clouds_interannual.ncl).

15.3. Evaluate water vapor short wave radiance absorption schemes of ESMs with the
observations, including ESACCI data.

105

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 7: Zonal mean of the multi-year annual mean cloud fraction as seen from CALIPSO from CMIP6 models
in comparison to CALIPSO-GOCCP data. Produced with recipe_lauer22jclim_fig3-4_zonal.yml (diagnostic script
clouds_zonal.ncl).

106 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 8: Multi-year seasonal average (December-January-February) of cloud shortwave radiative effect (W m-2) vs. total
cloud fraction (clt, %) averaged over the Southern Ocean defined as latitude belt 30°S-65°S (ocean grid cells only).
Shown are the CMIP6 multi-model mean (red filled circles and lines) and observational estimates from ESACCI-
CLOUD (black circles and lines). The red shaded areas represent the range between the 10th and 90th percentiles of
the results from all individual models. Produced with recipe_lauer22jclim_fig9-11ab_scatter.yml (diagnostic script
clouds_scatter.ncl).

Fig. 9: Frequency distribution of monthly mean total cloud cover from CMIP6 models in comparison to ESACCI-
CLOUD data. The red curve shows the multi-model average, the blue curve the ESACCI-CLOUD data and the thin
gray lines the individual models. The red shading shows ±1 standard deviation of the inter-model spread. Produced
with recipe_lauer22jclim_fig9-11c_pdf.yml (diagnostic script clouds_pdf.ncl).

15.3. Evaluate water vapor short wave radiance absorption schemes of ESMs with the
observations, including ESACCI data.

107

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 10: 2-dimensional distribution of average total cloud cover (clt) binned by sea surface temperature (SST, x-axis)
and vertical velocity at 500 hPa (500, y-axis) averaged over 20 years and all grid cells over the ocean. Produced with
recipe_lauer22jclim_fig8_dyn.yml (diagnostic script clouds_dyn_matrix.ncl).

15.3.4 Variables

deangelisf3f4.py: * rsnstcs (atmos, monthly, longitude, latitude, time) * rsnstcsnorm (atmos, monthly, longitude, lati-
tude, time) * prw (atmos, monthly, longitude, latitude, time) * tas (atmos, monthly, longitude, latitude, time)

diag_tropopause.py: * hus (atmos, monthly, longitude, latitude, time, plev) * ta (atmos, monthly, longitude, latitude,
time, plev)

diag_tropopause_zonalmean.py: * hus (atmos, monthly, longitude, latitude, time, plev) * ta (atmos, monthly, longitude,
latitude, time, plev)

15.3.5 Observations and reformat scripts

deangelisf3f4.py:

• rsnstcs:
CERES-EBAF

• prw
HOAPS, planed for ESACCI-WV data, type CDR-2

diag_tropopause.py:

• hus
ERA-Interim, ESACCI water vapour paned

diag_tropopause_zonalmean.py:

• hus
ERA-Interim, ESACCI water vapour paned

108 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.3.6 References

• DeAngelis, A. M., Qu, X., Zelinka, M. D., and Hall, A.: An observational radiative constraint on hydrologic
cycle intensification, Nature, 528, 249, 2015.

15.3.7 Example plots

Fig. 11: Scatter plot and regression line computed between the ratio of the change of net short wave radiation (rsnst)
and the change of the Water Vapor Path (prw) against the ratio of the change of netshort wave radiation for clear skye
(rsnstcs) and the the change of surface temperature (tas). The width of horizontal shading for models and the vertical
dashed lines for observations (Obs.) represent statistical uncertainties of the ratio, as the 95% confidence interval (CI)
of the regression slope to the rsnst versus prw curve. For the prw observations ESACCI CDR-2 data from 2003 to 2014
are used.

15.4 Cloud Regime Error Metric (CREM)

15.4.1 Overview

The radiative feedback from clouds remains the largest source of uncertainty in determining the climate sensitivity.
Traditionally, cloud has been evaluated in terms of its impact on the mean top of atmosphere fluxes. However it is
quite possible to achieve good performance on these criteria through compensating errors, with boundary layer clouds
being too reflective but having insufficient horizontal coverage being a common example (e.g., Nam et al., 2012).
Williams and Webb (2009) (WW09) propose a Cloud Regime Error Metric (CREM) which critically tests the ability
of a model to simulate both the relative frequency of occurrence and the radiative properties correctly for a set of
cloud regimes determined by the daily mean cloud top pressure, cloud albedo and fractional coverage at each grid-box.
WW09 describe in detail how to calculate their metrics and we have included the CREMpd metric from their paper in
ESMValTool, with clear references in the lodged code to tables in their paper. This has been applied to those CMIP5
models who have submitted the required diagnostics for their AMIP simulation (see Figure 8 below). As documented
by WW09, a perfect score with respect to ISCCP would be zero. WW09 also compared MODIS/ERBE to ISCCP in
order to provide an estimate of observational uncertainty. This was found to be 0.96 and this is marked on Figure 8,

15.4. Cloud Regime Error Metric (CREM) 109

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 12: Map of the average Specific Humidity (hus) at the cold point tropopause from ERA-Interim data. The diag-
nostic averages the complete time series, here 2010-2014.

Fig. 13: Latitude versus time plot of the Specific Humidity (hus) at the cold point tropopause from ERA-Interim data.

110 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 14: Zonal average Specific Humidity (hus) between 250 and 1 hPa from ERA-Interim data. The diagnostic averages
the complete time series, here 1985-2014.

Fig. 15: Average Specific Humidity (hus) profile between 250 and 1 hPa from ERA-Interim and CMIP6 model data.
The diagnostic averages the complete time series, here 1985-2014.

15.4. Cloud Regime Error Metric (CREM) 111

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

hence a model with a CREM similar to this value could be considered to have an error comparable with observational
uncertainty, although it should be noted that this does not necessarily mean that the model lies within the observations
for each regime. A limitation of the metric is that it requires a model to be good enough to simulate each regime. If a
model is that poor that the simulated frequency of occurrence of a particular regime is zero, then a NaN will be returned
from the code and a bar not plotted on the figure for that model.

The original publication recommends to use sea ice fields from one model also for other models that do not provide
daily sea ice concentration. This is possible as sea ice concentrations are prescribed in the AMIP simulations and has
been done to produce the example figure shown below.

15.4.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_williams09climdyn_CREM.yml

Diagnostics are stored in diag_scripts/crem/

• ww09_esmvaltool.py

15.4.3 User settings

None.

15.4.4 Variables

• albisccp (atmos, daily mean, longitude latitude time)

• cltisccp (atmos, daily mean, longitude latitude time)

• pctisccp (atmos, daily mean, longitude latitude time)

• rlut (atmos, daily mean, longitude latitude time)

• rlutcs (atmos, daily mean, longitude latitude time)

• rsut (atmos, daily mean, longitude latitude time)

• rsutcs (atmos, daily mean, longitude latitude time)

• sic/siconc (seaice, daily mean, longitude latitude time)

• snc (atmos, daily mean, longitude latitude time)

If snc is not available then snw can be used instead. For AMIP simulations, sic/siconc is often not submitted as it a
boundary condition and effectively the same for every model. In this case the same daily sic data set can be used for
each model.

Note: in case of using sic/siconc data from a different model (AMIP), it has to be checked by the user that the
calendar definitions of all data sets are compatible, in particular whether leap days are included or not.

112 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.4.5 Observations and reformat scripts

All observational data have been pre-processed and included within the routine. These are ISCCP, ISCCP-FD, MODIS,
ERBE. No additional observational data are required at runtime.

15.4.6 References

• Nam, C., Bony, S., Dufresne, J.-L., and Chepfer, H.: The ‘too few, too bright’ tropical low-cloud problem in
CMIP5 models, Geophys. Res. Lett., 39, L21801, doi: 10.1029/2012GL053421, 2012.

• Williams, K.D. and Webb, M.J.: A quantitative performance assessment of cloud regimes in climate models.
Clim. Dyn. 33, 141-157, doi: 10.1007/s00382-008-0443-1, 2009.

15.4.7 Example plots

Fig. 16: Cloud Regime Error Metrics (CREMpd) from William and Webb (2009) applied to selected CMIP5 AMIP
simulations. A perfect score with respect to ISCCP is zero; the dashed red line is an indication of observational
uncertainty. Note: as daily sea ice concentration (sic) is not available for all models shown, the regridded fields from
CanAM4 have been used for all models.

15.5 Consecutive dry days

15.5.1 Overview

Meteorological drought can in its simplest form be described by a lack of precipitation. First, a wet day threshold is
set, which can be either a limit related to measurement accuracy, or more directly a process related to an amount that
would break the drought. The diagnostic calculates the longest period of consecutive dry days, which is an indicator of
the worst drought in the time series. Further, the diagnostic calculates the frequency of dry periods longer than a user
defined number of days.

15.5. Consecutive dry days 113

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.5.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_consecdrydays.yml

Diagnostics are stored in diag_scripts/droughtindex/

• diag_cdd.py: calculates the longest period of consecutive dry days, and the frequency of dry day periods longer
than a user defined length

15.5.3 User settings in recipe

1. Script diag_cdd.py

Required settings (script)

• plim: limit for a day to be considered dry [mm/day]

• frlim: the shortest number of consecutive dry days for entering statistic on frequency of dry periods.

Optional settings (script)

Under plot:

• cmap: the name of a colormap. cmocean colormaps are also supported.

• other keyword arguments to esmvaltool.diag_scripts.shared.plot.global_pcolormesh() can
also be supplied.

15.5.4 Variables

• pr (atmos, daily mean, time latitude longitude)

15.5.5 Example plots

15.6 Evaluate water vapor short wave radiance absorption schemes
of ESMs with the observations.

15.6.1 Overview

The recipe reproduces figures from DeAngelis et al. (2015): Figure 1b to 4 from the main part as well as extended data
figure 1 and 2. This paper compares models with different schemes for water vapor short wave radiance absorption with
the observations. Schemes using pseudo-k-distributions with more than 20 exponential terms show the best results.

114 Chapter 15. Atmosphere

https://www.nature.com/articles/nature15770

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 17: Example of the number of occurrences with consecutive dry days of more than five days in the period 2001 to
2002 for the CMIP5 model bcc-csm1-1-m.

15.6. Evaluate water vapor short wave radiance absorption schemes of ESMs with the
observations.

115

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.6.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_deangelis15nat.yml

Diagnostics are stored in diag_scripts/

• deangelis15nat/deangelisf1b.py

• deangelis15nat/deangelisf2ext.py

• deangelis15nat/deangelisf3f4.py

15.6.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models. deangelisf1b.py: Several flux variables (W m-2) and
up to 6 different model exeriements can be handeled. Each variable needs to be given for each model experiment. The
same experiments must be given for all models. In DeAngelis et al. (2015) 150 year means are used but the recipe can
handle any duration.

deangelisf2ext.py:

deangelisf3f4.py: For each model, two experiments must be given: a pre industrial control run, and a scenario with 4
times CO2. Possibly, 150 years should be given, but shorter time series work as well.

15.6.4 Variables

deangelisf1b.py: Tested for:

• rsnst (atmos, monthly, longitude, latitude, time)

• rlnst (atmos, monthly, longitude, latitude, time)

• lvp (atmos, monthly, longitude, latitude, time)

• hfss (atmos, monthly, longitude, latitude, time)

any flux variable (W m-2) should be possible.

deangelisf2ext.py:

• rsnst (atmos, monthly, longitude, latitude, time)

• rlnst (atmos, monthly, longitude, latitude, time)

• rsnstcs (atmos, monthly, longitude, latitude, time)

• rlnstcs (atmos, monthly, longitude, latitude, time)

• lvp (atmos, monthly, longitude, latitude, time)

• hfss (atmos, monthly, longitude, latitude, time)

• tas (atmos, monthly, longitude, latitude, time)

deangelisf3f4.py: * rsnstcs (atmos, monthly, longitude, latitude, time) * rsnstcsnorm (atmos, monthly, longitude, lati-
tude, time) * prw (atmos, monthly, longitude, latitude, time) * tas (atmos, monthly, longitude, latitude, time)

116 Chapter 15. Atmosphere

https://www.nature.com/articles/nature15770

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.6.5 Observations and reformat scripts

deangelisf1b.py: * None

deangelisf2ext.py: * None

deangelisf3f4.py:

• rsnstcs:
CERES-EBAF

• prw
ERA-Interim, SSMI

15.6.6 References

• DeAngelis, A. M., Qu, X., Zelinka, M. D., and Hall, A.: An observational radiative constraint on hydrologic
cycle intensification, Nature, 528, 249, 2015.

15.6.7 Example plots

Fig. 18: Global average multi-model mean comparing different model experiments for the sum of upward long wave
flux at TOA and net downward long wave flux at the surface (rlnst), heating from short wave absorption (rsnst), latent
heat release from precipitation (lvp), and sensible heat flux (hfss). The panel shows three model experiments, namely
the pre-industrial control simulation averaged over 150 years (blue), the RCP8.5 scenario averaged over 2091-2100
(orange) and the abrupt quadrupled CO2 scenario averaged over the years 141-150 after CO2 quadrupling in all models
except CNRM-CM5-2 and IPSL-CM5A-MR, where the average is calculated over the years 131-140 (gray). The figure
shows that energy sources and sinks readjust in reply to an increase in greenhouse gases, leading to a decrease in the
sensible heat flux and an increase in the other fluxes.

15.6. Evaluate water vapor short wave radiance absorption schemes of ESMs with the
observations.

117

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 19: The temperature-mediated response of each atmospheric energy budget term for each model as blue circles
and the model mean as a red cross. The numbers above the abscissa are the cross-model correlations between dlvp/dtas
and each other temperature-mediated response.’

Fig. 20: Scatter plot and regression line the between the ratio of the change of net short wave radiation (rsnst) and the
change of the Water Vapor Path (prw) against the ratio of the change of netshort wave radiation for clear skye (rsnstcs)
and the the change of surface temperature (tas). The width of horizontal shading for models and the vertical dashed
lines for observations (Obs.) represent statistical uncertainties of the ratio, as the 95% confidence interval (CI) of the
regression slope to the rsnst versus prw curve. For the observations the minimum of the lower bounds of all CIs to the
maximum of the upper bounds of all CIs is shown.

118 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.7 Diurnal temperature range

15.7.1 Overview

The goal of this diagnostic is to compute a vulnerability indicator for the diurnal temperature range (DTR); the maxi-
mum variation in temperature within a period of 24 hours at a given location. This indicator was first proposed by the
energy sector, to identify locations which may experience increased diurnal temperature variation in the future, which
would put additional stress on the operational management of district heating systems. This indicator was defined as
the DTR exceeding 5 degrees celsius at a given location and day of the year (Deandreis et al., N.D.). Projections of
this indicator currently present high uncertainties, uncertainties associated to both Tmax and Tmin in future climate
projections.

As well as being of use to the energy sector, the global-average DTR has been evaluated using both observations and
climate model simulations (Braganza et. al., 2004) and changes in the mean and variability of the DTR have been
shown to have a wide range of impacts on society, such as on the transmission of diseases (Lambrechts et al., 2011;
Paaijmans et al., 2010).

The recipe recipe_diurnal_temperature_index.yml computes first a mean DTR for a reference period using historical
simulations and then, the number of days when the DTR from the future climate projections exceeds that of the reference
period by 5 degrees or more. The user can define both the reference and projection periods, and the region to be
considered. The output produced by this recipe consists of a four panel plot showing the maps of the projected mean
DTR indicator for each season and a netcdf file containing the corresponding data.

15.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_diurnal_temperature_index.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• diurnal_temp_index.R : calculates the diaurnal temperature vulnerability index.

15.7.3 User settings

User setting files are stored in recipes/

1. recipe_diurnal_temperature_index.yml

Required settings for script

• None

15.7.4 Variables

• tasmin and tasmax (atmos, daily, longitude, latitude, time)

15.7. Diurnal temperature range 119

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.7.5 Observations and reformat scripts

None

15.7.6 References

• Amiri, S. (2013). Economic and Environmental Benefits of CHP-based District Heating Systems in Sweden.
Retrieved from http://www.sgc.se/ckfinder/userfiles/files/sokmotor/LiU67.pdf

• Braganza, K., Karoly, D. J., & Arblaster, J. M. (2004). Diurnal temperature range as an index of global climate
change during the twentieth century. Geophysical Research Letters, 31(13), n/a – n/a. https://doi.org/10.1029/
2004GL019998

• Déandreis, C. (IPSL), Braconnot, P. (IPSL), and Planton, S.(CNRMGAME)(2014). Im-
pact du changement climatique sur la gestion des réseaux de chaleur. DALKIA,
Étude réalisée pour l’entreprise DALKIA. Last access 24.02.2021. https://docplayer.fr/
9496504-Impact-du-changement-climatique-sur-la-gestion-des-reseaux-de-chaleur.html

• Lambrechts, L., Paaijmans, K. P., Fansiri, T., Carrington, L. B., Kramer, L. D., Thomas, M. B., & Scott, T. W.
(2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings
of the National Academy of Sciences of the United States of America, 108(18), 7460–7465. https://doi.org/10.
1073/pnas.1101377108

• Paaijmans, K. P., Blanford, S., Bell, A. S., Blanford, J. I., Read, A. F., & Thomas, M. B. (2010). Influence of
climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy
of Sciences of the United States of America, 107(34), 15135–15139. https://doi.org/10.1073/pnas.1006422107

• Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939),
528–531. https://doi.org/10.1038/nature01675

• Thyholt, M., & Hestnes, A. G. (2008). Heat supply to low-energy buildings in district heating areas: Analyses of
CO2 emissions and electricity supply security. Energy and Buildings, 40(2), 131–139. https://doi.org/10.1016/
J.ENBUILD.2007.01.016

15.7.7 Example plots

Mean number of days exceeding the Diurnal Temperature Range (DTR) simulated during the historical period (1961-
1990) by 5 degrees during the period 2030-2080. The result is derived from one RCP 8.5 scenario simulated by
MPI-ESM-MR.

15.8 Eady growth rate

15.8.1 Overview

This recipe computes the maximum Eady Growth Rate and performs the annual and seasonal means, storing the results
for each dataset. For the seasonal means, the results are plotted over the North-Atlantic region for the selected pressure
levels.

120 Chapter 15. Atmosphere

http://www.sgc.se/ckfinder/userfiles/files/sokmotor/LiU67.pdf
https://doi.org/10.1029/2004GL019998
https://doi.org/10.1029/2004GL019998
https://docplayer.fr/9496504-Impact-du-changement-climatique-sur-la-gestion-des-reseaux-de-chaleur.html
https://docplayer.fr/9496504-Impact-du-changement-climatique-sur-la-gestion-des-reseaux-de-chaleur.html
https://doi.org/10.1073/pnas.1101377108
https://doi.org/10.1073/pnas.1101377108
https://doi.org/10.1073/pnas.1006422107
https://doi.org/10.1038/nature01675
https://doi.org/10.1016/J.ENBUILD.2007.01.016
https://doi.org/10.1016/J.ENBUILD.2007.01.016

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.8.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_eady_growth_rate.yml

Diagnostics are stored in esmvaltool/diag_scripts/eady_growth_rate/

• eady_growth_rate.py: Computes and stores the eady growth rate. Plots can be produced for the seasonal
mean over the North Atlantic region.

15.8.3 User settings in recipe

1. Script eady_growth_rate.py

Required settings for script

• time_statistic: Set to ‘annual’ to compute the annual mean. Set to ‘seasonal’ to compute the seasonal
mean.

Optional settings for script

• plot_levels: list of pressure levels to be plotted for the seasonal mean. If not specified, all levels will be
plotted.

15.8. Eady growth rate 121

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.8.4 Variables

• ta (atmos, monthly mean, longitude latitude level time)

• zg (atmos, monthly mean, longitude latitude level time)

• ua (atmos, monthly mean, longitude latitude level time)

15.8.5 References

• Moreno-Chamarro, E., Caron, L-P., Ortega, P., Loosveldt Tomas, S., and Roberts, M. J., Can we trust CMIP5/6
future projections of European winter precipitation?. Environ. Res. Lett. 16 054063

• Brian J Hoskins and Paul J Valdes. On the existence of storm-tracks. Journal of the atmospheric sciences,
47(15):1854–1864, 1990.

15.8.6 Example plots

Fig. 21: Eady Growth Rate values over the North-Atlantic region at 70000 Pa.

122 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.9 Extreme Events Indices (ETCCDI)

15.9.1 Overview

This diagnostic uses the standard climdex.pcic.ncdf R library to compute the 27 climate change indices specified by the
joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices http://etccdi.pacificclimate.
org/. The needed input fields are daily average precipitation flux and minimum, maximum and average daily surface
temperatures. The recipe reproduces panels of figure 9.37 of the IPCC AR5 report, producing both a Gleckler plot, with
relative error metrics for the CMIP5 temperature and precipitation extreme indices, and timeseries plots comparing the
ensemble spread with observations. For plotting 1 to 4 observational reference datasets are supported. If no observa-
tional reference datasets are given, the plotting routines do not work, however, index generation without plotting is still
possible. All datasets are regridded to a common grid and considered only over land.

15.9.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_extreme_events.yml

Diagnostics are stored in diag_scripts/extreme_events/

• ExtremeEvents.r

and subroutines

• common_climdex_preprocessing_for_plots.r

• make_Glecker_plot2.r

• make_timeseries_plot.r

• cfg_climdex.r

• cfg_extreme.r

15.9.3 User settings

Required settings for script

• reference_datasets: list containing the reference datasets to compare with

• timeseries_idx: list of indices to compute for timeseries plot. The syntax is “XXXETCCDI_TT”, where “TT”
can be either “yr” or “mon” (yearly or monthly indices are computed) and “XXX” can be one of the following:
“altcdd”, “altcsdi”, “altcwd”, “altwsdi”, “cdd”, “csdi”, “cwd”, “dtr”, “fd”, “gsl”, “id”, “prcptot”, “r10mm”,
“r1mm”, “r20mm”, “r95p”, “r99p”, “rx1day”, “rx5day”, “sdii”, “su”, “tn10p”, “tn90p”, “tnn”, “tnx”, “tr”,
“tx10p”, “tx90p”, “txn”, “txx”, “wsdi”. The option “mon” for “TT” can be only used in combination with
one of: “txx”, “tnx”, “txn”, “tnn”, tn10p”, “tx10p”, “tn90p”, “tx90p”, “dtr”, “rx1day”, “rx5day”.

• gleckler_idx: list of indices to compute for Gleckler plot. Same syntax as above. The diagnostic computes all
unique indices specified in either gleckler_idx or timeseries_idx. If at least one “mon” index is selected,
the indices are computed but no plots are produced.

• base_range: a list of two years to specify the range to be used as “base range” for climdex (the period in which
for example reference percentiles are computed)

Optional settings for script

• regrid_dataset: name of dataset to be used as common target for regridding. If missing the first reference dataset
is used

15.9. Extreme Events Indices (ETCCDI) 123

http://etccdi.pacificclimate.org/
http://etccdi.pacificclimate.org/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• mip_name: string containing the name of the model ensemble, used for titles and labels in the plots (default:
“CMIP”)

• analysis_range: a list of two years to specify the range to be used for the analysis in the plots. The input data will
need to cover both analysis_range and base_range. If missing the full period covered by the input datasets
will be used.

• ts_plt: (logical) if to produce the timeseries or not (default: true)

• glc_plt: (logical) if to produce the Gleckler or not (default: true)

• climdex_parallel: number of parallel threads to be used for climdex calculation (default: 4). Also the logical
false can be passed to switch off parallel computation.

• normalize: (logical) if to detrend and normalize with the standard deviation for the datasets for use in the time-
series plot. When this option is used the data for the following indices are detrended and normalized in the time-
series plots: “altcdd”, “altcsdi”, “altcwd”, “altwsdi”, “cdd”, “cwd”,”dtr”, “fd”, “gsl”, “id”, “prcptot”, “r10mm”,
“r1mm”, “r20mm”, “r95p”, “r99p”, “rx1day”, “rx5day”, “sdii”, “su”, “tnn”, “tnx”, “tr”, “txn”,”txn”,”txx” (de-
fault: false)

Additional optional setting controlling the plots:

• Timeseries plots:

– ts_png_width: width for png figures (dafult: 640)

– ts_png_height: height for png figures (default: 480)

– ts_png_units: units for figure size (default: “px”)

– ts_png_pointsize: fontsize (default: 12)

– ts_png_bg: background color (default: “white”)

– ts_col_list: list of colors for lines (default: [“dodgerblue2”, “darkgreen”, “firebrick2”, “darkorchid”, “aqua-
marine3”]``)

– ts_lty_list: list of linetypes (default: [1, 4, 2, 3, 5])

– ts_lwd_list: list of linewidths (default: [2, 2, 2, 2, 2])

• Gleckler plot:

– gl_png_res: height for png figures (default: 480). The width of the figure is computed automatically.

– gl_png_units: units for figure size (default: “px”)

– gl_png_pointsize: fontsize (default: 12)

– gl_png_bg: background color (default: “white”)

– gl_mar_par: page margins vector (default: [10, 4, 3, 14])

– gl_rmsespacer: spacing of RMSE column (default: 0.01)

– gl_scaling_factor: scaling factor for colorscale height (default: 0.9)

– gl_text_scaling_factor: scaling factor for text size (default: 1.0)

– gl_xscale_spacer_rmse: horizontal posizion of coloured colorbar (default: 0.05)

– gl_xscale_spacer_rmsestd: horizontal posizion of gray colorbar (default: 0.05)

– gl_symb_scaling_factor: scaling factor for white “symbol” square explaining the partition (default: 1.0)

– gl_symb_xshift: horizontal position of the symbol box (default: 0.2)

– gl_symb_yshift: vertical position of the symbol box (default: 0.275)

124 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

– gl_text_symb_scaling_factor: scaling factor for text to be used for symbol box (default: 0.5)

15.9.4 Variables

• tas (atmos, daily mean, longitude latitude time)

• tasmin (atmos, daily minimum, longitude latitude time)

• tasmax (atmos, daily maximum, longitude latitude time)

• pr (atmos, daily mean, longitude latitude time)

15.9.5 Observations and reformat scripts

None.

15.9.6 References

• Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Klein Tank, A., Peterson, T. C., Trewin, B., Zwiers, F. W.,
Indices for monitoring changes in extremes based on daily temperature and precipitation data, WIREs Clim.
Change, doi:10.1002/wcc.147, 2011

• Sillmann, J., V. V. Kharin, X. Zhang, and F. W. Zwiers, Climate extreme indices in the CMIP5 multi-model
ensemble. Part 1: Model evaluation in the present climate. J. Geophys. Res., doi:10.1029/2012JD018390, 2013

15.9.7 Example plots

Fig. 22: Portrait plot of relative error metrics for the CMIP5 temperature and precipitation extreme indices evaluated
over 1981-2000. Reproduces Fig. 9.37 of the IPCC AR5 report, Chapter 9.

15.9. Extreme Events Indices (ETCCDI) 125

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 23: Timeseries of the Consecutive Dry Days index over 1981-2000 for a selection of CMIP5 models, the CMIP5
multi-model mean (CMIP) and ERA-Interim. Shading is used to reproduce the multi-model spread.

15.10 Combined Climate Extreme Index

15.10.1 Overview

The goal of this diagnostic is to compute time series of a number of extreme events: heatwave, coldwave, heavy
precipitation, drought and high wind. Then, the user can combine these different components (with or without weights).
The result is an index similar to the Climate Extremes Index (CEI; Karl et al., 1996), the modified CEI (mCEI; Gleason
et al., 2008) or the Actuaries Climate Index (ACI; American Academy of Actuaries, 2018). The output consists of a
netcdf file containing the area-weighted and multi-model multi-metric index. This recipe expects data of daily temporal
resolution, and the running average is computed based on the user-defined window length (e.g. a window length of 5
would compute the 5-day running mean).

In recipe_extreme_index.yml, after defining the area and reference and projection period, the weigths for each metric
selected. The options are

• weight_t90p the weight of the number of days when the maximum temperature exceeds the 90th percentile,

• weight_t10p the weight of the number of days when the minimum temperature falls below the 10th percentile,

• weight_Wx the weight of the number of days when wind power (third power of wind speed) exceeds the 90th
percentile,

• weight_cdd the weight of the maximum length of a dry spell, defined as the maximum number of consecutive
days when the daily precipitation is lower than 1 mm, and

• weight_rx5day the weight of the maximum precipitation accumulated during 5 consecutive days.

126 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.10.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_extreme_index.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• extreme_index.R

15.10.3 User settings

User setting files are stored in recipes/

1. recipe_extreme_index.yml

Required settings for script

• weight_t90p: 0.2 (from 0 to 1, the total sum of the weight should be 1)

• weight_t10p: 0.2 (from 0 to 1, the total sum of the weight should be 1)

• weight_Wx: 0.2 (from 0 to 1, the total sum of the weight should be 1)

• weight_rx5day: 0.2 (from 0 to 1, the total sum of the weight should be 1)

• weight_cdd: 0.2 (from 0 to 1, the total sum of the weight should be 1)

• running_mean: 5 (depends on the length of the future projection period selected, but recommended not
greater than 11)

15.10.4 Variables

• tasmax (atmos, daily, longitude, latitude, time)

• tasmin (atmos, daily, longitude, latitude, time)

• sfcWind (atmos, daily, longitude, latitude, time)

• pr (atmos, daily, longitude, latitude, time)

15.10.5 Observations and reformat scripts

None

15.10.6 References

• Alexander L.V. and Coauthors (2006). Global observed changes in daily climate extremes of temperature and
precipitation. J. Geophys. Res., 111, D05109. https://doi.org/10.1029/2005JD006290

• American Academy of Actuaries, Canadian Institute of Actuaries, Casualty Actuarial Society and Society of
Actuaries. Actuaries Climate Index. http://actuariesclimateindex.org (2018-10-06).

• Donat, M., and Coauthors (2013). Updated analyses of temperature and precipitation extreme indices since the
beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res., 118, 2098–2118, https://doi.org/10.
1002/jgrd.50150.

15.10. Combined Climate Extreme Index 127

https://doi.org/10.1029/2005JD006290
http://actuariesclimateindex.org
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1002/jgrd.50150

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Fouillet, A., Rey, G., Laurent, F., Pavillon, G. Bellec, S., Guihenneuc-Jouyaux, C., Clavel J., Jougla, E. and
Hémon, D. (2006) Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ.
Health, 80, 16–24. https://doi.org/10.1007/s00420-006-0089-4

• Gleason, K.L., J.H. Lawrimore, D.H. Levinson, T.R. Karl, and D.J. Karoly (2008). A Revised U.S. Climate
Extremes Index. J. Climate, 21, 2124-2137 https://doi.org/10.1175/2007JCLI1883.1

• Meehl, G. A., and Coauthors (2000). An introduction to trends inextreme weather and climate events: Observa-
tions, socio-economic impacts, terrestrial ecological impacts, and model projections. Bull. Amer. Meteor. Soc.,
81, 413–416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2

• Whitman, S., G. Good, E. R. Donoghue, N. Benbow, W. Y. Shou and S. X. Mou (1997). Mortality in Chicago
attributed to the July 1995 heat wave. Amer. J. Public Health, 87, 1515–1518. https://doi.org/10.2105/AJPH.
87.9.1515

• Zhang, Y., M. Nitschke, and P. Bi (2013). Risk factors for direct heat-related hospitalization during the 2009
Adelaide heat-wave: A case crossover study. Sci. Total Environ., 442, 1–5. https://doi.org/10.1016/j.scitotenv.
2012.10.042

• Zhang, X. , Alexander, L. , Hegerl, G. C., Jones, P. , Tank, A. K., Peterson, T. C., Trewin, B. and Zwiers, F. W.
(2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs
Clim Change, 2: 851-870. doi:10.1002/wcc.147. https://doi.org/10.1002/wcc.147

15.10.7 Example plots

Average change in the heat component (t90p metric) of the Combined Climate Extreme Index for the 2020-2040 com-
pared to the 1971-2000 reference period for the RCP 8.5 scenario simulated by MPI-ESM-MR.

128 Chapter 15. Atmosphere

https://doi.org/10.1007/s00420-006-0089-4
https://doi.org/10.1175/2007JCLI1883.1
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477%282000%29081%3C0413%3AAITTIE%3E2.3.CO%3B2
https://doi.org/10.2105/AJPH.87.9.1515
https://doi.org/10.2105/AJPH.87.9.1515
https://doi.org/10.1016/j.scitotenv.2012.10.042
https://doi.org/10.1016/j.scitotenv.2012.10.042

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.11 Diagnostics of stratospheric dynamics and chemistry

15.11.1 Overview

This recipe reproduces the figures of Eyring et al. (2006) The following plots are reproduced:

• Vertical profile climatological mean bias of climatological mean for selected seasons and latitudinal region.

• Vertical and latitudinal profile of climatological mean for selected seasons this figure and setting is valid for
figure 5 (CH4) figure 6 (H2O) figure 11 (HCL) figure 13 (tro3).

• Total ozone anomalies at different latitudinal band and seasons.

15.11.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_eyring06jgr.yml

Diagnostics are stored in esmvaltool/diag_scripts/eyring06jgr/

• eyring06jgr_fig01.ncl

• eyring06jgr_fig05a.ncl

• eyring06jgr_fig05b.ncl

• eyring06jgr_fig15.ncl

15.11.3 User settings in recipe

1. Preprocessor

• regrid_interp_lev_zonal: Regridding and interpolation reference_dataset levels used by
eyring06jgr_fig01 and eyring06jgr_fig05

• zonal : Regridding and zonal mean used by eyring06jgr_fig15

2. Script <eyring06jgr_fig01.ncl>

Required settings for script

• latmin: array of float, min lat where variable is averaged, i.e. [60., 60., -90., -90.]

• latmax: array of float,and max lat where variable is averaged, i.e. [90., 90., -60., -60.]

• season: array of string., season when variable is averaged, i.e. [“DJF”, “MAM”, “JJA”, “SON”]

• XMin: array of float, min limit X axis [-30., -30., -30., -30.]

• XMax: array of float, max limit X axis [20., 20., 20., 20.]

• levmin: array of float, min limit Y axis [1., 1., 1., 1.]

• levmax: array of float, max limit Y axis [350., 350., 350., 350.]

Optional settings for script

• start_year: int, year when start the climatology calculation [1980] (default max among the models start
year).

• end_year:int, year when end the climatology calculation [1999] (default min among the models end year).

15.11. Diagnostics of stratospheric dynamics and chemistry 129

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006JD007327

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• multimean: bool, calculate multi-model mean, (i.e. False/True) (default False).

Required settings for variables

• preprocessor: regrid_interp_lev.

• reference_dataset: name of the reference model or observation for regridding and bias calculation (e.g.
ERA-Interim”).

• mip: Amon.

15.11.4 Variables

• ta (atmos, monthly mean, longitude latitude level time)

15.11.5 Example plots

15.12 Ozone and associated climate impacts

15.12.1 Overview

This recipe is implemented into the ESMValTool to evaluate atmospheric chemistry and the climate impact of strato-
spheric ozone changes. It reproduces selected plots from Eyring et al. (2013).

The following plots are reproduced:

• Zonal mean of long-term zonal wind with linear trend

15.12.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_eyring13jgr_12.yml

Diagnostics are stored in esmvaltool/diag_scripts/eyring13jgr/

• eyring13jgr_fig12.ncl

15.12.3 User settings in recipe

1. Preprocessor

• zonal : Regridding and zonal mean used by eyring13jgr_fig12

2. Script <eyring13jgr_fig12.ncl>

Required settings for script

• e13fig12_exp_MMM: name of the experiments for the MMM

Optional settings for script

• e13fig12_start_year: year when to start the climatology calculation

• e13fig12_end_year: year when to end the climatology calculation

• e13fig12_multimean: calculate multimodel mean (default: False)

130 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 24: Climatological mean temperature biases for (top) 60–90N and (bottom) 60–90S for the (left) winter and
(right) spring seasons. The climatological means for the CCMs and ERA-Interim data from 1980 to 1999 are included.
Biases are calculated relative to ERA-Interim reanalyses. The grey area shows ERA-Interim plus and minus 1 standard
deviation (s) about the climatological mean. The turquoise area shows plus and minus 1 standard deviation about the
multi-model mean.

15.12. Ozone and associated climate impacts 131

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• e13fig12_season: season (default: ANN (annual))

Required settings for variables

• preprocessor: zonal

• reference_dataset: name of the reference model or observation for regridding and bias calculation (e.g.
ERA5).

• mip: Amon.

15.12.4 Variables

• ua (atmos, monthly mean, longitude latitude level time)

15.12.5 Observations and reformat scripts

• ERA5 Reformatting with: recipes/cmorizers/recipe_era5.yml

15.12.6 Example plots

15.13 Spatially resolved evaluation of ESMs with satellite column-
averaged CO2

15.13.1 Overview

This recipe reproduces the figures of Gier et al. (2020). It uses satellite column-averaged CO2 data to evaluate ESMs
by plotting several quantities such as timeseries, seasonal cycle and growth rate in different areas.

15.13.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_gier20bg.yml

Diagnostics are stored in diag_scripts/

Diagnostics are stored in esmvaltool/diag_scripts/xco2_analysis/

• carbon_plots.ncl: plot script for panel plots

• delta_T.ncl: IAV of growth rate against growing season temperature - Figure C1

• global_maps.ncl: global maps for seasonal cycle amplitude - Figures 5, 6

• main.ncl: Timeseries and histogram - Figures 3, 4

• panel_plots.ncl: scatter plot of SCA/GR vs variable - Figures 7, 9, B1, B2

• sat_masks.ncl: data coverage of input data - Figures 1, 8

• stat.ncl: auxiliary functions for GR, SCA computation

• station_comparison.ncl: - comparison of surface and column data - Figure 2

132 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 25: Long-term mean (thin black contour) and linear trend (colour) of zonal mean DJF zonal winds for the multi-
model mean CMIP6 over 1995-2014

15.13. Spatially resolved evaluation of ESMs with satellite column-averaged CO2 133

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.13.3 User settings in recipe

1. Preprocessor

• conv_units: converts units to plot-units

• mmm_ref: calculates multi-model mean and regrids to ref dataset

• mmm_2x2: computes multi-model mean on 2x2 grid

• mmm: computes multi-model mean for 3D variable, 5x5 grid with specific pressure levels

2. Script xco2_analysis/delta_T.ncl

• Required diag_script_info attributes:
– region: region to average over

– masking: the kind of masking to apply prior to region average (possible options: obs, land, scia-
machy, gosat, none)

– var_order: First main variable, then temperature variable to compare

• Optional diag_script_info attributes:
– styleset: styleset for color coding panels

– output_file_type: output file type for plots, default: config_user -> png

– var_plotname: NCL string formatting how variable should be named in plots defaults to
short_name if not assigned.

3. Script xco2_analysis/global_maps.ncl:

• Required diag_script_info attributes:
– contour_max_level: maximum value displayed for seasonal cycle amplitude contour plot

• Optional diag_script_info attributes:
– output_file_type: output file type for plots, default: config_user -> png

4. Script xco2_analysis/main.ncl:

• Required diag_script_info attributes:
– styleset: styleset to use for plotting colors, linestyles. . .

– region: latitude range for averaging

– masking: different masking options are available to use on dataset: (possible options: none, obs)

– ensemble_mean: if true calculates multi-model mean only accounting for the ensemble member
named in “ensemble_refs”

• Optional diag_script_info attributes:
– output_file_type: output file type for plots, default: config_user -> png

– ensemble_refs: list of model-ensemble pairs to denote which ensemble member to use for cal-
culating multi-model mean. required if ensemble_mean = true

– var_plotname: String formatting how variable should be named in plots defaults to short_name
if not assigned

5. Script xco2_analysis/panel_plots.ncl:

• Required diag_script_info attributes:

134 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

– styleset: styleset to use for plotting colors, linestyles. . .

– region: latitude range for averaging

– masking: different masking options are available to use on dataset: (possible options: obs, land,
sciamachy, gosat, none)

– obs_in_panel: True if observations should be included in plot

– area_avg: Type of area averaging: “full-area” normal area-average “lat-first” calculate zonal
means first, then average these

– plot_var2_mean: If True adds mean of seasonal cycle to panel as string.

• Optional diag_script_info attributes:
– output_file_type: output file type for plots, default: config_user -> png

– var_plotname: String formatting how variable should be named in plots defaults to short_name
if not assigned

6. Script xco2_analysis/sat_masks.ncl:

• Optional diag_script_info attributes:
– output_file_type: output file type for plots, default: config_user -> png

– var_plotname: String formatting how variable should be named in plots defaults to short_name
if not assigned

– c3s_plots: Missing value plots seperated by timeseries of c3s satellites

7. Script xco2_analysis/station_comparison.ncl:

• Required diag_script_info attributes:
– var_order: in this case xco2, co2, co2s - column averaged with obs dataset first, then 2D variable,

followed by surface stations

• Optional diag_script_info attributes:
– output_file_type: output file type for plots, default: config_user -> png

– var_plotnames: String formatting how variables should be named in plots defaults to
short_name if not assigned

– overwrite_altitudes: Give other altitude values than the ones attached in the station data.
Valid if altitude changes and timeseries spans range with different sample altitude. Caveat: If
used, need to give altitude values for all stations.

– output_map: boolean if stations to be displayed on map. As this requires finetuning, currently
only implemented for station set of (ASK, CGO, HUN, LEF, WIS) following the paper. Change
for different plot inset locations, if others are desired.

15.13. Spatially resolved evaluation of ESMs with satellite column-averaged CO2 135

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.13.4 Variables

• xco2 (atmos, monthly, longitude, latitude, time)

• co2s (atmos, monthly, longitude, latitude, time)

• co2 (atmos, monthly, pressure, longitude, latitude, time)

• tas (atmos, monthly, longitude, latitude, time)

• tasa (atmos, monthly, longitude, latitude, time)

15.13.5 Observations and reformat scripts

• CDS-XCO2 (xco2)

• ESRL (co2s)

• GISTEMP (tasa)

• MODIS (land cover map, auxiliary data folder)

15.13.6 References

• Gier, B. K., Buchwitz, M., Reuter, M., Cox, P. M., Friedlingstein, P., and Eyring, V.: Spatially resolved evaluation
of Earth system models with satellite column-averaged CO2, Biogeosciences, 17, 6115–6144, https://doi.org/10.
5194/bg-17-6115-2020, 2020.

15.13.7 Example plots

15.14 Heat wave and cold wave duration

15.14.1 Overview

The goal of this diagnostic is to estimate the relative change in heat/cold wave characteristics in future climates com-
pared to a reference period using daily maximum or minimum temperatures.

The user can select whether to compute the frequency of exceedances or non-exceedances, which corresponds to ex-
treme high or extreme low temperature events, respectively. The user can also select the minimum duration for an event
to be classified as a heat/cold wave and the season of interest.

The diagnostic calculates the number of days in which the temperature exceeds or does not exceeds the necessary
threshold for a consecutive number of days in future climate projections. The result is an annual time series of the total
number of heat/cold wave days for the selected season at each grid point. The final output is the average number of
heat/cold wave days for the selected season in the future climate projections.

136 Chapter 15. Atmosphere

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=form
https://www.esrl.noaa.gov/gmd/dv/data/
https://data.giss.nasa.gov/gistemp/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=968
https://doi.org/10.5194/bg-17-6115-2020
https://doi.org/10.5194/bg-17-6115-2020

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 26: Mean fractional coverage of monthly satellite data.

Fig. 27: Comparison of time series from satellite, in situ, and models sampled accordingly. Caveat: inset plot positions
are hardcoded.

15.14. Heat wave and cold wave duration 137

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 28: Timeseries with panels depicting growth rate and seasonal cycle.

Fig. 29: Barplot of the growth rate, averaged over all years, with standard deviation of interannual variability.

138 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 30: Panel plot of spatially resolved seasonal cycle amplitude for all models, including a zonal average sidepanel.

Fig. 31: Seasonal cycle amplitude map comparing influence of sampling, and difference to observations.

15.14. Heat wave and cold wave duration 139

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 32: Panel plots showing seasonal cycle amplitude against XCO2, includes regression line and p-value.

140 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 33: Mean spatial data coverage for different satellites.

15.14. Heat wave and cold wave duration 141

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.14.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_heatwaves_coldwaves.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• extreme_spells.R: calculates the heatwave or coldwave duration.

15.14.3 User settings

User setting files are stored in recipes/

1. recipe_heatwaves_coldwaves.yml

Required settings for script

• quantile: quantile defining the exceedance/non-exceedance threshold

• min_duration: Min duration in days of a heatwave/coldwave event

• Operator: either ‘>’ for exceedances or ‘<’ for non-exceedances

• season: ‘summer’ or ‘winter

15.14.4 Variables

• tasmax or tasmin (atmos, daily, longitude, latitude, time)

15.14.5 Observations and reformat scripts

None

15.14.6 References

• Cardoso, S., Marta-Almeida, M., Carvalho, A.C., & Rocha, A. (2017). Heat wave and cold spell changes in
Iberia for a future climate scenario. International Journal of Climatology, 37(15), 5192-5205. https://doi.org/
10.1002/joc.5158

• Ouzeau, G., Soubeyroux, J.-M., Schneider, M., Vautard, R., & Planton, S. (2016). Heat waves analysis over
France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Climate
Services, 4, 1-12. https://doi.org/10.1016/J.CLISER.2016.09.002

• Wang, Y., Shi, L., Zanobetti, A., & Schwartz, J. D. (2016). Estimating and projecting the effect of cold waves
on mortality in 209 US cities. Environment International, 94, 141-149. https://doi.org/10.1016/j.envint.2016.
05.008

• Zhang, X., Hegerl, G., Zwiers, F. W., & Kenyon, J. (2005). Avoiding inhomogeneity in percentile-based indices
of temperature extremes. Journal of Climate, 18(11), 1641-1651. https://doi.org/10.1175/JCLI3366.1

142 Chapter 15. Atmosphere

https://doi.org/10.1002/joc.5158
https://doi.org/10.1002/joc.5158
https://doi.org/10.1016/J.CLISER.2016.09.002
https://doi.org/10.1016/j.envint.2016.05.008
https://doi.org/10.1016/j.envint.2016.05.008
https://doi.org/10.1175/JCLI3366.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.14.7 Example plots

Mean number of summer days during the period 2060-2080 when the daily maximum near-surface air temperature
exceeds the 80th quantile of the 1971-2000 reference period. The results are based on one RCP 8.5 scenario simulated
by BCC-CSM1-1.

15.15 Hydroclimatic intensity and extremes (HyInt)

15.15.1 Overview

The HyInt tool calculates a suite of hydroclimatic and climate extremes indices to perform a multi-index evaluation of
climate models. The tool firstly computes a set of 6 indices that allow to evaluate the response of the hydrological cycle
to global warming with a joint view of both wet and dry extremes. The indices were selected following Giorgi et al.
(2014) and include the simple precipitation intensity index (SDII) and extreme precipitation index (R95), the maximum
dry spell length (DSL) and wet spell length (WSL), the hydroclimatic intensity index (HY-INT), which is a measure
of the overall behaviour of the hydroclimatic cycle (Giorgi et al., 2011), and the precipitation area (PA), i.e. the area
over which at any given day precipitation occurs, (Giorgi et al., 2014). Secondly, a selection of the 27 temperature and
precipitation -based indices of extremes from the Expert Team on Climate Change Detection and Indices (ETCCDI)
produced by the climdex (https://www.climdex.org) library can be ingested to produce a multi-index analysis. The tool
allows then to perform a subsequent analysis of the selected indices calculating timeseries and trends over predefined
continental areas, normalized to a reference period. Trends are calculated using the R lm function and significance
testing performed with a Student T test on non-null coefficients hypothesis. Trend coefficients are stored together with
their statistics which include standard error, t value and Pr(>|t|). The tool can then produce a variety of types of plots
including global and regional maps, maps of comparison between models and a reference dataset, timeseries with their
spread, trend lines and summary plots of trend coefficients.

The hydroclimatic indices calculated by the recipe_hyint.yml and included in the output are defined as follows:

• PRY = mean annual precipitation

• INT = mean annual precipitation intensity (intensity during wet days, or simple precipitation intensity index
SDII)

15.15. Hydroclimatic intensity and extremes (HyInt) 143

https://www.climdex.org

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• WSL = mean annual wet spell length (number of consecutive days during each wet spell)

• DSL = mean annual dry spell lenght (number of consecutive days during each dry spell)

• PA = precipitation area (area over which of any given day precipitation occurs)

• R95 = heavy precipitation index (percent of total precipitation above the 95% percentile of the reference distri-
bution)

• HY-INT = hydroclimatic intensity. HY-INT = normalized(INT) x normalized(DSL).

The recipe_hyint_extreme_events.yml includes an additional call to the Extreme Events Indices (ETCCDI) diagnostics,
which allows to calculate the ETCCDI indices and include them in the subsequent analysis together with the hydrocli-
matic indices. All of the selected indices are then stored in output files and figures.

15.15.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_hyint.yml (evaluating the 6 hydroclimatic indices, performing trend analysis and plotting)

• recipe_hyint_extreme_events.yml (similar to the recipe_hyint.yml but with an additional call to the Extreme
Events Indices (ETCCDI) diagnostic for calculation of ETCCDI indices and inclusion of them in the trend analysis
and plotting)

Diagnostics are stored in diag_scripts/hyint/

• hyint.R

and subroutines

• hyint_diagnostic.R

• hyint_functions.R

• hyint_parameters.R

• hyint_plot_trends.R

• hyint_etccdi_preproc.R

• hyint_metadata.R

• hyint_plot_maps.R

• hyint_preproc.R

• hyint_trends.R

See details of the extreme_events diagnostics under recipe_extreme_events.yml.

15.15.3 Known issues

recipe_hyint_extreme_events.yml

Call to the Extreme Events Indices (ETCCDI) diagnostic requires the ncdf4.helpers library, which is currently unavail-
able on CRAN. Users need therefore to install the library manually, e.g. through the following commands to download
the package tarball from CRAN archive, install it and remove the package tarball:

• url <- “https://cran.r-project.org/src/contrib/Archive/ncdf4.helpers/ncdf4.helpers_0.3-3.tar.gz”

• pkgFile <- “ncdf4.helpers_0.3-3.tar.gz”

• download.file(url = url, destfile = pkgFile)

144 Chapter 15. Atmosphere

https://cran.r-project.org/src/contrib/Archive/ncdf4.helpers/ncdf4.helpers_0.3-3.tar.gz

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• install.packages(pkgs=pkgFile, type=”source”, repos=NULL)

• unlink(pkgFile)

15.15.4 User settings

Required settings for script

• norm_years: first and last year of reference normalization period to be used for normalized indices

• select_indices: indices to be analysed and plotted. Select one or more fields from the following list (order-
sensitive): “pa_norm”, “hyint”, “int_norm”, “r95_norm”, “wsl_norm”, “dsl_norm”, “int”, “dsl”, “wsl”

• select_regions: Select regions for timeseries and maps from the following list: GL=Globe, GL60=Global
60S/60N, TR=Tropics (30S/30N), SA=South America, AF=Africa, NA=North America, IN=India, EU=Europe,
EA=East-Asia, AU=Australia

• plot_type: type of figures to be plotted. Select one or more from: 1=lon/lat maps per individual field/exp/multi-
year mean, 2=lon/lat maps per individual field exp-ref-diff/multi-year mean, 3=lon/lat maps multi-field/exp-
ref-diff/multi-year mean, 11=timeseries over required individual region/exp, 12=timeseries over multiple re-
gions/exp, 13=timeseries with multiple models, 14=summary trend coefficients multiple regions, 15=summary
trend coefficients multiple models

Additional settings for recipe_hyint_extreme_events.yml

• call to the extreme_events diagnostics: see details in recipe_extreme_events.yml. Make sure that the base_range
for extreme_events coincides with the norm_range of hyint and that all ETCCDI indices that are required to be
imported in hyint are calculated by the extreme_events diagnostics.

• etccdi_preproc: set to true to pre-process and include ETCCDI indices in hyint

• etccdi_list_import: specify the list of ETCCDI indices to be imported, e.g.: “tn10pETCCDI”, “tn90pETCCDI”,
“tx10pETCCDI”, “tx90pETCCDI”

• select_indices: this required settings should here be revised to include the imported indices, e.g.: “pa_norm”,
“hyint”, “tn10pETCCDI”, “tn90pETCCDI”, “tx10pETCCDI”, “tx90pETCCDI”

Optional settings for script (with default setting)

1. Data

• rgrid (false): Define whether model data should be regridded. (a) false to keep original resolution; (b)
set desired regridding resolution in cdo format e.g., “r320x160”; (c) “REF” to use resolution of reference
model

2. Plotting

• npancol (2): number of columns in timeseries/trends multipanel figures

• npanrow (3): number of rows in timeseries/trends multipanel figures

• autolevels (true): select automated (true) or pre-set (false) range of values in plots

• autolevels_scale (1): factor multiplying automated range for maps and timeseries

• autolevels_scale_t (1.5): factor multiplying automated range for trend coefficients

3. Maps

• oplot_grid (false): plot grid points over maps

• boxregion (false): !=0 plot region boxes over global maps with thickness = abs(boxregion); white (>0) or
grey (<0).

15.15. Hydroclimatic intensity and extremes (HyInt) 145

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• removedesert (false) remove (flag as NA) grid points with mean annual pr < 0.5 mm/day (deserts,
Giorgi2014). This affects timeseries and trends calculations too.

4. Timeseries and trends

• weight_tseries (true): adopt area weights in timeseries

• trend_years (false): (a) false = apply trend to all years in dataset; (b) [year1, year2] to apply trend calculation
and plotting only to a limited time interval

• add_trend (true): add linear trend to plot

• add_trend_sd (false): add dashed lines of stdev range to timeseries

• add_trend_sd_shade (false): add shade of stdev range to timeseries

• add_tseries_lines (true): plot lines connecting timeseries points

• add_zeroline (true): plot a dashed line at y=0

• trend_years_only (false): limit timeseries plotting to the time interval adopted for trend calculation (ex-
cluding the normalization period)

• scale100years (true): plot trends scaled as 1/100 years

• scalepercent (false): plot trends as percent change

15.15.5 Variables

• pr (atmos, daily mean, longitude latitude time)

Additional variables for recipe_hyint_extreme_events.yml

• tas (atmos, daily mean, longitude latitude time)

• tasmin (atmos, daily mean, longitude latitude time)

• tasmax (atmos, daily mean, longitude latitude time)

15.15.6 Observations and reformat scripts

None.

15.15.7 References

• Giorgi et al., 2014, J. Geophys. Res. Atmos., 119, 11,695–11,708, doi:10.1002/ 2014JD022238

• Giorgi et al., 2011, J. Climate 24, 5309-5324, doi:10.1175/2011JCLI3979.1

146 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.15.8 Example plots

Fig. 34: Mean hydroclimatic intensity for the EC-EARTH model, for the historical + RCP8.5 projection in the period
1976-2099

15.16 Implied heat transport from Top of Atmosphere fluxes

15.16.1 Overview

This recipe calculates the implied horizontal heat transport (IHT) due to the spatial anomalies of radiative fluxes at
the top of the atmosphere (TOA). The regional patterns of implied heat transport for different components of the TOA
fluxes are calculated by solving the Poisson equation with the flux components as source terms. It reproduces the plots
in Pearce and Bodas-Salcedo (2023) when the input data is CERES EBAF.

15.16.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_iht_toa.yml calculates the IHT maps for the following radiative fluxes:

– Total net, SW net, LW net (Figure 2).

– Total CRE, SW CRE, LW CRE (Figure 4).

– All-sky and clear-sky reflected SW (Figure 5).

– The meridional heat transports (MHT) of the fluxes above (Figures 1 and 3).

Diagnostics are stored in esmvaltool/diag_scripts/iht_toa/

• single_model_diagnostics.py: driver script that produces the plots.

• poisson_solver.py: solver that calculates the IHTs.

15.16. Implied heat transport from Top of Atmosphere fluxes 147

https://doi.org/10.1175/JCLI-D-22-0149.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 35: Timeseries for multiple indices and regions for the ACCESS1-0 model, for the historical + RCP8.5 projection
in the period 1976-2099, normalized to the 1976-2005 historical period.

Fig. 36: Multi-model trend coefficients over selected indices for CMIP5 models in the RCP8.5 2006-2099 projection,
normalized to the 1976-2005 historical period.

148 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.16.3 User settings in recipe

There are no user settings in this recipe.

15.16.4 Variables

• rlut (atmos, monthly, longitude latitude time)

• rlutcs (atmos, monthly, longitude latitude time)

• rsutcs (atmos, monthly, longitude latitude time)

• rsut (atmos, monthly, longitude latitude time)

• rsdt (atmos, monthly, longitude latitude time)

15.16.5 Observations and reformat scripts

• CERES-EBAF

15.16.6 References

• Pearce, F. A., and A. Bodas-Salcedo, 2023: Implied Heat Transport from CERES Data: Direct Radiative Effect
of Clouds on Regional Patterns and Hemispheric Symmetry. J. Climate, 36, 4019–4030, doi: 10.1175/JCLI-D-
22-0149.1.

15.16.7 Example plots

15.17 Quick insights for climate impact researchers

15.17.1 Overview

Many impact researchers do not have the time and finances to use a large ensemble of climate model runs for their
impact analysis. To get an idea of the range of impacts of climate change it also suffices to use a small number of
climate model runs. In case a system is only sensitive to annual temperature, one can select a run with a high change
and one with a low change of annual temperature, preferably both with a low bias.

This recipe calculates the bias with respect to observations, and the change with respect to a reference period, for a
wide range of (CMIP) models. These metrics are tabulated and also visualized in a diagram.

15.17.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_impact.yml

Diagnostics are stored in esmvaltool/diag_scripts/

• impact/bias_and_change.py: tabulate and visualize bias and change.

15.17. Quick insights for climate impact researchers 149

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 37: The implied heat transport due to the total net flux (blue), split into the contributions from the SW (orange)
and LW (green).

150 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 38: The energy flux potentials for (a) TOT, (c) SW, and (e) LW fluxes, alongside maps of the spatial anomalies
of the fluxes [(b),(d),(f) flux minus global average flux, respectively]. The implied heat transport is calculated as the
gradient of the energy flux potential, shown by the white vector arrows for a subset of points to give the overall transport
pattern. Heat is directed from the blue minima of the potential field to yellow maxima, with the magnitude implied by
the density of contours. All maps of the same type share the same color bar at the bottom of the column.

15.17. Quick insights for climate impact researchers 151

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 39: Direct radiative effects of clouds on the meridional heat transport. (a) Contributions from TOT CRE (blue),
SW CRE (orange), and LW CRE (green) fluxes. (b) Contributions from all-sky and clear-sky OSR. In (b), both curves
have been multiplied by 1 such that positive heat transport is northward.

15.17.3 User settings in recipe

1. Script impact.py

Required settings for variables

• tag: 'model' or 'observations', so the diagnostic script knows which datasets to use for the bias cal-
culation. This must be specified for each dataset.

Optional settings for preprocessor

• Region and time settings (both for the future and reference period) can be changed at will.

15.17.4 Variables

• tas (atmos, mon, longitude latitude time)

• pr (atmos, mon, longitude latitude time)

• any other variables of interest

15.17.5 Observations and reformat scripts

• ERA5 data can be used via the native6 project.

152 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 40: As in Fig. 38, but for the implied heat transport associated with (a),(b) TOT CRE, (c),(d) SW CRE, and (e),(f)
LW CRE fluxes.

15.17. Quick insights for climate impact researchers 153

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 41: As in Fig. 38, but for (a), (b) clear-sky and (c), (d) all-sky reflected SW flux.

154 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 42: A measure of the symmetry between heat transport in the Northern and Southern Hemispheres, calculated
for the 12-month running mean of TOT MHT in the regions: (a) the full hemisphere, (b) from the equator to 30°, and
(c) 30° to 90°. Symmetry values obtained when including (blue) and excluding (orange) the effect of clouds. The
climatological symmetry values for the two cases are shown as the black lines in each subplot, dashed and dotted,
respectively. The standard deviations of the time series are shown in each plot.

15.17. Quick insights for climate impact researchers 155

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.17.6 References

• None

15.17.7 Example plots

Fig. 43: “Bias and change for each variable”

15.18 Modes of variability

15.18.1 Overview

The goal of this recipe is to compute modes of variability from a reference or observational dataset and from a set
of climate projections and calculate the root-mean-square error between the mean anomalies obtained for the clusters
from the reference and projection data sets. This is done through K-means or hierarchical clustering applied either
directly to the spatial data or after computing the EOFs.

The user can specify the number of clusters to be computed.

The recipe’s output consist of three netcdf files for both the observed and projected weather regimes and the RMSE
between them.

15.18.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_modes_of_variability.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• WeatherRegime.R - function for computing the EOFs and k-means and hierarchical clusters.

• weather_regime.R - applies the above weather regimes function to the datasets

156 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.18.3 User settings

User setting files are stored in recipes/

1. recipe_modes_of_variability.yml

Required settings for script

• plot type: rectangular or polar

• ncenters: number of centers to be computed by the clustering algorithm (maximum 4)

• cluster_method: kmeans (only psl variable) or hierarchical clustering (for psl or sic variables)

• detrend_order: the order of the polynomial detrending to be applied (0, 1 or 2)

• EOFs: logical indicating wether the k-means clustering algorithm is applied directly to the spatial data
(‘false’) or to the EOFs (‘true’)

• frequency: select the month (format: JAN, FEB, . . .) or season (format: JJA, SON, MAM, DJF) for the
diagnostic to be computed for (does not work yet for MAM with daily data).

15.18.4 Variables

• psl (atmos, monthly/daily, longitude, latitude, time)

15.18.5 Observations and reformat scripts

None

15.18.6 References

• Dawson, A., T. N. Palmer, and S. Corti, 2012: Simulating regime structures in weather and climate prediction
models. Geophysical Research Letters, 39 (21), https://doi.org/10.1029/2012GL053284.

• Ferranti, L., S. Corti, and M. Janousek, 2015: Flow-dependent verification of the ECMWF ensemble over the
Euro-Atlantic sector. Quarterly Journal of the Royal Meteorological Society, 141 (688), 916-924, https://doi.
org/10.1002/qj.2411.

• Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., & Wernli, H. (2017). Balancing Europe’s wind-power output
through spatial deployment informed by weather regimes. Nature climate change, 7(8), 557, https://doi.org/10.
1038/nclimate3338.

• Hannachi, A., D. M. Straus, C. L. E. Franzke, S. Corti, and T. Woollings, 2017: Low Frequency Nonlinearity
and Regime Behavior in the Northern Hemisphere Extra-Tropical Atmosphere. Reviews of Geophysics, https:
//doi.org/10.1002/2015RG000509.

• Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and
quasi stationarity. Journal of the atmospheric sciences, 52 (8), 1237-1256, doi: 10.1175/1520-
0469(1995)052<1237:WRRAQS>2.0.CO.

• Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors.
Monthly weather review, 118 (10), 2056-2081, doi: 10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

• Yiou, P., K. Goubanova, Z. X. Li, and M. Nogaj, 2008: Weather regime dependence of extreme value statistics
for summer temperature and precipitation. Nonlinear Processes in Geophysics, 15 (3), 365-378, https://doi.org/
10.5194/npg-15-365-2008.

15.18. Modes of variability 157

https://doi.org/10.1029/2012GL053284
https://doi.org/10.1002/qj.2411
https://doi.org/10.1002/qj.2411
https://doi.org/10.1038/nclimate3338
https://doi.org/10.1038/nclimate3338
https://doi.org/10.1002/2015RG000509
https://doi.org/10.1002/2015RG000509
https://journals.ametsoc.org/doi/10.1175/1520-0469%281995%29052%3C1237%3AWRRAQS%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/10.1175/1520-0469%281995%29052%3C1237%3AWRRAQS%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/10.1175/1520-0493%281990%29118%3C2056%3AMWROTN%3E2.0.CO%3B2
https://doi.org/10.5194/npg-15-365-2008
https://doi.org/10.5194/npg-15-365-2008

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.18.7 Example plots

Four modes of variability for autumn (September-October-November) in the North Atlantic European Sector for the
RCP 8.5 scenario using BCC-CSM1-1 future projection during the period 2020-2075. The frequency of occurrence of
each variability mode is indicated in the title of each map.

15.19 Diagnostics of integrated atmospheric methane (XCH4)

15.19.1 Overview

This recipe recipe_mpqb_xch4.yml allows the comparison of integrated atmospheric methane between CMIP6
model simulations and observations, and produces lineplots of monthly mean methane values, annual cycles and annual
growth rates:

• Monthly mean time series of XCH4 for pre-defined regions (global, Northern Hemisphere, Southern Hemisphere)

• Annual cycles of XCH4 for pre-defined regions (global, Northern Hemisphere, Southern Hemisphere)

• Annual growth rates of XCH4 for pre-defined regions (global, Northern Hemisphere, Southern Hemisphere)

158 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.19.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/mpqb/

• recipe_mpqb_xch4.yml

Diagnostics are stored in esmvaltool/diag_scripts/mpqb/

• mpqb_lineplot.py

• mpqb_lineplot_anncyc.py

• mpqb_lineplot_growthrate.py

15.19.3 Observations and reformat scripts

Observations used in this recipe are:

• CDS-XCH4 (ESA CCI dataset served on the Copernicus Climate data store)

A cmorizing script for this dataset is available (cmorize_obs_cds_xch4.ncl).

XCH4 is a derived variable that needs to be calculated from four different variables (ch4, hus, zg, ps). A derivation
script is included in the ESMValCore.

15.19.4 User settings in recipe

1. Preprocessor

• pp_lineplots_xx_mon: Regridding, masking all missing values from all used datasets, area-mean (‘xx’
can ge replaced by ‘gl’=global, ‘sh’=southern hemisphere, ‘nh’=northern hemisphere), units converted to
[ppbv] to obtain one time series of monthly mean values for the selected region (global, southern hemi-
sphere, northern hemisphere)

• pp_lineplots_xx_ann: Regridding, masking all missing values from all used datasets, area-mean (‘xx’
can ge replaced by ‘gl’=global, ‘sh’=southern hemisphere, ‘nh’=northern hemisphere), units converted to
[ppbv] to obtain one time series of annual mean values for the selected region (global, southern hemisphere,
northern hemisphere)

• pp_lineplots_anncyc_xx: : Regridding, masking all missing values from all used datasets, area-mean
(‘xx’ can ge replaced by ‘gl’=global, ‘sh’=southern hemisphere, ‘nh’=northern hemisphere), units con-
verted to [ppbv], monthly climate statistics applied to one annual cycle for the whole chosen time period
and for the selected region (global, southern hemisphere, northern hemisphere)

• xch4_def_xx: defining the time period over which the analysis should be calculated; options are “cmip6”
which overlapping period of the observations and the CMIP6 historical simulations, and “future” which
covers the time period of CMIP6 scenarios

2. Additional needed files

• mpqb_cfg_xch4.yml: In this file additional information for the used datasets are defined and stored, e.g.
alias of the dataset name and the color that is used to display the dataset in the figures

• mpqb_utils.yml: In this file the preparations for the dataset displays are made.

3. Script <mpqb_lineplot.py>

Required settings for script

• no additional settings required

Optional settings for script

15.19. Diagnostics of integrated atmospheric methane (XCH4) 159

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• no optional settings available

Required settings for variables

• no settings for the variable required

4. Script <mpqb_lineplot_anncyc.py>

Required settings for script

• no additional settings required

Optional settings for script

• no optional settings available

Required settings for variables

• no settings for the variable required

5. Script <mpqb_lineplot_growthrate.py>

Required settings for script

• no additional settings required

Optional settings for script

• no optional settings available

Required settings for variables

• no settings for the variable required

15.19.5 Variables

• ch4 (atmos, monthly mean, longitude latitude level time)

• hus (atmos, monthly mean, longitude latitude level time)

• zg (atmos, monthly mean, longitude latitude level time)

• ps (atmos, monthly mean, longitude latitude time)

All variables are necessary to calculate the derived variable xch4.

15.19.6 Example plots

15.20 Precipitation quantile bias

15.20.1 Overview

Precipitation is a dominant component of the hydrological cycle, and as such a main driver of the climate system and
human development. The reliability of climate projections and water resources strategies therefore depends on how well
precipitation can be reproduced by the models used for simulations. While global circulation models from the CMIP5
project observations can reproduce the main patterns of mean precipitation, they often show shortages and biases in
the ability to reproduce the strong precipitation tails of the distribution. Most models underestimate precipitation
over arid regions and overestimate it over regions of complex topography, and these shortages are amplified at high
quantile precipitation. The quantilebias recipe implements calculation of the quantile bias to allow evaluation of the
precipitation bias based on a user defined quantile in models as compared to a reference dataset following Mehran et al.
(2014). The quantile bias (QB) is defined as the ratio of monthly precipitation amounts in each simulation to that of the

160 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 44: Monthly mean time series of XCH4, calculated over the whole globe, for individual CMIP6 model simulations.

reference dataset (GPCP observations in the example) above a specified threshold t (e.g., the 75th percentile of all the
local monthly values). A quantile bias equal to 1 indicates no bias in the simulations, whereas a value above (below)
1 corresponds to a climate model’s overestimation (underestimation) of the precipitation amount above the specified
threshold t, with respect to that of the reference dataset.

15.20.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_quantilebias.yml

Diagnostics are stored in diag_scripts/quantilebias/

• quantilebias.R

15.20.3 User settings

Required settings for script

• perc_lev: quantile (in %), e.g. 50

15.20.4 Variables

• pr (atmos, monthly, longitude latitude time)

15.20. Precipitation quantile bias 161

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.20.5 Observations and reformat scripts

• GPCP-SG observations (accessible via the obs4MIPs project)

15.20.6 References

• Mehran, A. et al.: Journal of Geophysical Research: Atmospheres, Volume 119, Issue 4, pp. 1695-1707, 2014.

15.20.7 Example plots

Fig. 45: Quantile bias, as defined in Mehran et al. 2014, with threshold t=75th percentile, evaluated for the CanESM2
model over the 1979-2005 period, adopting GPCP-SG v 2.3 gridded precipitation as a reference dataset. The optimal
reference value is 1. Both datasets have been regridded onto a 2° regular grid.

15.21 Quantifying progress across different CMIP phases

15.21.1 Overview

The recipe recipe_bock20jgr.yml generates figures to quantify the progress across different CMIP phases.

Note: The current recipe uses a horizontal 5x5 grid for figure 10, while the original plot in the paper shows a 2x2 grid.
This is solely done for computational reasons (running the recipe with a 2x2 grid for figure 10 takes considerably more
time than running it with a 5x5 grid) and can be easily changed in the preprocessor section of the recipe if necessary.

162 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.21.2 Available recipes and diagnostics

Recipes are stored in recipes/bock20jgr

• recipe_bock20jgr_fig_1-4.yml

• recipe_bock20jgr_fig_6-7.yml

• recipe_bock20jgr_fig_8-10.yml

Diagnostics are stored in diag_scripts/

Fig. 1:

• bock20jgr/tsline.ncl: timeseries of global mean surface temperature anomalies

Fig. 2:

• bock20jgr/tsline_collect.ncl: collect different timeseries from tsline.ncl to compare different models
ensembles

Fig. 3 and 4:

• bock20jgr/model_bias.ncl: global maps of the multi-model mean and the multi-model mean bias

Fig. 6:

• perfmetrics/main.ncl

• perfmetrics/collect.ncl

Fig. 7:

• bock20jgr/corr_pattern.ncl: calculate pattern correlation

• bock20jgr/corr_pattern_collect.ncl: create pattern correlation plot

Fig. 8:

• climate_metrics/ecs.py

• climate_metrics/create_barplot.py

Fig. 9:

• clouds/clouds_ipcc.ncl

Fig. 10:

• climate_metrics/feedback_parameters.py

15.21.3 User settings in recipe

1. Script tsline.ncl

Required settings (scripts)

• styleset: as in diag_scripts/shared/plot/style.ncl functions

Optional settings (scripts)

• time_avg: type of time average (currently only “yearly” and “monthly” are available).

• ts_anomaly: calculates anomalies with respect to the defined reference period; for each grid point by re-
moving the mean for the given calendar month (requiring at least 50% of the data to be non-missing)

• ref_start: start year of reference period for anomalies

15.21. Quantifying progress across different CMIP phases 163

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• ref_end: end year of reference period for anomalies

• ref_value: if true, right panel with mean values is attached

• ref_mask: if true, model fields will be masked by reference fields

• region: name of domain

• plot_units: variable unit for plotting

• y_min: set min of y-axis

• y_max: set max of y-axis

• mean_nh_sh: if true, calculate first NH and SH mean

• volcanoes: if true, lines of main volcanic eruptions will be added

• header: if true, use region name as header

• write_stat: if true, write multi-model statistics to nc-file

Required settings (variables)

none

• Optional settings (variables)

none

2. Script tsline_collect.ncl

Required settings (scripts)

• styleset: as in diag_scripts/shared/plot/style.ncl functions

Optional settings (scripts)

• time_avg: type of time average (currently only “yearly” and “monthly” are available).

• ts_anomaly: calculates anomalies with respect to the defined period

• ref_start: start year of reference period for anomalies

• ref_end: end year of reference period for anomalies

• region: name of domain

• plot_units: variable unit for plotting

• y_min: set min of y-axis

• y_max: set max of y-axis

• order: order in which experiments should be plotted

• header: if true, region name as header

• stat_shading: if true: shading of statistic range

• ref_shading: if true: shading of reference period

Required settings (variables)

none

• Optional settings (variables)

none

164 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

3. Script model_bias.ncl

Required settings (scripts)

none

Optional settings (scripts)

• projection: map projection, e.g., Mollweide, Mercator

• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

• Required settings (variables)*

• reference_dataset: name of reference dataset

Optional settings (variables)

• long_name: description of variable

Color tables

• variable “tas”: diag_scripts/shared/plot/rgb/ipcc-ar6_temperature_div.rgb,

• variable “pr-mmday”: diag_scripts/shared/plots/rgb/ipcc-ar6_precipitation_seq.rgb
diag_scripts/shared/plot/rgb/ipcc-ar6_precipitation_div.rgb

4. Script perfmetrics_main.ncl

See here.

5. Script perfmetrics_collect.ncl

See here.

6. Script corr_pattern.ncl

Required settings (scripts)

none

Optional settings (scripts)

• plot_median

Required settings (variables)

• reference_dataset

Optional settings (variables)

• alternative_dataset

7. Script corr_pattern_collect.ncl

Required settings (scripts)

none

Optional settings (scripts)

• diag_order

Color tables

• diag_scripts/shared/plot/rgb/ipcc-ar6_line_03.rgb

8. Script ecs.py

See here.

15.21. Quantifying progress across different CMIP phases 165

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

9. Script create_barplot.py

See here.

10. Script clouds_ipcc.ncl

See here.

11. Script feedback_parameters.py

Required settings (scripts)

none

Optional settings (scripts)

• calculate_mmm: bool (default: True). Calculate multi-model means.

• only_consider_mmm: bool (default: False). Only consider multi-model mean dataset. This automatically
sets calculate_mmm to True. For large multi-dimensional datasets, this might significantly reduce the
computation time if only the multi-model mean dataset is relevant.

• output_attributes: dict. Write additional attributes to netcdf files.

• seaborn_settings: dict. Options for seaborn.set_theme() (affects all plots).

15.21.4 Variables

• clt (atmos, monthly, longitude latitude time)

• hus (atmos, monthly, longitude latitude lev time)

• pr (atmos, monthly, longitude latitude time)

• psl (atmos, monthly, longitude latitude time)

• rlut (atmos, monthly, longitude latitude time)

• rsdt (atmos, monthly, longitude latitude time)

• rsut (atmos, monthly, longitude latitude time)

• rtmt (atmos, monthly, longitude latitude time)

• rlutcs (atmos, monthly, longitude latitude time)

• rsutcs (atmos, monthly, longitude latitude time)

• ta (atmos, monthly, longitude latitude lev time)

• tas (atmos, monthly, longitude latitude time)

• ts (atmos, monthly, longitude latitude time)

• ua (atmos, monthly, longitude latitude lev time)

• va (atmos, monthly, longitude latitude lev time)

• zg (atmos, monthly, longitude latitude time)

166 Chapter 15. Atmosphere

https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.21.5 Observations and reformat scripts

• AIRS (obs4MIPs) - specific humidity

• CERES-EBAF (obs4MIPs) - CERES TOA radiation fluxes (used for calculation of cloud forcing)

• ERA-Interim - reanalysis of surface temperature, sea surface pressure

Reformat script: recipes/cmorizers/recipe_era5.yml

• ERA5 - reanalysis of surface temperature

Reformat script: recipes/cmorizers/recipe_era5.yml

• ESACCI-CLOUD - total cloud cover

Reformat script: cmorizers/data/formatters/datasets/esacci_cloud.ncl

• ESACCI-SST - sea surface temperature

Reformat script: cmorizers/data/formatters/datasets/esacci_sst.py

• GHCN - Global Historical Climatology Network-Monthly gridded land precipitation

Reformat script: cmorizers/data/formatters/datasets/ghcn.ncl

• GPCP-SG (obs4MIPs) - Global Precipitation Climatology Project total precipitation

• HadCRUT4 - surface temperature anomalies

Reformat script: cmorizers/data/formatters/datasets/hadcrut4.ncl

• HadISST - surface temperature

Reformat script: cmorizers/data/formatters/datasets/hadisst.ncl

• JRA-55 (ana4mips) - reanalysis of sea surface pressure

• NCEP-NCAR-R1 - reanalysis of surface temperature

Reformat script: cmorizers/data/formatters/datasets/ncep_ncar_r1.py

• PATMOS-x - total cloud cover

Reformat script: cmorizers/data/formatters/datasets/patmos_x.ncl

15.21.6 References

• Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Predoi, V., Meehl, G., Roberts, M., and
Eyring, V.: Quantifying progress across different CMIP phases with the ESMValTool, Journal of Geophysical
Research: Atmospheres, 125, e2019JD032321. https://doi.org/10.1029/2019JD032321

• Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses
of the global climate, edited, Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.
copernicus.eu/cdsapp#!/home

• Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring,
C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason and M. Rummukainen, 2013: Evaluation
of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

15.21. Quantifying progress across different CMIP phases 167

https://doi.org/10.1029/2019JD032321
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P., 2012: Quantifying uncertainties in global and re-
gional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, Journal of
Geophysical Research, 117, D08101. https://doi.org/10.1029/2011JD017187

15.21.7 Example plots

Fig. 46: Observed and simulated time series of the anomalies in annual and global mean surface temperature. All
anomalies are differences from the 1850-1900 time mean of each individual time series (Fig. 1).

15.22 Standardized Precipitation-Evapotranspiration Index (SPEI)

15.22.1 Overview

Droughts can be separated into three main types: meteorological, hydrological, and agricultural drought.

Common for all types is that a drought needs to be put in context of local and seasonal characteristics, i.e. a drought
should not be defined with an absolute threshold, but as an anomalous condition.

Meteorological droughts are often described using the standardized precipitation index (SPI; McKee et al, 1993), which
in a standardized way describes local precipitation anomalies. It is calculated on monthly mean precipitation, and is
therefore not accounting for the intensity of precipitation and the runoff process. Because SPI does not account for
evaporation from the ground, it lacks one component of the water fluxes at the surface and is therefore not compatible
with the concept of hydrological drought.

A hydrological drought occurs when low water supply becomes evident, especially in streams, reservoirs, and ground-
water levels, usually after extended periods of meteorological drought. GCMs normally do not simulate hydrological
processes in sufficient detail to give deeper insights into hydrological drought processes. Neither do they properly de-
scribe agricultural droughts, when crops become affected by the hydrological drought. However, hydrological drought
can be estimated by accounting for evapotranspiration, and thereby estimate the surface retention of water. The stan-
dardized precipitation-evapotranspiration index (SPEI; Vicente-Serrano et al., 2010) has been developed to also account
for temperature effects on the surface water fluxes. Evapotranspiration is not normally calculated in GCMs, so SPEI
often takes other inputs to estimate the evapotranspiration. Here, the Thornthwaite (Thornthwaite, 1948) method based
on temperature is applied.

168 Chapter 15. Atmosphere

https://doi.org/10.1029/2011JD017187

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 47: Observed and simulated time series of the anomalies in annual and global mean surface temperature as in
Figure 1; all anomalies are calculated by subtracting the 1850-1900 time mean from the time series. Displayed are the
multimodel means of all three CMIP ensembles with shaded range of the respective standard deviation. In black the
HadCRUT4 data set (HadCRUT4; Morice et al., 2012). Gray shading shows the 5% to 95% confidence interval of the
combined effects of all the uncertainties described in the HadCRUT4 error model (measurement and sampling, bias,
and coverage uncertainties) (Morice et al., 2012) (Fig. 2).

Fig. 48: Annual mean near-surface (2 m) air temperature (°C). (a) Multimodel (ensemble) mean constructed with one
realization of CMIP6 historical experiments for the period 1995-2014. Multimodel-mean bias of (b) CMIP6 (1995-
2014) compared to the corresponding time period of the climatology from ERA5 (Copernicus Climate Change Service
(C3S), 2017). (Fig. 3)

Fig. 49: Relative space-time root-mean-square deviation (RMSD) calculated from the climatological seasonal cycle of
the CMIP3, CMIP5, and CMIP6 simulations (1980-1999) compared to observational data sets (Table 5). A relative
performance is displayed, with blue shading being better and red shading worse than the median RMSD of all model
results of all ensembles. A diagonal split of a grid square shows the relative error with respect to the reference data set
(lower right triangle) and the alternative data set (upper left triangle) which are marked in Table 5. White boxes are
used when data are not available for a given model and variable (Fig. 6).

15.22. Standardized Precipitation-Evapotranspiration Index (SPEI) 169

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 50: Centered pattern correlations between models and observations for the annual mean climatology over the
period 1980–1999 (Fig. 7).

15.22.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_spei.yml

Diagnostics are stored in diag_scripts/droughtindex/

• diag_spi.R: calculate the SPI index

• diag_spei.R: calculate the SPEI index

15.22.3 User settings

1. Script diag_spi.py

Required settings (script)

• reference_dataset: dataset_name The reference data set acts as a baseline for calculating model bias.

2. Script diag_spei.py

Required settings (script)

• reference_dataset: dataset_name The reference data set acts as a baseline for calculating model bias.

170 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.22.4 Variables

• pr (atmos, monthly mean, time latitude longitude)

• tas (atmos, monthly mean, time latitude longitude)

15.22.5 References

• McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time
scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Boston,
MA: American Meteorological Society.

• Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to
global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.

15.22.6 Example plots

Fig. 51: (top) Probability distribution of the standardized precipitation-evapotranspiration index of a sub-set of the
CMIP5 models, and (bottom) bias relative to the CRU reference data set.

15.23 Drought characteristics following Martin (2018)

15.23.1 Overview

Following Martin (2018) drought characteristics are calculated based on the standard precipitation index (SPI), see
Mckee et al. (1993). These characteristics are frequency, average duration, SPI index and severity index of drought
events.

15.23. Drought characteristics following Martin (2018) 171

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079807
https://www.nature.com/articles/nclimate3387

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 52: (top) Probability distribution of the standardized precipitation index of a sub-set of the CMIP5 models, and
(bottom) bias relative to the CRU reference data set.

15.23.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_martin18grl.yml

Diagnostics are stored in diag_scripts/

• droughtindex/diag_save_spi.R

• droughtindex/collect_drought_obs_multi.py

• droughtindex/collect_drought_model.py

• droughtindex/collect_drought_func.py

15.23.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models and one observational or reanalysis data set.

The droughtindex/diag_save_spi.R script calculates the SPI index for any given time series. It is based on droughtin-
dex/diag_spi.R but saves the SPI index and does not plot the histogram. The distribution and the representative time
scale (smooth_month) can be set by the user, the values used in Martin (2018) are smooth_month: 6 and distribution:
‘Gamma’ for SPI.

There are two python diagnostics, which can use the SPI data to calculate the drought characteristics (frequency, average
duration, SPI index and severity index of drought events) based on Martin (2018):

• To compare these characteristics between model data and observations or renanalysis data use droughtin-
dex/collect_drought_obs_multi.py Here, the user can set: * indexname: Necessary to identify data produced
by droughtindex/diag_save_spi.R as well as write captions and filenames. At the moment only indexname: ‘SPI’
is supported. * threshold: Threshold for this index below which an event is considered to be a drought, the setting
for SPI should be usually threshold: -2.0 but any other value will be accepted. Values should not be < - 3.0 or >
3.0 for SPI (else it will identify none/always drought conditions).

• To compare these ccharacteristics between different time periods in model data use droughtin-
dex/collect_drought_model.py Here, the user can set: * indexname: Necessary to identify data produced

172 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

by droughtindex/diag_save_spi.R as well as write captions and filenames. At the moment only indexname:
‘SPI’ is supported. * threshold: Threshold for this index below which an event is considered to be a drought,
the setting for SPI should be usually threshold: -2.0 but any other value will be accepted. Values should not be
< - 3.0 or > 3.0 for SPI (else it will identify none/always drought conditions). * start_year: Needs to be equal
or larger than the start_year for droughtindex/diag_save_spi.R. * end_year: Needs to be equal or smaller than
the end_year for droughtindex/diag_save_spi.R. * comparison_period: should be < (end_year - start_year)/2 to
have non overlapping time series in the comparison.

The third diagnostic droughtindex/collect_drought_func.py contains functions both ones above use.

15.23.4 Variables

• pr (atmos, monthly, longitude, latitude, time)

15.23.5 Observations and reformat scripts

None

15.23.6 References

• Martin, E.R. (2018). Future Projections of Global Pluvial and Drought Event Characteristics. Geophysical
Research Letters, 45, 11913-11920.

• McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time
scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Boston,
MA: American Meteorological Society.

15.23.7 Example plots

Fig. 53: Global map of the percentage difference between multi-model mean of 15 CMIP models and the CRU data for
the number of drought events [%] based on SPI.

15.23. Drought characteristics following Martin (2018) 173

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 54: Global map of the percentage difference between multi-model mean for RCP8.5 scenarios (2050-2100) runs
and historical data (1950-2000) for 15 CMIP models for the number of drought events [%] based on SPI.

15.24 Stratosphere - Autoassess diagnostics

15.24.1 Overview

Polar night jet / easterly jet strengths are defined as the maximum / minimum wind speed of the climatological zonal
mean jet, and measure how realistic the zonal wind climatology is in the stratosphere.

Extratropical temperature at 50hPa (area averaged poleward of 60 degrees) is important for polar stratospheric cloud
formation (in winter/spring), determining the amount of heterogeneous ozone depletion simulated by models with
interactive chemistry schemes.

The Quasi-Biennial Oscillation (QBO) is a good measure of tropical variability in the stratosphere. Zonal mean zonal
wind at 30hPa is used to define the period and amplitude of the QBO.

The tropical tropopause cold point (100hPa, 10S-10N) temperature is an important factor in determining the strato-
spheric water vapour concentrations at entry point (70hPa, 10S-10N), and this in turn is important for the accurate
simulation of stratospheric chemistry and radiative balance.

Performance metrics:

• Polar night jet: northern hem (January) vs. ERA Interim

• Polar night jet: southern hem (July) vs. ERA Interim

• Easterly jet: southern hem (January) vs. ERA Interim

• Easterly jet: northern hem (July) vs. ERA Interim

• 50 hPa temperature: 60N-90N (DJF) vs. ERA Interim

• 50 hPa temperature: 60N-90N (MAM) vs. ERA Interim

• 50 hPa temperature: 90S-60S (JJA) vs. ERA Interim

• 50 hPa temperature: 90S-60S (SON) vs. ERA Interim

• QBO period at 30 hPa vs. ERA Interim

• QBO amplitude at 30 hPa (westward) vs. ERA Interim

• QBO amplitude at 30 hPa (eastward) vs. ERA Interim

• 100 hPa equatorial temp (annual mean) vs. ERA Interim

• 100 hPa equatorial temp (annual cycle strength) vs. ERA Interim

• 70 hPa 10S-10N water vapour (annual mean) vs. ERA-Interim

174 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Diagnostic plot:

• Age of stratospheric air vs. observations from Andrews et al. (2001) and Engel et al. (2009)

15.24.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_autoassess_stratosphere.yml

Diagnostics are stored in esmvaltool/diag_scripts/autoassess/

• autoassess_area_base.py: wrapper for autoassess scripts

• stratosphere/strat_metrics_1.py: calculation of metrics

• stratosphere/age_of_air.py: calculate age of stratospheric air

• stratosphere/plotting.py: zonal mean wind and QBO plots

• plot_autoassess_metrics.py: plot normalised assessment metrics

15.24.3 User settings in recipe

The stratosphere area metric is part of the esmvaltool/diag_scripts/autoassess diagnostics, and, as any
other autoassess metric, it uses the autoassess_area_base.py as general purpose wrapper. This wrapper accepts
a number of input arguments that are read through from the recipe.

This recipe is part of the larger group of Autoassess metrics ported to ESMValTool from the native Autoassess package
from the UK’s Met Office. The diagnostics settings are almost the same as for the other Atoassess metrics.

Note: Time gating for autoassess metrics.
To preserve the native Autoassess functionalities, data loading and selection on time is done somewhat differently
for ESMValTool’s autoassess metrics: the time selection is done in the preprocessor as per usual but a further time
selection is performed as part of the diagnostic. For this purpose the user will specify a start: and end: pair of
arguments of scripts: autoassess_script (see below for example). These are formatted as YYYY/MM/DD; this
is necessary since the Autoassess metrics are computed from 1-Dec through 1-Dec rather than 1-Jan through 1-Jan. This
is a temporary implementation to fully replicate the native Autoassess functionality and a minor user inconvenience
since they need to set an extra set of start and end arguments in the diagnostic; this will be phased when all the native
Autoassess metrics have been ported to ESMValTool review has completed.

Note: Polar Night/Easterly Jets Metrics
Polar Night Jets (PNJ) metrics require data available at very low air pressures ie very high altitudes; both Olar Night
Jet and Easterly Jets computations should be preformed using ta and ua data at << 100 Pa; the lowest air pressure
found in atmospheric CMOR mip tables corresponds to plev39 air pressure table, and is used in the AERmonZ mip. If
the user requires correct calculations of these jets, it is highly advisable to use data from AERmonZ. Note that standard
QBO calculation is exact for plev17 or plev19 tables.

An example of standard inputs as read by autoassess_area_base.py and passed over to the diagnostic/metric is
listed below.

15.24. Stratosphere - Autoassess diagnostics 175

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

scripts:
autoassess_strato_test_1: &autoassess_strato_test_1_settings
script: autoassess/autoassess_area_base.py # the base wrapper
title: "Autoassess Stratosphere Diagnostic Metric" # title
area: stratosphere # assesment area
control_model: UKESM1-0-LL-hist # control dataset name
exp_model: UKESM1-0-LL-piCont # experiment dataset name
obs_models: [ERA-Interim] # list to hold models that are NOT for metrics but for␣

→˓obs operations
additional_metrics: [ERA-Interim] # list to hold additional datasets for metrics
start: 2004/12/01 # start date in native Autoassess format
end: 2014/12/01 # end date in native Autoassess format

15.24.4 Variables

Variable/Field name realm frequency Comment
Eastward wind (ua) Atmosphere monthly mean original stash: x-wind, no stash
Air temperature (ta) Atmosphere monthly mean original stash: m01s30i204
Specific humidity (hus) Atmosphere monthly mean original stash: m01s30i205

The recipe takes as input a control model and experimental model, comparisons being made with these two CMIP
models; additionally it can take observational data s input, in the current implementation ERA-Interim.

15.24.5 Observations and reformat scripts

ERA-Interim (ta, ua, hus - cmorizers/data/formatters/datasets/era_interim.py)

15.24.6 References

• Andrews, A. E., and Coauthors, 2001: Mean ages of stratospheric air derived from in situ observations of CO2,
CH4, and N2O. J. Geophys. Res., 106 (D23), 32295-32314.

• Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data as-
similation system. Q. J. R. Meteorol. Soc, 137, 553-597, doi:10.1002/qj.828.

• Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years.
Nat. Geosci., 2, 28-31, doi:10 .1038/NGEO388.

15.24.7 Example metrics and plots

Below is a set of metrics for UKESM1-0-LL (historical data); the table shows a comparison made between running
ESMValTool on CMIP6 CMORized netCDF data freely available on ESGF nodes and the run made using native
Autoassess performed at the Met Office using the pp output of the model.

176 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Metric name UKESM1-0-LL; CMIP6: AERmonZ;
historical, ESGF

UKESM1-0-LL; pp files; histor-
ical, u-bc179

Polar night jet: northern hem (Jan-
uary)

44.86 44.91

Polar night jet: southern hem
(July)

112.09 112.05

Easterly jet: southern hem (Jan-
uary)

76.12 75.85

Easterly jet: northern hem (July) 55.68 55.74
QBO period at 30 hPa 41.50 41.00
QBO amplitude at 30 hPa (west-
ward)

27.39 27.39

QBO amplitude at 30 hPa (east-
ward)

17.36 17.36

50 hPa temperature: 60N-90N
(DJF)

27.11 26.85

50 hPa temperature: 60N-90N
(MAM)

40.94 40.92

50 hPa temperature: 90S-60S
(JJA)

11.75 11.30

50 hPa temperature: 90S-60S
(SON)

23.88 23.63

100 hPa equatorial temp (annual
mean)

15.29 15.30

100 hPa equatorial temp (annual
cycle strength)

1.67 1.67

100 hPa 10Sto10N temp (annual
mean)

15.48 15.46

100 hPa 10Sto10N temp (annual
cycle strength)

1.62 1.62

70 hPa 10Sto10N wv (annual
mean)

5.75 5.75

Results from u-bc179 have been obtained by running the native Autoassess/stratosphere on .pp data from UKESM1
u-bc179 suite and are listed here to confirm the compliance between the ported Autoassess metric in ESMValTool and
the original native metric.

Another reference run comparing UKESM1-0-LL to the physical model HadGEM3-GC31-LL can be found here .

15.24.8 Prior and current contributors

Met Office:

• Prior to May 2008: Neal Butchart

• May 2008 - May 2016: Steven C Hardiman

• Since May 2016: Alistair Sellar and Paul Earnshaw

ESMValTool:

• Since April 2018: Porting into ESMValTool by Valeriu Predoi

15.24. Stratosphere - Autoassess diagnostics 177

https://github.com/NCAS-CMS/NCAS-Useful-Documentation/tree/main/autoassess_review_results/stratosphere_AERmonZ/plots/aa_strato/autoassess_strato_test_1/HadGEM3-GC31-LL_vs_UKESM1-0-LL/stratosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 55: Standard metrics plot comparing standard metrics from UKESM1-0-LL and HadGEM3-GC31.

Fig. 56: Zonal mean zonal wind in January for UKESM1-0-LL.

Fig. 57: Zonal mean zonal wind in January for HadGEM3-GC31-LL.

178 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 58: QBO for UKESM1-0-LL.

Fig. 59: QBO for HadGEM3-GC31-LL.

15.24. Stratosphere - Autoassess diagnostics 179

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 60: QBO at 30hPa comparison between UKESM1-0-LL and HadGEM3-GC31-LL.

Fig. 61: Equatorial temperature at 100hPa, multi annual means.

180 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.24.9 Developers

Met Office:

• Prior to May 2008: Neal Butchart

• May 2008 - May 2016: Steven C Hardiman

ESMValTool:

• Since April 2018: Valeriu Predoi

15.25 Land-surface Permafrost - Autoassess diagnostics

15.25.1 Overview

Permafrost thaw is an important impact of climate change, and is the source of a potentially strong Earth system
feedback through the release of soil carbon into the atmosphere. This recipe provides metrics that evaluate the clima-
tological performance of models in simulating soil temperatures that control permafrost. Performance metrics (with
observation-based estimates in brackets):

• permafrost area (17.46 million square km)

• fractional area of permafrost northwards of zero degree isotherm (0.47)

• soil temperature at 1m minus soil temperature at surface (-0.53 degrees C)

• soil temperature at surface minus air temperature (6.15 degrees C)

• annual amplitude at 1m / annual amplitude at the surface (0.40 unitless)

• annual amplitude at the surface / annual air temperature (0.57 unitless)

Plots:

• Maps of permafrost extent and zero degC isotherm

• Normalised assessment metrics plot comparing control and experiment

The recipe takes as input a control model and experimental model, comparisons being made with these two models.

15.25.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_autoassess_landsurface_permafrost.yml

Diagnostics are stored in esmvaltool/diag_scripts/autoassess/

• autoassess_area_base.py: wrapper for autoassess scripts

• land_surface_permafrost/permafrost.py: script to calculate permafrost metrics

• plot_autoassess_metrics.py: plot normalised assessment metrics

15.25. Land-surface Permafrost - Autoassess diagnostics 181

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.25.3 User settings in recipe

1. Script autoassess_area_base.py

Required settings for script

• area: must equal land_surface_permafrost to select this diagnostic

• control_model: name of model to be used as control

• exp_model: name of model to be used as experiment

• start: date (YYYY/MM/DD) at which period begins (see note on time gating)

• end: date (YYYY/MM/DD) at which period ends (see note on time gating)

Optional settings for script

• title: arbitrary string with name of diagnostic

• obs_models: unused for this recipe

Required settings for variables

none

Optional settings for variables

none

2. Script plot_autoassess_metrics.py

Required settings for script

• area: must equal land_surface_permafrost to select this diagnostic

• control_model: name of model to be used as control in metrics plot

• exp_model: name of model to be used as experiment in metrics plot

• title: string to use as plot title

Optional settings for script

none

Required settings for variables

none

Optional settings for variables

none

15.25.4 Variables

• tas (atmos, monthly mean, longitude latitude time)

• tsl (land, monthly mean, longitude latitude time)

• mrsos (land, monthly mean, longitude latitude time)

• sftlf (mask, fixed, longitude latitude)

182 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.25.5 Observations and reformat scripts

None

15.25.6 References

• Observed permafrost extent is from http://nsidc.org/data/ggd318.html: Brown, J., O. Ferrians, J. A. Heginbot-
tom, and E. Melnikov. 2002. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. Boulder,
Colorado USA. NSIDC: National Snow and Ice Data Center. When calculating the global area of permafrost the
grid cells are weighted by the proportion of permafrost within them.

• Annual mean air temperature is from: Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial
variability in global surface air temperature. Theor. Appl. Climatol., 41, 11-21. The annual mean is calculated
from the seasonal mean data available at the Met Office.

• The soil temperature metrics are calcuated following: Charles D. Koven, William J. Riley, and Alex Stern,
2013: Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System
Models. J. Climate, 26. (Table 3) http://dx.doi.org/10.1175/JCLI-D-12-00228.1 The locations used for Table 3
were extracted from the model and the modelled metrics calculated.

15.25.7 Example plots

Fig. 62: Permafrost extent and zero degC isotherm, showing North America

15.25. Land-surface Permafrost - Autoassess diagnostics 183

http://nsidc.org/data/ggd318.html
http://dx.doi.org/10.1175/JCLI-D-12-00228.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 63: Permafrost extent and zero degC isotherm, showing Asia and Europe

Fig. 64: Normalised metrics plot comparing a control and experiment simulation

184 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.25.8 Additional notes on usage

The landsurface_permafrost area metric is part of the esmvaltool/diag_scripts/autoassess diagnostics,
and, as any other autoassess metric, it uses the autoassess_area_base.py as general purpose wrapper. This
wrapper accepts a number of input arguments that are read through from the recipe.

This recipe is part of the larger group of Autoassess metrics ported to ESMValTool from the native Autoassess package
from the UK’s Met Office. The diagnostics settings are almost the same as for the other Autoassess metrics.

Note: Time gating for autoassess metrics.
To preserve the native Autoassess functionalities, data loading and selection on time is done somewhat differently
for ESMValTool’s autoassess metrics: the time selection is done in the preprocessor as per usual but a further time
selection is performed as part of the diagnostic. For this purpose the user will specify a start: and end: pair of
arguments of scripts: autoassess_script (see below for example). These are formatted as YYYY/MM/DD; this
is necessary since the Autoassess metrics are computed from 1-Dec through 1-Dec rather than 1-Jan through 1-Jan. This
is a temporary implementation to fully replicate the native Autoassess functionality and a minor user inconvenience
since they need to set an extra set of start and end arguments in the diagnostic; this will be phased when all the native
Autoassess metrics have been ported to ESMValTool review has completed.

An example of standard inputs as read by autoassess_area_base.py and passed over to the diagnostic/metric is
listed below.

scripts:
plot_landsurf_permafrost: &plot_landsurf_permafrost_settings
<<: *autoassess_landsurf_permafrost_settings
control_model: MPI-ESM-LR
exp_model: MPI-ESM-MR
script: autoassess/plot_autoassess_metrics.py
ancestors: ['*/autoassess_landsurf_permafrost']
title: "Plot Land-Surface Permafrost Metrics"
plot_name: "Permafrost_Metrics"
diag_tag: aa_landsurf_permafrost
diag_name: autoassess_landsurf_permafrost

15.26 Land-surface Surface Radiation - Autoassess diagnostics

15.26.1 Overview

The simulation of surface radiation is central to all aspects of model performance, and can often reveal compensating
errors which are hidden within top of atmosphere fluxes. This recipe provides metrics that evaluate the skill of models’
spatial and seasonal distribution of surface shortwave and longwave radiation against the CERES EBAF satellite dataset.

Performance metrics:

• median absolute error (model minus observations) net surface shortwave (SW) radiation

• median absolute error (model minus observations) net surface longwave (LW) radiation

Metrics are calculated using model and observation multi-year climatologies (seasonal means) for meteorological sea-
sons: * December-January-February (djf) * March-April-May (mam) * June-July-August (jja) * September-October-
November (son) * Annual mean (ann)

Plots:

15.26. Land-surface Surface Radiation - Autoassess diagnostics 185

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Normalised assessment metrics plot comparing control and experiment

The recipe takes as input a control model and experimental model, comparisons being made with these two models.

15.26.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_autoassess_landsurface_surfrad.yml

Diagnostics are stored in esmvaltool/diag_scripts/autoassess/

• autoassess_area_base.py: wrapper for autoassess scripts

• land_surface_surfrad/surfrad.py: script to calculate surface radiation metrics

• plot_autoassess_metrics.py: plot normalised assessment metrics

15.26.3 User settings in recipe

1. Script autoassess_area_base.py

Required settings for script

• area: must equal land_surface_surfrad to select this diagnostic

• control_model: name of model to be used as control

• exp_model: name of model to be used as experiment

• start: date (YYYY/MM/DD) at which period begins (see note on time gating)

• end: date (YYYY/MM/DD) at which period ends (see note on time gating)

• climfiles_root: path to observation climatologies

Optional settings for script

• title: arbitrary string with name of diagnostic

• obs_models: unused for this recipe

Required settings for variables

none

Optional settings for variables

none

2. Script plot_autoassess_metrics.py

Required settings for script

• area: must equal land_surface_surfrad to select this diagnostic

• control_model: name of model to be used as control in metrics plot

• exp_model: name of model to be used as experiment in metrics plot

• title: string to use as plot title

186 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Optional settings for script

none

Required settings for variables

none

Optional settings for variables

none

15.26.4 Variables

• rsns (atmos, monthly mean, longitude latitude time)

• rlns (atmos, monthly mean, longitude latitude time)

• sftlf (mask, fixed, longitude latitude)

15.26.5 Observations and reformat scripts

2001-2012 climatologies (seasonal means) from CERES-EBAF Ed2.7.

15.26.6 References

• Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and
S. Kato, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Climate, 31, 895-918, doi: 10.1175/JCLI-D-17-0208.1.

• Kato, S., F. G. Rose, D. A. Rutan, T. E. Thorsen, N. G. Loeb, D. R. Doelling, X. Huang, W. L. Smith, W. Su, and
S.-H. Ham, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES)
Energy Balanced and Filled (EBAF) data product, J. Climate, 31, 4501-4527, doi: 10.1175/JCLI-D-17-0523.1

15.26.7 Example plots

Fig. 65: Normalised metrics plot comparing a control and experiment simulation

15.26. Land-surface Surface Radiation - Autoassess diagnostics 187

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.26.8 Inputs and usage

The landsurface_soilmoisture area metric is part of the esmvaltool/diag_scripts/autoassess diagnostics,
and, as any other autoassess metric, it uses the autoassess_area_base.py as general purpose wrapper. This
wrapper accepts a number of input arguments that are read through from the recipe.

This recipe is part of the larger group of Autoassess metrics ported to ESMValTool from the native Autoassess package
from the UK’s Met Office. The diagnostics settings are almost the same as for the other Autoassess metrics.

Note: Time gating for autoassess metrics.
To preserve the native Autoassess functionalities, data loading and selection on time is done somewhat differently
for ESMValTool’s autoassess metrics: the time selection is done in the preprocessor as per usual but a further time
selection is performed as part of the diagnostic. For this purpose the user will specify a start: and end: pair of
arguments of scripts: autoassess_script (see below for example). These are formatted as YYYY/MM/DD; this
is necessary since the Autoassess metrics are computed from 1-Dec through 1-Dec rather than 1-Jan through 1-Jan. This
is a temporary implementation to fully replicate the native Autoassess functionality and a minor user inconvenience
since they need to set an extra set of start and end arguments in the diagnostic; this will be phased when all the native
Autoassess metrics have been ported to ESMValTool review has completed.

An example of standard inputs as read by autoassess_area_base.py and passed over to the diagnostic/metric is
listed below.

scripts:
autoassess_landsurf_surfrad: &autoassess_landsurf_surfrad_settings
script: autoassess/autoassess_area_base.py
title: "Autoassess Land-Surface Diagnostic Surfrad Metric"
area: land_surface_surfrad
control_model: UKESM1-0-LL
exp_model: UKESM1-0-LL
obs_models: [CERES-EBAF]
obs_type: obs4MIPs
start: 1997/12/01
end: 2002/12/01

15.27 Land-surface Soil Moisture - Autoassess diagnostics

15.27.1 Overview

Soil moisture is a critical component of the land system, controling surface energy fluxes in many areas of the world.
This recipe provides metrics that evaluate the skill of models’ spatial and seasonal distribution of soil moisture against
the ESA CCI soil moisture ECV.

Performance metrics:

• median absolute error (model minus observations)

Metrics are calculated using model and observation multi-year climatologies (seasonal means) for meteorological sea-
sons:

• December-January-February (djf)

• March-April-May (mam)

• June-July-August (jja)

188 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• September-October-November (son)

Plots:

• Normalised assessment metrics plot comparing control and experiment

The recipe takes as input a control model and experimental model, comparisons being made with these two models.

15.27.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_autoassess_landsurface_soilmoisture.yml

Diagnostics are stored in esmvaltool/diag_scripts/autoassess/

• land_surface_soilmoisture/soilmoisture.py: script to calculate soil moisture metrics

• plot_autoassess_metrics.py: plot normalised assessment metrics

15.27.3 User settings in recipe

1. Script soilmoisture.py

Required settings for script

• area: must equal land_surface_soilmoisture to select this diagnostic

• control_model: name of model to be used as control

• exp_model: name of model to be used as experiment

Optional settings for script

none

Required settings for variables

none

Optional settings for variables

none

2. Script plot_autoassess_metrics.py

Required settings for script

• area: must equal land_surface_soilmoisture to select this diagnostic

• control_model: name of model to be used as control in metrics plot

• exp_model: name of model to be used as experiment in metrics plot

• title: string to use as plot title

Optional settings for script

none

Required settings for variables

none

Optional settings for variables

none

15.27. Land-surface Soil Moisture - Autoassess diagnostics 189

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.27.4 Variables

• mrsos (from models: land, monthly mean, longitude latitude time)

• sm (from observations: land, monthly mean, longitude latitude time)

15.27.5 Observations and reformat scripts

1999-2008 climatologies (seasonal means) from ESA ECV Soil Moisture Dataset v1. Produced by the ESA CCI soil
moisture project: https://www.esa-soilmoisture-cci.org/node/93

15.27.6 References

• Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M.,
Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D.,
Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future
directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.
001.

• Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019). Evolution of the ESA CCI Soil
Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11,
717-739, https://doi.org/10.5194/essd-11-717-2019

15.27.7 Example plots

Fig. 66: Normalised metrics plot comparing a control and experiment simulation

190 Chapter 15. Atmosphere

https://www.esa-soilmoisture-cci.org/node/93
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.5194/essd-11-717-2019

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.28 Stratosphere-troposphere coupling and annular modes indices
(ZMNAM)

15.28.1 Overview

The current generation of climate models include the representation of stratospheric processes, as the vertical coupling
with the troposphere is important for the weather and climate at the surface (e.g., Baldwin and Dunkerton, 2001).

The recipe recipe_zmnam.yml can be used to evaluate the representation of Annular Modes (AM, e.g., Wallace, 2000)
in climate simulations, using reanalysis datasets as reference.

The calculation is based on the “zonal mean algorithm” of Baldwin and Thompson (2009), and is alternative to pressure
based or height-dependent methods.

This approach provides a robust description of the stratosphere-troposphere coupling on daily timescales, requiring
less subjective choices and a reduced amount of input data. Starting from daily mean geopotential height on pressure
levels, the leading empirical orthogonal function/principal component are computed from zonal mean daily anomalies,
with the leading principal component representing the zonal mean AM index. The regression of the monthly mean
geopotential height onto this monthly averaged index represents the AM pattern for each selected pressure level.

The outputs of the procedure are the monthly time series and the histogram of the daily zonal mean AM index, and
the monthly regression maps for selected pressure levels. The users can select the specific datasets (climate model
simulation and/or reanalysis) to be evaluated, the Northern or Southern hemisphere (NH or SH) and a subset of pressure
levels of interest.

15.28.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_zmnam.yml

Diagnostics are stored in diag_scripts/zmnam/

• zmnam.py

and subroutines

• zmnam_calc.py

• zmnam_plot.py

• zmnam_preproc.py

15.28.3 User settings

Hemisphere of interest (NH or SH)

15.28. Stratosphere-troposphere coupling and annular modes indices (ZMNAM) 191

https://doi.org/10.1126/science.1063315
https://doi.org/10.1002/qj.49712656402
https://doi.org/10.1002/qj.479

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.28.4 Variables

• zg (atmos, daily mean, longitude latitude time)

15.28.5 Observations and reformat scripts

None.

15.28.6 References

• Baldwin, M. P. and Thompson, D. W. (2009), A critical comparison of stratosphere–troposphere coupling in-
dices. Q.J.R. Meteorol. Soc., 135: 1661-1672. doi:10.1002/qj.479.

• Baldwin, M. P and Dunkerton, T. J. (2001), Stratospheric Harbingers of Anomalous Weather Regimes. Science
294 (5542): 581-584. doi:10.1126/science.1063315.

• Wallace, J. M. (2000), North Atlantic Oscillation/annular mode: Two paradigms-one phenomenon. Q.J.R. Me-
teorol. Soc., 126 (564): 791-805. doi:10.1002/qj.49712656402.

15.28.7 Example plots

Fig. 67: Regression map of the Northern Hemisphere zonal mean AM index onto geopotential height, for a selected
pressure level (250 hPa) for the MPI-ESM-MR model (CMIP5 AMIP experiment, period 1979-2008). Negative values
are shaded in grey.

192 Chapter 15. Atmosphere

https://doi.org/10.1002/qj.479
https://doi.org/10.1126/science.1063315
https://doi.org/10.1002/qj.49712656402

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 68: Time series of the Northern Hemisphere zonal mean AM index for a selected pressure level (250 hPa) for the
MPI-ESM-MR model (CMIP5 AMIP experiment, period 1979-2008).

15.29 Thermodynamics of the Climate System - The Diagnostic Tool
TheDiaTo v1.0

15.29.1 Overview

The tool allows to compute TOA, atmospheric and surface energy budgets, latent energy and water mass budgets,
meridional heat transports, the Lorenz Energy Cycle (LEC), the material entropy production with the direct and indirect
method.

The energy budgets are computed from monthly mean radiative and heat fluxes at the TOA and at the surface (cfr.
Wild et al., 2013). The meridional heat transports are obtained from the latitudinal integration of the zonal mean
energy budgets. When a land-sea mask is provided, results are also available for land and oceans, separately.

The water mass budget is obtained from monthly mean latent heat fluxes (for evaporation), total and snowfall precip-
itation (cfr. Liepert et al., 2012). The latent energy budget is obtained multiplying each component of the water mass
budget by the respective latent heat constant. When a land-sea mask is provided, results are also available for land and
oceans, separately.

The LEC is computed from 3D fields of daily mean velocity and temperature fields in the troposphere over pressure
levels. The analysis is carried on in spectral fields, converting lonlat grids in Fourier coefficients. The components of
the LEC are computed as in Ulbrich and Speth, 1991. In order to account for possible gaps in pressure levels, the daily
fields of 2D near-surface temperature and horizontal velocities are needed. These are required to perform a vertical
interpolation, substituting data in pressure levels where surface pressure is lower than the respective level and fields are
not stored as an output of the analysed model.

The material entropy production is computed by using the indirect or the direct method (or both). The former method
relies on the convergence of radiative heat in the atmosphere (cfr. Lucarini et al., 2011; Pascale et al., 2011), the latter
on all viscous and non-viscous dissipative processes occurring in the atmosphere (namely the sensible heat fluxes, the
hydrological cycle with its components and the kinetic energy dissipation).

For a comprehensive report on the methods used and some descriptive results, please refer to Lembo et al., 2019.

In order to account for possible gaps in pressure levels, the daily fields of 2D near-surface temperature and horizontal

15.29. Thermodynamics of the Climate System - The Diagnostic Tool TheDiaTo v1.0 193

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

velocities.’

15.29.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_thermodyn_diagtool.yml

Diagnostics are stored in diag_scripts/thermodyn_diagtool/

• thermodyn_diagnostics.py: the main script, handling input files, calling computation and plotting scricpts;

• computations.py: a module containing all the main computations that are carried out by the program;

• fluxogram.py: a module for the retrieval of the block diagrams displaying the reservoirs and conversion terms of
the LEC

• fourier_coefficients.py: a module for the computation of the Fourier coefficients from the lonlat input grid

• lorenz_cycle.py: a module for the computation of the LEC components in Fourier coefficients

• mkthe.py: a module for the computation of indirect variables obtained from the input fields, such as LCL height,
boundary layer top height and temperature, potential temperature

• plot_script.py: a module for the computation of maps, scatter plots, time series and meridional sections of some
derived quantities for each model in the ensemble. The meridional heat and water mass transports are also
computed here, as well as the peak magnitudes and locations;

• provenance_meta.py: a module for collecting metadata and writing them to produced outputs;

15.29.3 User settings

Besides the datasets, to be set according to usual ESMValTool convention, the user can set the following optional
variables in the recipe_Thermodyn_diagtool.yml:

• wat: if set to ‘true’, computations are performed of the water mass and latent energy budgets and
transports

• lsm: if set to true, the computations of the energy budgets, meridional energy transports, water mass
and latent energy budgets and transports are performed separately over land and oceans

• lec: if set to ‘true’, computation of the LEC are performed

• entr: if set to ‘true’, computations of the material entropy production are performed

• met (1, 2 or 3): the computation of the material entropy production must be performed with the
indirect method (1), the direct method (2), or both methods. If 2 or 3 options are chosen, the intensity
of the LEC is needed for the entropy production related to the kinetic energy dissipation. If lec is set
to ‘false’, a default value is provided.

These options apply to all models provided for the multi-model ensemble computations

194 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.29.4 Variables

Default variables needed for computation of energy budgets and transports:

• hfls (atmos, monthly mean, time latitude longitude)

• hfss (atmos, monthly mean, time latitude longitude)

• rlds (atmos, monthly mean, time latitude longitude)

• rlus (atmos, monthly mean, time latitude longitude)

• rlut (atmos, monthly mean, time latitude longitude)

• rsds (atmos, monthly mean, time latitude longitude)

• rsdt (atmos, monthly mean, time latitude longitude)

• rsus (atmos, monthly mean, time latitude longitude)

• rsut (atmos, monthly mean, time latitude longitude)

Additional variables needed for water mass and latent energy computation (optional, with ‘wat’ set to ‘true’):

• pr (atmos, monthly mean, time latitude longitude)

• prsn (atmos, monthly mean, time latitude longitude)

Additional variable needed for LEC computations (optional, with ‘lec’ set to ‘true’):

• ta (atmos, daily mean, time plev latitude longitude)

• tas (atmos, daily mean, time latitude longitude)

• ua (atmos, daily mean, time plev latitude longitude)

• uas (atmos, daily mean, time latitude longitude)

• va (atmos, daily mean, time plev latitude longitude)

• vas (atmos, daily mean, time latitude longitude)

• wap (atmos, daily mean, time plev latitude longitude)

Additional variables needed for material entropy production computations with direct method (optional, with ‘entr’ set
to ‘true’ and ‘mep’ to ‘2’ or ‘3’):

• hus (atmos, monthly mean, time plev latitude longitude)

• pr (atmos, monthly mean, time latitude longitude)

• prsn (atmos, monthly mean, time latitude longitude)

• ps (atmos, monthly mean, time latitude longitude)

• ts (atmos, monthly mean, time latitude longitude)

Additional variables needed for material entropy production computations with indirect method (optional, with ‘entr’
set to ‘true’ and ‘mep’ to ‘1’ or ‘3’):

• tas (atmos, daily mean, time latitude longitude)

• uas (atmos, daily mean, time latitude longitude)

• vas (atmos, daily mean, time latitude longitude)

Depending on the user’s options, variables listed above must be provided. All other variables shall be commented in
the recipe file.

15.29. Thermodynamics of the Climate System - The Diagnostic Tool TheDiaTo v1.0 195

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.29.5 References

• Lembo V, Lunkeit F, Lucarini V (2019) A new diagnostic tool for diagnosing water, energy and entropy budgets
in climate models. Geophys Mod Dev Disc. doi:10.5194/gmd-12-3805-2019

• Liepert BG, Previdi M (2012) Inter-model variability and biases of the global water cycle in CMIP3 coupled
climate models. Environ Res Lett 7:014006. doi: 10.1088/1748-9326/7/1/014006

• Lorenz EN (1955) Available Potential Energy and the Maintenance of the General Circulation. Tellus 7:157–167.
doi: 10.1111/j.2153-3490.1955.tb01148.x

• Lucarini V, Fraedrich K, Ragone F (2010) New Results on the Thermodynamical Properties of the Climate
System. J Atmo 68:. doi: 10.1175/2011JAS3713.1

• Lucarini V, Blender R, Herbert C, et al (2014) Reviews of Geophysics Mathematical and physical ideas for
climate science. doi: 10.1002/2013RG000446

• Pascale S, Gregory JM, Ambaum M, Tailleux R (2011) Climate entropy budget of the HadCM3 atmo-
sphere–ocean general circulation model and of FAMOUS, its low-resolution version. Clim Dyn 36:1189–1206.
doi: 10.1007/s00382-009-0718-1

• Ulbrich U, Speth P (1991) The global energy cycle of stationary and transient atmospheric waves: Results from
ECMWF analyses. Meteorol Atmos Phys 45:125–138. doi: 10.1007/BF01029650

• Wild M, Folini D, Schär C, et al (2013) The global energy balance from a surface perspective. Clim Dyn
40:3107–3134. doi: 10.1007/s00382-012-1569-8

15.29.6 Example plots

15.30 Zonal
and
Merid-
ional
Means

15.30.1 Overview

This functional
diagnostic
takes two mod-
els designated
by CONTROL
and EXPER-
IMENT and
compares them
via a number
of analyses.
Optionally
a number of
observational
datasets can

196 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

be added for
processing.
There are three
types of stan-
dard analysis:
lat_lon, merid-
ional_mean
and
zonal_mean.
Each of these
diagnostics can
be run on a
separate basis
(each an entry
to diagnos-
tics/scripts).
The lat_lon
analysis pro-
duces the
following
plots: a sim-
ple global
plot for each
variable for
each dataset,
a global plot
for the differ-
ence between
CONTROL
and EXPER-
IMENT, a
global plot for
the difference
between CON-
TROL and

each of the observational datasets. The meridional_mean and zonal_mean produce variable vs coordinate (latitude
or longitude) with both CONTROL and EXPERIMENT curves in each plot, for the entire duration of time specified and
also, if the user wishes, for each season (seasonal means): winter DJF, spring MAM, summer JJA, autumn SON (by
setting seasonal_analysis: true in the recipe).

At least re-
gridding on a
common grid
for all model
and observa-
tional datasets
should be
performed in
preprocessing
(if datasets are
on different
grids). Also
note that it
is allowed to

15.30. Zonal and Meridional Means 197

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

use the same
dataset (with
varying pa-
rameters like
experiment or
ensemble or
mip) for both
CONTROL
and EXPER-
IMENT (as
long as at
least one data
parameter is
different).

15.30.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_validation.yml (CMIP5)

• recipe_validation_CMIP6.yml (CMIP6)

Diagnostics are stored in diag_scripts/

• validation.py

• shared/_validation.py

15.30.3 User settings

1. validation.py

Required settings for script

• title: title of the analysis, user defined;

• control_model: control dataset name e.g. UKESM1-0-LL;

• exper_model: experiment dataset name e.g. IPSL-CM6A-LR;

• observational_datasets: list of at least one element; if no OBS wanted comment out; e.g. [‘ERA-Interim’];

• analysis_type: use any of: lat_lon, meridional_mean, zonal_mean;

• seasonal_analysis: boolean, if seasonal means are needed e.g. true;

• save_cubes: boolean, save each of the plotted cubes in /work;

198 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.30.4 Variables

• any variable

15.30.5 Observations and reformat scripts

Note: (1) obs4MIPs or OBS or ana4mips can be used.

• any observations

• it is important to note that all observational data should go through the same preprocessing as model data

15.30.6 References

• none, basic technical analysis

15.30.7 Example plots

Fig. 69: Meridional seasonal mean for winter (DJF) comparison beween CMIP6 UKESM1 and IPSL models.

15.30. Zonal and Meridional Means 199

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 70: Zonal seasonal mean for winter (DJF) comparison beween CMIP6 UKESM1 and IPSL models.

15.31 Radiation Budget

15.31.1 Overview

The aim of monitoring the energy budget is to understand the (im)balance of energy flux between the atmosphere and
the surface of a model due to its link with the hydrological cycle and climate change.

This diagnostic analyses the radiation budget by separating top-of-atmosphere fluxes into clear-sky and cloud forcing
components, and surface fluxes into downwelling and upwelling components. Model predictions are compared against
three observational estimates, one of which (Stephens et al. 2012) includes uncertainty estimates. When the black error
bars overlap the zero line, the model is consistent with observations according to Stephens et al. (2012).

15.31.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_radiation_budget.yml

Diagnostics are stored in esmvaltool/diag_scripts/radiation_budget/

• radiation_budget.py: Plot the global radiation budget.

• seasonal_radiation_budget.py: Write the global climatological seasonal radiation budget to a text file.

200 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.31.3 User settings in recipe

None

15.31.4 Variables

• rss (atmos, monthly mean, longitude latitude time)

• rsdt (atmos, monthly mean, longitude latitude time)

• rsut (atmos, monthly mean, longitude latitude time)

• rsutcs (atmos, monthly mean, longitude latitude time)

• rsds (atmos, monthly mean, longitude latitude time)

• rls (atmos, monthly mean, longitude latitude time)

• rlut (atmos, monthly mean, longitude latitude time)

• rlutcs (atmos, monthly mean, longitude latitude time)

• rlds (atmos, monthly mean, longitude latitude time)

• hfss (atmos, monthly mean, longitude latitude time)

• hfls (atmos, monthly mean, longitude latitude time)

15.31.5 Observations and reformat scripts

Note: (1) obs4MIPs data can be used directly without any preprocessing; (2) see headers of reformat scripts for non-
obs4MIPs data for download instructions.

• CERES-EBAF (rlut, rlutcs, rsut, rsutcs - obs4MIPs)

• Demory observations can be found in esmvaltool/diag_scripts/radiation_budget/Demory_et_al_2014_obs_Energy_Budget.yml
and are from Figure 2 in Demory et al. (2014).

• Stephens observations can be found in esmvaltool/diag_scripts/radiation_budget/Stephens_et_al_2012_obs_Energy_Budget.yml
from figure 1b in Stephens et al. (2012).

15.31.6 References

• Demory, ME., Vidale, P.L., Roberts, M.J. et al. The role of horizontal resolution in simulating drivers of the
global hydrological cycle. Clim Dyn 42, 2201–2225 (2014). https://doi.org/10.1007/s00382-013-1924-4

• Stephens, G., Li, J., Wild, M. et al. An update on Earth’s energy balance in light of the latest global observations.
Nature Geosci 5, 691–696 (2012). https://doi.org/10.1038/ngeo1580

15.31. Radiation Budget 201

https://doi.org/10.1007/s00382-013-1924-4
https://doi.org/10.1038/ngeo1580

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.31.7 Example plots

Fig. 71: Radiation budget for UKESM1-0-LL

15.32 AOD AeroNET Assess

15.32.1 Overview

This diagnostic evaluates model aerosol optical depth (AOD) against ground based observations from the AeroNET
measurement network. Monthly mean AOD data is downloaded from the AeroNET website and formatted (CMORized)
using the AERONET downloader and formatter within ESMValTool.

Multiannual seasonal means are calculated from the model output and compared with a multiannual seasonal mean
climatology generated from AeroNET observational data. At each AeroNET station the data are screened for validity
according to the following default criteria:

• 1. Monthly means must be generated from at least one AOD observation in that month.

• 2. Seasonal means for DJF, MAM, JJA and SON must be calculated from three monthly means, i.e. a monthly
mean from December January and Feburary.

• 3. For a given year to be valid, there must be a seasonal mean for each climate season i.e. DJF, MAM, JJA and
SON.

• 4. For a multiannual seasonal means there must be at least five seasonaal means over the time range of interest.

202 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

NOTE: The code is designed to be flexible and the default criteria can be changed according to the user’s requirements
(see the user settings below).

The evaluation is visualised by plotting model output as 2D filled contours and overlaying AeroNET observations
at model grid cells co-located with the AeroNET measurement stations. Statistical data (root mean square error) is
generated using AeroNET observations at model grid cells co-located with the AeroNET measurement stations.

15.32.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_aod_aeronet_assess.yml

Diagnostics are stored in esmvaltool/diag_scripts/aerosols/

• aod_aeronet_assess.py: Plot the AOD evaluation.

• aero_utils.py: Utility functions commonly used by aerosol assessment routines.

15.32.3 User settings in recipe

1. Script aod_aeronet_assess.py

Required settings for script

• wavel: The wavelength of interest for the evaluation, currently set up for 440nm

• min_days_per_mon: The minimum number of days used to calculate the AOD monthly mean

• min_mon_per_seas: The minimum number of seasons used to calculate each seasonal mean. This must be
between 1 and 3.

• min_seas_per_year: The minimum number of seasonal means in each year. This must be between 1 and 4.

• min_seas_per_clim: The minimum number of seasonal means used to calculate the multiannual seasonal
mean. This must be btween 1 and the number of years of available AeroNET data.

Optional settings for script

• None

Required settings for variables

• None

Optional settings for variables

• None

Required settings for preprocessor

• None

Optional settings for preprocessor

• None

Color tables

• brewer_Spectral_11

15.32. AOD AeroNET Assess 203

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

15.32.4 Variables

• od440aer (atmos, monthly mean, longitude latitude time)

15.32.5 Observations and reformat scripts

• Note: (1) obs4MIPs data can be used directly without any preprocessing; (2) see headers of reformat scripts for
non-obs4MIPs data for download instructions.

• The AeroNET data is downloaded from the AeroNET website using the downloader:

$ esmvaltool data download AERONET.

• The AeroNET data is formatteed (CMORized) using the formatter:

$ esmvaltool data format AERONET.

15.32.6 References

• Holben B.N., T.F.Eck, I.Slutsker, D.Tanre, J.P.Buis, A.Setzer, E.Vermote, J.A.Reagan, Y.Kaufman, T.Nakajima,
F.Lavenu, I.Jankowiak, and A.Smirnov, 1998: AERONET - A federated instrument network and data archive for
aerosol characterization, Rem. Sens. Environ., 66, 1-16.

• Holben, B.N., D.Tanre, A.Smirnov, T.F.Eck, I.Slutsker, N.Abuhassan, W.W.Newcomb, J.Schafer, B.Chatenet,
F.Lavenue, Y.J.Kaufman, J.Vande Castle, A.Setzer, B.Markham, D.Clark, R.Frouin, R.Halthore, A.Karnieli,
N.T.O’Neill, C.Pietras, R.T.Pinker, K.Voss, and G.Zibordi, 2001: An emerging ground-based aerosol climatol-
ogy: Aerosol Optical Depth from AERONET, J. Geophys. Res., 106, 12 067-12 097.

• Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse,
M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse, J., Carslaw, K. S., Dalvi, M., Folberth, G. A.,
Glover, M., Grosvenor, D. P., Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Mollard,
J., O’Connor, F. M., Palmiéri, J., Reddington, C., Rumbold, S. T., Richardson, M., Schitgens, N. A. J., Stier,
P., Stringer, M., Tang, Y., Walton, J., Woodward, S., and Yool. A.: Description and evaluation of aerosol in
UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., 13, 6383–6423, 2020

15.32.7 Example plots

204 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 72: Evaluation of AOD at 440 nm from UKESM1 historical ensemble member r1i1p1f2 against the AeroNET
climatology from ground-based observations for Dec-Jan-Feb. The multiannual seasonal mean is calculated for the
model data for the period 1994-2014. The model output is overlaid with the observational climatology.

15.32. AOD AeroNET Assess 205

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 73: Evaluation of AOD at 440 nm from UKESM1 historical ensemble member r1i1p1f2 against the AeroNET
climatology from ground-based observations for Mar_Apr_May. The multiannual seasonal mean is calculated for the
model data for the period 1994-2014. The model output is overlaid with the observational climatology.

206 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 74: Evaluation of AOD at 440 nm from UKESM1 historical ensemble member r1i1p1f2 against the AeroNET
climatology from ground-based observations for Jun-Jul-Aug. The multiannual seasonal mean is calculated for the
model data for the period 1994-2014. The model output is overlaid with the observational climatology.

15.32. AOD AeroNET Assess 207

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 75: Evaluation of AOD at 440 nm from UKESM1 historical ensemble member r1i1p1f2 against the AeroNET
climatology from ground-based observations for Sep-Oct-Nov. The multiannual seasonal mean is calculated for the
model data for the period 1994-2014. The model output is overlaid with the observational climatology.

208 Chapter 15. Atmosphere

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 76: Evaluation of AOD at 440 nm from UKESM1 historical ensemble member r1i1p1f2 against the AeroNET
climatology from ground-based observations for Dec-Jan-Feb, Mar_Apr_May, Jun-Jul-Aug and Sep-Oct-Nov. The
multiannual seasonal mean is calculated for the model data for the period 1994-2014.

15.32. AOD AeroNET Assess 209

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

210 Chapter 15. Atmosphere

CHAPTER

SIXTEEN

CLIMATE METRICS

16.1 Performance metrics for essential climate parameters

16.1.1 Overview

The goal is to create a standard recipe for the calculation of performance metrics to quantify the ability of the models to
reproduce the climatological mean annual cycle for selected “Essential Climate Variables” (ECVs) plus some additional
corresponding diagnostics and plots to better understand and interpret the results.

The recipe can be used to calculate performance metrics at different vertical levels (e.g., 5, 30, 200, 850 hPa as in
Gleckler et al. (2008) and in different regions. As an additional reference, we consider Righi et al. (2015).

16.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_perfmetrics_CMIP5.yml

• recipe_perfmetrics_CMIP5_4cds.yml

• recipe_perfmetrics_land_CMIP5.yml

Diagnostics are stored in diag_scripts/perfmetrics/

• main.ncl: calculates and (optionally) plots annual/seasonal cycles, zonal means, lat-lon fields and time-lat-lon
fields. The calculated fields can also be plotted as difference w.r.t. a given reference dataset. main.ncl also
calculates RMSD, bias and taylor metrics. Input data have to be regridded to a common grid in the preprocessor.
Each plot type is created by a separated routine, as detailed below.

• cycle.ncl: creates an annual/seasonal cycle plot.

• zonal.ncl: creates a zonal (lat-pressure) plot.

• latlon.ncl: creates a lat-lon plot.

• cycle_latlon.ncl: precalculates the metrics for a time-lat-lon field, with different options for normalization.

• collect.ncl: collects and plots the metrics previously calculated by cycle_latlon.ncl.

211

http://dx.doi.org/10.1029/2007JD008972
https://doi.org/10.5194/gmd-8-733-2015

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

16.1.3 User settings in recipe

1. Script main.ncl

Required settings (scripts)

• plot_type: cycle (time), zonal (plev, lat), latlon (lat, lon), cycle_latlon (time, lat, lon), cycle_zonal (time,
plev, lat)

• time_avg: type of time average (monthlyclim, seasonalclim, annualclim)

• region: selected region (global, trop, nhext, shext, nhtrop, shtrop, nh, sh, nhmidlat, shmidlat, nhpolar,
shpolar, eq)

Optional settings (scripts)

• styleset: for plot_type cycle only (cmip5, righi15gmd, cmip6, default)

• plot_stddev: for plot_type cycle only, plots standard deviation as shading

• legend_outside: for plot_type cycle only, plots the legend in a separate file

• t_test: for plot_type zonal or latlon, calculates t-test in difference plots (default: False)

• conf_level: for plot_type zonal or latlon, adds the confidence level for the t-test to the plot (default: False)

• projection: map projection for plot_type latlon (default: CylindricalEquidistant)

• plot_diff: draws difference plots (default: False)

• calc_grading: calculates grading metrics (default: False)

• stippling: uses stippling to mark statistically significant differences (default: False = mask out non-
significant differences in gray)

• show_global_avg: diplays the global avaerage of the input field as string at the top-right of lat-lon plots
(default: False)

• annots: choose the annotation style, e.g. `alias` which would display the alias of the dataset as title
(applies to plot_type zonal and cycle_zonal)

• metric: chosen grading metric(s) (if calc_grading is True)

• normalization: metric normalization (for RMSD and BIAS metrics only)

• abs_levs: list of contour levels for absolute plot

• diff_levs: list of contour levels for difference plot

• zonal_cmap: for plot_type zonal only, chosen color table (default: “amwg_blueyellowred”)

• zonal_ymin: for plot_type zonal only, minimum pressure level on the y-axis (default: 5. hPa)

• latlon_cmap: for plot_type latlon only, chosen color table (default: “amwg_blueyellowred”)

• plot_units: plotting units (if different from standard CMOR units)

• add_tropopause: adds an outline of a climatological tropopause to the zonal plot (default: False)

Special optional plot configurations

It is possible to make some specific customizations to the plots (zonal only).

This includes for example specific tickmark labels of the axes.

Those special customizations can be done by adding ncl plotting resources combined with prefix res_ as optional
settings of the main script in the recipe.

212 Chapter 16. Climate metrics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note that this requires to be familiar with the ncl plotting routines for pressure vs height plots (https://www.ncl.
ucar.edu/Document/Graphics/Interfaces/gsn_csm_pres_hgt.shtml) and the corresponding resources.

The following shows an example on customizing the latitude tickmarks so that a degree sign and and empty space
is used for the labels:

copernicus style of latitude tickmarks
res_tmXBMode: "Explicit"
res_tmXBValues: [-60, -30, 0, 30, 60]
res_tmXBLabels: ["60~F35~J~F21~ S", "30~F35~J~F21~ S", "0~F35~J", "30~F35~J~F21~ N",
→˓ "60~F35~J~F21~ N"]

Required settings (variables)

• reference_dataset: reference dataset to compare with (usually the observations).

Optional settings (variables)

• alternative_dataset: a second dataset to compare with.

These settings are passed to the other scripts by main.ncl, depending on the selected plot_type.

1. Script collect.ncl

Required settings (scripts)

• metric: selected metric (RMSD, BIAS or taylor)

• label_bounds: for RMSD and BIAS metrics, min and max of the labelbar

• label_scale: for RMSD and BIAS metrics, bin width of the labelbar

• colormap: for RMSD and BIAS metrics, color table of the labelbar

Optional settings (scripts)

• label_lo: adds lower triange for values outside range

• label_hi: adds upper triange for values outside range

• cm_interval: min and max color of the color table

• cm_reverse: reverses the color table

• sort: sorts datasets in alphabetic order (excluding MMM)

• diag_order: sort diagnostics in a specific order (name = ‘diagnostic’-‘region’)

• title: plots title

• scale_font: scaling factor applied to the default font size

• disp_values: switches on/off the grading values on the plot

• disp_rankings: switches on/off the rankings on the plot

• rank_order: displays rankings in increasing (1) or decreasing (-1) order

16.1. Performance metrics for essential climate parameters 213

https://www.ncl.ucar.edu/Document/Graphics/Interfaces/gsn_csm_pres_hgt.shtml
https://www.ncl.ucar.edu/Document/Graphics/Interfaces/gsn_csm_pres_hgt.shtml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

16.1.4 Variables

1. recipe_perfmetrics_CMIP5.yml

• clt (atmos, monthly mean, longitude latitude time)

• hus (atmos, monthly mean, longitude latitude lev time)

• od550aer, od870aer, od550abs, od550lt1aer (aero, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

• rlut, rlutcs, rsut, rsutcs (atmos, monthly mean, longitude latitude time)

• sm (land, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude lev time)

• tas (atmos, monthly mean, longitude latitude time)

• toz (atmos, monthly mean, longitude latitude time)

• ts (atmos, monthly mean, longitude latitude time)

• ua (atmos, monthly mean, longitude latitude lev time)

• va (atmos, monthly mean, longitude latitude lev time)

• zg (atmos, monthly mean, longitude latitude lev time)

2. recipe_perfmetrics_land_CMIP5.yml

• sm (land, monthly mean, longitude latitude time)

• nbp (land, monthly mean, longitude latitude time)

• gpp (land, monthly mean, longitude latitude time)

• lai (land, monthly mean, longitude latitude time)

• fgco2 (ocean, monthly mean, longitude latitude time)

• et (land, monthly mean, longitude latitude time)

• rlus, rlds, rsus, rdsd (atmos, monthly mean, longitude latitude time)

16.1.5 Observations and reformat scripts

The following list shows the currently used observational data sets for this recipe with their variable names and
the reference to their respective reformat scripts in parentheses. Please note that obs4MIPs data can be used di-
rectly without any reformating. For non-obs4MIPs data use esmvaltool data info DATASET or see headers of
cmorization scripts (in /esmvaltool/cmorizers/data/formatters/datasets/) for downloading and processing instructions.
#. recipe_perfmetrics_CMIP5.yml

• AIRS (hus - obs4MIPs)

• CERES-EBAF (rlut, rlutcs, rsut, rsutcs - obs4MIPs)

• ERA-Interim (tas, ta, ua, va, zg, hus - esmvaltool/cmorizers/data/formatters/datasets/era-interim.py)

• ESACCI-AEROSOL (od550aer, od870aer, od550abs, od550lt1aer - esmvaltool/cmorizers/data/formatters/datasets/esacci-
aerosol.ncl)

• ESACCI-CLOUD (clt - esmvaltool/cmorizers/data/formatters/datasets/esacci-cloud.ncl)

• ESACCI-OZONE (toz - esmvaltool/cmorizers/data/formatters/datasets/esacci-ozone.ncl)

214 Chapter 16. Climate metrics

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/datasets/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• ESACCI-SOILMOISTURE (sm - esmvaltool/cmorizers/data/formatters/datasets/esacci_soilmoisture.ncl)

• ESACCI-SST (ts - esmvaltool/ucmorizers/data/formatters/datasets/esacci-sst.py)

• GPCP-SG (pr - obs4MIPs)

• HadISST (ts - esmvaltool/cmorizers/data/formatters/datasets/hadisst.ncl)

• MODIS (od550aer - esmvaltool/cmorizers/data/formatters/datasets/modis.ncl)

• NCEP-NCAR-R1 (tas, ta, ua, va, zg - esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py)

• NIWA-BS (toz - esmvaltool/cmorizers/data/formatters/datasets/niwa_bs.ncl)

• PATMOS-x (clt - esmvaltool/cmorizers/data/formatters/datasets/patmos_x.ncl)

1. recipe_perfmetrics_land_CMIP5.yml

• CERES-EBAF (rlus, rlds, rsus, rsds - obs4MIPs)

• ESACCI-SOILMOISTURE (sm - esmvaltool/cmorizers/data/formatters/datasets/esacci_soilmoisture.ncl)

• FLUXCOM (gpp - esmvaltool/cmorizers/data/formatters/datasets/fluxcom.py)

• JMA-TRANSCOM (nbp, fgco2 - esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py)

• LAI3d (lai - esmvaltool/cmorizers/data/formatters/datasets/lai3g.py)

• LandFlux-EVAL (et - esmvaltool/cmorizers/data/formatters/datasets/landflux_eval.py)

• Landschuetzer2016 (fgco2 - esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2016.py)

• MTE (gpp - esmvaltool/cmorizers/data/formatters/datasets/mte.py)

16.1.6 References

• Gleckler, P. J., K. E. Taylor, and C. Doutriaux, Performance metrics for climate models, J. Geophys. Res., 113,
D06104, doi: 10.1029/2007JD008972 (2008).

• Righi, M., Eyring, V., Klinger, C., Frank, F., Gottschaldt, K.-D., Jöckel, P., and Cionni, I.: Quantitative evalu-
ation of oone and selected climate parameters in a set of EMAC simulations, Geosci. Model Dev., 8, 733, doi:
10.5194/gmd-8-733-2015 (2015).

16.1.7 Example plots

16.2 Single Model Performance Index (SMPI)

16.2.1 Overview

This diagnostic calculates the Single Model Performance Index (SMPI) following Reichler and Kim (2008). The
SMPI (called “I2”) is based on the comparison of several different climate variables (atmospheric, surface and oceanic)
between climate model simulations and observations or reanalyses, and it focuses on the validation of the time-mean
state of climate. For I2 to be determined, the differences between the climatological mean of each model variable and
observations at each of the available data grid points are calculated, and scaled to the interannual variance from the
validating observations. This interannual variability is determined by performing a bootstrapping method (random
selection with replacement) for the creation of a large synthetic ensemble of observational climatologies. The results
are then scaled to the average error from a reference ensemble of models, and in a final step the mean over all climate
variables and one model is calculated. The plot shows the I2 values for each model (orange circles) and the multi-
model mean (black circle), with the diameter of each circle representing the range of I2 values encompassed by the

16.2. Single Model Performance Index (SMPI) 215

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Annual cycle of globally averaged temperature at 850 hPa (time period 1980-2005) for different CMIP5 models
(historical simulation) (thin colored lines) in comparison to ERA-Interim (thick yellow line) and NCEP-NCAR-R1
(thick black dashed line) reanalysis data.

5th and 95th percentiles of the bootstrap ensemble. The I2 values vary around one, with values greater than one for
underperforming models, and values less than one for more accurate models.

Note: The SMPI diagnostic needs all indicated variables from all added models for exactly the same time period to be
calculated correctly. If one model does not provide a specific variable, either that model cannot be added to the SMPI
calculations, or the missing variable has to be removed from the diagnostics all together.

16.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_smpi.yml

• recipe_smpi_4cds.yml

Diagnostics are stored in diag_scripts/perfmetrics/

• main.ncl: calculates and (optionally) plots annual/seasonal cycles, zonal means, lat-lon fields and time-lat-lon
fields. The calculated fields can also be plotted as difference w.r.t. a given reference dataset. main.ncl also
calculates RMSD, bias and taylor metrics. Input data have to be regridded to a common grid in the preprocessor.
Each plot type is created by a separated routine, as detailed below.

• cycle_zonal.ncl: calculates single model performance index (Reichler and Kim, 2008). It requires fields precal-
culated by main.ncl.

• collect.ncl: collects the metrics previously calculated by cycle_latlon.ncl and passes them to the plotting func-
tions.

216 Chapter 16. Climate metrics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 2: Taylor diagram of globally averaged temperature at 850 hPa (ta) and longwave cloud radiative effect (lwcre) for
different CMIP5 models (historical simulation, 1980-2005). Reference data (REF) are ERA-Interim for temperature
(1980-2005) and CERES-EBAF (2001-2012) for longwave cloud radiative effect.

16.2. Single Model Performance Index (SMPI) 217

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: Difference in annual mean of zonally averaged temperature (time period 1980-2005) between the CMIP5 model
MPI-ESM-MR (historical simulation) and ERA-Interim. Stippled areas indicdate differences that are statistically sig-
nificant at a 95% confidence level.

218 Chapter 16. Climate metrics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 4: Annual mean (2001-2012) of the shortwave cloud radiative effect from CERES-EBAF.

16.2.3 User settings

1. perfmetrics/main.ncl

Required settings for script

• plot_type: only “cycle_latlon (time, lat, lon)” and “cycle_zonal (time, plev, lat)” available for SMPI; usage
is defined in the recipe and is dependent on the used variable (2D variable: cycle_latlon, 3D variable:
cycle_zonal)

• time_avg: type of time average (only “yearly” allowed for SMPI, any other settings are not supported for
this diagnostic)

• region: selected region (only “global” allowed for SMPI, any other settings are not supported for this
diagnostic)

• normalization: metric normalization (“CMIP5” for analysis of CMIP5 simulations; to be adjusted accord-
ingly for a different CMIP phase)

• calc_grading: calculates grading metrics (has to be set to “true” in the recipe)

• metric: chosen grading metric(s) (if calc_grading is True; has to be set to “SMPI”)

• smpi_n_bootstrap: number of bootstrapping members used to determine uncertainties on model-reference
differences (typical number of bootstrapping members: 100)

Required settings for variables

• reference_dataset: reference dataset to compare with (usually the observations).

These settings are passed to the other scripts by main.ncl, depending on the selected plot_type.

16.2. Single Model Performance Index (SMPI) 219

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 5: Relative space-time root-mean-square deviation (RMSD) calculated from the climatological seasonal cycle of
CMIP5 simulations. A relative performance is displayed, with blue shading indicating better and red shading indicating
worse performance than the median of all model results. A diagonal split of a grid square shows the relative error with
respect to the reference data set (lower right triangle) and the alternative data set (upper left triangle). White boxes are
used when data are not available for a given model and variable.

220 Chapter 16. Climate metrics

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

1. collect.ncl

Required settings for script

• metric: selected metric (has to be “SMPI”)

16.2.4 Variables

• hfds (ocean, monthly mean, longitude latitude time)

• hus (atmos, monthly mean, longitude latitude lev time)

• pr (atmos, monthly mean, longitude latitude time)

• psl (atmos, monthly mean, longitude latitude time)

• sic (ocean-ice, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude lev time)

• tas (atmos, monthly mean, longitude latitude time)

• tauu (atmos, monthly mean, longitude latitude time)

• tauv (atmos, monthly mean, longitude latitude time)

• tos (ocean, monthly mean, longitude latitude time)

• ua (atmos, monthly mean, longitude latitude lev time)

• va (atmos, monthly mean, longitude latitude lev time)

16.2.5 Observations and reformat scripts

The following list shows the currently used observational data sets for this recipe with their variable names and the
reference to their respective reformat scripts in parentheses. Please note that obs4MIPs data can be used directly
without any reformatting. For non-obs4MIPs data use esmvaltool data info DATASET or see headers of cmorization
scripts for downloading and processing instructions.

• ERA-Interim (hfds, hus, psl, ta, tas, tauu, tauv, ua, va - esmvaltool/data/formatters/datasets/era-interim.py)

• HadISST (sic, tos - esmvaltool/data/formatters/datasets/hadisst.ncl)

• GPCP-V2.2 (pr - obs4MIPs)

16.2.6 References

• Reichler, T. and J. Kim, How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89,
303-311, doi: 10.1175/BAMS-89-3-303, 2008.

16.2. Single Model Performance Index (SMPI) 221

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

16.2.7 Example plots

Fig. 6: Performance index I2 for individual models (circles). Circle sizes indicate the length of the 95% confidence
intervals. The black circle indicates the I2 of the multi-model mean (similar to Reichler and Kim (2008), Figure 1).

222 Chapter 16. Climate metrics

CHAPTER

SEVENTEEN

FUTURE PROJECTIONS

17.1 Climate model Weighting by Independence and Performance
(ClimWIP)

17.1.1 Overview

Projections of future climate change are often based on multi-model ensembles of global climate models such as CMIP6.
To condense the information from these models they are often combined into probabilistic estimates such as mean and
a related uncertainty range (such as the standard deviation). However, not all models in a given multi-model ensemble
are always equally ‘fit for purpose’ and it can make sense to weight models based on their ability to simulate observed
quantities related to the target. In addition, multi-model ensembles, such as CMIP can contain several models based
on a very similar code-base (sharing of components, only differences in resolution etc.) leading to complex inter-
dependencies between the models. Adjusting for this by weighting models according to their independence helps to
adjust for this.

This recipe implements the Climate model Weighting by Independence and Performance (ClimWIP) method. It
is based on work by Knutti et al. (2017), Lorenz et al. (2018), Brunner et al. (2019), Merrifield et al. (2020), Brunner
et al. (2020). Weights are calculated based on historical model performance in several metrics (which can be defined
by the performance_contributions parameter) as well as by their independence to all the other models in the
ensemble based on their output fields in several metrics (which can be defined by the independence_contributions
parameter). These weights can be used in subsequent evaluation scripts (some of which are implemented as part of this
diagnostic).

Note: this recipe is still being developed! A more comprehensive (yet older) implementation can be found on GitHub:
https://github.com/lukasbrunner/ClimWIP

17.1.2 Using shapefiles for cutting scientific regions

To use shapefiles for selecting SREX or AR6 regions by name it is necessary to download them, e.g., from the sources
below and reference the file using the shapefile parameter. This can either be a absolute or a relative path. In the example
recipes they are stored in a subfolder shapefiles in the auxiliary_data_dir (with is specified in the config-user.yml).

SREX regions (AR5 reference regions): http://www.ipcc-data.org/guidelines/pages/ar5_regions.html

AR6 reference regions: https://github.com/SantanderMetGroup/ATLAS/tree/v1.6/reference-regions

223

https://doi.org/10.1002/2016GL072012
https://doi.org/10.1029/2017JD027992
https://doi.org/10.1088/1748-9326/ab492f
https://doi.org/10.5194/esd-11-807-2020
https://doi.org/10.5194/esd-11-995-2020
https://doi.org/10.5194/esd-11-995-2020
https://github.com/lukasbrunner/ClimWIP
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
http://www.ipcc-data.org/guidelines/pages/ar5_regions.html
https://github.com/SantanderMetGroup/ATLAS/tree/v1.6/reference-regions

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.1.3 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_climwip_test_basic.yml: Basic sample recipe using only a few models

• recipe_climwip_test_performance_sigma.yml: Advanced sample recipe for testing the perfect model test
in particular

• recipe_climwip_brunner2019_med.yml: Slightly modified results for one region from Brunner et al. (2019)
(to change regions see below)

• recipe_climwip_brunner2020esd.yml: Slightly modified results for Brunner et al. (2020)

Diagnostics are stored in esmvaltool/diag_scripts/weighting/climwip/

• main.py: Compute weights for each input dataset

• calibrate_sigmas.py: Compute the sigma values on the fly

• core_functions.py: A collection of core functions used by the scripts

• io_functions.py: A collection of input/output functions used by the scripts

Plot scripts are stored in esmvaltool/diag_scripts/weighting/

• weighted_temperature_graph.py: Show the difference between weighted and non-weighted temperature
anomalies as time series.

• weighted_temperature_map.py: Show the difference between weighted and non-weighted temperature
anomalies on a map.

• plot_utilities.py: A collection of functions used by the plot scripts.

17.1.4 User settings in recipe

1. Script main.py

Required settings for script

• performance_sigma xor calibrate_performance_sigma: If
performance_contributions is given exactly one of the two has to be given. Other-
wise they can be skipped or not set.

– performance_sigma: float setting the shape parameter for the performance weights cal-
culation (determined offline).

– calibrate_performance_sigma: dictionary setting the performance sigma calibration.
Has to contain at least the key-value pair specifying target: variable_group. Optional
parameters for adjusting the calibration are not yet implemented. Warning: It is highly rec-
ommended to visually inspect the graphical output of the calibration to check if everything
worked as intended. In case the calibration fails, the best performance sigma will still be
indicated in the figure (see example Fig. 5 below) but not automatically picked - the user
can decide to use it anyway by setting it in the recipe (not recommenced).

• independence_sigma: float setting the shape parameter for the independence weights calcu-
lation (determined offline). Can be skipped or not set if independence_contributions is
skipped or not set. A on-the-fly calculation of the independence sigma is not yet implemented

• performance_contributions: dictionary where the keys represent the variable groups to
be included in the performance calculation. The values give the relative contribution of
each group, with 0 being equivalent to not including the group. Can be skipped or not set

224 Chapter 17. Future projections

https://doi.org/10.1088/1748-9326/ab492f
https://doi.org/10.5194/esd-11-995-2020

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

then weights will be based purely on model independence (this is mutually exclusive with
independence_contributions being skipped or not set).

• independence_contributions: dictionary where the keys represent the variable groups
to be included in the independence calculation. The values give the relative contribution
of each group, with 0 being equivalent to not including the group. If skipped or not
set weights will be based purely on model performance (this is mutually exclusive with
performance_contributions being skipped or not set).

• combine_ensemble_members: set to true if ensemble members of the same model should be
combined during the processing (leads to identical weights for all ensemble members of the
same model). Recommended if running with many (>10) ensemble members per model. If
set to false, the model independence weighting will still (partly) account for the (very high)
dependence between members of the same model. The success of this will depend on the case
and the selected parameters. See Merrifield et al. (2020) for an in-depth discussion.

• obs_data: list of project names to specify which are the observational data. The rest is assumed
to be model data.

Required settings for variables * This script takes multiple variables as input as long as they’re avail-
able for all models * start_year: provide the period for which to compute performance and indepen-
dence. * end_year: provide the period for which to compute performance and independence. * mip:
typically Amon * preprocessor: e.g., climatological_mean * additional_datasets: this should be
*obs_data and is only needed for variables used in performance_contributions.

Required settings for preprocessor

• Different combinations of preprocessor functions can be used, but the end result should always
be aggregated over the time dimension, i.e. the input for the diagnostic script should be 2d
(lat/lon).

Optional settings for preprocessor

• extract_region or extract_shape can be used to crop the input data.

• extract_season can be used to focus on a single season.

• different climate statistics can be used to calculate mean, (detrended) std_dev, or trend.

2. Script weighted_temperature_graph.py

Required settings for script

• ancestors: must include weights from previous diagnostic

• weights: the filename of the weights: ‘weights.nc’

• settings: a list of plot settings: start_year (integer), end_year (integer),
central_estimate (‘mean’ or integer between 0 and 100 giving the percentile), lower_bound
(integer between 0 and 100), upper_bound (integer between 0 and 100)

Required settings for variables

• This script only takes temperature (tas) as input

• start_year: provide the period for which to plot a temperature change graph.

• end_year: provide the period for which to plot a temperature change graph.

• mip: typically Amon

• preprocessor: temperature_anomalies

Required settings for preprocessor

17.1. Climate model Weighting by Independence and Performance (ClimWIP) 225

https://doi.org/10.5194/esd-11-807-2020

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Different combinations of preprocessor functions can be used, but the end result should always
be aggregated over the latitude and longitude dimensions, i.e. the input for the diagnostic script
should be 1d (time).

Optional settings for preprocessor

• Can be a global mean or focus on a point, region or shape

• Anomalies can be calculated with respect to a custom reference period

• Monthly, annual or seasonal average/extraction can be used

3. Script weighted_temperature_map.py

Required settings for script

• ancestors: must include weights from previous diagnostic

• weights: the filename of the weights: ‘weights_combined.nc’

Optional settings for script

• model_aggregation: how to aggregate the models: mean (default), median, integer between 0 and
100 representing a percentile

• xticks: positions to draw xticks at

• yticks: positions to draw yticks at

Required settings for variables

• This script takes temperature (tas) as input

• start_year: provide the period for which to plot a temperature change graph.

• end_year: provide the period for which to plot a temperature change graph.

• mip: typically Amon

• preprocessor: temperature_anomalies

Optional settings for variables

• A second variable is optional: temperature reference (tas_reference). If given, maps of temperature
change to the reference are drawn, otherwise absolute temperatures are drawn.

• tas_reference takes the same fields as tas

17.1.5 Updating the Brunner et al. (2019) recipe for new regions

recipe_climwip_brunner2019_med.yml demonstrates a very similar setup to Brunner et al. (2019) but only for
one region (the Mediterranean). To calculated weights for other regions the recipe needs to be updated in two places:

extract_shape:
shapefile: shapefiles/srex.shp
decomposed: True
method: contains
crop: true
ids:
- 'South Europe/Mediterranean [MED:13]'

The ids field takes any valid SREX region key or any valid AR6 region key (depending on the shapefile). Note that
this needs to be the full string here (not the abbreviation).

226 Chapter 17. Future projections

https://doi.org/10.1088/1748-9326/ab492f
http://www.ipcc-data.org/guidelines/pages/ar5_regions.html
https://github.com/SantanderMetGroup/ATLAS/tree/v1.6/reference-regions

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

The sigma parameters need to be set according to the selected region. The sigma values for the regions used in Brunner
et al. (2019) can be found in table 1 of the paper.

performance_sigma: 0.546
independence_sigma: 0.643

Warning: if a new region is used the sigma values should be recalculated! This can be done by commenting out the
sigma values (lines above) and commenting in the blocks defining the target of the weighting:

CLIM_future:
short_name: tas
start_year: 2081
end_year: 2100
mip: Amon
preprocessor: region_mean

as well as

calibrate_performance_sigma:
target: CLIM_future

In this case ClimWIP will attempt to perform an on-the-fly perfect model test to estimate the lowest performance sigma
(strongest weighting) which does not lead to overconfident weighting. Important: the user should always check the
test output for unusual behaviour. For most cases the performance sigma should lie around 0.5. In cases where the
perfect model test fails (no appropriate performance sigma can be found) the test will still produce graphical output
before raising a ValueError. The user can then decide to manually set the performance sigma to the most appropriate
value (based on the output) - this is not recommended and should only be done with care! The perfect model test
failing can be a hint for one of the following: (1) not enough models in the ensemble for a robust distribution (normally
>20 models should be used) or (2) the performance metrics used are not relevant for the target.

An on-the-fly calibration for the independence sigma is not yet implemented. For most cases we recommend to use the
same setup as in Brunner et al. (2020) or Merrifield et al. (2020) (global or hemispherical temperature and sea level
pressure climatologies as metrics and independence sigma values between 0.2 and 0.5).

Warning: if a new region or target is used the provided metrics to establish the weights might no longer be appropriate.
Using unrelated metrics with no correlation and/or physical relation to the target will reduce the skill of the weighting
and ultimately render it useless! In such cases the perfect model test might fail. This means the performance metrics
should be updated.

17.1.6 Brunner et al. (2020) recipe and example independence weighting

recipe_climwip_brunner2020esd.yml implements the weighting used in Brunner et al. (2020). Compared to
the paper there are minor differences due to two models which had to be excluded due to errors in the ESMValTool
pre-processor: CAMS-CSM1-0 and MPI-ESM1-2-HR (r2) as well as the use of only one observational dataset (ERA5).

The recipe uses an additional step between pre-processor and weight calculation to calculate anomalies relative to
the global mean (e.g., tas_ANOM = tas_CLIM - global_mean(tas_CLIM)). This means we do not use the absolute
temperatures of a model as performance criterion but rather the horizontal temperature distribution (see Brunner et al.
2020 for a discussion).

This recipe also implements a somewhat general independence weighting for CMIP6. In contrast to model performance
(which should be case specific) model independence can largely be seen as only dependet on the multi-model ensemble
in use but not the target variable or region. This means that the configuration used should be valid for similar subsets
of CMIP6 as used in this recipe:

17.1. Climate model Weighting by Independence and Performance (ClimWIP) 227

https://doi.org/10.1088/1748-9326/ab492f
https://doi.org/10.1088/1748-9326/ab492f
https://doi.org/10.5194/esd-11-995-2020
https://doi.org/10.5194/esd-11-807-2020
https://doi.org/10.5194/esd-11-995-2020
https://doi.org/10.5194/esd-11-995-2020
https://doi.org/10.5194/esd-11-995-2020

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

combine_ensemble_members: true
independence_sigma: 0.54
independence_contributions:

tas_CLIM_i: 1
psl_CLIM_i: 1

Note that this approach weights ensemble members of the same model with a 1/N independence scaling (com-
bine_ensemble_members: true) as well as different models with an output-based independence weighting. Different
approaches to handle ensemble members are discussed in Merrifield et al. (2020). Note that, unlike for performance,
climatologies are used for independence (i.e., the global mean is not removed for independence). Warning: Using
only the independence weighting without any performance weighting might not always lead to meaningful results!
The independence weighting is based on model output, which means that if a model is very different from all other
models as well as the observations it will get a very high independence weight (and also total weight in absence of any
performance weighting). This might not reflect the actual independence. It is therefore recommended to use weights
based on both independence and performance for most cases.

17.1.7 Variables

• pr (atmos, monthly mean, longitude latitude time)

• tas (atmos, monthly mean, longitude latitude time)

• psl (atmos, monthly mean, longitude latitude time)

• rsus, rsds, rlus, rlds, rsns, rlns (atmos, monthly mean, longitude latitude time)

• more variables can be added if available for all datasets.

17.1.8 Observations and reformat scripts

Observation data is defined in a separate section in the recipe and may include multiple datasets.

17.1.9 References

• Brunner et al. (2020), Earth Syst. Dynam., 11, 995-1012

• Merrifield et al. (2020), Earth Syst. Dynam., 11, 807-834

• Brunner et al. (2019), Environ. Res. Lett., 14, 124010

• Lorenz et al. (2018), J. Geophys. Res.: Atmos., 9, 4509-4526

• Knutti et al. (2017), Geophys. Res. Lett., 44, 1909-1918

228 Chapter 17. Future projections

https://doi.org/10.5194/esd-11-807-2020
https://doi.org/10.5194/esd-11-995-2020
https://doi.org/10.5194/esd-11-807-2020
https://doi.org/10.1088/1748-9326/ab492f
https://doi.org/10.1029/2017JD027992
https://doi.org/10.1002/2016GL072012

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Distance matrix for temperature, providing the independence metric.

17.1. Climate model Weighting by Independence and Performance (ClimWIP) 229

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 2: Distance of preciptation relative to observations, providing the performance metric.

230 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: Weights determined by combining independence and performance metrics for tas.

17.1. Climate model Weighting by Independence and Performance (ClimWIP) 231

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 4: Interquartile range of temperature anomalies relative to 1981-2010, weighted versus non-weighted.

232 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 5: Performance sigma calibration: The thick black line gives the reliability (c.f., weather forecast verification)
which should reach at least 80%. The thick grey line gives the mean change in spread between the unweighted and
weighted 80% ranges as an indication of the weighting strength (if it reaches 1, the weighting has no effect on uncer-
tainty). The smallest sigma (i.e., strongest weighting) which is not overconfident (reliability >= 80%) is selected. If
the test fails (like in this example) the smallest sigma which comes closest to 80% will be indicated in the legend (but
NOT automatically selected).

17.1. Climate model Weighting by Independence and Performance (ClimWIP) 233

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 6: Map of weighted mean temperature change 2081-2100 relative to 1995-2014

17.1.10 Example plots

17.2 Constraining future Indian Summer Monsoon projections with
the present-day precipitation over the tropical western Pacific

17.2.1 Overview

Following Li et al. (2017) the change between present-day and future Indian Summer Monsoon (ISM) precipitation is
constrained using the precipitation over the tropical western Pacific compared to a fixed, observed amount of 6 mm d-1

from Global Precipitation Climatology Project (GPCP) (Adler et al., 2003) for 1980-2009. For CMIP6, historical data
for 1980-2009 should be used. For CMIP5 historical data from 1980-2005 should be used, due to the length of the data
sets. At the moment it is not possible to use a combined ['historical', 'rcp'] data set, because the diagnostic
requires that a historical data set is given.

17.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_li17natcc.yml

Diagnostics are stored in diag_scripts/

• emergent_constraints/lif1f2.py

234 Chapter 17. Future projections

https://www.nature.com/articles/nclimate3387
https://journals.ametsoc.org/doi/abs/10.1175/1525-7541%282003%29004%3C1147%3ATVGPCP%3E2.0.CO%3B2

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.2.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models. For each model, two experiments must be given: one
historical run, possibly between 1980-2009 and one other model experiment. The user can choose the other model
experiment, but it needs to be the same for all given models. The start and end year for the second data set can be
choosen by the user, but should be consistent for all models (the same for future scenarios, the same length for other
experiments). Different ensemble members are not possible, yet.

17.2.4 Variables

• pr (atmos, monthly, longitude, latitude, time)

• ua (atmos, monthly, longitude, latitude, plev, time)

• va (atmos, monthly, longitude, latitude, plev, time)

• ts (atmos, monthly, longitude, latitude, time)

17.2.5 Observations and reformat scripts

None

17.2.6 References

• Li, G., Xie, S. P., He, C., and Chen, Z. S.: Western Pacific emergent constraint lowers projected increase in
Indian summer monsoon rainfall, Nat Clim Change, 7, 708-+, 2017

17.2.7 Example plots

17.3 Constraining uncertainty in projected gross primary production
(GPP) with machine learning

Warning: Not all datasets necessary to run these recipes are available on ESGF. The following datasets are missing:

• Dataset: co2, Amon, CMIP5, HadGEM2-ES, esmHistorical, r1i1p1

• Dataset: gpp, Lmon, CMIP5, MIROC-ESM, esmFixClim1, r1i1p1

• Supplementary: sftlf, fx, CMIP5, MIROC-ESM, esmFixClim1, r0i0p0

17.3. Constraining uncertainty in projected gross primary production (GPP) with machine learning235

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 7: Scatter plot of the simulated tropical western Pacific precipitation (mm d-1) versus projected average ISM (Indian
Summer Monsoon) rainfall changes under the ssp585 scenario. The red line denotes the observed present-day western
Pacific precipitation and the inter-model correlation (r) is shown. (CMIP6).

Fig. 8: Scatter plot of the uncorrected versus corrected average ISM (Indian Summer Monsoon) rainfall change ratios
(% per degree Celsius of global SST warming). The error bars for the Multi-model mean indicate the standard deviation
spread among models and the 2:1 line (y = 0.5x) is used to illustrate the Multi-model mean reduction in projected rainfall
increase. (CMIP6).

236 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 9: Multi-model mean rainfall change due to model error. Box displays the area used to define the average ISM
(Indian Summer Monsoon) rainfall. Precipitation changes are normalized by the corresponding global mean SST
increase for each model. (CMIP6).

Fig. 10: Corrected multi-model mean rainfall change. Box displays the area used to define the average ISM (Indian
Summer Monsoon) rainfall. Precipitation changes are normalized by the corresponding global mean SST increase for
each model. (CMIP6).

17.3. Constraining uncertainty in projected gross primary production (GPP) with machine learning237

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.3.1 Overview

These recipes reproduce the analysis of Schlund et al., JGR: Biogeosciences (2020). In this paper, a machine learning
regression (MLR) approach (using the MLR algorithm Gradient Boosted Regression Trees, GBRT) is proposed to
constrain uncertainties in projected gross primary production (GPP) in the RCP 8.5 scenario using observations of
process-based diagnostics.

17.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• schlund20jgr/recipe_schlund20jgr_gpp_abs_rcp85.yml

• schlund20jgr/recipe_schlund20jgr_gpp_change_1pct.yml

• schlund20jgr/recipe_schlund20jgr_gpp_change_rcp85.yml

Diagnostics are stored in diag_scripts/

• mlr/evaluate_residuals.py

• mlr/main.py

• mlr/mmm.py

• mlr/plot.py

• mlr/postprocess.py

• mlr/preprocess.py

• mlr/rescale_with_emergent_constraint.py

General information (including an example and more details) on machine learning regression (MLR) diagnostics is
given here. The API documentation is available here.

17.3.3 Variables

• co2s (atmos, monthly, longitude, latitude, time)

• gpp (land, monthly, longitude, latitude, time)

• gppStderr (land, monthly, longitude, latitude, time)

• lai (land, monthly, longitude, latitude, time)

• pr (atmos, monthly, longitude, latitude, time)

• rsds (atmos, monthly, longitude, latitude, time)

• tas (atmos, monthly, longitude, latitude, time)

238 Chapter 17. Future projections

https://doi.org/10.1029/2019JG005619
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.3.4 Observations and reformat scripts

• CRU (pr, tas)

• ERA-Interim (rsds)

• LAI3g (lai)

• MTE (gpp, gppStderr)

• Scripps-CO2-KUM (co2s)

17.3.5 References

• Schlund, M., Eyring, V., Camps-Valls, G., Friedlingstein, P., Gentine, P., & Reichstein, M. (2020). Constraining
uncertainty in projected gross primary production with machine learning. Journal of Geophysical Research:
Biogeosciences, 125, e2019JG005619, https://doi.org/10.1029/2019JG005619.

17.3.6 Example plots

Fig. 11: GBRT-based prediction of the fractional GPP change over the 21st century (= GPP(2091-2100) / GPP(1991-
2000)).

17.4 Context for interpreting equilibrium climate sensitivity and tran-
sient climate response from the CMIP6 Earth system models

17.4.1 Overview

This recipe reproduces the analysis of Meehl et al., Sci. Adv. (2020). In this paper, the equilibrium climate sensitivity
(ECS) and transient climate response (TCR) are evaluated for the CMIP6 models and put into historical context.

17.4. Context for interpreting equilibrium climate sensitivity and transient climate response from
the CMIP6 Earth system models

239

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/cruts.1811131722.v4.02/
http://apps.ecmwf.int/datasets/data/interim-full-moda/
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
http://www.bgc-jena.mpg.de/geodb/BGI/Home
https://scrippsco2.ucsd.edu/data/atmospheric_co2/kum.html
https://doi.org/10.1029/2019JG005619
https://advances.sciencemag.org/content/6/26/eaba1981

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 12: Corresponding error of the GBRT-based prediction of the fractional GPP change over the 21st century (con-
sidering errors in the MLR model and errors in the predictors).

Fig. 13: GBRT-based prediction of the absolute GPP at the end of the 21st century (2091-2100).

240 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 14: Corresponding error of the GBRT-based prediction of the absolute GPP at the end of the 21st century (con-
sidering errors in the MLR model and errors in the predictors).

Fig. 15: Boxplot of the root mean square error of prediction (RMSEP) distributions for six different statistical models
used to predict future absolute GPP (2091-2100) using a leave-one-model-out cross-validation approach. The dis-
tribution for each statistical model contains seven points (black dots, one for each climate model used as truth) and is
represented in the following way: the lower and upper limit of the blue boxes correspond to the 25% and 75% quantiles,
respectively. The central line in the box shows the median, the black “x” the mean of the distribution. The whiskers
outside the box represent the range of the distribution

17.4. Context for interpreting equilibrium climate sensitivity and transient climate response from
the CMIP6 Earth system models

241

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 16: Global feature importance of the GBRT model for prediction of the absolute GPP at the end of the 21st century
(2091-2100).

Fig. 17: Distribution of the residuals of the GBRT model for the prediction of absolute GPP at the end of the 21st
century (2091-2100) for the training data (blue) and test data excluded from training (green).

242 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 18: Training progress of the GBRT model for the prediction of absolute GPP at the end of the 21st century (2091-
2100) evaluated as normalized root mean square error on the training data (blue) and test data excluded from training
(green).

17.4.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_meehl20sciadv.yml

Diagnostics are stored in diag_scripts/

• climate_metrics/ecs.py

• climate_metrics/tcr.py

• climate_metrics/create_table.py

• ipcc_ar5/ch09_fig09_42b.py

17.4.3 User settings in recipe

• Script climate_metrics/ecs.py

See here.

• Script climate_metrics/tcr.py

See here.

• Script climate_metrics/create_table.py

– calculate_mean, bool, optional (default: True): Calculate mean over all datasets and add it to table.

– calculate_std, bool, optional (default: True): Calculate standard deviation over all datasets and add it
to table.

– exclude_datasets, list of str, optional (default: ['MultiModelMean']): Exclude certain datasets when
calculating statistics over all datasets and for assigning an index.

– patterns, list of str, optional: Patterns to filter list of input data.

– round_output, int, optional: If given, round output to given number of decimals.

17.4. Context for interpreting equilibrium climate sensitivity and transient climate response from
the CMIP6 Earth system models

243

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Script ipcc_ar5/ch09_fig09_42b.py

See here.

17.4.4 Variables

• rlut (atmos, monthly, longitude, latitude, time)

• rsdt (atmos, monthly, longitude, latitude, time)

• rsut (atmos, monthly, longitude, latitude, time)

• tas (atmos, monthly, longitude, latitude, time)

17.4.5 References

• Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., Taylor, K. E. and Schlund, M.,
Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth
system models, Science Advances, 6(26), eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020.

17.4.6 Example plots

Fig. 19: ECS calculated for the CMIP6 models using the Gregory method over different time scales. Using the entire
150-year 4xCO2 experiment (black line), there is an ECS value of 3.8 K; using only the first 20 years (blue dots and
blue line), there is an ECS of 3.4 K; and using the last 130 years, there is an ECS of 4.1 K (orange dots and orange
line).

244 Chapter 17. Future projections

https://doi.org/10.1126/sciadv.aba1981

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 20: TCR as a function of ECS for the CMIP6 models (black line is a linear fit). The 𝑅2 values are given in the
upper left parts of each panel. The numbers denote individual CMIP6 models.

17.5 Emergent constraints for equilibrium climate sensitivity

17.5.1 Overview

Calculates equilibrium climate sensitivity (ECS) versus

1) S index, D index and lower tropospheric mixing index (LTMI); similar to fig. 5 from Sherwood et al. (2014)

2) southern ITCZ index and tropical mid-tropospheric humidity asymmetry index; similar to fig. 2 and 4 from Tian
(2015)

3) covariance of shortwave cloud reflection (Brient and Schneider, 2016)

4) climatological Hadley cell extent (Lipat et al., 2017)

5) temperature variability metric; similar to fig. 2 from Cox et al. (2018)

6) total cloud fraction difference between tropics and mid-latitudes; similar to fig. 3 from Volodin (2008)

7) response of marine boundary layer cloud (MBLC) fraction changes to sea surface temperature (SST); similar to
fig. 3 of Zhai et al. (2015)

8) Cloud shallowness index (Brient et al., 2016)

9) Error in vertically-resolved tropospheric zonal average relative humidity (Su et al., 2014)

The results are displayed as scatterplots.

Note: The recipe recipe_ecs_scatter.yml requires pre-calulation of the equilibrium climate sensitivites (ECS)
for all models. The ECS values are calculated with recipe_ecs.yml. The netcdf file containing the ECS values (path
and filename) is specified by diag_script_info@ecs_file. Alternatively, the netcdf file containing the ECS values can
be generated with the cdl-script $diag_scripts/emergent_constraints/ecs_cmip.cdl (recommended method):

1) save script given at the end of this recipe as ecs_cmip.cdl

2) run command: ncgen -o ecs_cmip.nc ecs_cmip.cdl

17.5. Emergent constraints for equilibrium climate sensitivity 245

mailto:diag_script_info@ecs_file

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

3) copy ecs_cmip.nc to directory given by diag_script_info@ecs_file (e.g.
$diag_scripts/emergent_constraints/ecs_cmip.nc)

17.5.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_ecs_scatter.yml

• recipe_ecs_constraints.yml

Diagnostics are stored in diag_scripts

• emergent_constraints/ecs_scatter.ncl: calculate emergent constraints for ECS

• emergent_constraints/ecs_scatter.py: calculate further emergent constraints for ECS

• emergent_constraints/single_constraint.py: create scatterplots for emergent constraints

• climate_metrics/psi.py: calculate temperature variabililty metric (Cox et al., 2018)

17.5.3 User settings in recipe

• Script emergent_constraints/ecs_scatter.ncl

Required settings (scripts)

– diag: emergent constraint to calculate (“itczidx”, “humidx”, “ltmi”, “covrefl”, “shhc”, “sher-
wood_d”, “sherwood_s”)

– ecs_file: path and filename of netCDF containing precalculated ECS values (see note above)

Optional settings (scripts)

– calcmm: calculate multi-model mean (True, False)

– legend_outside: plot legend outside of scatterplots (True, False)

– output_diag_only: Only write netcdf files for X axis (True) or write all plots (False)

– output_models_only: Only write models (no reference datasets) to netcdf files (True, False)

– output_attributes: Additonal attributes for all output netcdf files

– predef_minmax: use predefined internal min/max values for axes (True, False)

– styleset: “CMIP5” (if not set, diagnostic will create a color table and symbols for plotting)

– suffix: string to add to output filenames (e.g.”cmip3”)

Required settings (variables)

– reference_dataset: name of reference data set

Optional settings (variables)

none

Color tables

none

• Script emergent_constraints/ecs_scatter.py

See here.

246 Chapter 17. Future projections

mailto:diag_script_info@ecs_file

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Script emergent_constraints/single_constraint.py

See here.

• Script climate_metrics/psi.py

See here.

17.5.4 Variables

• cl (atmos, monthly mean, longitude latitude level time)

• clt (atmos, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

• hur (atmos, monthly mean, longitude latitude level time)

• hus (atmos, monthly mean, longitude latitude level time)

• rsdt (atmos, monthly mean, longitude latitude time)

• rsut (atmos, monthly mean, longitude latitude time)

• rsutcs (atmos, monthly mean, longitude latitude time)

• rtnt or rtmt (atmos, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude level time)

• tas (atmos, monthly mean, longitude latitude time)

• tasa (atmos, monthly mean, longitude latitude time)

• tos (atmos, monthly mean, longitude latitude time)

• ts (atmos, monthly mean, longitude latitude time)

• va (atmos, monthly mean, longitude latitude level time)

• wap (atmos, monthly mean, longitude latitude level time)

• zg (atmos, monthly mean, longitude latitude time)

17.5.5 Observations and reformat scripts

Note:
(1) Obs4mips data can be used directly without any preprocessing.

(2) See headers of reformat scripts for non-obs4MIPs data for download instructions.

• AIRS (obs4MIPs): hus, husStderr

• AIRS-2-0 (obs4MIPs): hur

• CERES-EBAF (obs4MIPs): rsdt, rsut, rsutcs

• ERA-Interim (OBS6): hur, ta, va, wap

• GPCP-SG (obs4MIPs): pr

• HadCRUT4 (OBS): tasa

17.5. Emergent constraints for equilibrium climate sensitivity 247

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• HadISST (OBS): ts

• MLS-AURA (OBS6): hur

• TRMM-L3 (obs4MIPs): pr, prStderr

17.5.6 References

• Brient, F., and T. Schneider, J. Climate, 29, 5821-5835, doi:10.1175/JCLIM-D-15-0897.1, 2016.

• Brient et al., Clim. Dyn., 47, doi:10.1007/s00382-015-2846-0, 2016.

• Cox et al., Nature, 553, doi:10.1038/nature25450, 2018.

• Gregory et al., Geophys. Res. Lett., 31, doi:10.1029/2003GL018747, 2004.

• Lipat et al., Geophys. Res. Lett., 44, 5739-5748, doi:10.1002/2017GL73151, 2017.

• Sherwood et al., nature, 505, 37-42, doi:10.1038/nature12829, 2014.

• Su, et al., J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021642, 2014.

• Tian, Geophys. Res. Lett., 42, 4133-4141, doi:10.1002/2015GL064119, 2015.

• Volodin, Izvestiya, Atmospheric and Oceanic Physics, 44, 288-299, doi:10.1134/S0001433808030043, 2008.

• Zhai, et al., Geophys. Res. Lett., 42, doi:10.1002/2015GL065911, 2015.

17.5.7 Example plots

17.6 Emergent constraints on carbon cycle feedbacks

17.6.1 Overview

Figures from Wenzel et al. (2014) are reproduced with recipe_wenzel14jgr.yml. Variables relevant for the carbon
cycle - climate feedback such as near surface air temperature (tas), net biosphere productivity (nbp) and carbon flux
into the ocean (fgco2) are analyzed for coupled (1pctCO2, here the carbon cycle is fully coupled to the climate response)
and uncoupled (esmFixCLim1, here the carbon cycle is uncoupled to the climate response) simulations. The standard
namelist includes a comparison of cumulated nbp from coupled and uncoupled simulations and includes a set of routines
to diagnose the long-term carbon cycle - climate feedback parameter (GammaLT) from an ensemble of CMIP5 models.
Also included in the recipe is a comparison of the interannual variability of nbp and fgco2 for historical simulations
used to diagnose the observable sensitivity of CO2 to tropical temperature changes (GammaIAV). As a key figure of
this recipe, the diagnosed values from the models GammaLT vs. GammaIAV are compared in a scatter plot constituting
an emergent constraint.

17.6.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_wenzel14jgr.yml

Diagnostics are stored in diag_scripts/

• carbon_tsline.ncl: time line plots of annual means for spatial averages

• carbon_gammaHist.ncl: scatter plot of annual mean anomalies of two different variables; diagnosing and saving
GammaIAV

248 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 21: Lower tropospheric mixing index (LTMI; Sherwood et al., 2014) vs. equilibrium climate sensitivity from
CMIP5 models.

17.6. Emergent constraints on carbon cycle feedbacks 249

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 22: Climatological Hadley cell extent (Lipat et al., 2017) vs. equilibrium climate sensitivity from CMIP5 models.

250 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 23: Tropical mid-tropospheric humidity asymmetry index (Tian, 2015) vs. equilibrium climate sensitivity from
CMIP5 models.

17.6. Emergent constraints on carbon cycle feedbacks 251

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 24: Southern ITCZ index (Tian, 2015) vs. equilibrium climate sensitivity from CMIP5 models.

252 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 25: Covariance of shortwave cloud reflection (Brient and Schneider, 2016) vs. equilibrium climate sensitivity
from CMIP5 models.

17.6. Emergent constraints on carbon cycle feedbacks 253

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 26: Difference in total cloud fraction between tropics (28°S - 28°N) and Southern midlatitudes (56°S - 36°S)
(Volodin, 2008) vs. equilibrium climate sensitivity from CMIP5 models.

• carbon_constraint.ncl: scatter plot of GammaLT vs. GammaIAV + line plot of probability density functions,
diagnosing GammaLT

17.6.3 User settings

Note: Make sure to run this recipe setting max_parallel_tasks: 1 in the config_user.yml file or using the
CLI flag --max_parallel_tasks=1.

User setting files (cfg files) are stored in nml/cfg_carbon/

1. carbon_tsline

Required Settings (scripts)

• ts_minlat: minimum latitude for area averaging

• ts_maxlat: maximum latitude for area averaging

• ts_minlon: minimum longitude for area averaging

• ts_maxlon: maximum longitude for area averaging

• ts_maxyear: last year (time range)

• ts_minyear: first year (time range)

• plot_units: units to appear on Figure

• time_avg: currently, only yearly is available

254 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• area_opper: type of area operation (sum)

• styleset: Plot style

Optional settings (scripts)

• multi_model_mean: True for multi-model mean calculation

• volcanoes: True for marking years with lage volcanic eruptions

• align: True for aligning models to have the same start year (needed for idealized 2x CO2 simulations)

• ts_anomaly: calculates anomalies with respect to a defined time range average (anom)

• ridx_start: if ts_anomaly is True, define start time index for reference period

• ridx_end: if ts_anomaly is True, define end time index for reference period

• ref_start: if ts_anomaly is True, define start year for reference period

• ref_end: if ts_anomaly is True, define end year for reference period

Required settings (variables)

• reference_dataset: name of reference data set

2. carbon_gammaHist.ncl

Required Settings (scripts)

• start_year: first year (time range)

• end_year: last year (time range)

• plot_units: units to appear on Figure

• ec_anom: calculates anomalies with respect to the first 10-year average (anom)

• scatter_log: set logarithmic axes in scatterplot.ncl

• styleset: Plot style

Optional settings (scripts)

• ec_volc : exclude 2 years after volcanic erruptions (True/False)

3. carbon_constraint.ncl

Required Settings (scripts)

• gIAV_diagscript: “gammaHist_Fig3and4”

• gIAV_start: start year of GammIAV calculation period

• gIAV_end: end year of GammIAV calculation period

• ec_anom: True

• con_units: label string for units, e.g. (GtC/K)

• nc_infile: specify path to historical gamma values derived by carbon_gammaHist.ncl

• styleset: Plot style

Optional settings (scripts)

• reg_models: Explicit naming of individual models to be excluded from the regression

17.6. Emergent constraints on carbon cycle feedbacks 255

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.6.4 Variables

• tas (atmos, monthly mean, longitude latitude time)

• nbp (land, monthly mean, longitude latitude time)

• fgco2 (ocean, monthly mean, longitude latitude time)

17.6.5 Observations and reformat scripts

• GCP2018: Global Carbon Budget including land (nbp) and ocean (fgco2) carbon fluxes

• NCEP-NCAR-R1: National Centers for Environmental Prediction reanalysis data for near surface temperature

17.6.6 References

• Cox, P. M., D. B. Pearson, B. B. Booth, P. Friedlingstein, C. C. Huntingford, C. D. B. Jones, and C. M. Luke, 2013,
Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability, Nature, 494(7437),
341-344. doi: 10.1038/nature11882

• Wenzel, S., P. M. Cox, V. Eyring, and P. Friedlingstein, 2014, Emergent Constraints on Climate Carbon Cycle
Feedbacks in the CMIP5 Earth System Models, JGR Biogeoscience, 119(5), doi: 2013JG002591.

17.6.7 Example plots

Fig. 27: Time series of tropical (30S to 30N) mean near surface temperature (tas) change between year 30 and year 110
for the CMIP5 models simulated with prescribed CO2 (1%/yr CO2 increase) coupled simulation (1pctCO2).

17.7 Emergent constraints on equilibrium climate sensitivity in
CMIP5: do they hold for CMIP6?

17.7.1 Overview

This recipe reproduces the analysis of Schlund et al., Earth Sys. Dyn. (2020). In this paper, emergent constraints
on the equilibrium climate sensitivity are evaluated on CMIP5 and CMIP6 models. Since none of the considered
emergent constraints have been developed on the CMIP6 ensemble, this allows an out-of-sample testing of the emergent
constraints. Most emergent constraints show a reduced skill in CMIP6 when compared to CMIP5.

256 Chapter 17. Future projections

https://doi.org/10.5194/esd-11-1233-2020

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 28: Correlations between the interannual variability of global co2flux (nbp+fgco2) and tropical temperature for
the individual CMIP5 models using esmHistorical simulations, and for observations.

Fig. 29: Carbon cycle-climate feedback of tropical land carbon vs. the sensitivity of co2flux to interannual temperature
variability in the tropics (30S to 30N). The red line shows the linear best fit of the regression together with the prediction
error (orange shading) and the gray shading shows the observed range.

17.7. Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?257

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 30: Probability Density Functions for the pure CMIP5 ensemble (black dashed) and after applying the observed
constraint to the models (red solid)

17.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_schlund20esd.yml

Diagnostics are stored in diag_scripts/

• climate_metrics/ecs.py

• climate_metrics/psi.py

• emergent_constraints/ecs_scatter.ncl

• emergent_constraints/ecs_scatter.py

• emergent_constraints/multiple_constraints.py

More details on the emergent constraint module are given in the API documentation which is available here.

17.7.3 Variables

• cl (atmos, monthly, longitude, latitude, level, time)

• clt (atmos, monthly, longitude, latitude, time)

• hur (atmos, monthly, longitude, latitude, level, time)

• hus (atmos, monthly, longitude, latitude, level, time)

• pr (atmos, monthly, longitude, latitude, time)

• rsdt (atmos, monthly, longitude, latitude, time)

• rsut (atmos, monthly, longitude, latitude, time)

• rsutcs (atmos, monthly, longitude, latitude, time)

• rtnt or rtmt (atmos, monthly, longitude, latitude, time)

• ta (atmos, monthly, longitude, latitude, level, time)

• tas (atmos, monthly, longitude, latitude, time)

258 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• tasa (atmos, monthly, longitude, latitude, time)

• tos (atmos, monthly, longitude, latitude, time)

• ts (atmos, monthly, longitude, latitude, time)

• va (atmos, monthly, longitude, latitude, level, time)

• wap (atmos, monthly, longitude, latitude, level, time)

17.7.4 Observations and reformat scripts

• AIRS (hur, hus)

• CERES-EBAF (rsut, rsutcs, rsdt)

• ERA-Interim (hur, ta, va, wap)

• GPCP-SG (pr)

• HadCRUT4 (tasa)

• HadISST (ts)

• MLS-AURA (hur)

17.7.5 References

• Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C., and Eyring, V.: Emergent constraints on equilibrium
climate sensitivity in CMIP5: do they hold for CMIP6?, Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.
5194/esd-11-1233-2020, 2020.

17.7.6 Example plots

Fig. 31: Emergent relationship (solid blue and orange lines) of the Sherwood et al. (2014) emergent constraint, which
is based on the lower tropospheric mixing index (LTMI). The numbers correspond to individual CMIP models. The
shaded area around the regression line corresponds to the standard prediction error, which defines the error in the
regression model itself. The vertical dashed black line corresponds to the observational reference with its uncertainty
range given as standard error (gray shaded area). The horizontal dashed lines show the best estimates of the constrained
ECS for CMIP5 (blue) and CMIP6 (orange). The colored dots mark the CMIP5 (blue) and CMIP6 (orange) multi-model
means.

17.7. Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?259

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
http://apps.ecmwf.int/datasets/data/interim-full-moda/
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://crudata.uea.ac.uk/cru/data/temperature/
http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://disc.gsfc.nasa.gov/datasets/ML2RHI_004/summary
https://doi.org/10.5194/esd-11-1233-2020
https://doi.org/10.5194/esd-11-1233-2020
https://doi.org/10.1038/nature12829

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 32: Probability densities for the constrained ECS (solid lines) and the unconstrained model ensembles (histograms)
of the emergent relationship shown in the figure above.

Fig. 33: Emergent relationship of the Zhai et al. (2015) emergent constraint for different subsets of CMIP5 models.
Blue circles show the 15 CMIP5 models used in the original publication (except for CESM1-CAM5); the solid blue
line and blue shaded area show the emergent relationships evaluated on these models including the uncertainty range.
In this study, 11 more CMIP5 models have been added (red circles). The corresponding emergent relationship that
considers all available CMIP5 models is shown in red colors. This relationship shows a considerably lower coefficient
of determination (𝑅2) and higher p-value than the relationship using the original subset of CMIP5 models. The ver-
tical dashed line and shaded area correspond to the observational reference, and the horizontal dashed lines show the
corresponding ECS constraints using this observation.

260 Chapter 17. Future projections

https://doi.org/10.1002/2015GL065911

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.8 Emergent constraint on equilibrium climate sensitivity from
global temperature variability

17.8.1 Overview

This recipe reproduces the emergent constraint proposed by Cox et al. (2018) for the equilibrium climate sensitivity
(ECS) using global temperature variability. The latter is defined by a metric which can be calculated from the global
temperature variance (in time) 𝜎𝑇 and the one-year-lag autocorrelation of the global temperature 𝛼1𝑇 by

𝜓 =
𝜎𝑇√︀

− ln(𝛼1𝑇)

Using the simple Hasselmann model they show that this quantity is linearly correlated with the ECS. Since it only
depends on the temporal evolution of the global surface temperature, there is lots of observational data available which
allows the construction of an emergent relationship. This method predicts an ECS range of 2.2K to 3.4K (66% confi-
dence limit).

17.8.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_cox18nature.yml

Diagnostics are stored in diag_scripts/

• emergent_constraints/cox18nature.py

• climate_metrics/ecs.py

• climate_metrics/psi.py

17.8.3 User settings in recipe

• Preprocessor

– area_statistics (operation: mean): Calculate global mean.

• Script emergent_constraints/cox18nature.py

See here.

• Script climate_metrics/ecs.py

See here.

• Script climate_metrics/psi.py

– output_attributes, dict, optional: Write additional attributes to all output netcdf files.

– lag, int, optional (default: 1): Lag (in years) for the autocorrelation function.

– window_length, int, optional (default: 55): Number of years used for the moving window average.

17.8. Emergent constraint on equilibrium climate sensitivity from global temperature variability261

https://www.nature.com/articles/nature25450
https://onlinelibrary.wiley.com/doi/10.1111/j.2153-3490.1976.tb00696.x

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.8.4 Variables

• tas (atmos, monthly, longitude, latitude, time)

• tasa (atmos, monthly, longitude, latitude, time)

17.8.5 Observations and reformat scripts

• HadCRUT4 (tasa)

17.8.6 References

• Cox, Peter M., Chris Huntingford, and Mark S. Williamson. “Emergent constraint on equilibrium climate sensi-
tivity from global temperature variability.” Nature 553.7688 (2018): 319.

17.8.7 Example plots

Fig. 34: Simulated change in global temperature from CMIP5 models (coloured lines), compared to the global temper-
ature anomaly from the HadCRUT4 dataset (black dots). The anomalies are relative to a baseline period of 1961–1990.
The model lines are colour-coded, with lower-sensitivity models (> 1 Wm-2K-1) shown by green lines and higher-
sensitivity models (< 1 Wm-2K-1) shown by magenta lines.

17.9 Emergent constraint on snow-albedo effect

17.9.1 Overview

The recipe recipe_snowalbedo.yml computes the springtime snow-albedo feedback values in climate change versus
springtime values in the seasonal cycle in transient climate change experiments following Hall and Qu (2006). The
strength of the snow-albedo effect is quantified by the variation in net incoming shortwave radiation (Q) with surface
air temperature (Ts) due to changes in surface albedo 𝛼𝑠:(︂

𝜕𝑄

𝜕𝑇𝑠

)︂
= −𝐼𝑡 ·

𝜕𝛼𝑝

𝜕𝛼𝑠
· ∆𝛼𝑠

∆𝑇𝑠

262 Chapter 17. Future projections

https://crudata.uea.ac.uk/cru/data/temperature/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 35: Emergent relationship between ECS and the metric. The black dot-dashed line shows the best-fit linear
regression across the model ensemble, with the prediction error for the fit given by the black dashed lines. The vertical
blue lines show the observational constraint from the HadCRUT4 observations: the mean (dot-dashed line) and the
mean plus and minus one standard deviation (dashed lines).

Fig. 36: The PDF for ECS. The orange histograms (both panels) show the prior distributions that arise from equal
weighting of the CMIP5 models in 0.5 K bins.

17.9. Emergent constraint on snow-albedo effect 263

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

The diagnostic produces scatterplots of simulated springtime ∆𝛼𝑠/∆𝑇𝑠 values in climate change (ordinate) vs. simu-
lated springtime ∆𝛼𝑠/∆𝑇𝑠 values in the seasonal cycle (abscissa).

Ordinate values: the change in April 𝛼𝑠 (future projection - historical) averaged over NH land masses poleward of 30°N
is divided by the change in April Ts (future projection - historical) averaged over the same region. The change in 𝛼𝑠

(or Ts) is defined as the difference between 22nd-century-mean 𝛼𝑠: (Ts) and 20th-century-mean 𝛼𝑠. Values of 𝛼𝑠 are
weighted by April incoming insolation (It) prior to averaging.

Abscissa values: the seasonal cycle ∆𝛼𝑠/∆𝑇𝑠 values, based on 20th century climatological means, are calculated by
dividing the difference between April and May 𝛼𝑠: averaged over NH continents poleward of 30°N by the difference
between April and May Ts averaged over the same area. Values of 𝛼𝑠: are weighted by April incoming insolation prior
to averaging.

17.9.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_snowalbedo.yml

Diagnostics are stored in diag_scripts/emergent_constraints/

• snowalbedo.ncl: springtime snow-albedo feedback values vs. seasonal cycle

17.9.3 User settings in recipe

1. Script snowalbedo.ncl

Required settings for script

• exp_presentday: name of present-day experiment (e.g. “historical”)

• exp_future: name of climate change experiment (e.g. “rcp45”)

Optional settings for script

• diagminmax: observational uncertainty (min and max)

• legend_outside: create extra file with legend (true, false)

• styleset: e.g. “CMIP5” (if not set, this diagnostic will create its own color table and symbols for plotting)

• suffix: string to be added to output filenames

• xmax: upper limit of x-axis (default = automatic)

• xmin: lower limit of x-axis (default = automatic)

• ymax: upper limit of y-axis (default = automatic)

• ymin: lower limit of y-axis (default = automatic)

Required settings for variables

• ref_model: name of reference data set

Optional settings for variables

none

Required settings (scripts)

none

Optional settings (scripts)

264 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.9.4 Variables

• tas (atmos, monthly mean, longitude latitude time)

• rsdt (atmos, monthly mean, longitude latitude time)

• rsuscs, rsdscs (atmos, monthly mean, longitude latitude time)

17.9.5 Observations and reformat scripts

• ERA-Interim (tas - esmvaltool/cmorizers/data/formatters/datasets/era_interim.py)

• ISCCP-FH (rsuscs, rsdscs, rsdt - esmvaltool/cmorizers/data/formatters/datasets/isccp_fh.ncl)

17.9.6 References

• Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring,
C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason and M. Rummukainen, 2013: Evaluation
of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

• Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate
change, Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

17.9.7 Example plots

17.10 Equilibrium climate sensitivity

17.10.1 Overview

Equilibrium climate sensitivity is defined as the change in global mean temperature as a result of a doubling of the at-
mospheric CO2 concentration compared to pre-industrial times after the climate system has reached a new equilibrium.
This recipe uses a regression method based on Gregory et al. (2004) to calculate it for several CMIP models.

17.10.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_ecs.yml

Diagnostics are stored in diag_scripts/

• climate_metrics/ecs.py

• climate_metrics/create_barplot.py

• climate_metrics/create_scatterplot.py

17.10. Equilibrium climate sensitivity 265

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003GL018747

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 37: Scatterplot of springtime snow-albedo effect values in climate change vs. springtime ∆𝛼𝑠/∆𝑇𝑠 values in the
seasonal cycle in transient climate change experiments (CMIP5 historical experiments: 1901-2000, RCP4.5 experi-
ments: 2101-2200). Similar to IPCC AR5 Chapter 9 (Flato et al., 2013), Figure 9.45a.

266 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.10.3 User settings in recipe

• Preprocessor

– area_statistics (operation: mean): Calculate global mean.

• Script climate_metrics/ecs.py

– calculate_mmm, bool, optional (default: True): Calculate multi-model mean ECS.

– complex_gregory_plot, bool, optional (default: False): Plot complex Gregory plot (also add response
for first sep_year years and last 150 - sep_year years, default: sep_year=20) if True.

– output_attributes, dict, optional: Write additional attributes to netcdf files.

– read_external_file, str, optional: Read ECS and feedback parameters from external file. The path can
be given relative to this diagnostic script or as absolute path.

– savefig_kwargs, dict, optional: Keyword arguments for matplotlib.pyplot.savefig().

– seaborn_settings, dict, optional: Options for seaborn.set_theme() (affects all plots).

– sep_year, int, optional (default: 20): Year to separate regressions of complex Gregory plot. Only effective
if complex_gregory_plot is True.

– x_lim, list of float, optional (default: [1.5, 6.0]): Plot limits for X axis of Gregory regression plot (T).

– y_lim, list of float, optional (default: [0.5, 3.5]): Plot limits for Y axis of Gregory regression plot (N).

• Script climate_metrics/create_barplot.py

– add_mean, str, optional: Add a bar representing the mean for each class.

– label_attribute, str, optional: Cube attribute which is used as label for different input files.

– order, list of str, optional: Specify the order of the different classes in the barplot by giving the label,
makes most sense when combined with label_attribute.

– patterns, list of str, optional: Patterns to filter list of input data.

– savefig_kwargs, dict, optional: Keyword arguments for matplotlib.pyplot.savefig().

– seaborn_settings, dict, optional: Options for seaborn.set_theme() (affects all plots).

– sort_ascending, bool, optional (default: False): Sort bars in ascending order.

– sort_descending, bool, optional (default: False): Sort bars in descending order.

– subplots_kwargs, dict, optional: Keyword arguments for matplotlib.pyplot.subplots().

– value_labels, bool, optional (default: False): Label bars with value of that bar.

– y_range, list of float, optional: Range for the Y axis of the plot.

• Script climate_metrics/create_scatterplot.py

– dataset_style, str, optional: Name of the style file (located in esmvaltool.diag_scripts.shared.
plot.styles_python).

– pattern, str, optional: Pattern to filter list of input files.

– seaborn_settings, dict, optional: Options for seaborn.set_theme() (affects all plots).

– y_range, list of float, optional: Range for the Y axis of the plot.

17.10. Equilibrium climate sensitivity 267

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.10.4 Variables

• rlut (atmos, monthly, longitude, latitude, time)

• rsdt (atmos, monthly, longitude, latitude, time)

• rsut (atmos, monthly, longitude, latitude, time)

• tas (atmos, monthly, longitude, latitude, time)

17.10.5 Observations and reformat scripts

None

17.10.6 References

• Gregory, Jonathan M., et al. “A new method for diagnosing radiative forcing and climate sensitivity.” Geophysical
research letters 31.3 (2004).

17.10.7 Example plots

Fig. 38: Scatterplot between TOA radiance and global mean surface temperature anomaly for 150 years of the abrupt
4x CO2 experiment including linear regression to calculate ECS for CanESM2 (CMIP5).

17.11 KNMI Climate Scenarios 2014

17.11.1 Overview

This recipe implements the method described in Lenderink et al., 2014, to prepare the 2014 KNMI Climate Scenarios
(KCS) for the Netherlands. A set of 8 global climate projections from EC-Earth were downscaled with the RACMO
regional climate model. Since the EC-Earth ensemble is not readily representative for the spread in the full CMIP
ensemble, this method recombines 5-year segments from the EC-Earth ensemble to obtain a large suite of “resamples”.
Subsequently, 8 new resamples are selected that cover the spread in CMIP much better than the original set.

268 Chapter 17. Future projections

https://doi.org/10.1088/1748-9326/9/11/115008

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

The original method created 8 resampled datasets:

• 2 main scenarios: Moderate (M) and Warm (W) (Lenderink 2014 uses “G” instead of “M”).

• 2 ‘sub’scenarios: Relatively high (H) or low (L) changes in seasonal temperature and precipitation

• 2 time horizons: Mid-century (MOC; 2050) and end-of-century (EOC; 2085)

• Each scenario consists of changes calculated between 2 periods: Control (e.g. 1981-2010) and future (variable).

The configuration settings for these resamples can be found in table 1 of Lenderink 2014’s supplementary data.

17.11.2 Implementation

The implementation is such that application to other datasets, regions, etc. is relatively straightforward. The description
below focuses on the reference use case of Lenderink et al., 2014, where the target model was EC-Earth. An external
set of EC-Earth data (all RCP85) was used, for which 3D fields for downscaling were available as well. In the recipe
shipped with ESMValTool, however, the target model is CCSM4, so that it works out of the box with ESGF data only.

In the first diagnostic, the spread of the full CMIP ensemble is used to obtain 4 values of a global ∆𝑇𝐶𝑀𝐼𝑃 , corre-
sponding to the 10th and 90th percentiles for the M and W scenarios, respectively, for both MOC and EOC. Subse-
quently, for each of these 4 steering parameters, 30-year periods are selected from the target model ensemble, where
∆𝑇𝑡𝑎𝑟𝑔𝑒𝑡≈∆𝑇𝐶𝑀𝐼𝑃 .

In the second diagnostic, for both the control and future periods, the N target model ensemble members are split
into 6 segments of 5 years each. Out of all 𝑁6 possible re-combinations of these 5-year segments, eventually M new
‘resamples’ are selected based on local changes in seasonal temperature and precipitation. This is done in the following
steps:

1. Select 1000 samples for the control period, and 2 x 1000 samples for the future period (one for each subscenario).
Step 1 poses a constraint on winter precipitation. For the control period, winter precipitation must still closely
represent the average of the original ensemble. For the two future periods, the change in winter precipitation with
respect to the control period must approximately equal 4% per degree ∆𝑇 (subscenario L) or 8% per degree ∆𝑇
(subscenario H).

2. Further constrain the selection by picking samples that represent either high or low changes in summer pre-
cipitation and summer and winter temperature, by limiting the remaining samples to certain percentile ranges:
relatively wet/cold in the control and dry/warm in the future, or vice versa. The percentile ranges are listed in
table 1 of Lenderink 2014’s supplement. This should result is approximately 50 remaining samples for each
scenario, for both control and future.

3. Use a Monte-Carlo method to make a final selection of 8 resamples with minimal reuse of the same ensemble
member/segment.

Datasets have been split in two parts: the CMIP datasets and the target model datasets. An example use case for this
recipe is to compare between CMIP5 and CMIP6, for example. The recipe can work with a target model that is not
part of CMIP, provided that the data are CMOR compatible, and using the same data referece syntax as the CMIP data.
Note that you can specify multiple data paths in the user configuration file.

17.11. KNMI Climate Scenarios 2014 269

https://iopscience.iop.org/1748-9326/9/11/115008/media/erl503687suppdata.pdf
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/find_data.html#config-user-rootpath

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.11.3 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_kcs.yml

Diagnostics are stored in diag_scripts/kcs/

• global_matching.py

• local_resampling.py

Note: We highly recommend using the options described in Re-running diagnostics. The speed bottleneck for the first
diagnostic is the preprocessor. In the second diagnostic, step 1 is most time consuming, whereas steps 2 and 3 are likely
to be repeated several times. Therefore, intermediate files are saved after step 1, and the diagnostic will automatically
detect and use them if the -i flag is used.

17.11.4 User settings

1. Script <global_matching.py>

Required settings for script

• scenario_years: a list of time horizons. Default: [2050, 2085]

• scenario_percentiles: a list of percentiles for the steering table. Default: [p10, p90]

Required settings for preprocessor This diagnostic needs global mean temperature anomalies for each
dataset, both CMIP and the target model. Additionally, the multimodel statistics preprocessor must be
used to produce the percentiles specified in the setting for the script above.

2. Script <local_resampling.py>

Required settings for script

• control_period: the control period shared between all scenarios. Default: [1981, 2010]

• n_samples: the final number of recombinations to be selected. Default: 8

• scenarios: a scenario name and list of options. The default setting is a single scenario:

scenarios:
ML_MOC: # scenario name; can be chosen by the user
description: "Moderate / low changes in seasonal temperature &␣

→˓precipitation"
global_dT: 1.0
scenario_year: 2050
resampling_period: [2021, 2050]
dpr_winter: 4
pr_summer_control: [25, 55]
pr_summer_future: [45, 75]
tas_winter_control: [50, 80]
tas_winter_future: [20, 50]
tas_summer_control: [0, 100]
tas_summer_future: [0, 50]

These values are taken from table 1 in the Lenderink 2014’s supplementary material. Multiple sce-
narios can be processed at once by appending more configurations below the default one. For new

270 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

applications, global_dT, resampling_period and dpr_winter are informed by the output of the
first diagnostic. The percentile bounds in the scenario settings (e.g. tas_winter_control and
tas_winter_future) are to be tuned until a satisfactory scenario spread over the full CMIP en-
semble is achieved.

Required settings for preprocessor

This diagnostic requires data on a single point. However, the extract_point preprocessor can be changed
to extract_shape or extract_region, in conjunction with an area mean. And of course, the coordi-
nates can be changed to analyze a different region.

17.11.5 Variables

Variables are precipitation and temperature, specified separately for the target model and the CMIP ensemble:

• pr_target (atmos, monthly mean, longitude latitude time)

• tas_target (atmos, monthly mean, longitude latitude time)

• pr_cmip (atmos, monthly mean, longitude latitude time)

• tas_cmip (atmos, monthly mean, longitude latitude time)

17.11.6 References

• Lenderink et al. 2014, Environ. Res. Lett., 9, 115008.

17.11.7 Example output

The diagnostic global_matching produces a scenarios table like the one below

year percentile cmip_dt period_bounds target_dt pattern_scaling_factor
0 2050 P10 0.98 [2019, 2048] 0.99 1.00
1 2050 P90 2.01 [2045, 2074] 2.02 0.99
2 2085 P10 1.38 [2030, 2059] 1.38 1.00
3 2085 P90 3.89 [2071, 2100] 3.28 1.18

which is printed to the log file and also saved as a csv-file scenarios.csv. Additionally, a figure is created showing
the CMIP spread in global temperature change, AND highlighting the selected steering parameters and resampling
periods:

The diagnostic local_resampling procudes a number of output files:

• season_means_<scenario>.nc: intermediate results, containing the season means for each segment of the
original target model ensemble.

• top1000_<scenario>.csv: intermediate results, containing the 1000 combinations that have been selected
based on winter mean precipitation.

• indices_<scenario>.csv: showing the final set of resamples as a table:

control future
Segment 0 Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment␣

→˓0 Segment 1 Segment 2 Segment 3 Segment 4 Segment 5
Combination 0 5 7 6 3 1 3 ␣
→˓2 4 2 4 7 7

(continues on next page)

17.11. KNMI Climate Scenarios 2014 271

https://doi.org/10.1088/1748-9326/9/11/115008

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

Combination 1 0 3 0 4 3 2 ␣
→˓4 1 6 1 3 0
Combination 2 2 4 3 7 4 2 ␣
→˓5 4 6 6 4 2
Combination 3 1 4 7 2 3 6 ␣
→˓5 3 1 7 4 1
Combination 4 5 7 6 3 1 3 ␣
→˓2 3 0 6 1 7
Combination 5 7 2 1 4 5 1 ␣
→˓6 0 4 2 3 3
Combination 6 7 2 2 0 6 6 ␣
→˓5 2 1 5 4 2
Combination 7 6 3 2 1 6 1 ␣
→˓2 1 0 2 1 3

• resampled_control_<scenario>.nc: containing the monthly means for the control period according to the
final combinations.

• resampled_future_<scenario>.nc: containing the monthly means for the future period according to the
final combinations.

• Provenance information: bibtex, xml, and/or text files containing citation information are stored alongside the
final result and the final figure. The final combinations only derive from the target model data, whereas the figure
also uses CMIP data.

• A figure used to validate the final result, reproducing figures 5 and 6 from Lenderink et al.:

272 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.11. KNMI Climate Scenarios 2014 273

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.12 Multiple ensemble diagnostic regression (MDER) for constrain-
ing future austral jet position

17.12.1 Overview

Wenzel et al. (2016) use multiple ensemble diagnostic regression (MDER) to constrain the CMIP5 future projection
of the summer austral jet position with several historical process-oriented diagnostics and respective observations.

The following plots are reproduced:

• Absolute correlation between the target variable and the diagnostics.

• Scatterplot between the target variable and the MDER-calculated linear combination of diagnostics.

• Boxplot of RMSE for the unweighted multi-model mean and the (MDER) weighted multi-model mean of the
target variable in a pseudo-reality setup.

• Time series of the target variable for all models, observations and MDER predictions.

• Errorbar plots for all diagnostics.

• Scatterplots between the target variable and all diagnostics.

17.12.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_wenzel16jclim.yml

Diagnostics are stored in diag_scripts/

• austral_jet/asr.ncl

• austral_jet/main.ncl

• mder/absolute_correlation.ncl

• mder/regression_stepwise.ncl

• mder/select_for_mder.ncl

17.12.3 User settings in recipe

1. Preprocessor

• extract_region: Region extraction.

• extract_levels: Pressure level extraction.

• area_statistics: Spatial average calculations.

2. Script austral_jet/asr.ncl

• season, str: Season.

• average_ens, bool, optional (default: False): Average over all given ensemble members of a climate
model.

• wdiag, array of str, optional: Names of the diagnostic for MDER output. Necessary when MDER output
is desired.

• wdiag_title, array of str, optional: Names of the diagnostic in plots.

274 Chapter 17. Future projections

https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-15-0412.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

3. Script austral_jet/main.ncl

• styleset, str: Style set used for plotting the multi-model plots.

• season, str: Season.

• average_ens, bool, optional (default: False): Average over all given ensemble members of a climate
model.

• rsondes, array of str, optional: Additional observations used in the plot but not for MDER output.

• rsondes_file, array of str, optional: Paths to the additional observations Necessary when rsondes is
given.

• rsondes_yr_min, int, optional: Minimum year for additional observations. Necessary when rsondes is
given.

• rsondes_yr_max, int, optional: Maximum year for additional observations. Necessary when rsondes is
given.

• wdiag, array of str, optional: Names of the diagnostic for MDER output. Necessary when MDER output
is desired.

• wdiag_title, array of str, optional: Names of the diagnostic in plots.

• derive_var, str, optional: Derive variables using NCL functions. Must be one of "tpp", "mmstf".

• derive_latrange, array of float, optional: Latitude range for variable derivation. Necessary if
derive_var is given.

• derive_lev, float, optional: Pressure level (given in Pa) for variable derivation. Necessary if derive_var
is given.

4. Script mder/absolute_correlation.ncl

• p_time, array of int: Start years for future projections.

• p_step, int: Time range for future projections (in years).

• scal_time, array of int: Time range for base period (in years) for anomaly calculations used when
calc_type = "trend".

• time_oper, str: Operation used in NCL time_operation function.

• time_opt, str: Option used in NCL time_operation function.

• calc_type, str: Calculation type for the target variable. Must be one of "trend", "pos", "int".

• domain, str: Domain tag for provenance tracking.

• average_ens, bool, optional (default: False): Average over all given ensemble members of a climate
model.

• region, str, optional: Region used for area aggregation. Necessary if input of target variable is multidi-
mensional.

• area_oper, str, optional: Operation used in NCL area_operation function. Necessary if multidimen-
sional is given.

• plot_units, str, optional (attribute for variable_info): Units for the target variable used in the plots.

5. Script mder/regression_stepwise.ncl

• p_time, array of int: Start years for future projections.

• p_step, int: Time range for future projections (in years).

17.12. Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position275

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• scal_time, array of int: Time range for base period (in years) for anomaly calculations used when
calc_type = "trend".

• time_oper, str: Operation used in NCL time_operation function.

• time_opt, str: Option used in NCL time_operation function.

• calc_type, str: Calculation type for the target variable. Must be one of "trend", "pos", "int".

• domain, str: Domain tag for provenance tracking.

• average_ens, bool, optional (default: False): Average over all given ensemble members of a climate
model.

• smooth, bool, optional (default: False): Smooth time period with 1-2-1 filter.

• iter, int, optional: Number of iterations for smoothing. Necessary when smooth is given.

• cross_validation_mode, bool, optional (default: False): Perform cross-validation.

• region, str, optional: Region used for area aggregation. Necessary if input of target variable is multidi-
mensional.

• area_oper, str, optional: Operation used in NCL area_operation function. Necessary if multidimen-
sional is given.

• plot_units, str, optional (attribute for variable_info): Units for the target variable used in the plots.

6. Script mder/select_for_mder.ncl

• wdiag, array of str: Names of the diagnostic for MDER output. Necessary when MDER output is desired.

• domain, str: Domain tag for provenance tracking.

• ref_dataset, str: Style set used for plotting the multi-model plots.

• average_ens, bool, optional (default: False): Average over all given ensemble members of a climate
model.

• derive_var, str, optional: Derive variables using NCL functions. Must be one of "tpp", "mmstf".

17.12.4 Variables

• ta (atmos, monthly, longitude, latitude, pressure level, time)

• uajet (atmos, monthly, time)

• va (atmos, monthly, longitude, latitude, pressure level, time)

• ps (atmos, monthly, longitude, latitude, time)

• asr (atmos, monthly, longitude, latitude, time)

276 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.12.5 Observations and reformat scripts

• ERA-Intermin (ta, uajet, va, ps)

• CERES-EBAF (asr)

17.12.6 References

• Wenzel, S., V. Eyring, E.P. Gerber, and A.Y. Karpechko: Constraining Future Summer Austral Jet Stream Po-
sitions in the CMIP5 Ensemble by Process-Oriented Multiple Diagnostic Regression. J. Climate, 29, 673–687,
doi:10.1175/JCLI-D-15-0412.1, 2016.

17.12.7 Example plots

Fig. 39: Time series of the the target variable (future austral jet position in the RCP 4.5 scenario) for the CMIP5 ensem-
ble, observations, unweighted multi-model mean projections and (MDER) weighted multi-model mean projections.

17.12. Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position277

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 40: Scatterplot of the target variable (future austral jet position in the RCP 4.5 scenario) vs. the MDER-determined
linear combination of diagnostics for the CMIP5 ensemble.

278 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 41: Boxplot for the RMSE of the target variable for the unweighted and (MDER) weighted multi-model mean
projections in a pseudo-reality setup.

17.12. Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position279

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 42: Trends in tropical DJF temperature at 250hPa for different CMIP5 models and observations.

280 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 43: Scatterplot of the target variable (future austral jet position in the RCP 4.5 scenario) vs. a single diagnostic,
the historical location of the Southern hemisphere Hadley cell boundary for the CMIP5 ensemble.

17.12. Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position281

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.13 Projected land photosynthesis constrained by changes in the
seasonal cycle of atmospheric CO2

17.13.1 Overview

Selected figures from Wenzel et al. (2016) are reproduced with recipe_wenzel16nat.yml. Gross primary productivity
(gpp) and atmospheric CO2 concentrations at the surface (co2s) are analyzed for the carbon cycle - concentration feed-
back in the historical (esmHistorical) and uncoupled (esmFixCLim1, here the carbon cycle is uncoupled to the climate
response) simulations. The recipe includes a set of routines to diagnose the long-term carbon cycle - concentration
feedback parameter (beta) from an ensemble of CMIP5 models and the observable change in the CO2 seasonal cycle
amplitude due to rising atmospheric CO2 levels. As a key figure of this recipe, the diagnosed values from the models
beta vs. the change in CO2 amplitude are compared in a scatter plot constituting an emergent constraint.

17.13.2 Available recipe and diagnostics

Recipes are stored in recipes/

• recipe_wenzel16nat.yml

Diagnostics are stored in diag_scripts/carbon_ec/

• carbon_beta: (1) scatter plot of annual gpp vs. annual CO2 and (2) barchart of gpp(2xCO2)/gpp(1xCO2); calcu-
lates beta for emergent constraint (carbon_co2_cycle.ncl)

• carbon_co2_cycle.ncl: (1) scatter plot of CO2 amplitude vs. annual CO2, (2) barchart of sensitivity of CO2
amplitude to CO2, (3) emergent constraint: gpp(2xCO2)/gpp(1xCO2) vs. sensitivity of CO2 amplitude to CO2,
(4) probability density function of constrained and unconstrained sensitivity of CO2 amplitude to CO2

17.13.3 User settings

Note: Make sure to run this recipe setting output_file_type: pdf in the config_user.yml file or using the
CLI flag --output_file_type=pdf.

1. Script carbon_beta.ncl

Required Settings (scripts)

• styleset: project style for lines, colors and symbols

Optional Settings (scripts)

• bc_xmax_year: end year to calculate beta (default: use last available year of all models)

• bc_xmin_year: start year to calculate beta (default: use first available year of all models)

Required settings (variables)

none

Optional settings (variables)

none

2. Script carbon_co2_cycle.ncl

Required Settings (scripts)

282 Chapter 17. Future projections

https://www.nature.com/articles/nature19772

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• nc_infile: path of netCDF file containing beta (output from carbon_beta.ncl)

• styleset: project style for lines, colors and symbols

Optional Settings (scripts)

• bc_xmax_year: end year (default = last year of all model datasets available)

• bc_xmin_year: start year (default = first year of all model datasets available)

Required settings (variables)

• reference_dataset: name of reference datatset (observations)

Optional settings (variables)

none

17.13.4 Variables

• co2s (atmos, monthly mean, plev longitude latitude time)

• gpp (land, monthly mean, longitude latitude time)

17.13.5 Observations and reformat scripts

• ESRL: Earth System Research Laboratory, ground-based CO2 measurements

17.13.6 References

• Wenzel, S., Cox, P., Eyring, V. et al., 2016, Projected land photosynthesis constrained by changes in the seasonal
cycle of atmospheric CO2. Nature 538, 499501, doi: doi.org/10.1038/nature19772

17.13.7 Example plots

17.14 Transient Climate Response

17.14.1 Overview

The transient climate response (TCR) is defined as the global and annual mean surface air temperature anomaly in the
1pctCO2 scenario (1% CO2 increase per year) for a 20 year period centered at the time of CO2 doubling, i.e. using
the years 61 to 80 after the start of the simulation. We calculate the temperature anomaly by subtracting a linear fit of
the piControl run for all 140 years of the 1pctCO2 experiment prior to the TCR calculation (see Gregory and Forster,
2008).

17.14. Transient Climate Response 283

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008JD010405
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008JD010405

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 44: Comparison of CO2 seasonal amplitudes for CMIP5 historical simulations and observations showing annual
mean atmospheric CO2 versus the amplitudes of the CO2 seasonal cycle at Pt. Barrow, Alaska (produced with car-
bon_co2_cycle.ncl, similar to Fig. 1a from Wenzel et al. (2016)).

284 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 45: Barchart showing the gradient of the linear correlations for the comparison of CO2 seasonal amplitudes for
CMIP5 historical for at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1b from Wenzel et
al. (2016)).

17.14. Transient Climate Response 285

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 46: Emergent constraint on the relative increase of large-scale GPP for a doubling of CO2, showing the correlations
between the sensitivity of the CO2 amplitude to annual mean CO2 increases at Pt. Barrow (x-axis) and the high-latitude
(60N - 90N) CO2 fertilization on GPP at 2xCO2. The red line shows the linear best fit of the regression together with the
prediction error (orange shading), the gray shading shows the observed range (produced with carbon_co2_cycle.ncl,
similar to Fig. 3a from Wenzel et al. (2016)).

286 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.14.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_tcr.yml

Diagnostics are stored in diag_scripts/

• climate_metrics/tcr.py

• climate_metrics/create_barplot.py

• climate_metrics/create_scatterplot.py

17.14.3 User settings in recipe

• Preprocessor

– area_statistics (operation: mean): Calculate global mean.

• Script climate_metrics/tcr.py

– calculate_mmm, bool, optional (default: True): Calculate multi-model mean TCR.

– plot, bool, optional (default: True): Plot temperature vs. time.

– read_external_file, str, optional: Read TCR from external file. The path can be given relative to this
diagnostic script or as absolute path.

– savefig_kwargs, dict, optional: Keyword arguments for matplotlib.pyplot.savefig().

– seaborn_settings, dict, optional: Options for seaborn.set_theme() (affects all plots).

• Script climate_metrics/create_barplot.py

See here.

• Script climate_metrics/create_scatterplot.py

See here.

17.14.4 Variables

• tas (atmos, monthly, longitude, latitude, time)

17.14.5 Observations and reformat scripts

None

17.14.6 References

• Gregory, J. M., and P. M. Forster. “Transient climate response estimated from radiative forcing and observed
temperature change.” Journal of Geophysical Research: Atmospheres 113.D23 (2008).

17.14. Transient Climate Response 287

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

17.14.7 Example plots

Fig. 47: Time series of the global mean surface air temperature anomaly (relative to the linear fit of the pre-industrial
control run) of CanESM2 (CMIP5) for the 1% CO2 increase per year experiment. The horizontal dashed line indicates
the transient climate response (TCR) defined as the 20 year average temperature anomaly centered at the time of CO2
doubling (vertical dashed lines).

17.15 Climate model projections from the ScenarioMIP of CMIP6

17.15.1 Overview

This recipe is implemented into ESMValTool to evaluate the temperature and precipitation changes from the Sce-
narioMIP of CMIP6. It produces the original plots and tables of Tebaldi et al. (2021), https://doi.org/10.5194/
esd-12-253-2021

17.15.2 Available recipe and diagnostics

Recipe is stored in esmvaltool/recipes/

• recipe_tebaldi21esd.yml

Diagnostics are stored in esmvaltool/diag_scripts/tebaldi21esd/

• calc_timeseries_across_realization_stddev_runave.ncl: computes time series of ensemble spreads (i.e., inter-
member standard deviations). One dataset is used for resampling subsets of 10 members.

• calc_cmip6_and_cmip5_pattern_diff_scaleT.ncl: computes the pattern difference between the CMIP6 multi-
model mean change and the CMIP5 multi-model mean change.

• calc_IAV_hatching.ncl: computes the interannual variability (IAV) over piControl runs, either over the whole
time period or in chunks over some years.

• calc_pattern_diff_scaleT.ncl: computes the map of multi-model mean change scaled by global T change.

• calc_pattern_stippling_hatching.ncl: computes the map of multi-model mean change with stippling for signifi-
cant region and hatching for non-significant region. Significant is where the multi-model mean change is greater
than two standard deviations of the internal variability and where at least 90% of the models agree on the sign

288 Chapter 17. Future projections

https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.5194/esd-12-253-2021

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

of change. Not significant is where the multi-model mean change is less than one standard deviation of internal
variability.

• calc_pattern_intermodel_stddev_scaleT.ncl: computes the intermodel standard deviation of the change scaled
by global T change standard deviation of the change scaled by global T change

• calc_pattern_interscenario_stddev_scaleT.ncl: computes the interscenario standard deviation of the change
scaled by global T change

• calc_pattern_stddev_scaleT.ncl: computes the standard deviation of the change scaled by global T change

• calc_pattern_comparison.ncl: computes the difference between the patterns of multi-model mean change of two
different scenarios (ex: SSP4-6.0 and SSP4-3.4)

• calc_table_changes.ncl: computes the changes (mean and spreads) for the specified scenarios and time periods
relative to the historical baseline.

• calc_table_warming_level.ncl: computes the warming level crossing year (mean, five percent and ninety-five
percent quantiles of crossing years) for specified scenarios and warming levels.

• calc_timeseries_mean_spread_runave.ncl: computes multi-model time series of change against historical base-
line for specified scenarios with spread. A running average with specified window is performed.

• calc_timeseries_mean_spread_ssp4.ncl: computes multi-model time series of change against historical baseline
for specified ssp434 and ssp460 with spread. A running average with specified window is performed.

• calc_timeseries_mean_spread_ssp5.ncl: computes multi-model time series of change against historical baseline
for ssp534-over and ssp585 with spread. A running average with specified window is performed.

• plot_pattern.ncl: plots a pattern.

• plot_table_changes: plots a table of the multi-model mean and spread for specified scenarios and periods.

• plot_table_warming_level.ncl: plots a table of warming level crossing years for specified scenarios (columns)
and warming levels (rows).

• plot_timeseries_mean_spread_3scenarios.ncl: plots time series (multi- model mean and spread) for 3 scenarios.

• plot_timeseries_mean_spread_constrained_projections.ncl: plot time series with brackets for constrained pro-
jections.

• plot_timeseries_mean_spread.ncl: plot time series (multi-model mean and spread) for 5 scenarios.

• plot_timeseries_mean_spread_rightaxis_5scen.ncl: plot time series (multi-model mean and spread) for 5 sce-
narios and with an additional right axis.

• plot_timeseries_mean_spread_ssp4.ncl: plot time series for two ssp4 scenarios.

• plot_timeseries_mean_spread_ssp5.ncl: plot time series for two ssp5 scenarios.

• plot_timeseries_across_realization_stddev_runave.ncl: plot time series of inter-member standard deviation.

17.15.3 User settings in recipe

1. Script calc_timeseries_across_realization_stddev_runave.ncl

Required settings for script

• scenarios: list with scenarios included in figure

• syears: list with start years in time periods (e.g. start of historical period and SSPs)

• eyears: list with end years in time periods (end year of historical runs and SSPs)

• begin_ref_year: start year of reference period (e.g. 1995)

17.15. Climate model projections from the ScenarioMIP of CMIP6 289

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• end_ref_year: end year of reference period (e.g. 2014)

• n_samples: number of samples of size 10 to draw among all the ensembles of sampled_model

• sampled_model: name of dataset on which to sample

• runave_window: size window used for the centered running average

2. Script calc_cmip6_and_cmip5_pattern_diff_scaleT.ncl

Required settings for script

• scenarios_cmip5: list of CMIP5 scenarios included in figure

• scenarios_cmip6: list of CMIP6 scenarios included in figure

• periods: list with start years of periods to be included

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”)

Optional settings for script

• percent: determines if difference expressed in percent (0, 1, default= 0)

3. Script calc_IAV_hatching.ncl

Required settings for script

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”) needs to be consistent with
calc_pattern_stippling_hatching.ncl

Optional settings for script

• periodlength: length of period in years to calculate variability over, default is total time period

• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models,
“mmm”: multi-model mean, default), needs to be consistent with calc_pattern_stippling_hatching.ncl

4. Script calc_pattern_diff_scaleT.ncl

Required settings for script

• scenarios: list with scenarios included in figure

• periods: list with start years of periods to be included

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”)

5. Script calc_pattern_stippling_hatching.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated interannual variability for stiplling and hatching

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”) needs to be consistent with
calc_IAV_hatching.ncl

• scenarios: list with scenarios to be included

• periods: list with start years of periods to be included

• labels: list with labels to use in legend depending on scenarios

• sig: plot stippling for significance? (True, False)

• not_sig: plot hatching for uncertainty? (True, False)

Optional settings for script

290 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• seasons: list with season index if time_avg is “seasonalclim” (then seasons is required), DJF:0, MAM:1,
JJA:2, SON:3

• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models,
“mmm”: multi-model mean, default), needs to be consistent with calc_IAV_hatching.ncl

• percent: determines if difference expressed in percent (0, 1, default = 0)

6. Script calc_pattern_intermodel_stddev_scaleT.ncl

Required settings for script

• scenarios: list with scenarios included in figure

• periods: list with start years of periods to be included

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”)

7. Script calc_pattern_interscenario_stddev_scaleT.ncl

Required settings for script

• scenarios: list with scenarios included in figure

• periods: list with start years of periods to be included

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”)

8. Script calc_pattern_stddev_scaleT.ncl

Required settings for script

• scenarios: list with scenarios included in figure

• periods: list with start years of periods to be included

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”)

9. Script calc_pattern_comparison.ncl

Required settings for script

• scenarios: list with two scenarios included in figure. The last scenario is taken as reference. For example
to compute the difference of pattern between SSP4-6.0 and SSP4-3.4, the scenario ssp460 should be the
last element of the list.

• periods: list with start years of periods to be included

• time_avg: time_avg: time averaging (“annualclim”, “seasonalclim”)

• label: label of periods

10. Script calc_table_changes.ncl

Required settings for script

• scenarios: list with scenarios included in the table

• syears: list with start years of time periods to include in the table

• eyears: list with end years of the time periods to include in the table

• begin_ref_year: start year of historical baseline period (e.g. 1995)

• end_ref_year: end year of historical baseline period (e.g. 2014)

• spread: multiplier of standard deviation to calculate spread with (e.g. 1.64)

• label: list of scenario names included in the table

17.15. Climate model projections from the ScenarioMIP of CMIP6 291

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

11. Script calc_table_warming_level.ncl

Required settings for script

• scenarios: list with scenarios included in the table

• warming_levels: list of warming levels to include in the table

• syears: list with start years of time periods (historical then SSPs)

• eyears: list with end years of the time periods (historical then SSPs)

• begin_ref_year: start year of historical baseline period (e.g. 1995)

• end_ref_year: end year of historical baseline period (e.g. 2014)

• offset: offset between current historical baseline and 1850-1900 period

• label: list of scenario names included in the table

12. Script calc_timeseries_mean_spread_runave.ncl

Required settings for script

• scenarios: list of scenarios to include

• syears: list with start years of time periods (historical then SSPs)

• eyears: list with end years of the time periods (historical then SSPs)

• begin_ref_year: start year of historical baseline period (e.g. 1986)

• end_ref_year: end year of historical baseline period (e.g. 2005)

Optional settings for script

• runave_window: size of the window used to perform running average (default 11)

• spread: how many standard deviations to calculate the spread with (default 1)

• label: list of scenario names included in the legend

• percent: determines if difference expressed in percent (0, 1, default = 0)

• model_nr: whether to save number of models used for each scenario

13. Script calc_timeseries_mean_spread_ssp4.ncl

Required settings for script

• scenarios: list of scenarios to include: ssp434 and ssp460

• syears: list with start years of time periods (historical then SSPs)

• eyears: list with end years of the time periods (historical then SSPs)

• begin_ref_year: start year of historical baseline period (e.g. 1986)

• end_ref_year: end year of historical baseline period (e.g. 2005)

Optional settings for script

• runave_window: size of the window used to perform running average (default 11)

• spread: how many standard deviations to calculate the spread with (default 1)

• label: list of scenario names included in the legend

• percent: determines if difference expressed in percent (0, 1, default = 0)

• model_nr: whether to save number of models used for each scenario

292 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

14. Script calc_timeseries_mean_spread_ssp5.ncl

Required settings for script

• scenarios: list of scenarios to include: ssp534-over, ssp585

• syears: list with start years of time periods (historical then SSPs)

• eyears: list with end years of the time periods (historical then SSPs)

• begin_ref_year: start year of historical baseline period (e.g. 1986)

• end_ref_year: end year of historical baseline period (e.g. 2005)

Optional settings for script

• runave_window: size of the window used to perform running average (default 11)

• spread: how many standard deviations to calculate the spread with (default 1)

• label: list of scenario names included in the legend

• percent: determines if difference expressed in percent (0, 1, default = 0)

• model_nr: whether to save number of models used for each scenario

15. Script plot_pattern.ncl

Required settings for script

• scenarios: list of scenarios

• periods: list with start years of periods

• ancestors: variable and diagnostics that calculated field to be plotted

Optional settings for script

• projection: map projection, any valid ncl projection, default = Robinson

• diff_levs: list with explicit levels for all contour plots

• max_vert: maximum number of plots in vertical

• max_hori: maximum number of plots in horizontal

• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False,
default = False)

• colormap: alternative colormap, path to rgb file or ncl name

• span: span whole colormap? (True, False, default = True)

• pltname: alternative name for output plot, default is diagnostic + varname + time_avg

• units: units written next to colorbar, e.g. (~F35~J~F~C)

• sig: plot stippling for significance? (True, False)

• not_sig: plot hatching for uncertainty? (True, False)

• label: label to add in the legend

16. Script plot_table_changes.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

17.15. Climate model projections from the ScenarioMIP of CMIP6 293

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• syears: list of start years of periods of interest

• eyears: list of end years of periods of interest

• label: list of labels of the scenarios

Optional settings for script

• title: title of the plot

17. Script plot_table_warming_level.ncl

Required settings for script

• scenarios: list of scenarios included in the figure

• warming_levels: list of warming levels

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

• offset: offset between reference baseline and 1850-1900

18. Script plot_timeseries_mean_spread_3scenarios.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

Optional settings for script

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

• model_nr: save number of model runs per period and scenario

• styleset: color style

• spread: how many standard deviations to calculate the spread with, default is 1, ipcc tas is 1.64

19. Script plot_timeseries_mean_spread_constrained_projections.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

294 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

• baseline_offset: offset between reference period (baseline) and 1850-1900

• lower_constrained_projections: list of lower bounds of the constrained projections for the scenarios in-
cluded in the same order as the scenarios

• upper_constrained_projections: list of upper bounds of the constrained projections for the scenarios in-
cluded in the same order as the scenarios

• mean_constrained_projections: list of means of the constrained projections for the scenarios included in
the same order as the scenarios

Optional settings for script

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

• model_nr: save number of model runs per period and scenario

• styleset: color style

• spread: how many standard deviations to calculate the spread with, default is 1, ipcc tas is 1.64

20. Script plot_timeseries_mean_spread.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

Optional settings for script

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

17.15. Climate model projections from the ScenarioMIP of CMIP6 295

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• model_nr: save number of model runs per period and scenario

• styleset: color style

• spread: how many standard deviations to calculate the spread with, default is 1, ipcc tas is 1.64

21. Script plot_timeseries_mean_spread_rightaxis_5scen.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• rightaxis_offset: offset of the right axis relative to the left axis

• label: list of labels of the scenarios

Optional settings for script

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

• model_nr: save number of model runs per period and scenario

• styleset: color style

• spread: how many standard deviations to calculate the spread with, default is 1, ipcc tas is 1.64

22. Script plot_timeseries_mean_spread_ssp4.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

Optional settings for script

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

296 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• colormap: alternative colormap, path to rgb file or ncl name

• model_nr: save number of model runs per period and scenario

• styleset: color style

• spread: how many standard deviations to calculate the spread with, default is 1, ipcc tas is 1.64

23. Script plot_timeseries_mean_spread_ssp5.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

Optional settings for script

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

• model_nr: save number of model runs per period and scenario

• styleset: color style

• spread: how many standard deviations to calculate the spread with, default is 1, ipcc tas is 1.64

24. Script plot_timeseries_across_realization_stddev_runave.ncl

Required settings for script

• ancestors: variable and diagnostics that calculated field to be plotted

• scenarios: list of scenarios included in the figure

• syears: list of start years of historical and SSPs scenarios

• eyears: list of end years of historical and SSPs scenarios

• begin_ref_year: start year of reference period

• end_ref_year: end year of reference period

• label: list of labels of the scenarios

• n_samples: number of samples of size 10 to draw among all the ensembles of sampled_model only

• sampled_model: name of dataset on which to sample

Optional settings for script

• trend: whether the trend is calculated and displayed

• runave_window: only used if trend is true, size window used for the centered running average

17.15. Climate model projections from the ScenarioMIP of CMIP6 297

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

17.15.4 Variables

Note: These are the variables tested and used in the original paper.

• tas (atmos, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

However, the code is flexible and in theory other variables of the same kind can be used.

17.15.5 References

• Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O’Neill, B.,
Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Hurtt, G., Kriegler, E., Lamarque,
J.-F., Meehl, G., Moss, R., Bauer, S. E., Boucher, O., Brovkin, V., Golaz, J.-C., Gualdi, S., Guo, H., John, J. G.,
Kharin, S., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rosenbloom, N., Schupfner, M., Seferian, R.,
Song, Z., Steger, C., Sellar, A., Swart, N., Tachiiri, K., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X.,
Xinyao, R., Yang, S., Yu, Y., and Ziehn, T.: Climate model projections from the Scenario Model Intercomparison
Project (ScenarioMIP) of CMIP6, Earth Syst. Dynam., 12, 253-293, https://doi.org/10.5194/esd-12-253-2021

17.15.6 Example plots

17.16 Climate Change Hotspot

17.16.1 Overview

In the context of a changing climate, it is found that not all regions change at the same pace and the same way. The
regions that change at a faster rate than the rest of the globe are labelled as climate change hotspots. Estimating the
location and magnitude of the hotspots is important for climate change adaptation, and it is usually computed using the
projected climate variables’ differences between the regional and larger scales.

One issue when trying to evaluate projections of climate change is the vast amount of information available from
the Coupled Model Intercomparison Project (CMIP) exercises. Additionally, results from the CMIP phases 5 and 6
can be quite different, therefore a comparison between the two multi-model ensembles can be made to evaluate their
differences and similarities. To account for the projections scenario uncertainty, data from three different end-of-the-
century radiative forcings is given in the recipe.

This recipe compares regional surface temperature and precipitation against larger scale means to obtain the hotspot
magnitudes for both CMIP5 and CMIP6 in the 2.6, 4.5 and 8.5 Wm^-2 radiative forcings by the year 2100 against
the preindustrial Era (RCP2.6, RCP4.5, RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5, SSP5-8.5 for CMIP6). Recipe
based on the work by Cos et al. (2022).

Note: This recipe is currently set to evaluate the Mediterranean hotspot (with bounds start_longitude: -10,
end_longitude: 40, start_latitude: 30, end_latitude: 45) but it can be set to any other rectangular region.

298 Chapter 17. Future projections

https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.5194/esd-13-321-2022

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 48: Global average temperature time series (11-year running averages) of changes from current baseline
(1995–2014, left axis) and pre-industrial baseline (1850–1900, right axis, obtained by adding a 0.84 ◦C offset) for
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.

17.16. Climate Change Hotspot 299

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 49: Patterns of temperature (a) and percent precipitation change (b) normalized by global average temperature
change (averaged across CMIP6 models and all Tier 1 plus SSP1-1.9 scenarios).

17.16.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_climate_change_hotspot.yml: Loads and ensembles the data,
computes the necessary climate change hotspot diagnostics and plots the results figures.

Diagnostics are stored in esmvaltool/diag_scripts/cos22esd/

• climate_change_hotspot.py: Calculates the regional field hotspot for temperature and precipitation and the
10-year rolling mean timeseries for regional and large-scale temperature and precipitation.

• hotspot_plotter.py: Gathers the data output from the climate_change_hotspot.py script and plots the
hotspot fields and the rolling mean timeseries [Figures 2, 3, S2 and S4 by Cos et al. (2022).].

17.16.3 User settings in the recipe

1. Script climate_change_hotspot.py

Required settings for script

• baseline_period: Historical period that serves as a reference to compute the time anomalies.

• future_periods: List of the two future periods given in years (“YYYY-YYYY”) where the hotspot will
be computed. Following the format [future period #1, future period #2].

• region: list of longitudes and latitudes that enclose a rectangular region. In the form of [start_longitude,
end_longitude, start_latitude, end_latitude].

300 Chapter 17. Future projections

https://doi.org/10.5194/esd-13-321-2022

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 50: Times (best estimate and range – in square brackets – based on the 5%–95% range of the ensemble after smooth-
ing the trajectories by 11-year running means) at which various warming levels (defined as relative to 1850–1900) are
reached according to simulations following, from left to right, SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.
Crossing of these levels is defined by using anomalies with respect to 1995–2014 for the model ensembles and adding
the offset of 0.84 to derive warming from pre-industrial values. We use a common subset of 31 models for the Tier
1 scenarios and all available models (13) for SSP1-1.9, while Table A7 shows the result of using all available models
under each scenario. The number of models available under each scenario and the number of models reaching a given
warming level are shown in parentheses. However, the estimates are based on the ensemble means and ranges computed
from all the models considered (13 or 31 in this case), not just from the models that reach a given level. An estimate
marked as “NA” is to be interpreted as “not reaching that warming level by 2100”. In cases where the ensemble average
remains below the warming level for the whole century, it is possible for the central estimate to be NA, while the earlier
time of the confidence interval is not, since it is determined by the warmer end of the ensemble range.

17.16. Climate Change Hotspot 301

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• region_name: Name of the region to be included in the provenance record.

2. Script hotspot_plotter.py

Required settings for script

• baseline_period: Historical period displayed in the figures’ titles.

• future_periods: List of the two future periods given in years (“YYYY-YYYY”), following the format
[future period #1, future period #2], used to identify the ancestor files and in the figure titles.

• region: List of longitudes and latitudes that enclose a region. In the form of [start_longitude,
end_longitude, start_latitude, end_latitude]. Used in the title to identify the precipitation large-scale re-
gion.

• region_name: Name of the region used in the plot titles.

17.16.4 Modifying the datasets and scenarios used

recipe_climate_change_hotspot.yml can be modified to use different scenario combinations. The standard
recipe uses data from scenarios with the radiative forcings 2.6, 4.5 and 8.5 Wm^{-2} (referred to as 26, 45 and 85),
but any combination of three scenarios from the following list can be used:

26: "RCP2.6/SSP1-2.6"
45: "RCP4.5/SSP2-4.5"
60: "RCP6.0/SSP4-6.0"
85: "RCP8.5/SSP5-8.5"

To specify which datasets are available for each scenario, lists of datasets can be attributed to a specific CMIP project
and scenario between the documentation and preprocessor sections of the recipe as follows:

cmip6_85: &cmip6_85
- {...dataset keys...}
- {...dataset keys...}

cmip5_85: &cmip5_85
- {...dataset keys...}
- {...dataset keys...}

cmip6_45: &cmip6_45
- {...dataset keys...}
- {...dataset keys...}

cmip5_45: &cmip5_45
- {...dataset keys...}
- {...dataset keys...}

These different dataset sections will be called at each diagnostic as additional_datasets using the anchors
*cmip6_85, *cmip5_85, etc. as in the example:

pr_cmip6_85:
variables:
pr:
mip: Amon
short_name: pr
preprocessor: ensemble_members
additional_datasets: *cmip6_85

scripts:
(continues on next page)

302 Chapter 17. Future projections

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

pr_cmip6_85:
<<: *script_input

In case of wanting to use other scenarios, the datasets and diagnostics must be changed maintaining the format
cmip{phase}_{scenario} and {variable}_cmip{phase}_{scenario}. For example, if we want scenario 60
instead of scenario 85, we would need to include the files available for cmip6_60 and cmip5_60, and the previous
diagnostic would change to:

pr_cmip6_60:
variables:
pr:
mip: Amon
short_name: pr
preprocessor: ensemble_members
additional_datasets: *cmip6_60

scripts:
pr_cmip6_60:
<<: *script_input

Finally, if the datasets that need to be included in the multi-model means are common for all scenarios, the datasets
could be simplified to:

cmip6: &cmip6
- {...dataset keys...}
- {...dataset keys...}

cmip5: &cmip5
- {...dataset keys...}
- {...dataset keys...}

Note that the diagnostics’ additional_datasets will need to be modified accordingly.

17.16.5 Variables

• tas (atmos, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

17.16.6 References

• Cos et al. 2022, Earth Syst. Dynam., 13, 321–340

17.16.7 Example plots

17.16. Climate Change Hotspot 303

https://doi.org/10.5194/esd-13-321-2022

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 51: Mediterranean region temperature (upper rows) and precipitation (lower rows) change differences against
the mean global temperature change and the mean 30–45º N latitudinal belt precipitation change respectively. The
changes for the periods 2041–2060 (first and third row) and 2081–2100 (second and fourth row) are evaluated against
1986–2005 mean. The differences are shown for the CMIP5 (left) and CMIP6 (right) DJF, JJA and annual mean
projections (columns) under the high emission scenario RCP8.5 and SSP5-8.5 respectively. N indicates the number of
models included in the ensemble mean.

Fig. 52: Mediterranean region warming against global warming for the summer 2.6, 4.5 and 8.5 Wm^{-2} RCP and
SSP scenarios for the CMIP5 and CMIP6 ensemble means. Each dot represents a 10-year mean change beginning from
the period 1960-1969 (light colouring) until 2091-2100 (opaque coloring). The changes are computed with 1986-2005
as the baseline. An ordinary least squares linear regression is computed and the slope and r values are shown. N
indicates the number of models included in the ensemble mean.

304 Chapter 17. Future projections

CHAPTER

EIGHTEEN

IPCC

18.1 IPCC AR6 Chapter 3 (selected figures)

18.1.1 Overview

This recipe collects selected diagnostics used in IPCC AR6 WGI Chapter 3: Human influence on the climate system
(Eyring et al., 2021). Plots from IPCC AR6 can be readily reproduced and compared to previous versions. The aim
is to be able to start with what was available now the next time allowing us to focus on developing more innovative
analysis methods rather than constantly having to “re-invent the wheel”.

Processing of CMIP3 models currently works only in serial mode, due to an issue in the input data still under investi-
gation. To run the recipe for Fig 3.42a and Fig. 3.43 set “max_parallel_tasks: 1” in the config-user.yml file.

The plots are produced collecting the diagnostics from individual recipes. The following figures from Eyring et al.
(2021) can currently be reproduced:

• Figure 3.3 a,b,c,d: Surface Air Temperature - Model Bias

• Figure 3.4: Anomaly Of Near-Surface Air Temperature

• Figure 3.5: Temporal Variability Of Near-Surface Air Temperature

• Figure 3.9: Anomaly Of Near-Surface Air Temperature - Attribution

• Figure 3.13: Precipitation - Model Bias

• Figure 3.15: Precipitation Anomaly

• Figure 3.19: Speed-Up Of Zonal Mean Wind

• Figure 3.42: Relative Model Performance

• Figure 3.43: Correlation Pattern

To reproduce Fig. 3.9 you need the shapefile of the AR6 reference regions (Iturbide et al., 2020). Please download
the file IPCC-WGI-reference-regions-v4_shapefile.zip, unzip and store it in <auxiliary_data_dir>/IPCC-regions/ (the
auxiliary_data_dir is defined in the config-user.yml file).

305

https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/
https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/
https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/
https://github.com/SantanderMetGroup/ATLAS/tree/v1.6/reference-regions
https://doi.org/10.5194/essd-12-2959-2020
https://github.com/SantanderMetGroup/ATLAS/blob/v1.6/reference-regions/IPCC-WGI-reference-regions-v4_shapefile.zip
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.1.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/ipccwg1ar6ch3/

• recipe_ipccwg1ar6ch3_atmosphere.yml

• recipe_ipccwg1ar6ch3_fig_3_9.yml

• recipe_ipccwg1ar6ch3_fig_3_19.yml

• recipe_ipccwg1ar6ch3_fig_3_42_a.yml

• recipe_ipccwg1ar6ch3_fig_3_42_b.yml

• recipe_ipccwg1ar6ch3_fig_3_43.yml

Diagnostics are stored in esmvaltool/diag_scripts/

Fig. 3.3:

• ipcc_ar5/ch12_calc_IAV_for_stippandhatch.ncl: See here:.

• ipcc_ar6/model_bias.ncl

Fig. 3.4:

• ipcc_ar6/tas_anom.ncl

• ipcc_ar6/tsline_collect.ncl

Fig. 3.5:

• ipcc_ar6/zonal_st_dev.ncl

Fig. 3.9:

• ipcc_ar6/tas_anom_damip.ncl

Fig. 3.13:

• ipcc_ar5/ch12_calc_IAV_for_stippandhatch.ncl: See here:.

• ipcc_ar6/model_bias.ncl

Fig. 3.15:

• ipcc_ar6/precip_anom.ncl

Fig. 3.19:

• ipcc_ar6/zonal_westerly_winds.ncl

Fig. 3.42:

• perfmetrics/main.ncl

• perfmetrics/collect.ncl

Fig. 3.43:

• ipcc_ar6/corr_pattern.ncl

• ipcc_ar6/corr_pattern_collect.ncl

306 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.1.3 User settings in recipe

1. Script ipcc_ar5/ch12_calc_IAV_for_stippandhatch.ncl

See here.

2. Script ipcc_ar6/model_bias.ncl

Optional settings (scripts)

• plot_abs_diff: additionally also plot absolute differences (true, false)

• plot_rel_diff: additionally also plot relative differences (true, false)

• plot_rms_diff: additionally also plot root mean square differences (true, false)

• projection: map projection, e.g., Mollweide, Mercator

• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

Required settings (variables)

• reference_dataset: name of reference dataset

Color tables

• variable “tas” and “tos”: diag_scripts/shared/plot/rgb/ipcc-ar6_temperature_div.rgb,
diag_scripts/shared/plot/rgb/ipcc-ar6_temperature_10.rgb, diag_scripts/shared/plot/rgb/ipcc-
ar6_temperature_seq.rgb

• variable “pr”: diag_scripts/shared/plots/rgb/ipcc-ar6_precipitation_seq.rgb,
diag_scripts/shared/plot/rgb/ipcc-ar6_precipitation_10.rgb

• variable “sos”: diag_scripts/shared/plot/rgb/ipcc-ar6_misc_seq_1.rgb, diag_scripts/shared/plot/rgb/ipcc-
ar6_misc_div.rgb

3. Script ipcc_ar6/tas_anom.ncl

Required settings for script

• styleset: as in diag_scripts/shared/plot/style.ncl functions

Optional settings for script

• blending: if true, calculates blended surface temperature

• ref_start: start year of reference period for anomalies

• ref_end: end year of reference period for anomalies

• ref_value: if true, right panel with mean values is attached

• ref_mask: if true, model fields will be masked by reference fields

• region: name of domain

• plot_units: variable unit for plotting

• y-min: set min of y-axis

• y-max: set max of y-axis

• header: if true, region name as header

• volcanoes: if true, adds volcanoes to the plot

• write_stat: if true, write multi model statistics in nc-file

Optional settings for variables

18.1. IPCC AR6 Chapter 3 (selected figures) 307

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• reference_dataset: reference dataset; REQUIRED when calculating anomalies

Color tables

• e.g. diag_scripts/shared/plot/styles/cmip5.style

4. Script ipcc_ar6/tas_anom_damip.ncl

Required settings for script

• start_year: start year in figure

• end_year: end year in figure

• panels: list of variable blocks for each panel

Optional settings for script

• ref_start: start year of reference period for anomalies

• ref_end: end year of reference period for anomalies

• ref_mask: if true, model fields will be masked by reference fields

• plot_units: variable unit for plotting

• y-min: set min of y-axis

• y-max: set max of y-axis

• header: title for each panel

• title: name of region as part of filename

• legend: set labels for optional output of a legend in an extra file

5. Script ipcc_ar6/tsline_collect.ncl

Optional settings for script

• blending: if true, then var=”gmst” otherwise “gsat”

• ref_start: start year of reference period for anomalies

• ref_end: end year of reference period for anomalies

• region: name of domain

• plot_units: variable unit for plotting

• y-min: set min of y-axis

• y-max: set max of y-axis

• order: order in which experiments should be plotted

• stat_shading: if true: shading of statistic range

• ref_shading: if true: shading of reference period

Optional settings for variables

• reference_dataset: reference dataset; REQUIRED when calculating anomalies

6. Script ipcc_ar6/zonal_st_dev.ncl

Required settings for script

• styleset: as in diag_scripts/shared/plot/style.ncl functions

Optional settings for script

308 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• plot_legend: if true, plot legend will be plotted

• plot_units: variable unit for plotting

• multi_model_mean: if true, multi-model mean and uncertaintiy will be plotted

Optional settings for variables

• reference_dataset: reference dataset; REQUIRED when calculating anomalies

7. Script ipcc_ar6/precip_anom.ncl

Required settings for script

• panels: list of variables plotted in each panel

• start_year: start of time coordinate

• end_year: end of time coordinate

Optional settings for script

• anomaly: true if anomaly should be calculated

• ref_start: start year of reference period for anomalies

• ref_end: end year of reference period for anomalies

• ref_mask: if true, model fields will be masked by reference fields

• region: name of domain

• plot_units: variable unit for plotting

• header: if true, region name as header

• stat: statistics for multi model nc-file (MinMax,5-95,10-90)

• y_min: set min of y-axis

• y_max: set max of y-axis

8. Script ipcc_ar6/zonal_westerly_winds.ncl

Optional settings for variables

• reference_dataset: reference dataset; REQUIRED when calculating anomalies

Optional settings for script

• e13fig12_start_year: year when the climatology calculation starts (default: start_year of var)

• e13fig12_end_year: year when the climatology calculation ends (default: end_year of var)

• e13fig12_multimean: multimodel mean (default: False)

• e13fig12_exp_MMM: name of the experiments for the MMM (required if @e13fig12_multimean = True)

• e13fig12_season: season (default: ANN)

9. Script perfmetrics/perfmetrics_main.ncl

See here.

10. Script perfmetrics/perfmetrics_collect.ncl

See here.

11. Script ipcc_ar6/corr_pattern.ncl

Required settings for variables

18.1. IPCC AR6 Chapter 3 (selected figures) 309

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• reference_dataset: name of reference observation

Optional settings for variables

• alternative_dataset: name of alternative observations

12. Script ipcc_ar6/corr_pattern_collect.ncl

Optional settings for script

• diag_order: give order of plotting variables on the x-axis

• labels: List of labels for each variable on the x-axis

• model_spread: if True, model spread is shaded

• plot_median: if True, median is plotted

• project_order: give order of projects

18.1.4 Variables

• et (land, monthly mean, longitude latitude time)

• fgco2 (ocean, monthly mean, longitude latitude time)

• gpp (land, monthly mean, longitude latitude time)

• hfds (land, monthly mean, longitude latitude time)

• hus (land, monthly mean, longitude latitude level time)

• lai (land, monthly mean, longitude latitude time)

• lwcre (atmos, monthly mean, longitude latitude time)

• nbp (land, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

• psl (atmos, monthly mean, longitude latitude time)

• rlds (atmos, monthly mean, longitude latitude time)

• rlus (atmos, monthly mean, longitude latitude time)

• rlut (atmos, monthly mean, longitude latitude time)

• rsds (atmos, monthly mean, longitude latitude time)

• rsus (atmos, monthly mean, longitude latitude time)

• rsut (atmos, monthly mean, longitude latitude time)

• sm (land, monthly mean, longitude latitude time)

• sic (seaice, monthly mean, longitude latitude time)

• siconc (seaice, monthly mean, longitude latitude time)

• swcre (atmos, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude level time)

• tas (atmos, monthly mean, longitude latitude time)

• tasa (atmos, monthly mean, longitude latitude time)

• tos (atmos, monthly mean, longitude latitude time)

310 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• ts (atmos, monthly mean, longitude latitude time)

• ua (atmos, monthly mean, longitude latitude level time)

• va (atmos, monthly mean, longitude latitude level time)

• zg (atmos, monthly mean, longitude latitude level time)

18.1.5 Observations and reformat scripts

• AIRS (hus - obs4MIPs)

• ATSR (tos - obs4MIPs)

• BerkeleyEarth (tasa - esmvaltool/cmorizers/data/formatters/datasets/berkeleyearth.py)

• CERES-EBAF (rlds, rlus, rlut, rlutcs, rsds, rsus, rsut, rsutcs - obs4MIPs)

• CRU (pr - esmvaltool/cmorizers/data/formatters/datasets/cru.py)

• ESACCI-SOILMOISTURE (sm - esmvaltool/cmorizers/data/formatters/datasets /esacci_soilmoisture.py)

• ESACCI-SST (ts - esmvaltool/cmorizers/data/formatters/datasets/esacci_sst.py)

• ERA5 (hus, psl, ta, tas, ua, va, zg - ERA5 data can be used via the native6 project)

• ERA-Interim (hfds - cmorizers/data/formatters/datasets/era_interim.py)

• FLUXCOM (gpp - cmorizers/data/formatters/datasets/fluxcom.py)

• GHCN (pr - esmvaltool/cmorizers/data/formatters/datasets/ghcn.ncl)

• GPCP-SG (pr - obs4MIPs)

• HadCRUT5 (tasa - esmvaltool/cmorizers/data/formatters/datasets/hadcrut5.py)

• HadISST (sic, tos, ts - esmvaltool/cmorizers/data/formatters/datasets/hadisst.ncl)

• JMA-TRANSCOM (fgco2, nbp - esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py)

• JRA-55 (psl - ana4MIPs)

• Kadow2020 (tasa - esmvaltool/cmorizers/data/formatters/datasets/kadow2020.py)

• LandFlux-EVAL (et - esmvaltool/cmorizers/data/formatters/datasets/landflux_eval.py)

• Landschuetzer2016 (fgco2 - esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2016.py)

• LAI3g (lai - esmvaltool/cmorizers/data/formatters/datasets/lai3g.py)

• MTE (gpp - esmvaltool/cmorizers/data/formatters/datasets/mte.py)

• NCEP-NCAR-R1 (ta, tas, ua, va, zg - esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py)

• NOAAGlobalTemp (tasa - esmvaltool/cmorizers/data/formatters/datasets/noaaglobaltemp.py)

18.1. IPCC AR6 Chapter 3 (selected figures) 311

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.1.6 References

• Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J.
Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate
System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani,
S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis , M. Huang, K. Leitzell, E. Lonnoy,
J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge Universiy
Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423-552, doi: 10.1017/9781009157896.005.

18.1.7 Example plots

18.2 IPCC AR5 Chapter 9 (selected figures)

18.2.1 Overview

The goal of this recipe is to collect diagnostics to reproduce Chapter 9 of AR5, so that the plots can be readily reproduced
and compared to previous CMIP versions. In this way we can next time start with what was available in the previous
round and can focus on developing more innovative methods of analysis rather than constantly having to “re-invent the
wheel”.

Note: Please note that most recipes have been modified to include only models that are (still) readily available via
ESGF. Plots produced may therefore look different than the original figures from IPCC AR5.

The plots are produced collecting the diagnostics from individual recipes. The following figures from Flato et al. (2013)
can currently be reproduced:

• Figure 9.2 a,b,c: Annual-mean surface air temperature for the period 1980-2005. a) multi-model mean, b) bias as
the difference between the CMIP5 multi-model mean and the climatology from ERA-Interim (Dee et al., 2011),
c) mean absolute model error with respect to the climatology from ERA-Interim.

• Figure 9.3: Seasonality (December-January-February minus June-July-August) of surface (2 m) air temperature
(°C) for the period 1980-2005. (a) Multi-model mean for the historical experiment. (b) Multi-model mean of
absolute seasonality. (c) Difference between the multi-model mean and the ERA-Interim reanalysis seasonality.
(d) Difference between the multi-model mean and the ERA-Interim absolute seasonality.

• Figure 9.4: Annual-mean precipitation rate (mm day-1) for the period 1980-2005. a) multi-model mean, b)
bias as the difference between the CMIP5 multi-model mean and the climatology from the Global Precipitation
Climatology Project (Adler et al., 2003), c) multi-model mean absolute error with respect to observations, and
d) multi-model mean error relative to the multi-model mean precipitation itself.

• Figure 9.5: Climatological (1985-2005) annual-mean cloud radiative effects in Wm-2 for the CMIP5 models
against CERES EBAF (2001-2011) in Wm-2. Top row shows the shortwave effect; middle row the longwave
effect, and bottom row the net effect. Multi-model-mean biases against CERES EBAF 2.6 are shown on the left,
whereas the right panels show zonal averages from CERES EBAF 2.6 (black), the individual CMIP5 models
(thin gray lines), and the multi-model mean (thick red line).

• Figure 9.6: Centered pattern correlations between models and observations for the annual mean climatology
over the period 1980–1999. Results are shown for individual CMIP3 (black) and CMIP5 (blue) models as thin
dashes, along with the corresponding ensemble average (thick dash) and median (open circle). The four variables
shown are surface air temperature (TAS), top of the atmosphere (TOA) outgoing longwave radiation (RLUT),
precipitation (PR) and TOA shortwave cloud radiative effect (SW CRE). The correlations between the reference
and alternate observations are also shown (solid green circles).

312 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Figure 3.3: Annual mean near-surface (2 m) air temperature (°C) for the period 1995-2014. (a) Multi-model (en-
semble) mean constructed with one realization of the CMIP6 historical experiment from each model. (b) Multi-model
mean bias, defined as the difference between the CMIP6 multi-model mean and the climatology of the fifth genera-
tion European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate
(ERA5). (c) Multi-model mean of the root mean square error calculated over all months separately and averaged, with
respect to the climatology from ERA5. Uncertainty is represented using the advanced approach: No overlay indicates
regions with robust signal, where >=66% of models show change greater than the variability threshold and >=80% of
all models agree on sign of change; diagonal lines indicate regions with no change or no robust signal, where <66%
of models show a change greater than the variability threshold; crossed lines indicate regions with conflicting signal,
where >=66% of models show change greater than the variability threshold and <80% of all models agree on sign of
change.

18.2. IPCC AR5 Chapter 9 (selected figures) 313

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 2: Figure 3.4a: Observed and simulated time series of the anomalies in annual and global mean surface air tem-
perature (GSAT). All anomalies are differences from the 1850-1900 time-mean of each individual time series. The
reference period 1850-1900 is indicated by grey shading. (a) Single simulations from CMIP6 models (thin lines) and
the multi-model mean (thick red line). Observational data (thick black lines) are from the Met Office Hadley Cen-
tre/Climatic Research Unit dataset (HadCRUT5), and are blended surface temperature (2 m air temperature over land
and sea surface temperature over the ocean). All models have been subsampled using the HadCRUT5 observational
data mask. Vertical lines indicate large historical volcanic eruptions. Inset: GSAT for each model over the reference
period, not masked to any observations.

314 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: Figure 3.4b: Observed and simulated time series of the anomalies in annual and global mean surface air tempera-
ture (GSAT). All anomalies are differences from the 1850-1900 time-mean of each individual time series. The reference
period 1850-1900 is indicated by grey shading. (b) Multi-model means of CMIP5 (blue line) and CMIP6 (red line)
ensembles and associated 5th to 95th percentile ranges (shaded regions). Observational data are HadCRUT5, Berke-
ley Earth, National Oceanic and Atmospheric Administration NOAAGlobalTemp and Kadow et al. (2020). Masking
was done as in (a). CMIP6 historical simulations were extended with SSP2-4.5 simulations for the period 2015-2020
and CMIP5 simulations were extended with RCP4.5 simulations for the period 2006-2020. All available ensemble
members were used. The multi-model means and percentiles were calculated solely from simulations available for the
whole time span (1850-2020).

18.2. IPCC AR5 Chapter 9 (selected figures) 315

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 4: Figure 3.5: The standard deviation of annually averaged zonal-mean near-surface air temperature. This is shown
for four detrended observed temperature datasets (HadCRUT5, Berkeley Earth, NOAAGlobalTemp and Kadow et al.
(2020), for the years 1995-2014) and 59 CMIP6 pre-industrial control simulations (one ensemble member per model,
65 years) (after Jones et al., 2013). For line colours see the legend of Figure 3.4. Additionally, the multi-model mean
(red) and standard deviation (grey shading) are shown. Observational and model datasets were detrended by removing
the least-squares quadratic trend.

316 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 5: Figure 3.9: Global, land and ocean annual mean near-surface air temperature anomalies in CMIP6 models
and observations. Timeseries are shown for CMIP6 historical anthropogenic and natural (brown) natural-only (green),
greenhouse gas only (grey) and aerosol only (blue) simulations (multi-model means shown as thick lines, and shaded
ranges between the 5th and 95th percentiles) and for HadCRUT5 (black). All models have been subsampled using
the HadCRUT5 observational data mask. Temperature anomalies are shown relative to 1950-2010 for Antarctica and
relative to 1850-1900 for other continents. CMIP6 historical simulations are expanded by the SSP2-4.5 scenario sim-
ulations. All available ensemble members were used. Regions are defined by Iturbide et al. (2020).

• Figure 9.8: Observed and simulated time series of the anomalies in annual and global mean surface temperature.
All anomalies are differences from the 1961-1990 time-mean of each individual time series. The reference period
1961-1990 is indicated by yellow shading; vertical dashed grey lines represent times of major volcanic eruptions.
Single simulations for CMIP5 models (thin lines); multi-model mean (thick red line); different observations (thick
black lines). Dataset pre-processing like described in Jones et al., 2013.

• Figure 9.14: Sea surface temperature plots for zonal mean error, equatorial (5 deg north to 5 deg south) mean
error, and multi model mean for zonal error and equatorial mean.

• Figure 9.24: Time series of (a) Arctic and (b) Antarctic sea ice extent; trend distributions of (c) September Arctic
and (d) February Antarctic sea ice extent.

• Figure 9.26: Ensemble-mean global ocean carbon uptake (a) and global land carbon uptake (b) in the CMIP5
ESMs for the historical period 1900–2005. For comparison, the observation-based estimates provided by the
Global Carbon Project (GCP) are also shown (thick black line). The confidence limits on the ensemble mean are
derived by assuming that the CMIP5 models are drawn from a t-distribution. The grey areas show the range of
annual mean fluxes simulated across the model ensemble. This figure includes results from all CMIP5 models
that reported land CO2 fluxes, ocean CO2 fluxes, or both (Anav et al., 2013).

• Figure 9.27: Simulation of global mean (a) atmosphere–ocean CO2 fluxes (“fgCO2”) and (b) net atmo-
sphere–land CO2 fluxes (“NBP”), by ESMs for the period 1986–2005. For comparison, the observation-based
estimates provided by Global Carbon Project (GCP) and the Japanese Meteorological Agency (JMA) atmospheric
inversion are also shown. The error bars for the ESMs and observations represent interannual variability in the
fluxes, calculated as the standard deviation of the annual means over the period 1986–2005.

• Figure 9.38: Seasonal cycle for the surface temperature or precipitation over land within defined regions multi-
model mean and difference to reference dataset or absolute annual cycle can be chosen.

• Figure 9.39: Seasonal bias box and whiskers plot for surface temperature or precipitation within SREX (IPCC
Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation)
regions.

• Figure 9.40: Seasonal bias box and whiskers plot for surface temperature or precipitation within defined polar
and ocean regions.

• Figure 9.41b: Comparison between observations and models for variable values within defined regions.

18.2. IPCC AR5 Chapter 9 (selected figures) 317

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 6: Figure 3.13: Annual-mean precipitation rate (mm day-1) for the period 1995-2014. (a) Multi-model (ensemble)
mean constructed with one realization of the CMIP6 historical experiment from each model. (b) Multi-model mean
bias, defined as the difference between the CMIP6 multi-model mean and precipitation analysis from the Global Pre-
cipitation Climatology Project (GPCP) version 2.3 (Adler et al., 2003). (c) Multi-model mean of the root mean square
error calculated over all months separately and averaged with respect to the precipitation analysis from GPCP version
2.3. Uncertainty is represented using the advanced approach. No overlay indicates regions with robust signal, where
>=66% of models show change greater than the variability threshold and >=80% of all models agree on sign of change;
diagonal lines indicate regions with no change or no robust signal, where <66% of models show a change greater than
the variability threshold; crossed lines indicate regions with conflicting signal, where >=66% of models show change
greater than the variability threshold and <80% of all models agree on the sign of change.

318 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 7: Figure 3.15: Observed and simulated time series of anomalies in zonal average annual mean precipitation. (a),
(c-f) Evolution of global and zonal average annual mean precipitation (mm day-1) over areas of land where there are
observations, expressed relative to the base period of 1961-1990, simulated by CMIP6 models (one ensemble member
per model) forced with both anthropogenic and natural forcings (brown) and natural forcings only (green). Multi-
model means are shown in thick solid lines and shading shows the 5-95% confidence interval of the individual model
simulations. The data is smoothed using a low pass filter. Observations from three different datasets are included:
gridded values derived from Global Historical Climatology Network (GHCN version 2) station data, updated from
Zhang et al. (2007), data from the Global Precipitation Climatology Product (GPCP L3 version 2.3, Adler et al.
(2003)) and from the Climate Research Unit (CRU TS4.02, Harris et al. (2014)). Also plotted are boxplots showing
interquartile and 5-95% ranges of simulated trends over the period for simulations forced with both anthropogenic and
natural forcings (brown) and natural forcings only (blue). Observed trends for each observational product are shown
as horizontal lines. Panel (b) shows annual mean precipitation rate (mm day-1) of GHCN version 2 for the years 1950-
2014 over land areas used to compute the plots.

18.2. IPCC AR5 Chapter 9 (selected figures) 319

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 8: Figure 3.19: Long-term mean (thin black contours) and linear trend (colour) of zonal mean December-January-
February zonal winds from 1985 to 2014 in the Southern Hemisphere. The figure shows (a) ERA5 and (b) the CMIP6
multi-model mean (58 CMIP6 models). The solid contours show positive (westerly) and zero long-term mean zonal
wind, and the dashed contours show negative (easterly) long-term mean zonal wind. Only one ensemble member per
model is included. Figure is modified from Eyring et al. (2013), their Figure 12.

Fig. 9: Figure 3.42a: Relative space-time root-mean-square deviation (RMSD) calculated from the climatologi-
cal seasonal cycle of the CMIP simulations (1980-1999) compared to observational datasets. A relative perfor-
mance measure is displayed, with blue shading indicating better and red shading indicating worse performance than
the median error of all model results. A diagonal split of a grid square shows the relative error with respect to
the reference data set (lower right triangle) and an additional data set (upper left triangle). Reference/additional
datasets are from top to bottom in (a): ERA5/NCEP, GPCP-SG/GHCN, CERES-EBAF, CERES-EBAF, CERES-EBAF,
CERES-EBAF, JRA-55/ERA5, ESACCI-SST/HadISST, ERA5/NCEP, ERA5/NCEP, ERA5/NCEP, ERA5/NCEP,
ERA5/NCEP, ERA5/NCEP, AIRS/ERA5, ERA5/NCEP. White boxes are used when data are not available for a given
model and variable. Figure is updated and expanded from Bock et al. (2020).

320 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 10: Figure 3.43 | Centred pattern correlations between models and observations for the annual mean climatology
over the period 1980-1999. Results are shown for individual CMIP3 (green), CMIP5 (blue) and CMIP6 (red) models
(one ensemble member from each model is used) as short lines, along with the corresponding multi-model ensemble
averages (long lines). Correlations are shown between the models and the primary reference observational data set (from
left to right: ERA5, GPCP-SG, CERES-EBAF, CERES-EBAF, CERES-EBAF, CERES-EBAF, JRA-55, ESACCI-SST,
ERA5, ERA5, ERA5, ERA5, ERA5, ERA5, AIRS, ERA5). In addition, the correlation between the primary reference
and additional observational datasets (from left to right: NCEP, GHCN, -, -, -, -, ERA5, HadISST, NCEP, NCEP, NCEP,
NCEP, NCEP, NCEP, NCEP, ERA5) are shown (solid grey circles) if available. To ensure a fair comparison across a
range of model resolutions, the pattern correlations are computed after regridding all datasets to a resolution of 4° in
longitude and 5° latitude.

• Figure 9.42a: Equilibrium climate sensitivity (ECS) against the global mean surface air temperature, both for
the period 1961-1990 and for the pre-industrial control runs.

• Figure 9.42b: Transient climate response (TCR) against equilibrium climate sensitivity (ECS).

• Figure 9.45a: Scatterplot of springtime snow-albedo effect values in climate change vs. springtime
d(alphas)/d(Ts) values in the seasonal cycle in transient climate change experiments (Hall and Qu, 2006).

18.2.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/recipe_ipccwg1ar5ch9

• recipe_flato13ipcc_figures_92_95.yml: Figures 9.2, 9.3, 9.4, 9.5

• recipe_flato13ipcc_figure_96.yml: Figure 9.6

• recipe_flato13ipcc_figure_98.yml: Figure 9.8

• recipe_flato13ipcc_figure_914.yml: Figure 9.14

• recipe_flato13ipcc_figure_924.yml: Figure 9.24

• recipe_flato13ipcc_figures_926_927.yml: Figures 9.26 and 9.27

• recipe_flato13ipcc_figure_942.yml: Figure 9.42

• recipe_flato13ipcc_figure_945a.yml: Figure 9.45a

• recipe_flato13ipcc_figures_938_941_cmip3.yml: Figures 9.38, 9.39, 9.40, and 9.41

• recipe_flato13ipcc_figures_938_941_cmip6.yml: Figures 9.38, 9.39, 9.40, and 9.41 CMIP6 instead of CMIP3

18.2. IPCC AR5 Chapter 9 (selected figures) 321

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• recipe_weigel21gmd_figures_13_16.yml: ESMValTool paper version (Weigel et al., 2021) of Figures 9.38, 9.39,
9.40, and 9.41, only CMIP5

Diagnostics are stored in esmvaltool/diag_scripts/

• carbon_cycle/main.ncl: See here.

• climate_metrics/ecs.py: See here.

• clouds/clouds_bias.ncl: global maps of the multi-model mean and the multi-model mean bias (Fig. 9.2, 9.4)

• clouds/clouds_ipcc.ncl: global maps of multi-model mean minus observations + zonal averages of individual
models, multi-model mean and observations (Fig. 9.5)

• ipcc_ar5/ch09_fig09_3.ncl: multi-model mean seasonality of near-surface temperature (Fig. 9.3)

• ipcc_ar5/ch09_fig09_6.ncl: calculating pattern correlations of annual mean climatologies for one variable (Fig
9.6 preprocessing)

• ipcc_ar5/ch09_fig09_6_collect.ncl: collecting pattern correlation for each variable and plotting correlation plot
(Fig 9.6)

• ipcc_ar5/tsline.ncl: time series of the global mean (anomaly) (Fig. 9.8)

• ipcc_ar5/ch09_fig09_14.py: Zonally averaged and equatorial SST (Fig. 9.14)

• seaice/seaice_tsline.ncl: Time series of sea ice extent (Fig. 9.24a/b)

• seaice/seaice_trends.ncl: Trend distributions of sea ice extent (Fig 9.24c/d)

• regional_downscaling/Figure9_38.ncl (Fig 9.38a (variable tas) and Fig 9.38b (variable pr))

• regional_downscaling/Figure9_39.ncl (Fig 9.39a/c/e (variable tas) and Fig 9.39b/d/f (variable pr))

• regional_downscaling/Figure9_40.ncl (Fig 9.40a/c/e (variable tas) and Fig 9.40b/d/f (variable pr))

• regional_downscaling/Figure9_41.ncl (Fig 9.41b)

• ipcc_ar5/ch09_fig09_42a.py: ECS vs. surface air temperature (Fig. 9.42a)

• ipcc_ar5/ch09_fig09_42b.py: TCR vs. ECS (Fig. 9.42b)

• emergent_constraints/snowalbedo.ncl: snow-albedo effect (Fig. 9.45a)

18.2.3 User settings in recipe

1. Script carbon_cycle/main.ncl

See here.

2. Script climate_metrics/ecs.py

See here.

3. Script clouds/clouds_bias.ncl

Required settings (scripts)

none

Optional settings (scripts)

• plot_abs_diff: additionally also plot absolute differences (true, false)

• plot_rel_diff: additionally also plot relative differences (true, false)

• projection: map projection, e.g., Mollweide, Mercator

322 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

• Required settings (variables)*

• reference_dataset: name of reference dataset

Optional settings (variables)

• long_name: description of variable

Color tables

• variable “tas”: diag_scripts/shared/plot/rgb/ipcc-tas.rgb, diag_scripts/shared/plot/rgb/ipcc-tas-delta.rgb

• variable “pr-mmday”: diag_scripts/shared/plots/rgb/ipcc-precip.rgb, diag_scripts/shared/plot/rgb/ipcc-
precip-delta.rgb

4. Script clouds/clouds_ipcc.ncl

Required settings (scripts)

none

Optional settings (scripts)

• explicit_cn_levels: contour levels

• mask_ts_sea_ice: true = mask T < 272 K as sea ice (only for variable “ts”); false = no additional grid cells
masked for variable “ts”

• projection: map projection, e.g., Mollweide, Mercator

• styleset: style set for zonal mean plot (“CMIP5”, “DEFAULT”)

• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

• valid_fraction: used for creating sea ice mask (mask_ts_sea_ice = true): fraction of valid time steps required
to mask grid cell as valid data

Required settings (variables)

• reference_dataset: name of reference data set

Optional settings (variables)

• long_name: description of variable

• units: variable units

Color tables

• variables “pr”, “pr-mmday”: diag_scripts/shared/plot/rgb/ipcc-precip-delta.rgb

5. Script ipcc_ar5/tsline.ncl

Required settings for script

• styleset: as in diag_scripts/shared/plot/style.ncl functions

Optional settings for script

• time_avg: type of time average (currently only “yearly” and “monthly” are available).

• ts_anomaly: calculates anomalies with respect to the defined period; for each grid point by removing the
mean for the given calendar month (requiring at least 50% of the data to be non-missing)

• ref_start: start year of reference period for anomalies

• ref_end: end year of reference period for anomalies

18.2. IPCC AR5 Chapter 9 (selected figures) 323

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• ref_value: if true, right panel with mean values is attached

• ref_mask: if true, model fields will be masked by reference fields

• region: name of domain

• plot_units: variable unit for plotting

• y-min: set min of y-axis

• y-max: set max of y-axis

• mean_nh_sh: if true, calculate first NH and SH mean

• volcanoes: if true, lines of main volcanic eruptions will be added

• run_ave: if not equal 0 than calculate running mean over this number of years

• header: if true, region name as header

Required settings for variables

none

Optional settings for variables

• reference_dataset: reference dataset; REQUIRED when calculating anomalies

Color tables

• e.g. diag_scripts/shared/plot/styles/cmip5.style

6. Script ipcc_ar5/ch09_fig09_3.ncl

Required settings for script

none

Optional settings for script

• projection: map projection, e.g., Mollweide, Mercator (default = Robinson)

Required settings for variables

• reference_dataset: name of reference observation

Optional settings for variables

• map_diff_levels: explicit contour levels for plotting

7. Script ipcc_ar5/ch09_fig09_6.ncl

Required settings for variables

• reference_dataset: name of reference observation

Optional settings for variables

• alternative_dataset: name of alternative observations

8. Script ipcc_ar5/ch09_fig09_6_collect.ncl

Required settings for script

none

Optional settings for script

• diag_order: List of diagnostic names in the order variables should appear on x-axis

324 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

9. Script seaice/seaice_trends.ncl

Required settings (scripts)

• month: selected month (1, 2, . . . , 12) or annual mean (“A”)

• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole, Default: False

Optional settings (variables)

• ref_model: array of references plotted as vertical lines

10. Script seaice/seaice_tsline.ncl

Required settings (scripts)

• region: Arctic, Antarctic

• month: annual mean (A), or month number (3 = March, for Antarctic; 9 = September for Arctic)

Optional settings (scripts)

• styleset: for plot_type cycle only (cmip5, cmip6, default)

• multi_model_mean: plot multi-model mean and standard deviation (default: False)

• EMs_in_lg: create a legend label for individual ensemble members (default: False)

• fill_pole_hole: fill polar hole (typically in satellite data) with sic = 1 (default: False)

11. Script regional_downscaling/Figure9.38.ncl

Required settings for script

none

Optional settings (scripts)

• styleset: for plot_type cycle (e.g. CMIP5, CMIP6), default “CMIP5”

• fig938_region_label: Labels for regions, which should be included ([“WNA”, “ENA”, “CAM”, “TSA”,
“SSA”, “EUM”, “NAF”,”CAF”, “SAF”, “NAS”, “CAS”, “EAS”, “SAS”, “SEA”, “AUS”]), default “WNA”

• fig938_project_MMM: projects to average, default “CMIP5”

• fig938_experiment_MMM: experiments to average, default “historical”

• fig938_mip_MMM: mip to average, default “Amon”

• fig938_names_MMM: names in legend i.e. ([“CMIP5”,”CMIP3”]), default fig938_project_MMM

• fig938_colors_MMM: Color for multi-model mean (e.g. [“red”]), default “red”

• If set fig938_mip_MMM, fig938_experiment_MMM, fig938_project_MMM, fig938_names_MMM, and
fig938_colors_MMM must have the same number of elements

• fig938_refModel: Reference data set for differences default “ERA-Interim”

• fig938_MMM: Plot multi-model mean (true/false), default “true”

• fig938_YMin: minimum Y Axis

• fig938_YMax: maximum Y Axis

• fig938_diff: Difference to reference data (true) or absolute annual cycle (false), default “true”

18.2. IPCC AR5 Chapter 9 (selected figures) 325

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

12. Script regional_downscaling/Figure9.39.ncl

Required settings (scripts)

• reference_dataset: reference dataset name (set of variables)

Optional settings (scripts)

• styleset: for plot_type cycle (e.g. CMIP5, CMIP6), default “CMIP5”

• fig939_season: seasons i.e. ([“DJF”,”JJA”,”ANN”]), default “DJF”

• fig939_region_label: Labels for regions, which should be included
([“ALAs”,”CGIs”,”WNAs”,”CNAs”,”ENAs”,”CAMs”,”AMZs”,”NEBs”,”WSAs”,”SSAs”,
“NEUs”,”CEUs”,”MEDs”,”SAHs”,”WAFs”,”EAFs”,”SAFs”,”NASs”,”WASs”,”CASs”,
“TIBs”,”EASs”,”SASs”,”SEAs”,”NAUs”,”SAUs”]), default “ALAs”

• fig939_project_MMM: projects to average, default “CMIP5”

• fig939_experiment_MMM: experiments to average, default “historical”

• fig939_mip_MMM: mip to average, default “Amon”

• fig939_MMM: Plot multi-model mean (true/false)

• fig939_names_MMM: names in legend i.e. ([“CMIP5”,”CMIP3”])

• fig939_YMin: minimum Y Axis

• fig939_YMax: maximum Y Axis

• fig939_vert_line_pos: i.e. ([6,10,13,17,24,26])

• fig939_vert_line_label: labels of vertical lines, i.e. ([“North America”, “South Amer-
ica”,”Europe”,”Africa”,”Asia”,”Australia”])

• fig939_mode: True= cumulative mode

13. Script regional_downscaling/Figure9.40.ncl

Required settings (scripts)

• reference_dataset: reference dataset name (set of variables)

Optional settings (scripts)

• styleset: for plot_type cycle (e.g. CMIP5, CMIP6), default “CMIP5”

• fig940_season: seasons i.e. ([“DJF”,”JJA”,”ANN”]), default “DJF”

• fig940_region_label: Labels for regions, which should be included ([“Arc-
tic_land”,”Arctic_sea”,”Antarctic_land”,”Antarctic_sea”, “Caribbean”,”WesternIndianOcean”,”NorthernIndianOcean”,
“NorthernTropicalPacific”,”EquatorialTropicalPacific”, “SouthernTropicalPa-
cific”,”World_land”,”World_sea”,”World”]), default “Arctic_land”

• fig940_project_MMM: projects to average, default “CMIP5”

• fig940_experiment_MMM: experiments to average, default “historical”

• fig940_mip_MMM: mip to average, default “Amon”

• fig940_MMM: Plot multi-model mean (true/false)

• fig940_names_MMM: names in legend i.e. ([“CMIP5”,”CMIP3”])

• fig940_YMin: minimum Y Axis

• fig940_YMax: maximum Y Axis

326 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• fig940_vert_line_pos: i.e. ([6,10,13,17,24,26])

• fig940_vert_line_label: labels of vertical lines, i.e. ([“North America”, “South Amer-
ica”,”Europe”,”Africa”,”Asia”,”Australia”])

• fig940_mode: True= cumulative mode

14. Script regional_downscaling/Figure9.41.ncl

Required settings (scripts)

• reference_dataset: reference dataset name (set of variables)

Optional settings (scripts)

• styleset: for plot_type cycle (e.g. CMIP5, CMIP6), default “CMIP5”

• fig941_region_label: Labels for regions, which should be included
([“ALAs”,”CGIs”,”WNAs”,”CNAs”,”ENAs”,”CAMs”,”AMZs”,”NEBs”,”WSAs”,”SSAs”,
“NEUs”,”CEUs”,”MEDs”,”SAHs”,”WAFs”,”EAFs”,”SAFs”,”NASs”,”WASs”,”CASs”,
“TIBs”,”EASs”,”SASs”,”SEAs”,”NAUs”,”SAUs”]), default “MEDs”

15. Script ipcc_ar5/ch09_fig09_42a.py

Required settings for script

none

Optional settings for script

• axes_functions: dict containing methods executed for the plot’s matplotlib.axes.Axes object.

• dataset_style: name of the style file (located in esmvaltool.diag_scripts.shared.plot.
styles_python).

• matplotlib_style: name of the matplotlib style file (located in esmvaltool.diag_scripts.shared.
plot.styles_python.matplotlib).

• save: dict containing keyword arguments for the function matplotlib.pyplot.savefig().

• seaborn_settings: Options for seaborn.set_theme() (affects all plots).

1. Script ipcc_ar5/ch09_fig09_42b.py

Required settings for script

none

Optional settings for script

• dataset_style: Dataset style file (located in esmvaltool.diag_scripts.shared.plot.
styles_python). The entry marker is ignored when marker_file is given.

• log_x: Apply logarithm to X axis (ECS).

• log_y: Apply logarithm to Y axis (TCR).

• marker_column: Name of the column to look up markers in marker_file.

• marker_file: CSV file with markers (can also be integers). Must have the columns dataset and marker
(or the column specified by marker_column). If a relative path is given, assumes that this is a pattern to
search for ancestor files.

• savefig_kwargs: Keyword arguments for matplotlib.pyplot.savefig().

• seaborn_settings: Options for seaborn.set_theme() (affects all plots).

• x_lim: Plot limits for X axis (ECS).

18.2. IPCC AR5 Chapter 9 (selected figures) 327

https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• y_lim: Plot limits for Y axis (TCR).

2. Script emergent_constraints/snowalbedo.ncl

Required settings for script

• exp_presentday: name of present-day experiment (e.g. “historical”)

• exp_future: name of climate change experiment (e.g. “rcp45”)

Optional settings for script

• diagminmax: observational uncertainty (min and max)

• legend_outside: create extra file with legend (true, false)

• styleset: e.g. “CMIP5” (if not set, this diagnostic will create its own color table and symbols for plotting)

• suffix: string to be added to output filenames

• xmax: upper limit of x-axis (default = automatic)

• xmin: lower limit of x-axis (default = automatic)

• ymax: upper limit of y-axis (default = automatic)

• ymin: lower limit of y-axis (default = automatic)

Required settings for variables

• ref_model: name of reference data set

Optional settings for variables

none

18.2.4 Variables

• areacello (fx, longitude latitude)

• fgco2 (ocean, monthly mean, longitude latitude time)

• nbp (ocean, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

• rlut, rlutcs (atmos, monthly mean, longitude latitude time)

• rsdt (atmos, monthly mean, longitude latitude time)

• rsuscs, rsdscs (atmos, monthly mean, longitude latitude time)

• rsut, rsutcs (atmos, monthly mean, longitude latitude time)

• sic (ocean-ice, monthly mean, longitude latitude time)

• tas (atmos, monthly mean, longitude latitude time)

• tos (ocean, monthly mean, longitude, latitude, time)

328 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.2.5 Observations and reformat scripts

Note: (1) obs4MIPs data can be used directly without any preprocessing; (2) see headers of reformat scripts for non-
obs4MIPs data for download instructions.

• CERES-EBAF (rlut, rlutcs, rsut, rsutcs - obs4MIPs)

• ERA-Interim (tas, ta, ua, va, zg, hus - esmvaltool/cmorizers/data/formatters/datasets/era-interim.py)

• GCP2018 (fgco2, nbp - esmvaltool/cmorizers/data/formatters/datasets/gcp2018.py)

• GPCP-SG (pr - obs4MIPs)

• JMA-TRANSCOM (fgco2, nbp - esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py)

• HadCRUT4 (tas - esmvaltool/cmorizers/data/formatters/datasets/hadcrut4.ncl)

• HadISST (sic, tos - esmvaltool/cmorizers/data/formatters/datasets/hadisst.ncl)

• ISCCP-FH (rsuscs, rsdscs, rsdt - esmvaltool/cmorizers/data/formatters/datasets/isccp_fh.ncl)

18.2.6 References

• Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring,
C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason and M. Rummukainen, 2013: Evaluation
of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

• Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate
change, Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

• Jones et al., 2013: Attribution of observed historical near-surface temperature variations to anthropogenic and
natural causes using CMIP5 simulations. Journal of Geophysical Research: Atmosphere, 118, 4001-4024,
doi:10.1002/jgrd.50239.

• Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J.,
McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X., 2012: Changes in climate
extremes and their impacts on the naturalphysical environment. , in: Managing the Risks of Extreme Events
and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the
Intergovernmental Panel on ClimateChange (IPCC), edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D.,
Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley,
P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109-230.

• Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, E.,
Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., Pérez-
Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., and Eyring,
V.: Earth System Model Evaluation Tool (ESMValTool) v2.0 - diagnostics for extreme events, regional and
impact evaluation, and analysis of Earth system models in CMIP, Geosci. Model Dev., 14, 3159-3184, https:
//doi.org/10.5194/gmd-14-3159-2021, 2021.

18.2. IPCC AR5 Chapter 9 (selected figures) 329

https://doi.org/10.5194/gmd-14-3159-2021
https://doi.org/10.5194/gmd-14-3159-2021

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.2.7 Example plots

Fig. 11: Figure 9.2 a,b,c: Annual-mean surface air temperature for the period 1980-2005. a) multi-model mean, b) bias
as the difference between the CMIP5 multi-model mean and the climatology from ERA-Interim (Dee et al., 2011), c)
mean absolute model error with respect to the climatology from ERA-Interim.

18.3 IPCC AR5 Chapter 12 (selected figures)

18.3.1 Overview

The goal is to create a standard recipe for creating selected Figures from IPCC AR5 Chapter 12 on “Long-term Cli-
mate Change: Projections, Commitments and Irreversibility”. These include figures showing the change in a variable
between historical and future periods, e.g. maps (2D variables), zonal means (3D variables), timeseries showing the
change in certain variables from historical to future periods for multiple scenarios, and maps visualizing change in
variables normalized by global mean temperature change (pattern scaling) as in Collins et al., 2013.

330 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 12: Figure 9.3: Multi model values for seasonality of near-surface temperature, from top left to bottom right:
mean, mean of absolute seasonality, mean bias in seasonality, mean bias in absolute seasonality. Reference dataset:
ERA-Interim.

18.3. IPCC AR5 Chapter 12 (selected figures) 331

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 13: Figure 9.4: Annual-mean precipitation rate (mm day-1) for the period 1980-2005. a) multi-model mean, b) bias
as the difference between the CMIP5 multi-model mean and the climatology from the Global Precipitation Climatology
Project (Adler et al., 2003), c) multi-model mean absolute error with respect to observations, and d) multi-model mean
error relative to the multi-model mean precipitation itself.

332 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 14: Figure 9.5: Climatological (1985-2005) annual-mean cloud radiative effects in Wm-2 for the CMIP5 models
against CERES EBAF (2001-2011) in Wm-2. Top row shows the shortwave effect; middle row the longwave effect,
and bottom row the net effect. Multi-model-mean biases against CERES EBAF 2.6 are shown on the left, whereas the
right panels show zonal averages from CERES EBAF 2.6 (black), the individual CMIP5 models (thin gray lines), and
the multi-model mean (thick red line).

18.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_collins13ipcc.yml

Diagnostics are stored in diag_scripts/

• ipcc_ar5/ch12_map_diff_each_model_fig12-9.ncl: calculates the difference between future and historical runs
for one scenario for each given model individually on their native grid and plots all of them in one Figure. As in
Figure 12.9 in AR5.

• ipcc_ar5/ch12_ts_line_mean_spread.ncl: calculates time series for one variable, change in future relative to base
period in historical, multi-model mean as well as spread around it (as standard deviation).

• ipcc_ar5/ch12_plot_ts_line_mean_spread.ncl: plots the timeseries multi-model mean and spread calculated
above. As in Figure 12.5 in AR5.

• ipcc_ar5/ch12_calc_IAV_for_stippandhatch.ncl: calculates the interannual variability over piControl runs, either
over the whole time period or in chunks over some years.

• ipcc_ar5/ch12_calc_map_diff_mmm_stippandhatch.ncl: calculates the difference between future and historical
periods for each given model and then calculates multi-model mean as well as significance. Significant is where
the multi-model mean change is greater than two standard deviations of the internal variability and where at least
90% of the models agree on the sign of change. Not significant is where the multi-model mean change is less
than one standard deviation of internal variability.

• ipcc_ar5/ch12_plot_map_diff_mmm_stipp.ncl: plots multi-model mean maps calculated above including stip-
pling where significant and hatching where not significant. As in Figure 12.11 in AR5.

• ipcc_ar5/ch12_calc_zonal_cont_diff_mmm_stippandhatch.ncl: calculates zonal means and the difference be-
tween future and historical periods for each given model and then calculates multi-model mean as well as sig-
nificance as above.

• ipcc_ar5/ch12_plot_zonal_diff_mmm_stipp.ncl: plots the multi-model mean zonal plots calculated above in-
cluding stippling where significant and hatching where not significant. As in Figure 12.12 in AR5.

18.3. IPCC AR5 Chapter 12 (selected figures) 333

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 15: Figure 9.6: Centered pattern correlations between models and observations for the annual mean climatology
over the period 1980–1999. Results are shown for individual CMIP3 (black) and CMIP5 (blue) models as thin dashes,
along with the corresponding ensemble average (thick dash) and median (open circle). The four variables shown are
surface air temperature (TAS), top of the atmosphere (TOA) outgoing longwave radiation (RLUT), precipitation (PR)
and TOA shortwave cloud radiative effect (SW CRE). The correlations between the reference and alternate observations
are also shown (solid green circles).

334 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 16: Figure 9.8: Observed and simulated time series of the anomalies in annual and global mean surface tempera-
ture. All anomalies are differences from the 1961-1990 time-mean of each individual time series. The reference period
1961-1990 is indicated by yellow shading; vertical dashed grey lines represent times of major volcanic eruptions. Sin-
gle simulations for CMIP5 models (thin lines); multi-model mean (thick red line); different observations (thick black
lines). Dataset pre-processing like described in Jones et al., 2013.

18.3. IPCC AR5 Chapter 12 (selected figures) 335

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 17: Figure 9.14: (a) Zonally averaged sea surface temperature (SST) error in CMIP5 models. (b) Equatorial
SST error in CMIP5 models. (c) Zonally averaged multi-model mean SST error for CMIP5 together with inter-model
standard deviation (shading). (d) Equatorial multi-model mean SST in CMIP5 together with inter-model standard de-
viation (shading) and observations (black). Model climatologies are derived from the 1979-1999 mean of the historical
simulations. The Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) (Rayner et al., 2003) observational
climatology for 1979-1999 is used as a reference for the error calculation (a), (b), and (c); and for observations in (d).

336 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 18: Figure 9.24c: Sea ice extent trend distribution for the Arctic in September.

Fig. 19: Figure 9.24a: Time series of total sea ice area and extent (accumulated) for the Arctic in September including
multi-model mean and standard deviation.

18.3. IPCC AR5 Chapter 12 (selected figures) 337

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 20: Figure 9.26 (bottom): Ensemble-mean global land carbon uptake in the CMIP5 ESMs for the historical period
1900–2005. For comparison, the observation-based estimates provided by the Global Carbon Project (GCP) are also
shown (black line). The confidence limits on the ensemble mean are derived by assuming that the CMIP5 models come
from a t-distribution. The grey areas show the range of annual mean fluxes simulated across the model ensemble.

338 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 21: Figure 9.27 (top): Simulation of global mean atmosphere–ocean CO2 fluxes (“fgCO2”) by ESMs for the
period 1986–2005. For comparison, the observation-based estimates provided by Global Carbon Project (GCP) are
also shown. The error bars for the ESMs and observations represent interannual variability in the fluxes, calculated as
the standard deviation of the annual means over the period 1986–2005.

18.3. IPCC AR5 Chapter 12 (selected figures) 339

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 22: Figure 9.38tas: Mean seasonal cycle for surface temperature (tas) as multi model mean of 38 CMIP5 and 22
CMIP6 models as well as CRU and ERA-Interim reanalysis data averaged for 1980-2005 over land in different regions:
Western North America (WNA), Eastern North America (ENA), Central America (CAM), Tropical South America
(TSA), Southern South America (SSA), Europe and Mediterranean (EUM), North Africa (NAF), Central Africa (CAF),
South Africa (SAF), North Asia (NAS), Central Asia (CAS), East Asia (EAS), South Asia (SAS), Southeast Asia (SEA),
and Australia (AUS). Similar to Fig. 9.38a from Flato et al. (2013), CMIP6 instead of CMIP3 and set of CMIP5 models
used different.

340 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 23: Figure 9.38pr: Mean seasonal cycle for precipitation (pr) as multi model mean of 38 CMIP5 and 22 CMIP6
models as well as CRU and ERA-Interim reanalysis data averaged for 1980-1999 over land in different regions: Western
North America (WNA), Eastern North America (ENA), Central America (CAM), Tropical South America (TSA),
Southern South America (SSA), Europe and Mediterranean (EUM), North Africa (NAF), Central Africa (CAF), South
Africa (SAF), North Asia (NAS), Central Asia (CAS), East Asia (EAS), South Asia (SAS), Southeast Asia (SEA), and
Australia (AUS). Similar to Fig. 9.38b from Flato et al. (2013), CMIP6 instead of CMIP3 and set of CMIP5 models
used different.

18.3. IPCC AR5 Chapter 12 (selected figures) 341

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 24: Figure 9.38reg: Positions of the regions used in Figure 9.38.

342 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 25: Figure 9.39tas: Box and whisker plots showing the 5th, 25th, 50th, 75th and 95th percentiles of the
seasonal- and annual mean biases for surface temperature (tas) for 1980-2005 between 38 CMIP5 models (box and
whiskers) or 22 CMIP6 models (crosses) and CRU data. The regions are: Alaska/NW Canada (ALAs), Eastern
Canada/Greenland/Iceland (CGIs), Western North America(WNAs), Central North America (CNAs), Eastern North
America (ENAs), Central America/Mexico (CAMs), Amazon (AMZs), NE Brazil (NEBs), West Coast South Amer-
ica (WSAs), South-Eastern South America (SSAs), Northern Europe (NEUs), Central Europe (CEUs), Southern Eu-
rope/the Mediterranean (MEDs), Sahara (SAHs), Western Africa (WAFs), Eastern Africa (EAFs), Southern Africa
(SAFs), Northern Asia (NASs), Western Asia (WASs), Central Asia (CASs), Tibetan Plateau (TIBs), Eastern Asia
(EASs), Southern Asia (SASs), Southeast Asia (SEAs), Northern Australia (NASs) and Southern Australia/New
Zealand (SAUs). The positions of these regions are defined following (Seneviratne et al., 2012) and differ from the
ones in Fig. 9.38. Similar to Fig. 9.39 a,c,e from Flato et al. (2013), CMIP6 instead of CMIP3 and set of CMIP5
models used different.

18.3. IPCC AR5 Chapter 12 (selected figures) 343

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 26: Figure 9.39pr: Box and whisker plots showing the 5th, 25th, 50th, 75th and 95th percentiles of the seasonal- and
annual mean biases for precipitation (pr) for 1980-2005 between 38 CMIP5 models (box and whiskers) or 22 CMIP6
models (crosses) and CRU data. The regions are: Alaska/NW Canada (ALAs), Eastern Canada/Greenland/Iceland
(CGIs), Western North America(WNAs), Central North America (CNAs), Eastern North America (ENAs), Cen-
tral America/Mexico (CAMs), Amazon (AMZs), NE Brazil (NEBs), West Coast South America (WSAs), South-
Eastern South America (SSAs), Northern Europe (NEUs), Central Europe (CEUs), Southern Europe/the Mediter-
ranean (MEDs), Sahara (SAHs), Western Africa (WAFs), Eastern Africa (EAFs), Southern Africa (SAFs), Northern
Asia (NASs), Western Asia (WASs), Central Asia (CASs), Tibetan Plateau (TIBs), Eastern Asia (EASs), Southern
Asia (SASs), Southeast Asia (SEAs), Northern Australia (NASs) and Southern Australia/New Zealand (SAUs). The
positions of these regions are defined following (Seneviratne et al., 2012) and differ from the ones in Fig. 9.38. Similar
to Fig. 9.39 b,d,f from Flato et al. (2013), CMIP6 instead of CMIP3 and set of CMIP5 models used different.

344 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 27: Figure 9.39reg: Positions of the regions used in Figure 9.39.

18.3. IPCC AR5 Chapter 12 (selected figures) 345

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 28: Figure 9.40tas: Box and whisker plots showing the 5th, 25th, 50th, 75th and 95th percentiles of the seasonal-
and annual mean biases for surface temperature (tas) for oceanic and polar regions between 38 CMIP5 (box and
whiskers) or 22 CMIP6 (crosses) models and ERA-Interim data for 1980–2005.

346 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 29: Figure 9.40pr: Box and whisker plots showing the 5th, 25th, 50th, 75th and 95th percentiles of the seasonal-
and annual mean biases for precipitation (pr) for oceanic and polar regions between 38 CMIP5 (box and whiskers)
or 22 CMIP6 (crosses) models and Global Precipitation Climatology Project - Satellite-Gauge (GPCP-SG) data for
1980–2005.

18.3. IPCC AR5 Chapter 12 (selected figures) 347

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 30: Figure 9.40reg: Positions of the regions used in Figure 9.40.

348 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 31: Figure 9.41b: Ranked modelled versus ERA-Interim mean temperature for 38 CMIP5 models in the Mediter-
ranean region for 1961–2000.

18.3. IPCC AR5 Chapter 12 (selected figures) 349

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 32: Figure 9.42a: Equilibrium climate sensitivity (ECS) against the global mean surface air temperature of CMIP5
models, both for the period 1961-1990 (larger symbols) and for the pre-industrial control runs (smaller symbols).

Fig. 33: Figure 9.42b: Transient climate response (TCR) against equilibrium climate sensitivity (ECS) for CMIP5
models.

350 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 34: Figure 9.45a: Scatterplot of springtime snow-albedo effect values in climate change vs. springtime ∆𝛼𝑠/∆𝑇𝑠
values in the seasonal cycle in transient climate change experiments (CMIP5 historical experiments: 1901-2000,
RCP4.5 experiments: 2101-2200).

18.3. IPCC AR5 Chapter 12 (selected figures) 351

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• ipcc_ar5/ch12_calc_map_diff_scaleT_mmm_stipp.ncl: calculates the change in variable between future and his-
torical period normalized by gloabl mean temperature change of each given model and scenario. Then averages
over all realizations and calculates significance. Significant is where the mean change averaged over all realiza-
tions is larger than the 95% percentile of the distribution of models (assumed to be gaussian). Can be plotted
using ipcc_ar5/ch12_plot_map_diff_mmm_stipp.ncl.

• seaice/seaice_ecs.ncl: scatter plot of historical trend in September Arctic sea ice extent (SSIE) vs historical
long-term mean SSIE (similar to Fig. 12.31a in AR5) and historical SSIE trend vs YOD RCP8.5 (similar to Fig.
12.31d in AR5).

• seaice/seaice_yod.ncl: calculation of year of near disappearance of Arctic sea ice (similar to Fig 12.31e in AR5)

• ipcc_ar5/ch12_snw_area_change_fig12-32.ncl: calculate snow area extent in a region (e.g Northern Hemi-
sphere) and season (e.g. Northern Hemisphere spring March & April) relative to a reference period
(e.g 1986-2005) and spread over models as in Fig. 12.32 of IPCC AR5. Can be plotted using
ipcc_ar5/ch12_plot_ts_line_mean_spread.ncl.

18.3.3 User settings

1. Script ipcc_ar5/ch12_map_diff_each_model_fig12-9.ncl

Required settings (script)

• time_avg: time averaging (“annualclim”, “seasonalclim”)

• experiment: IPCC Scenario, used to pair historical and rcp runs from same model

Optional settings (script)

• projection: map projection, any valid ncl projection, default = Robinson

• max_vert: maximum number of plots in vertical

• max_hori: maximum number of plots in horizontal

• title: plot title

• colormap: alternative colormap, path to rgb file or ncl name

• diff_levs: list with contour levels for plots

• span: span whole colormap? (True, False, default = False)

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, generally Amon or Omon

2. Script ipcc_ar5/ch12_ts_line_mean_spread.ncl

Required settings (script)

• scenarios: list with scenarios included in figure

• syears: list with start years in time periods (e.g. start of historical period and rcps)

• eyears: list with end years in time periods (end year of historical runs and rcps)

• begin_ref_year: start year of reference period (e.g. 1986)

• end_ref_year: end year of reference period (e.g 2005)

• label: list with labels to use in legend depending on scenarios

Optional settings (script)

352 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• spread: how many standard deviations to calculate the spread with? default is 1., ipcc tas used 1.64

• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False,
default = False)

• ts_minlat: minimum latitude if not global

• ts_maxlat: maximum latitude if not global

• ts_minlon: minimum longitude if not global

• ts_maxlon: maximum longitude if not global

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, generally Amon or Omon

3. Script ipcc_ar5/ch12_plot_ts_line_mean_spread.ncl:

Required settings (script)

• ancestors: variable and diagnostics that calculated data to be plotted

Optional settings (script)

• title: specify plot title

• yaxis: specify y-axis title

• ymin: minimim value on y-axis, default calculated from data

• ymax: maximum value on y-axis

• colormap: alternative colormap, path to rgb file or ncl name

1. Script ipcc_ar5/ch12_calc_IAV_for_stippandhatch.ncl:

Required settings (script)

• time_avg: time averaging (“annualclim”, “seasonalclim”), needs to be consistent with calculation in
ch12_calc_map_diff_mmm_stippandhatch.ncl

Optional settings (script)

• periodlength: length of period in years to calculate variability over, default is total time period

• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save
individual models, “mmm”: multi-model mean, default), needs to be consistent with
ch12_calc_map_diff_mmm_stippandhatch.ncl

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, generally Amon or Omon

• exp: piControl

• preprocessor: which preprocessor to use, depends on dimension of variable, for 2D preprocessor only needs
to regrid, for 3D we need to extract levels either based on reference_dataset or specify levels.

Optional settings (variables)

• reference_dataset: the reference dataset for level extraction in case of 3D variables.

2. Script ipcc_ar5/ch12_calc_map_diff_mmm_stippandhatch.ncl:

Required settings (script)

18.3. IPCC AR5 Chapter 12 (selected figures) 353

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• ancestors: variable and diagnostics that calculated interannual variability for stippling and hatching

• time_avg: time averaging (“annualclim”, “seasonalclim”)

• scenarios: list with scenarios to be included

• periods: list with start years of periods to be included

• label: list with labels to use in legend depending on scenarios

Optional settings (script)

• seasons: list with seasons index if time_avg “seasonalclim” (then required), DJF:0, MAM:1, JJA:2, SON:3

• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models,
“mmm”: multi-model mean, default), needs to be consistent with ch12_calc_IAV_for_stippandhatch.ncl

• percent: determines if difference expressed in percent (0, 1, default = 0)

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, generally Amon or Omon

• preprocessor: which preprocessor to use, preprocessor only needs to regrid

3. Script ipcc_ar5/ch12_plot_map_diff_mmm_stipp.ncl:

Required settings (script)

• ancestors: variable and diagnostics that calculated field to be plotted

Optional settings (script)

• projection: map projection, any valid ncl projection, default = Robinson

• diff_levs: list with explicit levels for all contour plots

• max_vert: maximum number of plots in vertical

• max_hori: maximum number of plots in horizontal

• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False,
default = False)

• colormap: alternative colormap, path to rgb file or ncl name

• span: span whole colormap? (True, False, default = True)

• sig: plot stippling for significance? (True, False)

• not_sig: plot hatching for uncertainty? (True, False)

• pltname: alternative name for output plot, default is diagnostic + varname + time_avg

• units: units written next to colorbar, e.g (~F35~J~F~C)

4. Script ipcc_ar5/ch12_calc_zonal_cont_diff_mmm_stippandhatch.ncl:

Required settings (script)

• ancestors: variable and diagnostics that calculated interannual variability for stippling and hatching

• time_avg: time averaging (“annualclim”, “seasonalclim”)

• scenarios: list with scenarios to be included

• periods: list with start years of periods to be included

• label: list with labels to use in legend depending on scenarios

354 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Optional settings (script)

• base_cn: if want contours of base period as contour lines, need to save base period field (True, False)

• seasons: list with seasons index if time_avg “seasonalclim” (then required), DJF:0, MAM:1, JJA:2, SON:3

• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models,
“mmm”: multi-model mean, default), needs to be consistent with ch12_calc_IAV_for_stippandhatch.ncl

• percent: determines if difference expressed in percent (0, 1, default = 0)

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, generally Amon or Omon

• preprocessor: which preprocessor to use, preprocessor needs to regrid, extract leves and calculate the zonal
mean.

Optional settings (variables)

• reference_dataset: the reference dataset for level extraction

5. Script ipcc_ar5/ch12_plot_zonal_diff_mmm_stipp.ncl:

Required settings (script)

• ancestors: variable and diagnostics that calculated field to be plotted

Optional settings (script)

• diff_levs: list with explicit levels for all contour plots

• max_vert: maximum number of plots in vertical

• max_hori: maximum number of plots in horizontal

• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False,
default = False)

• colormap: alternative colormap, path to rgb file or ncl name

• span: span whole colormap? (True, False, default = True)

• sig: plot stippling for significance? (True, False)

• not_sig: plot hatching for uncertainty? (True, False)

• pltname: alternative name for output plot, default is diagnostic + varname + time_avg

• units: units written next to colorbar in ncl strings, e.g (m s~S~-1~N~)

• if base_cn: True in ch12_calc_zonal_cont_diff_mmm_stippandhatch.ncl further settings to control contour
lines:

– base_cnLevelSpacing: spacing between contour levels

– base_cnMinLevel: minimum contour line

– base_cnMaxLevel: maximum contour line

6. Script ipcc_ar5/ch12_calc_map_diff_scaleT_mmm_stipp.ncl:

Required settings (script)

• time_avg: time averaging (“annualclim”, “seasonalclim”)

• scenarios: list with scenarios to be included

18.3. IPCC AR5 Chapter 12 (selected figures) 355

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• periods: list with start years of periods to be included

• label: list with labels to use in legend depending on scenarios

Optional settings (script)

• seasons: list with seasons index if time_avg “seasonalclim” (then required), DJF:0, MAM:1, JJA:2, SON:3

• percent: determines if difference expressed in percent (0, 1, default = 0)

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, generally Amon or Omon

• preprocessor: which preprocessor to use, preprocessor only needs to regrid

7. Script ipcc_ar5/ch12_snw_area_change_fig12-32.ncl:

Required settings (script)

• scenarios: list with scenarios included in figure

• syears: list with start years in time periods (e.g. start of historical period and rcps)

• eyears: list with end years in time periods (end year of historical runs and rcps)

• begin_ref_year: start year of reference period (e.g. 1986)

• end_ref_year: end year of reference period (e.g 2005)

• months: first letters of months included in analysis? e.g. for MA (March + April) for Northern Hemisphere

• label: list with labels to use in legend depending on scenarios

Optional settings (script)

• spread: how many standard deviations to calculate the spread with? default is 1., ipcc tas used 1.64

• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False,
default = False)

• colormap: alternative colormap, path to rgb file or ncl name

• ts_minlat: minimum latitude if not global

• ts_maxlat: maximum latitude if not global

• ts_minlon: minimum longitude if not global

• ts_maxlon: maximum longitude if not global

Required settings (variables)

• project: CMIP5 (or CMIP6)

• mip: variable mip, LImon

• fx_files: [sftlf, sftgif]

8. Script seaice/seaice_ecs.ncl

Required settings (scripts)

• hist_exp: name of historical experiment (string)

• month: selected month (1, 2, . . . , 12) or annual mean (“A”)

• rcp_exp: name of RCP experiment (string)

356 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole (default: False)

• styleset: color style (e.g. “CMIP5”)

Optional settings (variables)

• reference_dataset: reference dataset

9. Script seaice/seaice_yod.ncl

Required settings (scripts)

• month: selected month (1, 2, . . . , 12) or annual mean (“A”)

• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole, Default: False

• wgt_file: netCDF containing pre-determined model weights

Optional settings (variables)

• ref_model: array of references plotted as vertical lines

18.3.4 Variables

Note: These are the variables tested and used in IPCC AR5. However, the code is flexible and in theory other variables
of the same kind can be used.

• areacello (fx, longitude latitude)

• clt (atmos, monthly mean, longitude latitude time)

• evspsbl (atmos, monthly mean, longitude latitude time)

• hurs (atmos, monthly mean, longitude latitude time)

• mrro (land, monthly mean, longitude latitude time)

• mrsos (land, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

• psl (atmos, monthly mean, longitude latitude time)

• rlut, rsut, rtmt (atmos, monthly mean, longitude latitude time)

• sic (ocean-ice, monthly mean, longitude latitude time)

• snw (land, monthly mean, longitude latitude time)

• sos (ocean, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude lev time)

• tas (atmos, monthly mean, longitude latitude time)

• thetao (ocean, monthly mean, longitude latitude lev time)

• ua (atmos, monthly mean, longitude latitude lev time)

18.3. IPCC AR5 Chapter 12 (selected figures) 357

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.3.5 Observations and reformat scripts

• HadISST (sic - esmvaltool/cmorizers/data/formatters/datasets/hadisst.ncl)

18.3.6 Reference

• Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T.
Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change:
Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contri-
bution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.
Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

18.3.7 Example plots

Fig. 35: Surface air temperature change in 2081–2100 displayed as anomalies with respect to 1986–2005 for RCP4.5
from individual CMIP5 models.

Fig. 36: Time series of global annual mean surface air temperature anomalie (relative to 1986–2005) from CMIP5
concentration-driven experiments.

358 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 37: Multi-model CMIP5 average percentage change in seasonal mean precipitation relative to the reference period
1986–2005 averaged over the periods 2081–2100 and 2181–2200 under the RCP8.5 forcing scenario. Hatching indi-
cates regions where the multi-model mean change is less than one standard deviation of internal variability. Stippling
indicates regions where the multi-model mean change is greater than two standard deviations of internal variability and
where at least 90% of models agree on the sign of change

Fig. 38: Temperature change patterns scaled to 1°C of global mean surface temperature change.

18.3. IPCC AR5 Chapter 12 (selected figures) 359

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 39: Scatter plot of mean historical September Arctic sea ice extent vs 1st year of disappearance (RCP8.5) (similar
to IPCC AR5 Chapter 12, Fig. 12.31a).

Fig. 40: Time series of September Arctic sea ice extent for individual CMIP5 models, multi-model mean and multi-
model standard deviation, year of disappearance (similar to IPCC AR5 Chapter 12, Fig. 12.31e).

360 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

18.4 Example recipes

18.4.1 Overview

These are example recipes calling example diagnostic scripts.

The recipe examples/recipe_python.yml produces time series plots of global mean temperature and for the tem-
perature in Amsterdam. It also produces a map of global temperature in January 2020.

The recipe examples/recipe_easy_ipcc.yml reproduces part of figure 9.3a from IPCC AR6 - Climate Change
2021: The Physical Science Basis. It demonstrates how ESMValTool can be used to conveniently analyze many models
on their native grid and is described in detail in the blog post Analysis-ready climate data with ESMValCore.

The recipe examples/recipe_extract_shape.yml produces a map of the mean temperature in the Elbe catchment
over the years 2000 to 2002. Some example shapefiles for use with this recipe are available here, make sure to download
all files with the same name but different extensions.

The recipe examples/recipe_julia.yml produces a map plot with the mean temperature over the year 1997 plus a
number that is configurable from the recipe.

The recipe examples/recipe_decadal.yml showcases how the timerange tag can be used to load datasets belong-
ing to the DCPP activity. Produces timeseries plots comparing the global mean temperature of a DCPP dataset with
an observational dataset.

18.4.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/:
• examples/recipe_python.yml

• examples/recipe_easy_ipcc.yml

• examples/recipe_extract_shape.yml

• examples/recipe_julia.yml

• examples/recipe_decadal.yml

Diagnostics are stored in esmvaltool/diag_scripts/:
• examples/diagnostic.py: visualize results and store provenance information

• examples/make_plot.py: Create a timeseries plot with likely ranges

• examples/diagnostic.jl: visualize results and store provenance information

• examples/decadal_example.py: visualize results and store provenance information

18.4.3 User settings in recipe

1. Script examples/diagnostic.py

Required settings for script

• quickplot: plot_type: which of the iris.quickplot functions to use. Arguments that are accepted
by these functions can also be specified here, e.g. cmap. Preprocessors need to be configured such that the
resulting data matches the plot type, e.g. a timeseries or a map.

2. Script examples/diagnostic.jl

Required settings for script

18.4. Example recipes 361

https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
https://blog.esciencecenter.nl/easy-ipcc-powered-by-esmvalcore-19a0b6366ea7
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/shapeselect/testdata
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.quickplot.html#module-iris.quickplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• parameter1: example parameter, this number will be added to the mean (over time) value of the input
data.

18.4.4 Variables

• tas (atmos, monthly, longitude, latitude, time)

• tos (ocean, monthly, longitude, latitude, time)

18.4.5 Example plots

Fig. 41: Air temperature in January 2000 (BCC-ESM1 CMIP6).

362 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 42: Amsterdam air temperature (multimodel mean of CMIP5 CanESM2 and CMIP6 BCC-ESM1).

18.4. Example recipes 363

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 43: Mean sea surface temperature anomaly (part of figure 9.3a from IPCC AR6).

364 Chapter 18. IPCC

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 44: Mean air temperature over the Elbe catchment during 2000-2002 according to CMIP5 CanESM2.

18.4. Example recipes 365

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 45: Global mean temperature of CMIP6 dcppA-hindcast EC-Earth3 and OBS ERA-Interim.

366 Chapter 18. IPCC

CHAPTER

NINETEEN

LAND

19.1 Landcover - Albedo

19.1.1 Overview

The diagnostic determines the coefficients of multiple linear regressions fitted between the albedo values and the tree,
shrub, short vegetation (crops and grasses) fractions of each grid cell within spatially moving windows encompassing
5x5 model grid cells. Solving these regressions provides the albedo values for trees, shrubs and short vegetation (crops
and grasses) from which the albedo changes associated with transitions between these three landcover types are derived.
The diagnostic distinguishes between snow-free and snow-covered grid cells.

19.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_albedolandcover.yml

Diagnostics are stored in diag_scripts/landcover/

• albedolandcover.py

19.1.3 User settings

Several parameters can be set in the recipe

19.1.4 Variables

• rsus (atmos, monthly mean, time latitude longitude)

• rsds (atmos, monthly mean, time latitude longitude)

• snc (landice, monthly mean, time latitude longitude)

• grassFrac (land, monthly mean, time latitude longitude)

• treeFrac (land, monthly mean, time latitude longitude)

• shrubFrac (land, monthly mean, time latitude longitude)

• cropFrac (land, monthly mean, time latitude longitude)

• pastureFrac (land, monthly mean, time latitude longitude)

367

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.1.5 Observations and reformat scripts

A reformatting script for observational data is available here:
• esmvaltool/cmorizers/data/formatters/datasets/duveiller2018.py

19.1.6 References

• Duveiller, G., Hooker, J. and Cescatti, A., 2018a. A dataset mapping the potential biophysical effects of vegeta-
tion cover change. Scientific Data, 5: 180014.

• Duveiller, G., Hooker, J. and Cescatti, A., 2018b. The mark of vegetation change on Earth’s surface energy
balance. Nature communications, 9(1): 679.

19.1.7 Example plots

Fig. 1: Example of albedo change from tree to crop and grass for the CMIP5 model MPI-ESM-LR derived for the
month of July and averaged over the years 2000 to 2004.

368 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.2 Turnover time of carbon over land ecosystems

19.2.1 Overview

This recipe evaluates the turnover time of carbon over land ecosystems (tau_ctotal) based on the analysis of Carvalhais
et al. (2014). In summary, it provides an overview on:

• Comparisons of global distributions of tau_ctotal from all models against observation and other models

• Variation of tau_ctotal across latitude (zonal distributions)

• Variation of association of tau_ctotal and climate across latitude (zonal correlations)

• metrics of global tau_ctotal and correlations

19.2.2 Calculation of turnover time

First, the total carbon content of land ecosystems is calculated as,

𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑆𝑜𝑖𝑙 + 𝑐𝑉 𝑒𝑔

where 𝑐𝑆𝑜𝑖𝑙 and 𝑐𝑉 𝑒𝑔 are the carbon contents in soil and vegetation. Note that this is not fully consistent with
`Carvalhais et al. (2014)`_, in which `ctotal` includes all carbon storages that respire to the atmosphere. Due to
inconsistency across models, it resulted in having different carbon storage components in calculation of ctotal
for different models.
The turnover time of carbon is then calculated as,

𝜏𝑐𝑡𝑜𝑡𝑎𝑙 =
𝑐𝑡𝑜𝑡𝑎𝑙

𝑔𝑝𝑝

where ctotal and gpp are temporal means of total carbon content and gross primary productivity, respectively. The
equation is valid for steady state, and is only applicable when both ctotal and gpp are long-term averages. There-
fore, the recipe should always include the mean operator of climate_statistics in preprocessor.

19.2.3 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_carvalhais14nat.yml

Diagnostics are stored in diag_scripts/

• land_carbon_cycle/diag_global_turnover.py

• land_carbon_cycle/diag_zonal_turnover.py

• land_carbon_cycle/diag_zonal_correlation.py

19.2. Turnover time of carbon over land ecosystems 369

https://doi.org/10.1038/nature13731
https://doi.org/10.1038/nature13731

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.2.4 User settings in recipe

Observation-related details

The settings needed for loading the observational dataset in all diagnostics are provided in the recipe through obs_info
within obs_details section.

• obs_data_subdir: subdirectory of auxiliary_data_dir (set in config-user file) where observation data are stored
{e.g., data_ESMValTool_Carvalhais2014}.

• source_label: source data label {‘Carvalhais2014’}.

• variant_label: variant of the observation {‘BE’} for best estimate.

• grid_label: label denoting the spatial grid specification {‘gn’}.

• frequency: temporal frequency of the observation data {‘fx’}

The observation data file used in the recipe should be changed through the fields above, as these are used to generate
observation file name and locations. For details, see Observations section.

Preprocessor

• climate_statistics: {mean} - calculate the mean over full time period.

• regrid: {nearest} - nearest neighbor regridding to the selected observation resolution.

• mask_landsea: {sea} - mask out all the data points from sea.

• multi_model_statistics: {median} - calculate and include the multimodel median.

Script land_carbon_cycle/diag_global_turnover.py

• Required settings:

– obs_variable: {str} list of the variable(s) to be read from the observation files

• Optional settings:

– ax_fs: {float, 7.1} - fontsize in the figure.

– fill_value: {float, nan} - fill value to be used in analysis and plotting.

– x0: {float, 0.02} - X - coordinate of the left edge of the figure.

– y0: {float, 1.0} Y - coordinate of the upper edge of the figure.

– wp: {float, 1 / number of models} - width of each map.

– hp: {float, = wp} - height of each map.

– xsp: {float, 0} - spacing betweeen maps in X - direction.

– ysp: {float, -0.03} - spacing between maps in Y -direction. Negative to reduce the spacing below default.

– aspect_map: {float, 0.5} - aspect of the maps.

– xsp_sca: {float, wp / 1.5} - spacing between the scatter plots in X - direction.

– ysp_sca: {float, hp / 1.5} - spacing between the scatter plots in Y - direction.

– hcolo: {float, 0.0123} - height (thickness for horizontal orientation) of the colorbar .

– wcolo: {float, 0.25} - width (length) of the colorbar.

370 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

– cb_off_y: {float, 0.06158} - distance of colorbar from top of the maps.

– x_colo_d: {float, 0.02} - X - coordinate of the colorbar for maps along the diagonal (left).

– x_colo_r: {float, 0.76} - Y - coordinate of the colorbar for ratio maps above the diagonal (right).

– y_colo_single: {float, 0.1086} - Y-coordinate of the colorbar in the maps per model (separate figures).

– correlation_method: {str, spearman | pearson} - correlation method to be used while calculating the
correlation displayed in the scatter plots.

– tx_y_corr: {float, 1.075} - Y - coordinate of the inset text of correlation.

– valrange_sc: {tuple, (2, 256)} - range of turnover times in X - and Y - axes of scatter plots.

– obs_global: {float, 23} - global turnover time, provided as additional info for map of the observation.
For models, they are calculated within the diagnostic.

– gpp_threshold: {float, 0.01} - The threshold of gpp in kg m^{-2} yr^{-1} below which the grid cells
are masked.

Script land_carbon_cycle/diag_zonal_turnover.py

• Required settings:

– obs_variable: {str} list of the variable(s) to be read from the observation files

• Optional settings:

– ax_fs: {float, 7.1} - fontsize in the figure.

– fill_value: {float, nan} - fill value to be used in analysis and plotting.

– valrange_x: {tuple, (2, 1000)} - range of turnover values in the X - axis.

– valrange_y: {tuple, (-70, 90)} - range of latitudes in the Y - axis.

– bandsize: {float, 9.5} - size of the latitudinal rolling window in degrees. One latitude row if set to
None.

– gpp_threshold: {float, 0.01} - The threshold of gpp in kg m^{-2} yr^{-1} below which the grid cells
are masked.

Script land_carbon_cycle/diag_zonal_correlation.py

• Required settings:

– obs_variable: {str} list of the variable(s) to be read from the observation files

• Optional settings:

– ax_fs: {float, 7.1} - fontsize in the figure.

– fill_value: {float, nan} - fill value to be used in analysis and plotting.

– correlation_method: {str, pearson | spearman} - correlation method to be used while calculating the
zonal correlation.

– min_points_frac: {``float, 0.125} - minimum fraction of valid points within the latitudinal band
for calculation of correlation.

– valrange_x: {tuple, (-1, 1)} - range of correlation values in the X - axis.

– valrange_y: {tuple, (-70, 90)} - range of latitudes in the Y - axis.

19.2. Turnover time of carbon over land ecosystems 371

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

– bandsize: {float, 9.5} - size of the latitudinal rolling window in degrees. One latitude row if set to
None.

– gpp_threshold: {float, 0.01} - The threshold of gpp in kg m^{-2} yr^{-1} below which the grid cells
are masked.

19.2.5 Required Variables

• tas (atmos, monthly, longitude, latitude, time)

• pr (atmos, monthly, longitude, latitude, time)

• gpp (land, monthly, longitude, latitude, time)

• cVeg (land, monthly, longitude, latitude, time)

• cSoil (land, monthly, longitude, latitude, time)

19.2.6 Observations

The observations needed in the diagnostics are publicly available for download from the Data Portal of the Max Planck
Institute for Biogeochemistry after registration.

Due to inherent dependence of the diagnostic on uncertainty estimates in observation, the data needed for each diag-
nostic script are processed at different spatial resolutions (as in Carvalhais et al., 2014), and provided in 11 different
resolutions (see Table 1). Note that the uncertainties were estimated at the resolution of the selected models, and, thus,
only the pre-processed observed data can be used with the recipe. It is not possible to use regridding functionalities
of ESMValTool to regrid the observational data to other spatial resolutions, as the uncertainty estimates cannot be
regridded.

Table 1. A summary of the observation datasets at different resolutions.

Reference target_grid grid_label*
Observation 0.5x0.5 gn
NorESM1-M 2.5x1.875 gr
bcc-csm1-1 2.812x2.813 gr1
CCSM4 1.25x0.937 gr2
CanESM2 2.812x2.813 gr3
GFDL-ESM2G 2.5x2.0 gr4
HadGEM2-ES 1.875x1.241 gr5
inmcm4 2.0x1.5 gr6
IPSL-CM5A-MR 2.5x1.259 gr7
MIROC-ESM 2.812x2.813 gr8
MPI-ESM-LR 1.875x1.875 gr9

* The grid_label is suffixed with z for data in zonal/latitude coordinates: the zonal turnover and zonal correlation.

To change the spatial resolution of the evaluation, change {grid_label} in obs_details and the corresponding
{target_grid} in regrid preprocessor of the recipe.

At each spatial resolution, four data files are provided:

• tau_ctotal_fx_Carvalhais2014_BE_gn.nc - global data of tau_ctotal

• tau_ctotal_fx_Carvalhais2014_BE_gnz.nc - zonal data of tau_ctotal

372 Chapter 19. Land

http://www.bgc-jena.mpg.de/geodb/BGI/tau4ESMValTool.php
http://www.bgc-jena.mpg.de/geodb/BGI/tau4ESMValTool.php

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• r_tau_ctotal_tas_fx_Carvalhais2014_BE_gnz.nc - zonal correlation of tau_ctotal and tas, controlled for
pr

• r_tau_ctotal_pr_fx_Carvalhais2014_BE_gnz.nc - zonal correlation of tau_ctotal and pr, controlled for
tas.

The data is produced in obs4MIPs standards, and provided in netCDF4 format. The filenames use the convention:

{variable}_{frequency}_{source_label}_{variant_label}_{grid_label}.nc

• {variable}: variable name, set in every diagnostic script as obs_variable

• {frequency}: temporal frequency of data, set from obs_details

• {source_label}: observational source, set from obs_details

• {variant_label}: observation variant, set from obs_details

• {grid_label}: temporal frequency of data, set from obs_details

Refer to the Obs4MIPs Data Specifications for details of the definitions above.

All data variables have additional variables ({variable}_5 and {variable}_95) in the same file. These variables are
necessary for a successful execution of the diagnostics.

19.2.7 References

• Carvalhais, N., et al. (2014), Global covariation of carbon turnover times with climate in terrestrial ecosystems,
Nature, 514(7521), 213-217, doi: 10.1038/nature13731.

19.2.8 Example plots

Fig. 2: Comparison of latitudinal (zonal) variations of pearson correlation between turnover time and climate: turnover
time and precipitation, controlled for temperature (left) and vice-versa (right). Reproduces figures 2c and 2d in Car-
valhais et al. (2014).

19.2. Turnover time of carbon over land ecosystems 373

https://esgf-node.llnl.gov/site_media/projects/obs4mips/ODSv2p1.pdf
https://doi.org/10.1038/nature13731
https://doi.org/10.1038/nature13731

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: Comparison of observation-based and modelled ecosystem carbon turnover time. Along the diagnonal,
tau_ctotal are plotted, above the bias, and below density plots. The inset text in density plots indicate the correla-
tion.

Fig. 4: Global distributions of multimodel bias and model agreement. Multimodel bias is calculated as the ratio of
multimodel median turnover time and that from observation. Stippling indicates the regions where only less than one
quarter of the models fall within the range of observational uncertainties (5^{th} and 95^{th} percentiles). Reproduces
figure 3 in Carvalhais et al. (2014).

374 Chapter 19. Land

https://doi.org/10.1038/nature13731

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 5: Comparison of latitudinal (zonal) variations of observation-based and modelled ecosystem carbon turnover
time. The zonal turnover time is calculated as the ratio of zonal ctotal and gpp. Reproduces figures 2a and 2b in
Carvalhais et al. (2014).

19.2. Turnover time of carbon over land ecosystems 375

https://doi.org/10.1038/nature13731

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.3 Hydrological models - data pre-processing

19.3.1 Overview

We provide a collection of scripts that pre-processes environmental data for use in several hydrological models:

PCR-GLOBWB

PCR-GLOBWB (PCRaster Global Water Balance) is a large-scale hydrological model intended for global to regional
studies and developed at the Department of Physical Geography, Utrecht University (Netherlands). The recipe pre-
processes ERA-Interim reanalyses data for use in the PCR-GLOBWB.

MARRMoT

MARRMoT (Modular Assessment of Rainfall-Runoff Models Toolbox) is a rainfall-runoff model comparison frame-
work that allows objective comparison between different conceptual hydrological model structures https://github.com/
wknoben/MARRMoT. The recipe pre-processes ERA-Interim and ERA5 reanalyses data for use in the MARRMoT.

MARRMoT requires potential evapotranspiration (evspsblpot). The variable evspsblpot is not available in ERA-
Interim. Thus, we use the debruin function (De Bruin et al. 2016) to obtain evspsblpot using both ERA-Interim
and ERA5. This function needs the variables tas, psl, rsds, and rsdt as input.

wflow_sbm and wflow_topoflex

Forcing data for the wflow_sbm and wflow_topoflex hydrological models can be prepared using recipe_wflow.yml. If
PET is not available from the source data (e.g. ERA-Interim), then it can be derived from psl, rsds and rsdt using De
Bruin’s 2016 formula (De Bruin et al. 2016). For daily ERA5 data, the time points of these variables are shifted 30
minutes with respect to one another. This is because in ERA5, accumulated variables are recorded over the past hour,
and in the process of cmorization, we shift the time coordinates to the middle of the interval over which is accumulated.
However, computing daily statistics then averages the times, which results in 12:00 UTC for accumulated variables and
11:30 UTC for instantaneous variables. Therefore, in this diagnostic, the time coordinates of the daily instantaneous
variables are shifted 30 minutes forward in time.

LISFLOOD

LISFLOOD is a spatially distributed water resources model, developed by the Joint Research Centre (JRC) of the
European Commission since 1997. We provide a recipe to produce meteorological forcing data for the Python 3 version
of LISFLOOD.

LISFLOOD has a separate preprocessor LISVAP that derives some additional variables. We don’t replace LISVAP.
Rather, we provide input files that can readily be passed to LISVAP and then to LISFLOOD.

376 Chapter 19. Land

https://github.com/wknoben/MARRMoT
https://github.com/wknoben/MARRMoT
https://wflow.readthedocs.io/en/latest/wflow_sbm.html
https://wflow.readthedocs.io/en/latest/wflow_topoflex.html
https://ec-jrc.github.io/lisflood-model/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

HYPE

The hydrological catchment model HYPE simulates water flow and substances on their way from precipitation through
soil, river and lakes to the river outlet. HYPE is developed at the Swedish Meteorological and Hydrological Institute.
The recipe pre-processes ERA-Interim and ERA5 data for use in HYPE.

GlobWat

GlobWat is a soil water balance model that has been provided by the Food and Agriculture Organization (FAO) to assess
water use in irrigated agriculture (http://www.fao.org/nr/water/aquamaps). The recipe pre-processes ERA-Interim and
ERA5 reanalyses data for use in the GlobWat model. GlobWat requires potential evapotranspiration (evspsblpot) as
input. The variable evspsblpot is not available in ERA-Interim. Thus, we use debruin function (De Bruin et al. 2016)
or the langbein method (Langbein et al. 1949) to obtain evspsblpot using both ERA-Interim and ERA5. The Langbein
function needs a variable tas and the debruin function besides that needs the variables psl, rsds, and rsdt as input. In
order to calculate monthly/daily pet with Langbein method we assumed that tas is constant over time and the average
value is equal to the annual average.

19.3.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/hydrology

• recipe_pcrglobwb.yml

• recipe_marrmot.yml

• recipe_wflow.yml

• recipe_lisflood.yml

• recipe_hype.yml

• recipe_globwat.yml

Diagnostics are stored in esmvaltool/diag_scripts/hydrology

• pcrglobwb.py

• marrmot.py

• wflow.py

• lisflood.py

• hype.py

• globwat.py

19.3.3 User settings in recipe

All hydrological recipes require a shapefile as an input to produce forcing data. This shapefile determines the shape of
the basin for which the data will be cut out and processed. All recipes are tested with the shapefiles that are used for
the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin shapefiles from
the HydroSHEDS project.

1. recipe_pcrglobwb.yml

Required preprocessor settings:

• start_year: 1979

19.3. Hydrological models - data pre-processing 377

http://www.fao.org/nr/water/aquamaps
https://github.com/eWaterCycle/recipes_auxiliary_datasets/tree/main/
https://www.hydrosheds.org/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• end_year: 1979

2. recipe_marrmot.yml

There is one diagnostic diagnostic_daily for using daily data.

Required preprocessor settings:

The settings below should not be changed.

extract_shape:

• shapefile: Meuse.shp (MARRMoT is a hydrological Lumped model that needs catchment-
aggregated forcing data. The catchment is provided as a shapefile, the path can be relative to
auxiliary_data_dir as defined in config-user.yml.).

• method: contains

• crop: true

Required diagnostic script settings:

• basin: Name of the catchment

3. recipe_wflow.yml

Optional preprocessor settings:

• extract_region: the region specified here should match the catchment

Required diagnostic script settings:

• basin: name of the catchment

• dem_file: netcdf file containing a digital elevation model with elevation in meters and coordinates lat-
itude and longitude. A wflow example dataset is available at: https://github.com/openstreams/wflow/
tree/master/examples/wflow_rhine_sbm The example dem_file can be obtained from https://github.com/
openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map

• regrid: the regridding scheme for regridding to the digital elevation model. Choose area_weighted (slow)
or linear.

4. recipe_lisflood.yml

Required preprocessor settings:

• extract_region: A region bounding box slightly larger than the shapefile. This is run prior to regridding, to
save memory.

• extract_shape:*

– shapefile: A shapefile that specifies the extents of the catchment.

These settings should not be changed

– method: contains

– crop: true

• regrid:*

– target_grid: Grid of LISFLOOD input files

These settings should not be changed

– lon_offset: true

– lat_offset: true

378 Chapter 19. Land

https://github.com/openstreams/wflow/tree/master/examples/wflow_rhine_sbm
https://github.com/openstreams/wflow/tree/master/examples/wflow_rhine_sbm
https://github.com/openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map
https://github.com/openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

– scheme: linear

There is one diagnostic diagnostic_daily for using daily data.

Required diagnostic script settings:

• catchment: Name of the catchment, used in output filenames

5. recipe_hype.yml

Required preprocessor settings:

• start_year: 1979

• end_year: 1979

• shapefile: Meuse_HYPE.shp (expects shapefile with subcatchments)

These settings should not be changed

• method: contains

• decomposed: true

6. recipe_globwat.yml

Required preprocessor settings:

• start_year: 2004

• end_year: 2004

• target_grid_file: grid of globwat input files. A target file has been generated from one of the GlobWat mod-
els sample files (prc01wb.asc) for regridding ERA5 and ERA-Interim datasets. The ASCII file can be found
at: https://storage.googleapis.com/fao-maps-catalog-data/geonetwork/aquamaps/GlobWat-InputP1_prec.
zip. You can use the GDAL translator to convert the file from ASCII format to NetCDF format by entering
the following command into the terminal: gdal_translate -of netCDF prc01wb.asc globwat_target_grid.nc

Optional preprocessor settings:

• area_selection: A region bounding box to extract the data for a specific region. The area selection prepro-
cessor can be used by users to process the data for their desired region. The data will be processed at the
global scale if the preprocessor in the recipe is commented.

• regrid_scheme: The area-weighted regridding scheme is used as a default regridding scheme to ensure that
the total volume of water is consistent before and after regridding.

• langbein_pet: Can be set to True to use langbein function for calculating evspsblpot (default is de bruin
method)

19.3.4 Variables

1. recipe_pcrglobwb.yml

• tas (atmos, daily, longitude, latitude, time)

• pr (atmos, daily, longitude, latitude, time)

2. recipe_marrmot.yml

• pr (atmos, daily or hourly mean, longitude, latitude, time)

• psl (atmos, daily or hourly mean, longitude, latitude, time)

• rsds (atmos, daily or hourly mean, longitude, latitude, time)

• rsdt (atmos, daily or hourly mean, longitude, latitude, time)

19.3. Hydrological models - data pre-processing 379

https://storage.googleapis.com/fao-maps-catalog-data/geonetwork/aquamaps/GlobWat-InputP1_prec.zip
https://storage.googleapis.com/fao-maps-catalog-data/geonetwork/aquamaps/GlobWat-InputP1_prec.zip

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• tas (atmos, daily or hourly mean, longitude, latitude, time)

3. recipe_wflow.yml

• orog (fx, longitude, latitude)

• pr (atmos, daily or hourly mean, longitude, latitude, time)

• tas (atmos, daily or hourly mean, longitude, latitude, time)

Either potential evapotranspiration can be provided:

• evspsblpot(atmos, daily or hourly mean, longitude, latitude, time)

or it can be derived from tas, psl, rsds, and rsdt using the De Bruin formula, in that case the following variables
need to be provided:

• psl (atmos, daily or hourly mean, longitude, latitude, time)

• rsds (atmos, daily or hourly mean, longitude, latitude, time)

• rsdt (atmos, daily or hourly mean, longitude, latitude, time)

4. recipe_lisflood.yml

• pr (atmos, daily, longitude, latitude, time)

• tas (atmos, daily, longitude, latitude, time)

• tasmax (atmos, daily, longitude, latitude, time)

• tasmin (atmos, daily, longitude, latitude, time)

• tdps (atmos, daily, longitude, latitude, time)

• uas (atmos, daily, longitude, latitude, time)

• vas (atmos, daily, longitude, latitude, time)

• rsds (atmos, daily, longitude, latitude, time)

5. recipe_hype.yml

• tas (atmos, daily or hourly, longitude, latitude, time)

• tasmin (atmos, daily or hourly, longitude, latitude, time)

• tasmax (atmos, daily or hourly, longitude, latitude, time)

• pr (atmos, daily or hourly, longitude, latitude, time)

6. recipe_globwat.yml

• pr (atmos, daily or monthly, longitude, latitude, time)

• tas (atmos, daily or monthly, longitude, latitude, time)

• psl (atmos, daily or monthly, longitude, latitude, time)

• rsds (atmos, daily or monthly, longitude, latitude, time)

• rsdt (atmos, daily or monthly , longitude, latitude, time)

380 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.3.5 Observations and reformat scripts

Note: download instructions can be obtained with `esmvaltool data info DATASET` or in headers of cmorization scripts.

• ERA-Interim (esmvaltool/cmorizers/data/formatters/datasets/era_interim.py)

• ERA5 (esmvaltool/diag_scripts/cmorizers/era5.py)

19.3.6 Output

1. recipe_pcrglobwb.yml

2. recipe_marrmot.yml

The forcing data, the start and end times of the forcing data, the latitude and longitude of the catchment
are saved in a .mat file as a data structure readable by MATLAB or Octave.

3. recipe_wflow.yml

The forcing data, stored in a single NetCDF file.

4. recipe_lisflood.yml

The forcing data, stored in separate files per variable.

5. recipe_globwat.yml

The forcing data, stored in separate files per timestep and variable.

19.3.7 References

• Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf,
I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M.
W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5arcmin global hydrological and
water resources model, Geosci. Model Dev., 11, 2429-2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.

• De Bruin, H. A. R., Trigo, I. F., Bosveld, F. C., Meirink, J. F.: A Thermodynamically Based Model for Actual
Evapotranspiration of an Extensive Grass Field Close to FAO Reference, Suitable for Remote Sensing Applica-
tion, American Meteorological Society, 17, 1373-1382, DOI: 10.1175/JHM-D-15-0006.1, 2016.

• Arheimer, B., Lindström, G., Pers, C., Rosberg, J. och J. Strömqvist, 2008. Development and test of a new
Swedish water quality model for small-scale and large-scale applications. XXV Nordic Hydrological Conference,
Reykjavik, August 11-13, 2008. NHP Report No. 50, pp. 483-492.

• Lindström, G., Pers, C.P., Rosberg, R., Strömqvist, J., Arheimer, B. 2010. Development and test of the HYPE
(Hydrological Predictions for the Environment) model – A water quality model for different spatial scales. Hy-
drology Research 41.3-4:295-319.

• van der Knijff, J. M., Younis, J. and de Roo, A. P. J.: LISFLOOD: A GIS-based distributed model for river basin
scale water balance and flood simulation, Int. J. Geogr. Inf. Sci., 24(2), 189–212, 2010.

• Hoogeveen, J., Faurès, J. M., Peiser, L., Burke, J., de Giesen, N. V.: GlobWat–a global water balance model to
assess water use in irrigated agriculture, Hydrology & Earth System Sciences Discussions, 2015 Jan 1;12(1),
Doi:10.5194/hess-19-3829-2015.

• Langbein, W.B., 1949. Annual runoff in the United States. US Geol. Surv.(https://pubs.usgs.gov/circ/1949/
0052/report.pdf)

19.3. Hydrological models - data pre-processing 381

https://doi.org/10.5194/gmd-11-2429-2018
https://pubs.usgs.gov/circ/1949/0052/report.pdf
https://pubs.usgs.gov/circ/1949/0052/report.pdf

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.4 Hydro forcing comparison

19.4.1 Overview

This recipe can be used to assess the agreement between forcing datasets (i.e. MSWEP, ERA5, ERA-Interim) for a
defined catchment. The recipe can be used to:

1. Plot a timeseries of the raw daily data

2. Plot monthly aggregrated data over a defined period

3. Plot the monthly / daily climatology statistics over a defined period

19.4.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/hydrology

• recipe_hydro_forcing.yml

Diagnostics are stored in esmvaltool/diag_scripts/hydrology/

• hydro_forcing.py: Compares and plots precipitation for MSWEP / ERA5 / ERA-5 interim datasets

19.4.3 User settings in recipe

All hydrological recipes require a shapefile as an input to select forcing data. This shapefile determines the shape of
the basin for which the data will be cut out and processed. All recipes are tested with the shapefiles from HydroSHEDS
that are used for the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin
shapefiles from the HydroSHEDS project.

1. recipe hydrology/hydro_forcing.yml

Optional preprocessor settings:

• extract_shape: The region specified here should match the catchment

Required settings for script:

• plot_type: Define which plot function to run. Choices:

– timeseries: Plot a timeseries for the variable data over the defined period

– climatology: Plot the climate statistics over the defined period

Required settings for ``timeseries`` plots:

• time_period: Defines the period of the output for the correct captions/labels. This value should
match the period used for the preprocessor. Choices: day, month.

382 Chapter 19. Land

https://github.com/eWaterCycle/recipes_auxiliary_datasets/tree/main/
https://www.hydrosheds.org/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.4.4 Variables

• pr (atmos, daily or monthly, longitude, latitude, time)

19.4.5 Observations

All data can be used directly without any preprocessing.

• ERA-Interim

• ERA5

• MSWEP

19.4.6 Example plots

Fig. 6: Precipitation per day for 2015-01-01:2016-12-31.

19.4. Hydro forcing comparison 383

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 7: Precipitation per month for 2015-01:2016-12.

384 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 8: Precipitation climatology statistics per month number.

19.4. Hydro forcing comparison 385

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 9: Precipitation climatology statistics per day of year.

386 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.5 Landcover diagnostics

19.5.1 Overview

The diagnostic computes the accumulated and fractional extent of major land cover classes, namely bare soil, crops,
grasses, shrubs and trees. The numbers are compiled for the whole land surface as well as separated into Tropics,
northern Extratropics and southern Extratropics. The cover fractions are compared to ESA-CCI land cover data.

19.5.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_landcover.yml

Diagnostics are stored in diag_scripts/landcover/

• landcover.py: bar plots showing the accumulated area and mean fractional coverage for five land cover classes
for all experiments as well as their bias compared to observations.

19.5.3 User settings

script landcover.py

Required settings for script

• reference_dataset: land cover extent dataset for comparison. The script was developed using
ESACCI-LANDCOVER observations.

Optional settings for script

• comparison: [variable, model] Choose whether one plot per land cover class is generated comparing
the different experiments (default) or one plot per model comparing the different land cover classes.

• colorscheme: Plotstyle used for the bar plots. A list of available style is found at https://matplotlib.
org/gallery/style_sheets/style_sheets_reference.html. Seaborn is used as default.

19.5.4 Variables

• baresoilFrac (land, monthly mean, time latitude longitude)

• grassFrac (land, monthly mean, time latitude longitude)

• treeFrac (land, monthly mean, time latitude longitude)

• shrubFrac (land, monthly mean, time latitude longitude)

• cropFrac (land, monthly mean, time latitude longitude)

19.5. Landcover diagnostics 387

https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.5.5 Observations and reformat scripts

ESA-CCI land cover data (Defourny et al., 2015) needs to be downloaded manually by the user and converted to netCDF
files containing the grid cell fractions for the five major land cover types. The data and a conversion tool are available
at https://maps.elie.ucl.ac.be/CCI/viewer/ upon registration. After obtaining the data and the user tool, the remapping
to 0.5 degree can be done with:

./bin/aggregate-map.sh
-PgridName=GEOGRAPHIC_LAT_LON
-PnumRows=360
-PoutputLCCSClasses=true
-PnumMajorityClasses=0
ESACCI-LC-L4-LCCS-Map-300m-P1Y-2015-v2.0.7b.nc

Next, the data needs to be aggregated into the five major classes (PFT) similar to the study of Georgievski & Hagemann
(2018) and converted from grid cell fraction into percentage.

PFT ESA-CCI Landcover Classes
baresoil-
Frac

Bare_Soil

cropFrac Managed_Grass
grassFrac Natural_Grass
shrubFrac Shrub_Broadleaf_Deciduous + Shrub_Broadleaf_Evergreen + Shrub_Needleleaf_Evergreen
treeFrac Tree_Broadleaf_Deciduous + Tree_Broadleaf_Evergreen + Tree_Needleleaf_Deciduous +

Tree_Needleleaf_Evergreen

Finally, it might be necessary to adapt the grid structure to the experiments files, e.g converting the -180 –> 180 degree
grid to 0 –> 360 degree and inverting the order of latitudes. Note, that all experiments will be regridded onto the
grid of the land cover observations, thus it is recommended to convert to the coarses resolution which is sufficient for
the planned study. For the script development, ESA-CCI data on 0.5 degree resolution was used with land cover data
averaged over the 2008-2012 period.

19.5.6 References

• Defourny et al. (2015): ESA Land Cover Climate Change Initiative (ESA LC_cci) data: ESACCI-LC-L4-LCCS-
Map-300m-P5Y-[2000,2005,2010]-v1.6.1 via Centre for Environmental Data Analysis

• Georgievski, G. & Hagemann, S. Characterizing uncertainties in the ESA-CCI land cover map of the epoch
2010 and their impacts on MPI-ESM climate simulations, Theor Appl Climatol (2018). https://doi.org/10.1007/
s00704-018-2675-2

19.5.7 Example plots

19.6 Land and ocean components of the global carbon cycle

19.6.1 Overview

This recipe reproduces most of the figures of Anav et al. (2013):

• Timeseries plot for different regions

388 Chapter 19. Land

https://maps.elie.ucl.ac.be/CCI/viewer/
https://doi.org/10.1007/s00704-018-2675-2
https://doi.org/10.1007/s00704-018-2675-2
https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-12-00417.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 10: Accumulated tree covered area for different regions and experiments.

• Seasonal cycle plot for different regions

• Errorbar plot for different regions showing mean and standard deviation

• Scatterplot for different regions showing mean vs. interannual variability

• 3D-scatterplot for different regions showing mean vs. linear trend and the model variability index (MVI) as a
third dimension (color coded)

• Scatterplot for different regions comparing two variable against each other (cSoil vs. cVeg)

In addition, performance metrics are calculated for all variables using the performance metric diagnostics (see details
in Performance metrics for essential climate parameters).

19.6.2 MVI calculation

The Model variability index (MVI) on a single grid point (calculated in carbon_cycle/mvi.ncl is defined as

𝑀𝑉 𝐼 =

(︂
𝑠𝑀

𝑠𝑂
− 𝑠𝑂

𝑠𝑀

)︂2

where 𝑠𝑀 and 𝑠𝑂 are the standard deviations of the annual time series on a single grid point of a climate model𝑀 and
the reference observation𝑂. In order to get a global or regional result, this index is simple averaged over the respective
domain.

In its given form, this equation is prone to small standard deviations close to zero. For example, values of 𝑠𝑀 = 10−5𝜇
and 𝑠𝑂 = 10−7𝜇 (where 𝜇 is the mean of 𝑠𝑂 over all grid cells) results in a MVI of the order of 104 for this single grid

19.6. Land and ocean components of the global carbon cycle 389

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 11: Average grass cover fraction for different regions and experiments

cell even though the two standard deviations are close to zero and negligible compared to other grid cells. Due to the
use of the arithmetic mean, a single high value is able to distort the overall MVI.

In the original publication, the maximum MVI is in the order of 10 (for the variable gpp). However, a naive application
of the MVI definition yields values over 109 for some models. Unfortunately, Anav et al. (2013) do not provide an
explanation on how to deal with this problem. Nevertheless, this script provides two configuration options to avoid
high MVI values, but they are not related to the original paper or any other peer-revied study and should be used with
great caution (see User settings in recipe).

19.6.3 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_anav13jclim.yml

Diagnostics are stored in diag_scripts/

• carbon_cycle/main.ncl

• carbon_cycle/mvi.ncl

• carbon_cycle/two_variables.ncl

• perfmetrics/main.ncl

• perfmetrics/collect.ncl

390 Chapter 19. Land

https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-12-00417.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 12: Biases in five major land cover fractions for different regions and one experiment.

19.6.4 User settings in recipe

1. Preprocessor

• mask_fillvalues: Mask common missing values on different datasets.

• mask_landsea: Mask land/ocean.

• regrid: Regridding.

• weighting_landsea_fraction: Land/ocean fraction weighting.

2. Script carbon_cycle/main.ncl

• region, str: Region to be averaged.

• legend_outside, bool: Plot legend in a separate file (does not affect errorbar plot and evolution plot)

• seasonal_cycle_plot, bool: Draw seasonal cycle plot.

• errorbar_plot, bool: Draw errorbar plot.

• mean_IAV_plot, bool: Draw Mean (x-axis), IAV (y-axis) plot.

• evolution_plot, bool: Draw time evolution of a variable comparing a reference dataset to multi-dataset
mean; requires ref_dataset in recipe.

• sort, bool, optional (default: False): Sort dataset in alphabetical order.

• anav_month, bool, optional (default: False): Conversion of y-axis to PgC/month instead of /year.

19.6. Land and ocean components of the global carbon cycle 391

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• evolution_plot_ref_dataset, str, optional: Reference dataset for evolution_plot. Required when
evolution_plot is True.

• evolution_plot_anomaly, str, optional (default: False): Plot anomalies in evolution plot.

• evolution_plot_ignore, list, optional: Datasets to ignore in evolution plot.

• evolution_plot_volcanoes, bool, optional (default: False): Turns on/off lines of volcano eruptions
in evolution plot.

• evolution_plot_color, int, optional (default: 0): Hue of the contours in the evolution plot.

• ensemble_name, string, optional: Name of ensemble for use in evolution plot legend

3. Script carbon_cycle/mvi.ncl

• region, str: Region to be averaged.

• reference_dataset, str: Reference dataset for the MVI calculation specified for each variable seperately.

• mean_time_range, list, optional: Time period over which the mean is calculated (if not given, use whole
time span).

• trend_time_range, list, optional: Time period over which the trend is calculated (if not given, use whole
time span).

• mvi_time_range, list, optional: Time period over which the MVI is calculated (if not given, use whole
time span).

• stddev_threshold, float, optional (default: 1e-2): Threshold to ignore low standard deviations (relative
to the mean) in the MVI calculations. See also MVI calculation.

• mask_below, float, optional: Threshold to mask low absolute values (relative to the mean) in the input data
(not used by default). See also MVI calculation.

4. Script carbon_cycle/two_variables.ncl

• region, str: Region to be averaged.

5. Script perfmetrics/main.ncl

See Performance metrics for essential climate parameters.

6. Script perfmetrics/collect.ncl

See Performance metrics for essential climate parameters.

19.6.5 Variables

• tas (atmos, monthly, longitude, latitude, time)

• pr (atmos, monthly, longitude, latitude, time)

• nbp (land, monthly, longitude, latitude, time)

• gpp (land, monthly, longitude, latitude, time)

• lai (land, monthly, longitude, latitude, time)

• cveg (land, monthly, longitude, latitude, time)

• csoil (land, monthly, longitude, latitude, time)

• tos (ocean, monthly, longitude, latitude, time)

• fgco2 (ocean, monthly, longitude, latitude, time)

392 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.6.6 Observations and reformat scripts

• CRU (tas, pr)

• JMA-TRANSCOM (nbp, fgco2)

• MTE (gpp)

• LAI3g (lai)

• NDP (cveg)

• HWSD (csoil)

• HadISST (tos)

19.6.7 References

• Anav, A. et al.: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System
Models, J. Climate, 26, 6901-6843, doi: 10.1175/JCLI-D-12-00417.1, 2013.

19.6.8 Example plots

19.7 Runoff, Precipitation, Evapotranspiration

19.7.1 Overview

This diagnostic calculates biases of long-term climatological annual means of total runoff R, precipitation P and evapo-
transpiration E for 12 large-scale catchments on different continents and climates. For total runoff, catchment averaged
model values are compared to climatological GRDC station observations of river runoff (Duemenil Gates et al., 2000).
Due to the incompleteness of these station data, a year-to-year correspondence of data cannot be achieved in a gen-
eralized way, so that only climatological data are considered, such it has been done in Hagemann, et al. (2013). For
precipitation, catchment-averaged WFDEI precipitation data (Weedon et al., 2014) from 1979-2010 is used as refer-
ence. For evapotranspiration, observations are estimated using the difference of the above mentioned precipitation
reference minus the climatological GRDC river runoff.

The catchments are Amazon, Congo, Danube, Ganges-Brahmaputra, Lena, Mackenzie, Mississippi, Murray, Niger,
Nile, Parana and Yangtze-Kiang. Variable names are expected to follow CMOR standard, e.g. precipitation as pr, total
runoff as mrro and evapotranspiration as evspsbl with all fluxes given in kg m-2 s-1 . Evapotranspiration furthermore
has to be defined positive upwards.

The diagnostic produces text files with absolute and relative bias to the observations, as well as the respective absolute
values. Furthermore it creates a bar plot for relative and absolute bias, calculates and plots biases in runoff coefficient
(R/P) and evapotranspiration coefficient (E/P) and saves everything as one pdf file per model or one png file per model
and analysis.

The bias of the runoff coefficient is calculated via: 𝐶𝑅 = 𝑅𝑚𝑜𝑑𝑒𝑙

𝑃𝑚𝑜𝑑𝑒𝑙
− 𝑅𝐺𝑅𝐷𝐶

𝑃𝑊𝐹𝐷𝐸𝐼
and similar for the evapotranspiration

coefficient. In a very first approximation, evapotranspiration and runoff are determined only by precipitation. In other
words𝑅 = 𝑃−𝐸. Hence, the runoff coefficient (and similar the evapotranspiration coefficient) tells you how important
runoff (or evapotranspiration) is in this region. By plotting the bias of the runoff coefficient against the evapotranspira-
tion coefficient we can immediately see whether there is a shift from runoff to evapotranspiration. On the other hand,
by plotting the bias of the runoff coefficient against the relative bias of precipitation we can see whether an error in
runoff is due to an error in precipitation.

19.7. Runoff, Precipitation, Evapotranspiration 393

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 13: Time series of global net biome productivity (NBP) over the period 1901-2005. Similar to Anav et al. (2013),
Figure 5.

394 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 14: Seasonal cycle plot for nothern hemisphere gross primary production (GPP) over the period 1986-2005. Similar
to Anav et al. (2013), Figure 9.

19.7. Runoff, Precipitation, Evapotranspiration 395

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 15: Errorbar plot for tropical gross primary production (GPP) over the period 1986-2005.

396 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 16: Scatterplot for interannual variability and mean of global sea surface temperature (TOS) over the period 1986-
2005.

19.7. Runoff, Precipitation, Evapotranspiration 397

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 17: Scatterplot for multiyear average of 2m surface temperature (TAS) in x axis, its linear trend in y axis, and
MVI. Similar to Anav et al. (2013) Figure 1 (bottom).

398 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 18: Scatterplot for vegetation carbon content (cVeg) and soil carbon content (cSoil) over the period 1986-2005.
Similar to Anav et al. (2013), Figure 12.

19.7. Runoff, Precipitation, Evapotranspiration 399

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 19: Performance metrics plot for carbon-cycle-relevant diagnostics.

400 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_runoff_et.yml

Diagnostics are stored in diag_scripts/runoff_et/

• catchment_analysis.py: bar and scatter plots for catchment averages of runoff, evapotranspiration and precipita-
tion

19.7.3 User settings in recipe

1. Script catchment_analysis.py

Required settings (scripts)

• catchmentmask: netCDF file indicating the grid cell for a specific catchment. Modus of distribution not
yet clearified. ESGF?

Optional settings (variables)

• reference_dataset: dataset_name Datasets can be used as reference instead of defaults provided with the
diagnostics. Must be identical for all variables.

19.7.4 Variables

• evspsbl (atmos, monthly mean, time latitude longitude)

• pr (atmos, monthly mean, time latitude longitude)

• mrro (land, monthly mean, time latitude longitude)

19.7.5 Observations and reformat scripts

Default reference data based on GRDC and WFDEI are included in the diagnostic script as catchment averages. They
can be replaced with any gridded dataset by defining a reference_dataset. The necessary catchment mask is available
at

All other datasets are remapped onto the catchment mask grid as part of the diagnostics.

19.7.6 References

• Duemenil Gates, L., S. Hagemann and C. Golz, Observed historical discharge data from major rivers for climate
model validation. Max Planck Institute for Meteorology Report 307, Hamburg, Germany, 2000.

• Hagemann, S., A. Loew, A. Andersson, Combined evaluation of MPI-ESM land surface water and energy fluxes
J. Adv. Model. Earth Syst., 5, doi:10.1029/2012MS000173, 2013.

• Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, The WFDEI meteorological
forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour.
Res., 50, 7505–7514, doi: 10.1002/2014WR015638, 2014

19.7. Runoff, Precipitation, Evapotranspiration 401

https://doi.org/10.5281/zenodo.2025776

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

19.7.7 Example plots

Fig. 20: Catchment definitions used in the diagnostics.

402 Chapter 19. Land

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 21: Barplot indicating the absolute and relative bias in annual runoff between MPI-ESM-LR (1970-2000) and long
term GRDC data for specific catchments.

19.7. Runoff, Precipitation, Evapotranspiration 403

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 22: Biases in runoff coefficient (runoff/precipitation) and precipitation for major catchments of the globe. The
MPI-ESM-LR historical simulation (1970-2000) is used as an example.

404 Chapter 19. Land

CHAPTER

TWENTY

OCEAN

20.1 Recipe for evaluating Arctic Ocean

20.1.1 Overview

The Arctic ocean is one of the areas of the Earth where the effects of climate change are especially visible today. Two
most prominent processes are Arctic amplification [e.g. Serreze and Barry, 2011] and decrease of the sea ice area and
thickness. Both receive good coverage in the literature and are already well-studied. Much less attention is paid to the
interior of the Arctic Ocean itself. In order to increase our confidence in projections of the Arctic climate future proper
representation of the Arctic Ocean hydrography is necessary.

The main focus of this diagnostics is evaluation of ocean components of climate models in the Arctic Ocean, however
most of the diagnostics are implemented in a way that can be easily expanded to other parts of the World Ocean. Most
of the diagnostics aim at model comparison to climatological data (PHC3), so we target historical CMIP simulations.
However scenario runs also can be analysed to have an impression of how Arcti Ocean hydrography will chnage in the
future.

At present only the subset of CMIP models can be used in particular because our analysis is limited to z coordinate
models.

20.1.2 Available recipes

Recipe is stored in recipes/

• recipe_arctic_ocean.yml : contains all setting nessesary to run diagnostics and metrics.

Currenly the workflow do not allow to easily separate diagnostics from each other, since some of the diagnostics rely
on the results of other diagnostics. The recipe currently do not use preprocessor options, so input files are CMORised
monthly mean 3D ocean varibales on original grid.

The following plots will be produced by the recipe:

405

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Hovmoeller diagrams

The characteristics of vertical TS distribution can change with time, and consequently the vertical TS distribution is an
important indicator of the behaviour of the coupled ocean-sea ice-atmosphere system in the North Atlantic and Arctic
Oceans. One way to evaluate these changes is by using Hovmoller diagrams. Hovmoller diagrams for two main Arctic
Ocean basins – Eurasian and Amerasian with T and S spatially averaged on a monthly basis for every vertical level
are available. This diagnostic allows the temporal evolution of vertical ocean potential temperature distribution to be
assessed.

Related settings in the recipe:

Define regions, as a list.
'EB' - Eurasian Basin of the Arctic Ocean
'AB' - Amerasian Basin of the Arctic Ocean
'Barents_sea' - Barrents Sea
'North_sea' - North Sea
hofm_regions: ["AB" , 'EB']
Define variables to use, should also be in "variables"
entry of your diagnostic
hofm_vars: ['thetao', 'so']
Maximum depth of Hovmoeller and vertical profiles
hofm_depth: 1500
Define if Hovmoeller diagrams will be ploted.
hofm_plot: True
Define colormap (as a list, same size as list with variables)
Only cmaps from matplotlib and cmocean are supported.
Additional cmap - 'custom_salinity1'.
hofm_cmap: ['Spectral_r', 'custom_salinity1']
Data limits for plots,
List of the same size as the list of the variables
each entry is [vmin, vmax, number of levels, rounding limit]
hofm_limits: [[-2, 2.3, 41, 1], [30.5, 35.1, 47, 2]]
Number of columns in the plot
hofm_ncol: 3

Vertical profiles

The vertical structure of temperature and salinity (T and S) in the ocean model is a key diagnostic that is used for ocean
model evaluation. Realistic T and S distributions means that model properly represent dynamic and thermodynamic
processes in the ocean. Different ocean basins have different hydrological regimes so it is important to perform analysis
of vertical TS distribution for different basins separately. The basic diagnostic in this sense is mean vertical profiles of
temperature and salinity over some basin averaged for relatively long period of time. In addition to individual vertical
profiles for every model, we also show the mean over all participating models and similar profile from climatological
data (PHC3).

Several settings for vertical profiles (region, variables, maximum depths) will be determined by the Hovmoeller diagram
settings. The reason is that vertical profiles are calculated from Hovmoeller diagram data. Mean vertical profile is
calculated by lineraly interpolating data on standard WOA/PHC depths.

Related settings in the recipe:

Define regions, as a list.
'EB' - Eurasian Basin of the Arctic Ocean
'AB' - Amerasian Basin of the Arctic Ocean

(continues on next page)

406 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Hovmoller diagram of monthly spatially averaged potential temperature in the Eurasian Basin of the Arctic
Ocean for selected CMIP5 climate models (1970-2005).

(continued from previous page)

'Barents_sea' - Barrents Sea
'North_sea' - North Sea
hofm_regions: ["AB" , 'EB']
Define variables to use, should also be in "variables" entry of your␣
→˓diagnostic
hofm_vars: ['thetao', 'so']
Maximum depth of Hovmoeller and vertical profiles
hofm_depth: 1500

Spatial distribution maps of variables

The spatial distribution of basic oceanographic variables characterises the properties and spreading of ocean water
masses. For the coupled models, capturing the spatial distribution of oceanographic variables is especially important
in order to correctly represent the ocean-ice-atmosphere interface. We have implemented plots with spatial maps of
temperature and salinity at original model levels.

Plots spatial distribution of variables at selected depths in North Polar projection on original model grid. For plotting
the model depths that are closest to provided plot2d_depths will be selected. Settings allow to define color maps and
limits for each variable individually. Color maps should be ehter part of standard matplotlib set or one of the cmocean
color maps. Additional colormap custom_salinity1 is provided.

Related settings in the recipe:

Depths for spatial distribution maps
plot2d_depths: [10, 100]
Variables to plot spatial distribution maps

(continues on next page)

20.1. Recipe for evaluating Arctic Ocean 407

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 2: Mean (1970-2005) vertical potential temperature distribution in the Eurasian basin for participating CMIP5
coupled ocean models, PHC3 climatology (dotted red line) and multi-model mean (dotted black line).

(continued from previous page)

plot2d_vars: ['thetao', 'so']
Define colormap (as a list, same size as list with variables)
Only cmaps from matplotlib and cmocean are supported.
Additional cmap - 'custom_salinity1'.
plot2d_cmap: ['Spectral_r', 'custom_salinity1']
Data limits for plots,
List of the same size as the list of the variables
each entry is [vmin, vmax, number of levels, rounding limit]
plot2d_limits: [[-2, 4, 20, 1], [30.5, 35.1, 47, 2]]
number of columns for plots
plot2d_ncol: 3

Spatial distribution maps of biases

For temperature and salinity, we have implemented spatial maps of model biases from the observed climatology. For
the model biases, values from the original model levels are linearly interpolated to the climatology and then spatially
interpolated from the model grid to the regular PHC (climatology) grid. Resulting fields show model performance in
simulating spatial distribution of temperature and salinity.

Related settings in the recipe:

plot2d_bias_depths: [10, 100]
Variables to plot spatial distribution of the bias for.
plot2d_bias_vars: ['thetao', 'so']
Color map names for every variable
plot2d_bias_cmap: ['balance', 'balance']

(continues on next page)

408 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 3: Mean (1970-2005) salinity distribution at 100 meters.

20.1. Recipe for evaluating Arctic Ocean 409

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

Data limits for plots,
List of the same size as the list of the variables
each entry is [vmin, vmax, number of levels, rounding limit]
plot2d_bias_limits: [[-3, 3, 20, 1], [-2, 2, 47, 2]]
number of columns in the bias plots
plot2d_bias_ncol: 3

Fig. 4: Mean (1970-2005) salinity bias at 100m relative to PHC3 climatology

Transects

Vertical transects through arbitrary sections are important for analysis of vertical distribution of ocean water properties
and especially useful when exchange between different ocean basins is evaluated. We have implemented diagnostics
that allow for the definition of an arbitrary ocean section by providing set of points on the ocean surface. For each
point, a vertical profile on the original model levels is interpolated. All profiles are then connected to form a transect.
The great-circle distance between the points is calculated and used as along-track distance.

One of the main use cases is to create vertical sections across ocean passages, for example Fram Strait.

Plots transect maps for pre-defined set of transects (defined in regions.py, see below). The transect_depth defines
maximum depth of the transect. Transects are calculated from data averaged over the whole time period.

Related settings in the recipe:

410 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Select regions (transects) to plot
Available options are:
AWpath - transect along the path of the Atlantic Water
Fram - Fram strait
transects_regions: ["AWpath", "Fram"]
Variables to plot on transects
transects_vars: ['thetao', 'so']
Color maps for every variable
transects_cmap: ['Spectral_r', 'custom_salinity1']
Data limits for plots,
List of the same size as the list of the variables
each entry is [vmin, vmax, number of levels, rounding limit]
transects_limits: [[-2, 4, 20, 1], [30.5, 35.1, 47, 2]]
Maximum depth to plot the data
transects_depth: 1500
number of columns
transects_ncol: 3

Fig. 5: Mean (1970-2005) potential temperature across the Fram strait.

20.1. Recipe for evaluating Arctic Ocean 411

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Atlantic Water core depth and temperature

Atlantic water is a key water mass of the Arctic Ocean and its proper representation is one of the main challenges in
Arctic Ocean modelling. We have created two metrics by which models can be easily compared in terms of Atlantic
water simulation. The temperature of the Atlantic Water core is calculated for every model as the maximum poten-
tial temperature between 200 and 1000 meters depth in the Eurasian Basin. The depth of the Atlantic Water core is
calculated as the model level depth where the maximum temperature is found in Eurasian Basin (Atlantic water core
temperature).

The AW core depth and temperature will be calculated from data generated for Hovmoeller diagrams for EB region, so
it should be selected in the Hovmoeller diagrams settings as one of the hofm_regions.

In order to evaluate the spatial distribution of Atlantic water in different climate models we also provide diagnostics
with maps of the spatial temperature distribution at model’s Atlantic Water depth.

Fig. 6: Mean (1970-2005) Atlantic Water core temperature. PHC33 is an observed climatology.

TS-diagrams

T-S diagrams combine temperature and salinity, which allows the analysis of water masses and their potential for
mixing. The lines of constant density for specific ranges of temperature and salinity are shown on the background of
the T-S diagram. The dots on the diagram are individual grid points from specified region at all model levels within
user specified depth range.

Related settings in the recipe:

tsdiag_regions: ["AB" , 'EB']
Maximum depth to consider data for TS diagrams
tsdiag_depth: 1500
Number of columns
tsdiag_ncol: 3

412 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 7: Mean (1970-2005) T-S diagrams for Eurasian Basin of the Arctic Ocean.

20.1. Recipe for evaluating Arctic Ocean 413

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.1.3 Available diagnostics

The following python modules are included in the diagnostics package:

• arctic_ocean.py : Reads settings from the recipe and call functions to do analysis and plots.

• getdata.py : Deals with data preparation.

• interpolation.py : Include horizontal and vertical interpolation functions specific for ocean models.

• plotting.py : Ocean specific plotting functions

• regions.py : Contains code to select specific regions, and definition of the regions themselves.

• utils.py : Helpful utilites.

Diagnostics are stored in diag_scripts/arctic_ocean/

Variables

• thetao (ocean, monthly, longitude, latitude, time)

• so (ocean, monthly, longitude, latitude, time)

Observations and reformat scripts

• PHC3 climatology

References

• Ilıcak, M. et al., An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part
III: Hydrography and fluxes, Ocean Modelling, Volume 100, April 2016, Pages 141-161, ISSN 1463-5003,
doi.org/10.1016/j.ocemod.2016.02.004

• Steele, M., Morley, R., & Ermold, W. (2001). PHC: A global ocean hydrography with a high-quality Arctic
Ocean. Journal of Climate, 14(9), 2079-2087.

• Wang, Q., et al., An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I:
Sea ice and solid freshwater, Ocean Modelling, Volume 99, March 2016, Pages 110-132, ISSN 1463-5003,
doi.org/10.1016/j.ocemod.2015.12.008

• Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A., . . . & Cassou, C. (2016). An assessment
of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling,
99, 86-109, doi.org/10.1016/j.ocemod.2015.12.009

20.2 Climate Variability Diagnostics Package (CVDP)

20.2.1 Overview

The Climate Variability Diagnostics Package (CVDP) developed by NCAR’s Climate Analysis Section is an analy-
sis tool that documents the major modes of climate variability in models and observations, including ENSO, Pacific
Decadal Oscillation, Atlantic Multi-decadal Oscillation, Northern and Southern Annular Modes, North Atlantic Oscil-
lation, Pacific North and South American teleconnection patterns. For details please refer to the [1] and [2].

414 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_cvdp.yml

Diagnostics are stored in diag_scripts/cvdp/

• cvdp_wrapper.py

20.2.3 User settings in recipe

The recipe can be run with several data sets including different model ensembles, multi-model mean statistics are
currently not supported.

20.2.4 Variables

• ts (atmos, monthly mean, longitude latitude time)

• tas (atmos, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

• psl (atmos, monthly mean, longitude latitude time)

20.2.5 Observations and reformat scripts

None.

20.2.6 References

[1] http://www.cesm.ucar.edu/working_groups/CVC/cvdp/

[2] https://github.com/NCAR/CVDP-ncl

20.2.7 Example plots

20.3 Nino indices, North Atlantic Oscillation (NAO), Souther Oscilla-
tion Index (SOI)

20.3.1 Overview

The goal of this diagnostic is to compute indices based on area averages.

In recipe_combined_indices.yml, after defining the period (historical or future projection), the variable is selected. The
predefined areas are:

• Nino 3

• Nino 3.4

• Nino 4

• North Atlantic Oscillation (NAO)

20.3. Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI) 415

http://www.cesm.ucar.edu/working_groups/CVC/cvdp/
https://github.com/NCAR/CVDP-ncl

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 8: Regression of the precipitation anomalies (PR) onto the Northern Annular Mode (NAM) index for the time
period 1900-2005 for 30 CMIP5 models and observations (GPCP (pr) / IFS-Cy31r2 (psl); time period 1984-2005).416 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Southern Oscillation Index (SOI)

20.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_combined_indices.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• combined_indices.R : calculates the area-weighted means and multi-model means, with or without weights

20.3.3 User settings

User setting files are stored in recipes/

1. recipe_combined_indices.yml

Required settings for script

• region: one of the following strings Nino3, Nino3.4, Nino4, NAO, SOI

• running_mean: an integer specifying the length of the window (in months) to be used for computing
the running mean.

• moninf: an integer can be given to determine the first month of the seasonal mean to be computed
(from 1 to 12, corresponding to January to December respectively).

• monsup: an integer specifying the last month to be computed (from 1 to 12, corresponding to January
to December respectively).

• standardized: ‘true’ or ‘false’ to specify whether to compute the standarization of the variable.

Required settings for preprocessor (only for 3D variables)

extract_levels:

• levels: [50000] # e.g. for 500 hPa level

• scheme: nearest

20.3.4 Variables

• all variables (atmos/ocean, monthly, longitude, latitude, time)

20.3.5 Observations and reformat scripts

None

20.3. Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI) 417

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.3.6 References

• Trenberth, Kevin & National Center for Atmospheric Research Staff (Eds). Last modified 11 Jan 2019.
“The Climate Data Guide: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI).” Retrieved from https:
//climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni.

20.3.7 Example plots

Time series of the standardized sea surface temperature (tos) area averaged over the Nino 3.4 region during the boreal
winter (December-January-February). The time series correspond to the MPI-ESM-MR (red) and BCC-CSM1-1 (blue)
models and their mean (black) during the period 1950-2005 for the ensemble r1p1i1 of the historical simulations.

418 Chapter 20. Ocean

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.4 Ocean chlorophyll in ESMs compared to ESA-CCI observations.

20.4.1 Overview

This recipe compares monthly surface chlorophyll from CMIP models to ESA CCI ocean colour chlorophyll (ESACCI-
OC). The observations are the merged sensor geographic monthly L3S chlor_a data Sathyendranath et al. (2019).
Multiple models and different observational versions can be used by the script.

The recipe_esacci_oc.yml produces an image showing four maps. Each of these four maps shows latitude vs longitude
and the chlorophyll value. The four plots are: ESACCI-OC v5.0 chlorophyll, the CMIP6 model, the bias model-
observation and the ratio model/observations. The script also produces a scatter plot for all coordinates with the model
on the x-axis and the observations on the y axis and a line of best fit with the parameter values given in the panel.

20.4.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/ocean/

• recipe_esacci_oc.yml

Diagnostics are stored in esmvaltool/diag_scripts/ocean/

• diagnostic_model_vs_obs.py

20.4.3 User settings in recipe

1. Script diagnostic_model_vs_obs.py

Required settings for script

• observational_dataset: name of reference dataset (e.g. {dataset: ESACCI-OC,})

20.4.4 Variables

• chl (ocean, monthly mean, longitude, latitude, time)

20.4.5 Observations and reformat scripts

• ESACCI-OC (chl)

Reformat script: reformat_scripts/obs/reformat_obs_esacci_oc.py

20.4.6 References

• Sathyendranath, S., et al. (2019), An ocean-colour time series for use in climate studies: the experience of the
Ocean-Colour Climate Change Initiative (OC-CCI). Sensors: 19, 4285. doi:10.3390/s19194285.

• ESACCI-OC dataset: http://dx.doi.org/10.5285/00b5fc99f9384782976a4453b0148f49

20.4. Ocean chlorophyll in ESMs compared to ESA-CCI observations. 419

http://dx.doi.org/10.5285/00b5fc99f9384782976a4453b0148f49

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.4.7 Example plots

Fig. 9: Surface chlorophyll from ESACCI-OC ocean colour data version 5.0 and the CMIP6 model NorESM2-LM.
This model overestimates chlorophyll compared to the observations.

Fig. 10: Scatter plot of surface chlorophyll from ESACCI-OC ocean colour data version 5.0 and the CMIP6 model
NorESM2-LM.

20.5 Ocean diagnostics

20.5.1 Overview

These recipes are used for evaluating the marine component of models of the earth system. Using these recipes, it
should be possible to evaluate both the physical models and biogeochemistry models. All these recipes use the ocean
diagnostics package.

The ocean diagnostics package contains several diagnostics which produce figures and statistical information of models
of the ocean. The datasets have been pre-processed by ESMValTool, based on recipes in the recipes directory. Most of

420 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

the diagnostics produce two or less types of figure, and several diagnostics are called by multiple recipes.

Each diagnostic script expects a metadata file, automatically generated by ESMValTool, and one or more pre-processed
dataset. These are passed to the diagnostic by ESMValTool in the settings.yml and metadata.yml files.

The ocean diagnostics toolkit can not figure out how to plot data by itself. The current version requires the recipe to
produce the correct pre-processed data for each diagnostic script. ie: to produce a time series plot, the preprocessor
must produce a time-dimensional dataset.

While these tools were built to evaluate the ocean component models, they also can be used to produce figures for other
domains. However, there are some ocean specific elements, such as the z-direction being positive and reversed, and
some of the map plots have the continents coloured in by default.

As elsewhere, both the model and observational datasets need to be compliant with the CMOR data.

20.5.2 Available recipes

• recipe_ocean_amoc.yml

• recipe_ocean_example.yml

• recipe_ocean_scalar_fields.yml

• recipe_ocean_bgc.yml

• recipe_ocean_quadmap.yml

• recipe_ocean_ice_extent.yml

• recipe_ocean_multimap.yml

recipe_ocean_amoc.yml

The recipe_ocean_amoc.yml is an recipe that produces figures describing the Atlantic Meridional Overturning Circu-
lation (AMOC) and the drake passage current.

The recipes produces time series of the AMOC at 26 north and the drake passage current.

20.5. Ocean diagnostics 421

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_amoc.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_example.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_scalar_fields.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_bgc.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_quadmap.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_multimap.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_amoc.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

This figure shows the multi model comparison of the AMOC from several CMIP5 historical simulations, with a 6 year
moving average (3 years either side of the central value). A similar figure is produced for each individual model, and
for the Drake Passage current.

This recipe also produces a contour transect and a coloured transect plot showing the Atlantic stream function for each
individual model, and a multi-model contour is also produced:

422 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.5. Ocean diagnostics 423

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

recipe_ocean_example.yml

The recipe_ocean_example.yml is an example recipe which shows several examples of how to manipulate marine model
data using the ocean diagnostics tools.

While several of the diagnostics here have specific uses in evaluating models, it is meant to be a catch-all recipe
demonstrating many different ways to evaluate models.

All example calculations are performed using the ocean temperature in a three dimensional field (thetao), or at the
surface (tos). This recipe demonstrates the use of a range of preprocessors in a marine context, and also shows many
of the standard model-only diagnostics (no observational component is included.)

This recipe includes examples of how to manipulate both 2D and 3D fields to produce:

• Time series:

– Global surface area weighted mean time series

– Volume weighted average time series within a specific depth range

– Area weighted average time series at a specific depth

– Area weighted average time series at a specific depth in a specific region.

– Global volume weighted average time series

– Regional volume weighted average time series

• Maps:

– Global surface map (from 2D ad 3D initial fields)

424 Chapter 20. Ocean

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_example.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

– Global surface map using re-gridding to a regular grid

– Global map using re-gridding to a regular grid at a specific depth level

– Regional map using re-gridding to a regular grid at a specific depth level

• Transects:

– Produce various transect figure showing a re-gridded transect plot, and multi model comparisons

• Profile:

– Produce a Global area-weighted depth profile figure

– Produce a regional area-weighted depth profile figure

All the these fields can be expanded using a

recipe_ocean_bgc.yml

The recipe_ocean_bgc.yml is an example recipe which shows a several simple examples of how to manipulate marine
biogeochemical model data.

This recipe includes the following fields:

• Global total volume-weighted average time series:

– temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *

– chlorophyll, iron, total alkalinity (no observations)

• Surface area-weighted average time series:

– temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *

– fgco2 (global total), integrated primary production, chlorophyll, iron, total alkalinity (no observations)

• Scalar fields time series:

– mfo (including stuff like drake passage)

• Profiles:

– temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *

– chlorophyll, iron, total alkalinity (no observations)

• Maps + contours:

– temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *

– chlorophyll, iron, total alkalinity (no observations)

• Transects + contours:

– temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *

– chlorophyll, iron, no observations)

* Note that Phosphate is also available as a WOA diagnostic, but I haven’t included it as HadGEM2-ES doesn’t include
a phosphate field.

This recipe uses the World Ocean Atlas data, which can be downloaded from: https://www.ncei.noaa.gov/products/
world-ocean-atlas (last access 02/08/2021)

Instructions: Select the “All fields data links (1° grid)” netCDF file, which contain all fields.

20.5. Ocean diagnostics 425

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_bgc.yml
https://www.ncei.noaa.gov/products/world-ocean-atlas
https://www.ncei.noaa.gov/products/world-ocean-atlas

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

recipe_ocean_quadmap.yml

The recipe_ocean_quadmap.yml is an example recipe showing the diagnostic_maps_quad.py diagnostic. This diag-
nostic produces an image showing four maps. Each of these four maps show latitude vs longitude and the cube value
is used as the colour scale. The four plots are:

model1 model 1 minus model2
model2 minus obs model1 minus obs

These figures are also known as Model vs Model vs Obs plots.

The figure produced by this recipe compares two versions of the HadGEM2 model against ATSR sea surface temper-
ature:

This kind of figure can be very useful when developing a model, as it allows model developers to quickly see the impact
of recent changes to the model.

426 Chapter 20. Ocean

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_quadmap.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_maps_quad.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

recipe_ocean_ice_extent.yml

The recipe_ocean_ice_extent.yml recipe produces several metrics describing the behaviour of sea ice in a model, or in
multiple models.

This recipe has four preprocessors, a combinatorial combination of

• Regions: Northern or Southern Hemisphere

• Seasons: December-January-February or June-July-August

Once these seasonal hemispherical fractional ice cover is processed, the resulting cube is passed ‘as is’ to the diagnos-
tic_seaice.py diagnostic.

This diagnostic produces the plots:

• Polar Stereographic projection Extent plots of individual models years.

• Polar Stereographic projection maps of the ice cover and ice extent for individual models.

• A time series of Polar Stereographic projection Extent plots - see below.

• Time series plots of the total ice area and the total ice extent.

The following image shows an example of the sea ice extent plot, showing the Summer Northern hemisphere ice extent
for the HadGEM2-CC model, in the historical scenario.

The sea ice diagnostic is unlike the other diagnostics in the ocean diagnostics toolkit. The other tools are build to
be generic plotting tools which work with any field (ie diagnostic_timeseries.py works fine for Temperature,

20.5. Ocean diagnostics 427

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_seaice.py
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_seaice.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Chlorophyll, or any other field. On the other hand, the sea ice diagnostic is the only tool that performs a field specific
evaluation.

The diagnostic_seaice.py diagnostic is more fully described below.

recipe_ocean_multimap.yml

The recipe_ocean_multimap.yml is an example recipe showing the diagnostic_maps_multimodel.py diagnostic. This
diagnostic produces an image showing Model vs Observations maps or only Model fields when observational data are
not provided. Each map shows latitude vs longitude fields and user defined values are used to set the colour scale. Plot
layout can be modified by modifying the layout_rowcol argument.

The figure produced by this recipe compares the ocean surface CO2 fluxes for 16 different CMIP5 model against
Landschuetzer2016 observations.

The diagnostic_maps_multimodel.py diagnostic is documented below.

20.5.3 Available diagnostics

Diagnostics are stored in the diag_scripts directory: ocean.

The following python modules are included in the ocean diagnostics package. Each module is described in more detail
both below and inside the module.

• diagnostic_maps.py

• diagnostic_maps_quad.py

• diagnostic_model_vs_obs.py

• diagnostic_profiles.py

• diagnostic_seaice.py

• diagnostic_timeseries.py

• diagnostic_tools.py

• diagnostic_transects.py

• diagnostic_maps_multimodel.py

diagnostic_maps.py

The diagnostic_maps.py produces a spatial map from a NetCDF. It requires the input netCDF to have the following
dimensions. Either:

• A two dimensional file: latitude, longitude.

• A three dimensional file: depth, latitude, longitude.

In the case of a 3D netCDF file, this diagnostic produces a map for EVERY layer. For this reason, we recommend
extracting a small number of specific layers in the preprocessor, using the extract_layer preprocessor.

This script can not process NetCDFs with multiple time steps. Please use the climate_statistics preprocessor to collapse
the time dimension.

This diagnostic also includes the optional arguments, threshold and thresholds.

• threshold: a single float.

• thresholds: a list of floats.

428 Chapter 20. Ocean

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_seaice.py
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/recipe_ocean_multimap.yml
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_maps_multimodel.py
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_maps_multimodel.py
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/:
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_maps.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Only one of these arguments should be provided at a time. These two arguments produce a second kind of diagnostic
map plot: a contour map showing the spatial distribution of the threshold value, for each dataset. Alternatively, if the
thresholds argument is used instead of threshold, the single-dataset contour map shows the contours of all the values
in the thresholds list.

If multiple datasets are provided, in addition to the single dataset contour, a multi-dataset contour map is also produced
for each value in the thresholds list.

Some appropriate preprocessors for this diagnostic would be:

For a Global 2D field:

prep_map_1:
climate_statistics:

For a regional 2D field:

prep_map_2:
extract_region:
start_longitude: -80.
end_longitude: 30.
start_latitude: -80.
end_latitude: 80.

climate_statistics:
operator: mean

For a Global 3D field at the surface and 10m depth:

prep_map_3:
custom_order: true
extract_levels:
levels: [0., 10.]
scheme: linear_horizontal_extrapolate_vertical

climate_statistics:
operator: mean

For a multi-model comparison mean of 2D global fields including contour thresholds.

prep_map_4:
custom_order: true

climate_statistics:
operator: mean
regrid:
target_grid: 1x1
scheme: linear

And this also requires the threshold key in the diagnostic:

diagnostic_map:
variables:
tos: # Temperature ocean surface
preprocessor: prep_map_4
field: TO2M

scripts:
Ocean_regrid_map:

(continues on next page)

20.5. Ocean diagnostics 429

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

script: ocean/diagnostic_maps.py
thresholds: [5, 10, 15, 20]

diagnostic_maps_quad.py

The diagnostic_maps_quad.py diagnostic produces an image showing four maps. Each of these four maps show latitude
vs longitude and the cube value is used as the colour scale. The four plots are:

model1 model 1 minus model2
model2 minus obs model1 minus obs

These figures are also known as Model vs Model vs Obs plots.

This diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cubes received by this di-
agnostic (via the settings.yml and metadata.yml files) have no time component, a small number of depth layers, and a
latitude and longitude coordinates.

An appropriate preprocessor for a 2D field would be:

prep_quad_map:
climate_statistics:

operator: mean

and an example of an appropriate diagnostic section of the recipe would be:

diag_map_1:
variables:
tos: # Temperature ocean surface
preprocessor: prep_quad_map
field: TO2Ms
mip: Omon

additional_datasets:
filename: tos_ATSR_L3_ARC-v1.1.1_199701-201112.nc
download from: https://datashare.is.ed.ac.uk/handle/10283/536

- {dataset: ATSR, project: obs4MIPs, level: L3, version: ARC-v1.1.1, ␣
→˓start_year: 2001, end_year: 2003, tier: 3}
scripts:
Global_Ocean_map:
script: ocean/diagnostic_maps_quad.py
control_model: {dataset: HadGEM2-CC, project: CMIP5, mip: Omon, exp:␣

→˓historical, ensemble: r1i1p1}
exper_model: {dataset: HadGEM2-ES, project: CMIP5, mip: Omon, exp:␣

→˓historical, ensemble: r1i1p1}
observational_dataset: {dataset: ATSR, project: obs4MIPs,}

Note that the details about the control model, the experiment models and the observational dataset are all provided in
the script section of the recipe.

430 Chapter 20. Ocean

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_maps_quad.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

diagnostic_model_vs_obs.py

The diagnostic_model_vs_obs.py diagnostic makes model vs observations maps and scatter plots. The map plots shows
four latitude vs longitude maps:

Model Observations
Model minus Observations Model over Observations

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a
latitude and longitude coordinates.

This diagnostic also includes the optional arguments, maps_range and diff_range to manually define plot ranges. Both
arguments are a list of two floats to set plot range minimun and maximum values respectively for Model and Observa-
tions maps (Top panels) and for the Model minus Observations panel (bottom left). Note that if input data have negative
values the Model over Observations map (bottom right) is not produced.

The scatter plots plot the matched model coordinate on the x axis, and the observational dataset on the y coordinate,
then performs a linear regression of those data and plots the line of best fit on the plot. The parameters of the fit are
also shown on the figure.

An appropriate preprocessor for a 3D+time field would be:

preprocessors:
prep_map:
extract_levels:
levels: [100.,]
scheme: linear_extrap

climate_statistics:
operator: mean
regrid:
target_grid: 1x1
scheme: linear

diagnostic_maps_multimodel.py

The diagnostic_maps_multimodel.py diagnostic makes model(s) vs observations maps and if data are not provided it
draws only model field.

It is always nessary to define the overall layout trough the argument layout_rowcol, which is a list of two integers
indicating respectively the number of rows and columns to organize the plot. Observations has not be accounted in
here as they are automatically added at the top of the figure.

This diagnostic also includes the optional arguments, maps_range and diff_range to manually define plot ranges. Both
arguments are a list of two floats to set plot range minimun and maximum values respectively for variable data and the
Model minus Observations range.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a
latitude and longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

preprocessors:
prep_map:

(continues on next page)

20.5. Ocean diagnostics 431

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_model_vs_obs.py
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_maps_multimodel.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

extract_levels:
levels: [100.,]
scheme: linear_extrap

climate_statistics:
operator: mean
regrid:
target_grid: 1x1
scheme: linear

diagnostic_profiles.py

The diagnostic_profiles.py diagnostic produces images of the profile over time from a cube. These plots show cube
value (ie temperature) on the x-axis, and depth/height on the y axis. The colour scale is the annual mean of the cube
data. Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received
by this diagnostic (via the settings.yml and metadata.yml files) has a time component, and depth component, but no
latitude or longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

preprocessors:
prep_profile:
extract_volume:
long1: 0.
long2: 20.
lat1: -30.
lat2: 30.
z_min: 0.
z_max: 3000.

area_statistics:
operator: mean

diagnostic_timeseries.py

The diagnostic_timeseries.py diagnostic produces images of the time development of a metric from a cube. These plots
show time on the x-axis and cube value (ie temperature) on the y-axis.

Two types of plots are produced: individual model timeseries plots and multi model time series plots. The individual
plots show the results from a single cube, even if this cube is a multi-model mean made by the multimodel preprocessor.

The multi model time series plots show several models on the same axes, where each model is represented by a different
line colour. The line colours are determined by the number of models, their alphabetical order and the jet colour scale.
Observational datasets and multimodel means are shown as black lines.

This diagnostic assumes that the preprocessors do the bulk of the work, and that the cube received by this diagnostic
(via the settings.yml and metadata.yml files) is time-dimensional cube. This means that the pre-processed netcdf has a
time component, no depth component, and no latitude or longitude coordinates.

Some appropriate preprocessors would be :

For a global area-weighted average 2D field:

area_statistics:
operator: mean

432 Chapter 20. Ocean

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_profiles.py
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_timeseries.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

For a global volume-weighted average 3D field:

volume_statistics:
operator: mean

For a global area-weighted surface of a 3D field:

extract_levels:
levels: [0.,]
scheme: linear_horizontal_extrapolate_vertical

area_statistics:
operator: mean

An example of the multi-model time series plots can seen here:

diagnostic_transects.py

The diagnostic_transects.py diagnostic produces images of a transect, typically along a constant latitude or longitude.

These plots show 2D plots with either latitude or longitude along the x-axis, depth along the y-axis and and the cube
value is used as the colour scale.

This diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic
(via the settings.yml and metadata.yml files) has no time component, and one of the latitude or longitude coordinates
has been reduced to a single value.

An appropriate preprocessor for a 3D+time field would be:

20.5. Ocean diagnostics 433

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_transects.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

climate_statistics:
operator: mean

extract_slice:
latitude: [-50.,50.]
longitude: 332.

Here is an example of the transect figure: .. centered::

And here is an example of the multi-model transect contour figure:

434 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

diagnostic_seaice.py

The diagnostic_seaice.py diagnostic is unique in this module, as it produces several different kinds of images, including
time series, maps, and contours. It is a good example of a diagnostic where the preprocessor does very little work, and
the diagnostic does a lot of the hard work.

This was done purposely, firstly to demonstrate the flexibility of ESMValTool, and secondly because Sea Ice is a unique
field where several Metrics can be calculated from the sea ice cover fraction.

The recipe Associated with with diagnostic is the recipe_SeaIceExtent.yml. This recipe contains 4 preprocessors which
all perform approximately the same calculation. All four preprocessors extract a season: - December, January and
February (DJF) - June, July and August (JJA) and they also extract either the North or South hemisphere. The four
preprocessors are combinations of DJF or JJA and North or South hemisphere.

One of the four preprocessors is North Hemisphere Winter ice extent:

timeseries_NHW_ice_extent: # North Hemisphere Winter ice_extent
custom_order: true
extract_time: &time_anchor # declare time here.

start_year: 1960
start_month: 12
start_day: 1
end_year: 2005
end_month: 9
end_day: 31

extract_season:
season: DJF

(continues on next page)

20.5. Ocean diagnostics 435

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_seaice.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

extract_region:
start_longitude: -180.
end_longitude: 180.
start_latitude: 0.
end_latitude: 90.

Note that the default settings for ESMValTool assume that the year starts on the first of January. This causes a problem
for this preprocessor, as the first DJF season would not include the first Month, December, and the final would not
include both January and February. For this reason, we also add the extract_time preprocessor.

This preprocessor group produces a 2D field with a time component, allowing the diagnostic to investigate the time
development of the sea ice extend.

The diagnostic section of the recipe should look like this:

diag_ice_NHW:
description: North Hemisphere Winter Sea Ice diagnostics
variables:
sic: # surface ice cover
preprocessor: timeseries_NHW_ice_extent
field: TO2M
mip: OImon

scripts:
Global_seaice_timeseries:
script: ocean/diagnostic_seaice.py
threshold: 15.

Note the the threshold here is 15%, which is the standard cut of for the ice extent.

The sea ice diagnostic script produces three kinds of plots, using the methods:

• make_map_extent_plots: extent maps plots of individual models using a Polar Stereographic project.

• make_map_plots: maps plots of individual models using a Polar Stereographic project.

• make_ts_plots: time series plots of individual models

There are no multi model comparisons included here (yet).

diagnostic_tools.py

The diagnostic_tools.py is a module that contains several python tools used by the ocean diagnostics tools.

These tools are:

• folder: produces a directory at the path provided and returns a string.

• get_input_files: loads a dictionary from the input files in the metadata.yml.

• bgc_units: converts to sensible units where appropriate (ie Celsius, mmol/m3)

• timecoord_to_float: Converts time series to decimal time ie: Midnight on January 1st 1970 is 1970.0

• add_legend_outside_right: a plotting tool, which adds a legend outside the axes.

• get_image_format: loads the image format, as defined in the global user config.yml.

• get_image_path: creates a path for an image output.

• make_cube_layer_dict: makes a dictionary for several layers of a cube.

436 Chapter 20. Ocean

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_tools.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

We just show a simple description here, each individual function is more fully documented in the diagnostic_tools.py
module.

20.5.4 A note on the auxiliary data directory

Some of these diagnostic scripts may not function on machines with no access to the internet, as cartopy may try to
download the shape files. The solution to this issue is the put the relevant cartopy shapefiles in a directory which is
visible to esmvaltool, then link that path to ESMValTool via the auxiliary_data_dir variable in your config-user.yml
file.

The cartopy masking files can be downloaded from: https://www.naturalearthdata.com/downloads/

In these recipes, cartopy uses the 1:10, physical coastlines and land files:

110m_coastline.dbf
110m_coastline.shp
110m_coastline.shx
110m_land.dbf
110m_land.shp
110m_land.shx

20.5.5 Associated Observational datasets

The following observations datasets are used by these recipes:

World Ocean ATLAS

These data can be downloaded from: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html (last access
10/25/2018) Select the “All fields data links (1° grid)” netCDF file, which contain all fields.

The following WOA datasets are used by the ocean diagnostics:
• Temperature

• Salinity

• Nitrate

• Phosphate

• Silicate

• Dissolved Oxygen

These files need to be reformatted using the esmvaltool data format WOA command.

20.5. Ocean diagnostics 437

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/ocean/diagnostic_tools.py
https://www.naturalearthdata.com/downloads/
https://www.nodc.noaa.gov/OC5/woa13/woa13data.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Landschuetzer 2016

These data can be downloaded from: https://www.nodc.noaa.gov/archive/arc0105/0160558/3.3/data/0-data/spco2_
1982-2015_MPI_SOM-FFN_v2016.nc (last access 09/20/2022)

The following variables are used by the ocean diagnostics:
• fgco2, Surface Downward Flux of Total CO2

• spco2, Surface Aqueous Partial Pressure of CO2

• dpco2, Delta CO2 Partial Pressure

The file needs to be reformatted using the esmvaltool data format Landschuetzer2016 command.

20.6 Sea Surface Salinity Evaluation

20.6.1 Overview

This recipe compares the regional means of sea surface salinity with a reference dataset (ESACCI-SEA-SURFACE-
SALINITY v1 or v2 by default). To do this, the recipe generates plots for the timeseries of each region and a radar plot
showing (i) the mean state bias, and (ii) the ratio between the simulated and observed standard deviations of different
regional averages of sea surface salinity, calculated in the temporal window for which observations and simulations
overlap.

20.6.2 Preprocessor requirements:

The recipe is created in a way that should make possible (although is not tested) to use it for other variables and datasets,
even for more than one at a time. The diagnostic only expects variables with dimensions time and depth_id and it does
not assume any other constraint.

It is therefore mandatory to keep the extract_shape preprocessor for more than one region and any form of region
operation (mean, max, min . . .) to collapse the latitude and longitude coordinates. In case you want to try with variables
that have extra dimensions (i.e. depth) you must add an extra preprocessor call to collapse them (i.e. depth_integration)

The recipe can be used with any shapefile. As it is, it uses the IHO Sea Areas (version 3) downloaded from https:
//marineregions.org/downloads.php, but any shapefile containing marine regions can be used.

Any number of regions can be choosed also, even though plots may look odd if too few or too many are selected.

20.6.3 Regions available on IHO Sea Areas file:

• Adriatic Sea

• Aegean Sea

• Alboran Sea

• Andaman or Burma Sea

• Arabian Sea

• Arafura Sea

• Arctic Ocean

• Baffin Bay

438 Chapter 20. Ocean

https://www.nodc.noaa.gov/archive/arc0105/0160558/3.3/data/0-data/spco2_1982-2015_MPI_SOM-FFN_v2016.nc
https://www.nodc.noaa.gov/archive/arc0105/0160558/3.3/data/0-data/spco2_1982-2015_MPI_SOM-FFN_v2016.nc
https://marineregions.org/downloads.php
https://marineregions.org/downloads.php

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Balearic (Iberian Sea)

• Bali Sea

• Baltic Sea

• Banda Sea

• Barentsz Sea

• Bass Strait

• Bay of Bengal

• Bay of Biscay

• Bay of Fundy

• Beaufort Sea

• Bering Sea

• Bismarck Sea

• Black Sea

• Bristol Channel

• Caribbean Sea

• Celebes Sea

• Celtic Sea

• Ceram Sea

• Chukchi Sea

• Coral Sea

• Davis Strait

• East Siberian Sea

• Eastern China Sea

• English Channel

• Flores Sea

• Great Australian Bight

• Greenland Sea

• Gulf of Aden

• Gulf of Alaska

• Gulf of Aqaba

• Gulf of Boni

• Gulf of Bothnia

• Gulf of California

• Gulf of Finland

• Gulf of Guinea

• Gulf of Mexico

20.6. Sea Surface Salinity Evaluation 439

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Gulf of Oman

• Gulf of Riga

• Gulf of St. Lawrence

• Gulf of Suez

• Gulf of Thailand

• Gulf of Tomini

• Halmahera Sea

• Hudson Bay

• Hudson Strait

• Indian Ocean

• Inner Seas off the West Coast of Scotland

• Ionian Sea

• Irish Sea and St. George’s Channel

• Japan Sea

• Java Sea

• Kara Sea

• Kattegat

• Labrador Sea

• Laccadive Sea

• Laptev Sea

• Ligurian Sea

• Lincoln Sea

• Makassar Strait

• Malacca Strait

• Mediterranean Sea - Eastern Basin

• Mediterranean Sea - Western Basin

• Molukka Sea

• Mozambique Channel

• North Atlantic Ocean

• North Pacific Ocean

• North Sea

• Norwegian Sea

• Persian Gulf

• Philippine Sea

• Red Sea

• Rio de La Plata

440 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Savu Sea

• Sea of Azov

• Sea of Marmara

• Sea of Okhotsk

• Seto Naikai or Inland Sea

• Singapore Strait

• Skagerrak

• Solomon Sea

• South Atlantic Ocean

• South China Sea

• South Pacific Ocean

• Southern Ocean

• Strait of Gibraltar

• Sulu Sea

• Tasman Sea

• The Coastal Waters of Southeast Alaska and British Columbia

• The Northwestern Passages

• Timor Sea

• Tyrrhenian Sea

• White Sea

• Yellow Sea

20.6.4 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_sea_surface_salinity.yml

Diagnostics are stored in diag_scripts/sea_surface_salinity/

• compare_salinity.py: plot timeseries for each region and generate radar plot.

20.6.5 User settings in recipe

1. compare_salinity.py

Required settings for script

none

Optional settings for script

none

Required settings for variables

• ref_model: name of reference data set

20.6. Sea Surface Salinity Evaluation 441

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Optional settings for variables

none

20.6.6 Variables

• sos (ocean, monthly, time latitude longitude)

20.6.7 Observations and reformat scripts

• ESACCI-SEA-SURFACE-SALINITY (sos)

20.6.8 References

• Diagnostic: please contact authors

• ESACCI-SEA-SURFACE-SALINITY dataset: Boutin, J., J.-L. Vergely, J. Koehler, F. Rouffi, N. Reul: ESA Sea
Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Version 1.8 data collection. Centre for
Environmental Data Analysis, 25 November 2019. doi: 10.5285/9ef0ebf847564c2eabe62cac4899ec41. http:
//dx.doi.org/10.5285/9ef0ebf847564c2eabe62cac4899ec41

20.6.9 Example plots

20.7 Ocean metrics

20.7.1 Overview

The Southern Ocean is central to the global climate and the global carbon cycle, and to the climate’s response to
increasing levels of atmospheric greenhouse gases. Global coupled climate models and earth system models, however,
vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic trend.
Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing
climate and earth system models. New observations and understanding have allowed for progress in the creation of
observationally-based data/model metrics for the Southern Ocean.

The metrics presented in this recipe provide a means to assess multiple simulations relative to the best available obser-
vations and observational products. Climate models that perform better according to these metrics also better simulate
the uptake of heat and carbon by the Southern Ocean. Russell et al. 2018 assessed only a few of the available CMIP5
simulations, but most of the available CMIP5 and CMIP6 climate models can be analyzed with these recipes.

The goal is to create a recipe for recreation of metrics in Russell, J.L., et al., 2018, J. Geophys. Res. – Oceans, 123,
3120-3143, doi: 10.1002/2017JC013461.

442 Chapter 20. Ocean

http://dx.doi.org/10.5285/9ef0ebf847564c2eabe62cac4899ec41
http://dx.doi.org/10.5285/9ef0ebf847564c2eabe62cac4899ec41

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 11: Radar plot showing the mean state biases (simulation minus observations) for the regional averages of sea
surface salinity in the selected ocean basins and seas.

20.7. Ocean metrics 443

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 12: Radar plot showing the ratio between the simulated and observed standard deviations of the regional averages
of sea surface salinity in the selected ocean basins and seas.

444 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_russell18jgr.yml

Diagnostics are stored in diag_scripts/russell18jgr/

• russell18jgr-polar.ncl (figures 1, 7, 8): calculates and plots annual-mean variables (tauu, sic, fgco2, pH) as polar
contour map.

• russell18jgr-fig2.ncl: calculates and plots The zonal and annual means of the zonal wind stress (N/m2).

• russell18jgr-fig3b.ncl: calculates and plots the latitudinal position of Subantarctic Front. Using definitions from
Orsi et al (1995).

• russell18jgr-fig3b-2.ncl: calculates and plots the latitudinal position of Polar Front. Using definitions from Orsi
et al (1995).

• russell18jgr-fig4.ncl: calculates and plots the zonal velocity through Drake Passage (at 69W) and total transport
through the passage if the volcello file is available.

• russell18jgr-fig5.ncl: calculates and plots the mean extent of sea ice for September(max) in blue and mean extent
of sea ice for February(min) in red.

• russell18jgr-fig5g.ncl: calculates and plots the annual cycle of sea ice area in southern ocean.

• russell18jgr-fig6a.ncl: calculates and plots the density layer based volume transport(in Sv) across 30S based on
the layer definitions in Talley (2008).

• russell18jgr-fig6b.ncl: calculates and plots the Density layer based heat transport(in PW) across 30S based on
the layer definitions in Talley (2008).

• russell18jgr-fig7h.ncl: calculates and plots the zonal mean flux of fgco2 in gC/(yr * m2).

• russell18jgr-fig7i.ncl: calculates and plots the cumulative integral of the net CO2 flux from 90S to 30S (in
PgC/yr).

• russell18jgr-fig9a.ncl: calculates and plots the scatter plot of the width of the Southern Hemisphere westerly
wind band against the annual-mean integrated heat uptake south of 30S (in PW), along with the line of best fit.

• russell18jgr-fig9b.ncl: calculates and plots the scatter plot of the width of the Southern Hemisphere westerly
wind band against the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the line of
best fit.

• russell18jgr-fig9c.ncl: calculates and plots the scatter plot of the net heat uptake south of 30S (in PW) against
the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the line of best fit.

20.7.3 User settings in recipe

1. Script russell18jgr-polar.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

• max_lat : -30.0

Optional settings (scripts)

• grid_max : 0.4 (figure 1), 30 (figure 7), 8.2 (figure 8)

20.7. Ocean metrics 445

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• grid_min : -0.4 (figure 1), -30 (figure 7), 8.0 (figure 8)

• grid_step : 0.1 (figure 1), 2.5 (figure 7), 0.1 (figure 8)

• colormap : BlWhRe (figure 7)

• colors : [[237.6, 237.6, 0.], [255, 255, 66.4], [255, 255, 119.6], [255, 255, 191.8], [223.8, 191.8, 223.8],
[192.8, 127.5, 190.8], [161.6, 65.3, 158.6], [129.5, 1.0, 126.5]] (figure 1) [[132,12,127], [147,5,153],
[172,12,173], [195,33,196], [203,63,209], [215,89,225], [229,117,230], [243,129,238], [253,155,247],
[255,178,254], [255,255,255], [255,255,255], [126,240,138], [134,234,138], [95,219,89], [57,201,54],
[39,182,57], [33,161,36], [16,139,22], [0,123,10], [6,96,6], [12,77,9.0]] (figure 8)

• max_vert : 1 - 4 (user preference)

• max_hori : 1 - 4 (user preference)

• grid_color: blue4 (figure 8)

• labelBar_end_type: ExcludeOuterBoxes (figure 1), both_triangle (figure 7, 8)

• unitCorrectionalFactor: -3.154e+10 (figure 7)

• new_units : “gC/ (m~S~2~N~ * yr)” (figure 7)

Required settings (variables)

• additional_dataset: datasets to plot.

Optional settings (variables)

• none

2. Script russell18jgr-fig2.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

3. Script russell18jgr-fig3b.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

4. Script russell18jgr-fig3b-2.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

446 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

5. Script russell18jgr-fig4.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• max_vert : 1 - 4 (user preference)

• max_hori : 1 - 4 (user preference)

• unitCorrectionalFactor: 100 (m/s to cm/s)

• new_units : “cm/s”

6. Script russell18jgr-fig5.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

• max_lat : -45.0

Optional settings (scripts)

• max_vert : 1 - 4 (user preference)

• max_hori : 1 - 4 (user preference)

7. Script russell18jgr-fig5g.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

Optional settings (scripts)

• none

8. Script russell18jgr-fig6a.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

9. Script russell18jgr-fig6b.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

10. Script russell18jgr-fig7h.ncl

Required settings (scripts)

20.7. Ocean metrics 447

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

11. Script russell18jgr-fig7i.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

12. Script russell18jgr-fig9a.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

13. Script russell18jgr-fig9b.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

14. Script russell18jgr-fig9c.ncl

Required settings (scripts)

• styleset : CMIP5(recommended), default, etc.

• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)

• none

20.7.4 Variables

• tauu (atmos, monthly mean, longitude latitude time)

• tauuo, hfds, fgco2 (ocean, monthly mean, longitude latitude time)

• thetao, so, vo (ocean, monthly mean, longitude latitude lev time)

• pH (ocnBgchem, monthly mean, longitude latitude time)

• uo (ocean, monthly mean, longitude latitude lev time)

• sic (seaIce, monthly mean, longitude latitude time)

448 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

20.7.5 Observations and reformat scripts

Note: WOA data has not been tested with reciepe_russell18jgr.yml and
corresponding diagnostic scripts.

• WOA (thetao, so - esmvaltool/cmorizers/data/formatters/datasets/woa.py)

20.7.6 References

• Russell, J.L., et al., 2018, J. Geophys. Res. – Oceans, 123, 3120-3143. https://doi.org/10.1002/2017JC013461

• Talley, L.D., 2003. Shallow,intermediate and deep overturning components of the global heat budget. Journal
of Physical Oceanography 33, 530–560

20.7.7 Example plots

Fig. 13: Figure 1: Annual-mean zonal wind stress (tauu - N/m2) with eastward wind stress as positive plotted as a polar
contour map.

20.7. Ocean metrics 449

https://doi.org/10.1002/2017JC013461

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 14: Figure 2: The zonal and annual means of the zonal wind stress (N/m2) plotted in a line plot.

Fig. 15: Figure 3a: The latitudinal position of Subantarctic Front using definitions from Orsi et al (1995).

450 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 16: Figure 3b: The latitudinal position of Polar Front using definitions from Orsi et al (1995).

Fig. 17: Figure 4: Time averaged zonal velocity through Drake Passage (at 69W, in cm/s, eastward is positive). The
total transport by the ACC is calculated if volcello file is available.

20.7. Ocean metrics 451

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 18: Figure 5: Mean extent of sea ice for September(max) in blue and February(min) in red plotted as polar contour
map.

Fig. 19: Figure 5g: Annual cycle of sea ice area in southern ocean as a line plot (monthly climatology).

452 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 20: Figure 6a: Density layer based volume transport (in Sv) across 30S based on the layer definitions in Talley
(2008).

Fig. 21: Figure 6b: Density layer based heat transport(in PW) across 30S based on the layer definitions in Talley (2008).

20.7. Ocean metrics 453

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 22: Figure 7: Annual mean CO2 flux (sea to air, gC/(yr * m2), positive (red) is out of the ocean) as a polar contour
map.

Fig. 23: Figure 7h: the time and zonal mean flux of CO2 in gC/(yr * m2) plotted as a line plot.

454 Chapter 20. Ocean

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 24: Figure 7i is the cumulative integral of the net CO2 flux from 90S to 30S (in PgC/yr) plotted as a line plot.

Fig. 25: Figure 8: Annual-mean surface pH plotted as a polar contour map.

20.7. Ocean metrics 455

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 26: Figure 9a: Scatter plot of the width of the Southern Hemisphere westerly wind band (in degrees of latitude)
against the annual-mean integrated heat uptake south of 30S (in PW—negative uptake is heat lost from the ocean) along
with the best fit line.

Fig. 27: Figure 9b: Scatter plot of the width of the Southern Hemisphere westerly wind band (in degrees of latitude)
against the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the best fit line.

Fig. 28: Figure 9c: Scatter plot of the net heat uptake south of 30S (in PW) against the annual-mean integrated carbon
uptake south of 30S (in Pg C/yr), along with the best fit line.

456 Chapter 20. Ocean

CHAPTER

TWENTYONE

OTHER

21.1 Capacity factor of wind power: Ratio of average estimated power
to theoretical maximum power

21.1.1 Overview

The goal of this diagnostic is to compute the wind capacity factor, taking as input the daily instantaneous surface wind
speed, which is then extrapolated to obtain the wind speed at a height of 100 m as described in Lledó (2017).

The capacity factor is a normalized indicator of the suitability of wind speed conditions to produce electricity, irrespec-
tive of the size and number of installed turbines. This indicator is provided for three different classes of wind turbines
(IEC, 2005) that are designed specifically for low, medium and high wind speed conditions.

The user can select the region, temporal range and season of interest.

The output of the recipe is a netcdf file containing the capacity factor for each of the three turbine classes.

21.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_capacity_factor.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• capacity_factor.R: calculates the capacity factor for the three turbine classes.

• PC.R: calculates the power curves for the three turbine classes.

21.1.3 User settings

User setting files are stored in recipes/

1. recipe_capacity_factor.yml

Required settings for script

• power_curves: (should not be changed)

457

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.1.4 Variables

• sfcWind (atmos, daily, longitude, latitude, time)

21.1.5 Observations and reformat scripts

Main features of the selected turbines:

Turbine name Rotor diameter
(m)

Rated power
(MW)

Cut-in speed
(m/s)

Rated speed
(m/s)

Cut-out speed
(m/s)

Enercon E70
2.3MW

70 2.3 2.0 16.0 25.0

Gamesa G80
2.0MW

80 2.0 4.0 17.0 25.0

Gamesa G87
2.0MW

87 2.0 4.0 16.0 25.0

Vestas V100
2.0MW

100 2.0 3.0 15.0 20.0

Vestas V110
2.0MW

110 2.0 3.0 11.5 20.0

21.1.6 References

• IEC. (2005). International Standard IEC 61400-1, third edition, International Electrotechnical Commission.
https://webstore.iec.ch/preview/info_iec61400-1%7Bed3.0%7Den.pdf

• Lledó, L. (2017). Computing capacity factor. Technical note BSC-ESS-2017-001, Barcelona Super-
computing Center. Available online at https://earth.bsc.es/wiki/lib/exe/fetch.php?media=library:external:
bsc-ess-2017-001-c4e_capacity_factor.pdf [last accessed 11 October 2018]

21.1.7 Example plots

Wind capacity factor for five turbines: Enercon E70 (top-left), Gamesa G80 (middle-top), Gamesa G87 (top-right),
Vestas V100 (bottom-left) and Vestas V110 (middle-bottom) using the IPSL-CM5A-MR simulations for the r1p1i1
ensemble for the rcp8.5 scenario during the period 2021-2050.

21.2 CMORizer recipes

21.2.1 Overview

These are CMORizer recipes calling CMORizer diagnostic scripts.

ESMValCore supports ERA5 hourly and monthly datasets in their native format, see Datasets in native format. and
ERA5 data documentation. It may be useful in some cases to create ERA5 daily CMORized data. This can be achieved
by using a CMORizer recipe, see recipe_daily_era5.yml. This recipe reads native, hourly ERA5 data, performs a daily
aggregation preprocessor, and then calls a diagnostic that operates on the data. In this example, the diagnostic renames
the files to the standard OBS6 file names. The output are thus daily, CMORized ERA5 data, that can be used through
the OBS6 project. As such, this example recipe creates a local pool of CMORized data. The advantage, in this case, is
that the daily aggregation is performed only once, which can save a lot of time and compute if it is used often.

458 Chapter 21. Other

https://webstore.iec.ch/preview/info_iec61400-1%7Bed3.0%7Den.pdf
https://earth.bsc.es/wiki/lib/exe/fetch.php?media=library:external:bsc-ess-2017-001-c4e_capacity_factor.pdf
https://earth.bsc.es/wiki/lib/exe/fetch.php?media=library:external:bsc-ess-2017-001-c4e_capacity_factor.pdf
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/cmorizers/recipe_daily_era5.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

The example CMORizer recipe can be run like any other ESMValTool recipe:

esmvaltool run cmorizers/recipe_daily_era5.yml

Note that the recipe_daily_era5.yml adds the next day of the new year to the input data. This is because one of
the fixes needed for the ERA5 data is to shift the time axis of non-instantaneous variables half an hour back in time,
resulting in a missing record on the last day of the year. ERA5 data can be downloaded using era5cli.

21.2.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• cmorizers/recipe_daily_era5.yml

Diagnostics are stored in esmvaltool/diag_scripts/

• cmorizers/era5.py: generates output filename

21.2.3 User settings in recipe

1. cmorizers/recipe_daily_era5.yml

Required add_one_day preprocessor settings:

• start_year: 1990

• start_month: 1

• start_day: 1

• end_year: 1991

21.2. CMORizer recipes 459

https://era5cli.readthedocs.io

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• end_month: 1

• end_day: 1

These settings should not be changed
• daily_mean:

operator: mean

• daily_min:
operator: min

• daily_max:
operator: max

21.2.4 Variables

1. cmorizers/recipe_daily_era5.yml

• clt

• evspsbl

• evspsblpot

• mrro

• pr

• prsn

• ps

• psl

• rlds

• rls

• rsds

• rsdt

• rss

• tas

• tasmax

• tasmin

• tdps

• ts

• tsn

• uas

• vas

460 Chapter 21. Other

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.2.5 References

• Hersbach, H., et al., Quarterly Journal of the Royal Meteorological Society, 730, 1999-2049,
doi:10.1002/qj.3803, 2020.

21.3 Ensemble Clustering - a cluster analysis tool for climate model
simulations (EnsClus)

21.3.1 Overview

EnsClus is a cluster analysis tool in Python, based on the k-means algorithm, for ensembles of climate model simula-
tions.

Multi-model studies allow to investigate climate processes beyond the limitations of individual models by means of
inter-comparison or averages of several members of an ensemble. With large ensembles, it is often an advantage to
be able to group members according to similar characteristics and to select the most representative member for each
cluster.

The user chooses which feature of the data is used to group the ensemble members by clustering: time mean, maximum,
a certain percentile (e.g., 75% as in the examples below), standard deviation and trend over the time period. For each
ensemble member this value is computed at each grid point, obtaining N lat-lon maps, where N is the number of
ensemble members. The anomaly is computed subtracting the ensemble mean of these maps to each of the single
maps. The anomaly is therefore computed with respect to the ensemble members (and not with respect to the time) and
the Empirical Orthogonal Function (EOF) analysis is applied to these anomaly maps.

Regarding the EOF analysis, the user can choose either how many Principal Components (PCs) to retain or the percent-
age of explained variance to keep. After reducing dimensionality via EOF analysis, k-means analysis is applied using
the desired subset of PCs.

The major final outputs are the classification in clusters, i.e. which member belongs to which cluster (in k-means
analysis the number k of clusters needs to be defined prior to the analysis) and the most representative member for each
cluster, which is the closest member to the cluster centroid.

Other outputs refer to the statistics of clustering: in the PC space, the minimum and the maximum distance between
a member in a cluster and the cluster centroid (i.e. the closest and the furthest member), the intra-cluster standard
deviation for each cluster (i.e. how much the cluster is compact).

21.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_ensclus.yml

Diagnostics are stored in diag_scripts/ensclus/

• ensclus.py

and subroutines

• ens_anom.py

• ens_eof_kmeans.py

• ens_plots.py

• eof_tool.py

• read_netcdf.py

21.3. Ensemble Clustering - a cluster analysis tool for climate model simulations (EnsClus) 461

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• sel_season_area.py

21.3.3 User settings

Required settings for script

• season: season over which to perform seasonal averaging (DJF, DJFM, NDJFM, JJA)

• area: region of interest (EAT=Euro-Atlantic, PNA=Pacific North American, NH=Northern Hemisphere,
EU=Europe)

• extreme: extreme to consider: XXth_percentile (XX can be set arbitrarily, e.g. 75th_percentile), mean (mean
value over the period), maximum (maximum value over the period), std (standard deviation), trend (linear trend
over the period)

• numclus: number of clusters to be computed

• perc: percentage of variance to be explained by PCs (select either this or numpcs, default=80)

• numpcs: number of PCs to retain (has priority over perc unless it is set to 0 (default))

Optional settings for script

• max_plot_panels: maximum number of panels (datasets) in a plot. When exceeded multiple plots are created.
Default: 72

21.3.4 Variables

• chosen by user (e.g., precipitation as in the example)

21.3.5 Observations and reformat scripts

None.

21.3.6 References

• Straus, D. M., S. Corti, and F. Molteni: Circulation regimes: Chaotic variability vs. SST forced predictability.
J. Climate, 20, 2251–2272, 2007. https://doi.org/10.1175/JCLI4070.1

21.3.7 Example plots

21.4 ESA CCI LST comparison to Historical Models

21.4.1 Overview

This diagnostic compares ESA CCI LST to multiple historical emsemble members of CMIP models. It does this over
a defined region for monthly values of the land surface temperature. The result is a plot showing the mean differnce of
CCI LST to model average LST, with a region of +/- one standard deviation of the model mean LST given as a measure
of model variability.

The recipe and diagnostic need the all time average monthly LST from the CCI data. We use the L3C single sensor
monthy data. A CMORizing script calculates the mean of the day time, and night time overpasses to give the all time

462 Chapter 21. Other

https://doi.org/10.1175/JCLI4070.1

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Clustering based on the 75th percentile of historical summer (JJA) precipitation rate for CMIP5 models over
1900-2005. 3 clusters are computed, based on the principal components explaining 80% of the variance. The 32
models are grouped in three different clusters. The green cluster is the most populated with 16 ensemble members
mostly characterized by a positive anomaly over central-north Europe. The red cluster counts 12 elements that exhibit a
negative anomaly centered over southern Europe. The third cluster – labelled in blue- includes only 4 models showing a
north-south dipolar precipitation anomaly, with a wetter than average Mediterranean counteracting dryer North-Europe.
Ensemble members No.9, No.26 and No.19 are the “specimen” of each cluster, i.e. the model simulations that better
represent the main features of that cluster. These ensemble members can eventually be used as representative of the
whole possible outcomes of the multi-model ensemble distribution associated to the 32 CMIP5 historical integrations
for the summer precipitation rate 75 th percentile over Europe when these outcomes are reduced from 32 to 3. The
number of ensemble members of each cluster might provide a measure of the probability of occurrence of each cluster.

average LST. This is so that the Amon output from CMIP models can be used. We created such a dataset from the Aqua
MODIS data from CCI.

21.4.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_esacci_lst.yml

Diagnostics are stored in esmvaltool/diag_scripts/lst/

• lst.py

21.4.3 User settings in recipe

1. Script recipe_esacci_lst.yml

No required settings for script

No user defined inputs to the diagnostic

Required settings for variables

• The diagnostic works with all data sources on having the same start_year and end_year, and hence that data
is also available.

Required settings for preprocessor

• start_longitude, end_longitude The western and eastern bounds of the region to work with.

21.4. ESA CCI LST comparison to Historical Models 463

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• start_latitude, end_latitude The southern and northern bounds of the region to work with.

• target_grid This should be one of the model grids.

21.4.4 Variables

• ts (atmos, monthly mean, longitude latitude time)

21.4.5 Observations and reformat scripts

This recipe and diagnostic is written to work with data created from the CMORizer esmval-
tool/cmorizers/obs/cmorize_obs_esacci_lst.py. This takes the orginal ESA CCI LST files for the L3C data from
Aqua MODIS DAY and NIGHT files and creates a the all time mean data this diagnostic uses. Advice from the CCI
LST team is to use the monthly not daily files to create the all time average to avoid th epossibility of biasing towards
night time LST values being more prevalent because of how the cloud screening algorithms work.

21.4.6 References

• ESA CCI LST project https://climate.esa.int/en/projects/land-surface-temperature/

21.4.7 Example plots

21.5 Timeseries for Arctic-Midlatitude Teleconnections

21.5.1 Overview

The recipe produces the timeseries of selected variables to study Arctic-midlatitude teleconnections for further appli-
cation of Causal Model Evaluation (CME) described in Galytska et al. (2023).

The output of the recipe consists of the .nc files named after the data source (e.g. ERA5, ACCESS-CM2.nc etc.). Each
file contains the area-weighted spatial average of climatological monthly anomalies of selected variables. The recipe
also applies the CVDP package.

21.5.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

• recipe_galytska23jgr.yml

Diagnostics are stored in esmvaltool/diag_scripts/

• galytska23/select_variables_for_tigramite.py

• cvdp/cvdp_wrapper.py

464 Chapter 21. Other

https://climate.esa.int/en/projects/land-surface-temperature/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 2: Timeseries of the ESA CCI LST minus mean of CMIP6 ensembles. The selected region is 35E-175E, 55N-
70N. The black line is the mean difference, and the blue shaded area denotes one standard deviation either way of the
individual ensemble member’s differecen in LST. Models used for this are UKESM1 members r1i1p1f2 and r2i1p1f2,
and CESM members r2i1p1f1 and r3i1p1f1. We have used the entire timeseries of available CCI data 2004-2014
inclusive, noting we have not written the CMORizer to process the incomplete year of 2003 for the Aqua MODIS data.

21.5. Timeseries for Arctic-Midlatitude Teleconnections 465

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.5.3 User settings in recipe

1. Preprocessor

• anomalies (period: monthly): Calculate anomalies for selected variables

• regrid (target_grid: 1x1): Linear regridding of all datasets to the uniform grid

• area_statistics (operation: mean): Calculate mean over defined regions

2. Script <select_variables_for_tigramite.py>

none

3. Script <cvdp_wrapper.py>

none

4. Script <cvdp/cvdp/driver.ncl>

• modular (modular: True): Run the diagnostics that is selected in modular_list

• modular_list (modular_list: psl.nam_nao): Calculate only NAO diagnostics

21.5.4 Variables

• zg (atmos, monthly mean, longitude latitude time)

• tas (atmos, monthly mean, longitude latitude time)

• psl (atmos, monthly mean, longitude latitude time)

• va (atmos, monthly mean, longitude latitude time)

• ta (atmos, monthly mean, longitude latitude time)

• sic/siconc (seaice, monthly mean, longitude latitude time)

• ts (atmos, monthly mean, longitude latitude time)

• pr (atmos, monthly mean, longitude latitude time)

21.5.5 Observations and reformat scripts

• ERA5 (pr, psl, ta, tas, ts, va, zg - ERA5 data can be used via the native6 project)

• HadISST - (sic - esmvaltool/cmorizers/data/formatters/datasets/hadisst.ncl)

21.5.6 References

• Galytska, E., Weigel, K., Handorf, D., Jaiser, R., Köhler, R. H., Runge, J., & Eyring, V.: Causal model evaluation
of Arctic-midlatitude teleconnections in CMIP6. Authorea Preprints. https://doi.org/10.1002/essoar.10512569.
1.

• Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses
of the global climate, edited, Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.
copernicus.eu/cdsapp#!/home

• http://www.cesm.ucar.edu/working_groups/CVC/cvdp/

466 Chapter 21. Other

https://doi.org/10.1002/essoar.10512569.1
https://doi.org/10.1002/essoar.10512569.1
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
http://www.cesm.ucar.edu/working_groups/CVC/cvdp/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.5.7 Example plots

Fig. 3: Monthly mean temperature anomalies in the Arctic (65°–90°N) from observations and selected CMIP6 models
during 1980-2021.

21.6 Multi-model products

21.6.1 Overview

The goal of this diagnostic is to compute the multi-model ensemble mean for a set of models selected by the user for
individual variables and different temporal resolutions (annual, seasonal, monthly).

After selecting the region (defined by the lowermost and uppermost longitudes and latitudes), the mean for the selected
reference period is subtracted from the projections in order to obtain the anomalies for the desired period. In addition,
the recipe computes the percentage of models agreeing on the sign of this anomaly, thus providing some indication on
the robustness of the climate signal.

The output of the recipe consists of a colored map showing the time average of the multi-model mean anomaly and
stippling to indicate locations where the percentage of models agreeing on the sign of the anomaly exceeds a threshold
selected by the user. Furthermore, a time series of the area-weighted mean anomaly for the projections is plotted.
For the plots, the user can select the length of the running window for temporal smoothing and choose to display the
ensemble mean with a light shading to represent the spread of the ensemble or choose to display each individual models.

21.6.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_multimodel_products.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• multimodel_products.R - script for computing multimodel anomalies and their agreement.

21.6. Multi-model products 467

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.6.3 User settings

User setting files are stored in recipes/

1. recipe_multimodel_products.yml

Required settings for script

• colorbar_lim: positive number specifying the range (-colorbar_lim . . . +colorbar_lim) of the colorbar (0 =
automatic colorbar scaling)

• moninf: integer specifying the first month of the seasonal mean period to be computed

• monsup: integer specifying the last month of the seasonal mean period to be computed, if it’s null the
anomaly of month indicated in moninf will be computed

• agreement_threshold: integer between 0 and 100 indicating the threshold in percent for the minimum agree-
ment between models on the sign of the multi-model mean anomaly for the stipling to be plotted

• running_mean: integer indictating the length of the window for the running mean to be computed

• time_series_plot: Either single or maxmin (plot the individual or the mean with shading between the max
and min).

21.6.4 Variables

• any Amon variable (atmos, monthly mean, longitude latitude time)

21.6.5 Observations and reformat scripts

None

21.6.6 References

• Hagedorn, R., Doblas-Reyes, F. J., Palmer, T. N., Nat E H Ag E D O R N, R. E., & Pa, T. N. (2005). The
rationale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept, 57, 219–233.
https://doi.org/10.3402/tellusa.v57i3.14657

• Weigel, A. P., Liniger, M. A., & Appenzeller, C. (2008). Can multi-model combination really enhance the
prediction skill of probabilistic ensemble forecasts? Quarterly Journal of the Royal Meteorological Society,
134(630), 241–260. https://doi.org/10.1002/qj.210

21.6.7 Example plots

Multi-model mean anomaly of 2-m air temperature during the future projection 2006-2099 in June considering the
reference period 1961-1990 (colours). Crosses indicate that the 80% of models agree in the sign of the multi-model
mean anomaly. The models selected are BCC-CSM1-1, MPI-ESM-MR and MIROC5 in the r1i1p1 ensembles for the
RCP 2.6 scenario.

468 Chapter 21. Other

https://doi.org/10.3402/tellusa.v57i3.14657
https://doi.org/10.1002/qj.210

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.7 Capacity factor for solar photovoltaic (PV) systems

21.7.1 Overview

This diagnostic computes the photovoltaic (PV) capacity factor, a measure of the fraction of the maximum possible
energy produced per PV grid cell. It uses the daily incoming surface solar radiation and the surface temperature with
a method described in Bett and Thornton (2016). The user can select temporal range, season, and region of interest.

21.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_pv_capacity_factor.yml

Diagnostics are stored in diag_scripts/pv_capacityfactor/

• pv_capacity_factor.R: prepares data and plots results.

• PV_CF.R: calculates the daily capacity factor.

21.7. Capacity factor for solar photovoltaic (PV) systems 469

https://doi.org/10.1016/j.renene.2015.10.006

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.7.3 User settings

User setting files are stored in recipes/

1. recipe_capacity_factor.yml

Required settings for script

• season: String to include shortcut for season in plot title and name (e.g. “djf”). It will be converted to upper
case. This season should be the one set in the preprocessor, since it is only used as a string and does not
affect the data in the diagnostic. In the default recipe this is solved through a node anchor.

Optional settings for script

• maxval_colorbar: Optional upper limit for the colorbar.

21.7.4 Variables

• tas (atmos, daily, longitude, latitude, time)

• rsds (atmos, daily, longitude, latitude, time)

21.7.5 Observations and reformat scripts

• ERA-Interim

21.7.6 References

• Bett, P. E. and Thornton, H. E.: The climatological relationships between wind and solar energy supply in Britain,
Renew. Energ., 87, 96–110, https://doi.org/10.1016/j.renene.2015.10.006, 2016.

21.7.7 Example plots

PV capacity factor calculated from IPSL-CM5-MR during the DJF season for 1980–2005.

21.8 RainFARM stochastic downscaling

21.8.1 Overview

Precipitation extremes and small-scale variability are essential drivers in many climate change impact studies. How-
ever, the spatial resolution currently achieved by global and regional climate models is still insufficient to correctly
identify the fine structure of precipitation intensity fields. In the absence of a proper physically based representation,
this scale gap can be at least temporarily bridged by adopting a stochastic rainfall downscaling technique (Rebora et al,
2006). With this aim, the Rainfall Filtered Autoregressive Model (RainFARM) was developed to apply the stochastic
precipitation downscaling method to climate models. The RainFARM Julia library and command-line tool version
(https://github.com/jhardenberg/RainFARM.jl) was implemented as recipe. The stochastic method allows to predict
climate variables at local scale from information simulated by climate models at regional scale: It first evaluates the sta-
tistical distribution of precipitation fields at regional scale and then applies the relationship to the boundary conditions
of the climate model to produce synthetic fields at the requested higher resolution. RainFARM exploits the nonlinear
transformation of a Gaussian random precipitation field, conserving the information present in the fields at larger scale
(Rebora et al., 2006; D’Onofrio et al., 2014).

470 Chapter 21. Other

https://doi.org/10.1016/j.renene.2015.10.006
https://github.com/jhardenberg/RainFARM.jl

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.8.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_rainfarm.yml

Diagnostics are stored in diag_scripts/rainfarm/

• rainfarm.jl

21.8.3 User settings

Required settings for script

• slope: spatial spectral slope (set to 0 to compute automatically from large scales)

• nens: number of ensemble members to be calculated

• nf: number of subdivisions for downscaling (e.g. 8 will produce output fields with linear resolution increased by
a factor 8)

• conserv_glob: logical, if to conserve precipitation over full domain

• conserv_smooth: logical, if to conserve precipitation using convolution (if neither conserv_glob or con-
serv_smooth is chosen, box conservation is used)

• weights_climo: set to false or omit if no orographic weights are to be used, else set it to the path to a fine-scale
precipitation climatology file. If a relative file path is used, auxiliary_data_dir will be searched for this file. The
file is expected to be in NetCDF format and should contain at least one precipitation field. If several fields at
different times are provided, a climatology is derived by time averaging. Suitable climatology files could be for
example a fine-scale precipitation climatology from a high-resolution regional climate model (see e.g. Terzago et

21.8. RainFARM stochastic downscaling 471

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

al. 2018), a local high-resolution gridded climatology from observations, or a reconstruction such as those which
can be downloaded from the WORLDCLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org)
websites. The latter data will need to be converted to NetCDF format before being used (see for example the
GDAL tools (https://www.gdal.org).

21.8.4 Variables

• pr (atmos, daily mean, longitude latitude time)

21.8.5 Observations and reformat scripts

None.

21.8.6 References

• Terzago et al. 2018, Nat. Hazards Earth Syst. Sci., 18, 2825-2840

• D’Onofrio et al. 2014, J of Hydrometeorology 15, 830-843

• Rebora et. al 2006, JHM 7, 724

21.8.7 Example plots

Fig. 4: Example of daily cumulated precipitation from the CMIP5 EC-EARTH model on a specific day, downscaled
using RainFARM from its original resolution (1.125°) (left panel), increasing spatial resolution by a factor of 8 to 0.14°;
Two stochastic realizations are shown (central and right panel). A fixed spectral slope of s=1.7 was used. Notice how the
downscaled fields introduce fine scale precipitation structures, while still maintaining on average the original coarse-
resolution precipitation. Different stochastic realizations are shown to demonstrate how an ensemble of realizations
can be used to reproduce unresolved subgrid variability. (N.B.: this plot was not produced by ESMValTool - the recipe
output is netcdf only).

472 Chapter 21. Other

http://www.worldclim.org
http://chelsa-climate.org
https://www.gdal.org

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.9 Sea Ice

21.9.1 Overview

The sea ice diagnostics include:

(1) time series of Arctic and Antarctic sea ice area and extent (calculated as the total area (km2) of grid cells with
sea ice concentrations (sic) of at least 15%).

(2) ice extent trend distributions for the Arctic in September and the Antarctic in February.

(3) calculation of year of near disappearance of Arctic sea ice

(4) scatter plots of (a) historical trend in September Arctic sea ice extent (SSIE) vs historical long-term mean SSIE;
(b) historical SSIE mean vs 1st year of disappearance (YOD) RCP8.5; (c) historical SSIE trend vs YOD RCP8.5.

21.9.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_seaice.yml

Diagnostics are stored in diag_scripts/seaice/

• seaice_aux.ncl: contains functions for calculating sea ice area or extent from sea ice concentration and first year
of disappearance

• seaice_ecs.ncl: scatter plots of mean/trend of historical September Arctic sea ice extent vs 1st year of disappear-
ance (RCP8.5) (similar to IPCC AR5 Chapter 12, Fig. 12.31a)

• seaice_trends.ncl: calculates ice extent trend distributions (similar to IPCC AR5 Chapter 9, Fig. 9.24c/d)

• seaice_tsline.ncl: creates a time series line plots of total sea ice area and extent (accumulated) for northern and
southern hemispheres with optional multi-model mean and standard deviation. One value is used per model per
year, either annual mean or the mean value of a selected month (similar to IPCC AR5 Chapter 9, Fig. 9.24a/b)

• seaice_yod.ncl: calculation of year of near disappearance of Arctic sea ice

21.9.3 User settings in recipe

1. Script seaice_ecs.ncl

Required settings (scripts)

• hist_exp: name of historical experiment (string)

• month: selected month (1, 2, . . . , 12) or annual mean (“A”)

• rcp_exp: name of RCP experiment (string)

• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole (default: False)

• styleset: color style (e.g. “CMIP5”)

Optional settings (variables)

• reference_dataset: reference dataset

21.9. Sea Ice 473

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

2. Script seaice_trends.ncl

Required settings (scripts)

• month: selected month (1, 2, . . . , 12) or annual mean (“A”)

• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole, Default: False

Optional settings (variables)

• ref_model: array of references plotted as vertical lines

3. Script seaice_tsline.ncl

Required settings (scripts)

• region: Arctic, Antarctic

• month: annual mean (A), or month number (3 = March, for Antarctic; 9 = September for Arctic)

Optional settings (scripts)

• styleset: for plot_type cycle only (cmip5, cmip6, default)

• multi_model_mean: plot multi-model mean and standard deviation (default: False)

• EMs_in_lg: create a legend label for individual ensemble members (default: False)

• fill_pole_hole: fill polar hole (typically in satellite data) with sic = 1 (default: False)

4. Script seaice_yod.ncl

Required settings (scripts)

• month: selected month (1, 2, . . . , 12) or annual mean (“A”)

• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole, Default: False

• wgt_file: netCDF containing pre-determined model weights

Optional settings (variables)

• ref_model: array of references plotted as vertical lines

21.9.4 Variables

• sic (ocean-ice, monthly mean, longitude latitude time)

• areacello (fx, longitude latitude)

474 Chapter 21. Other

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.9.5 Observations and reformat scripts

Note: (1) obs4MIPs data can be used directly without any preprocessing; (2) use `esmvaltool data info DATASET`
or see headers of cmorization scripts (in esmvaltool/cmorizers/data/formatters/datasets/) for non-obs4MIPs data for
download instructions.

• HadISST (sic - esmvaltool/cmorizers/data/formatters/datasets/hadisst.ncl)

21.9.6 References

• Massonnet, F. et al., The Cryosphere, 6, 1383-1394, doi: 10.5194/tc-6-1383-2012, 2012.

• Stroeve, J. et al., Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703, 2007.

21.9.7 Example plots

Fig. 5: Sea ice extent trend distribution for the Arctic in September (similar to IPCC AR5 Chapter 9, Fig. 9.24c).
[seaice_trends.ncl]

21.10 Seaice drift

21.10.1 Overview

This recipe allows to quantify the relationships between Arctic sea-ice drift speed, concentration and thickness (Doc-
quier et al., 2017). A decrease in concentration or thickness, as observed in recent decades in the Arctic Ocean (Kwok,
2018; Stroeve and Notz, 2018), leads to reduced sea-ice strength and internal stress, and thus larger sea-ice drift speed
(Rampal et al., 2011). This in turn could provide higher export of sea ice out of the Arctic Basin, resulting in lower
sea-ice concentration and further thinning. Olason and Notz (2014) investigate the relationships between Arctic sea-ice
drift speed, concentration and thickness using satellite and buoy observations. They show that both seasonal and recent

21.10. Seaice drift 475

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 6: Time series of total sea ice area and extent (accumulated) for the Arctic in September including multi-model
mean and standard deviation (similar to IPCC AR5 Chapter 9, Fig. 9.24a). [seaice_tsline.ncl]

Fig. 7: Time series of September Arctic sea ice extent for individual CMIP5 models, multi-model mean and multi-
model standard deviation, year of disappearance (similar to IPCC AR5 Chapter 12, Fig. 12.31e). [seaice_yod.ncl]

476 Chapter 21. Other

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 8: Scatter plot of mean historical September Arctic sea ice extent vs 1st year of disappearance (RCP8.5) (similar
to IPCC AR5 Chapter 12, Fig. 12.31a). [seaice_ecs.ncl]

long-term changes in sea ice drift are primarily correlated to changes in sea ice concentration and thickness. This recipe
allows to quantify these relationships in climate models.

In this recipe, four process-based metrics are computed based on the multi-year monthly mean sea-ice drift speed,
concentration and thickness, averaged over the Central Arctic.

The first metric is the ratio between the modelled drift-concentration slope and the observed drift-concentration slope.
The second metric is similar to the first one, except that sea-ice thickness is involved instead of sea-ice concentration.
The third metric is the normalised distance between the model and observations in the drift-concentration space. The
fourth metric is similar to the third one, except that sea-ice thickness is involved instead of sea-ice concentration.

21.10.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_seaice_drift.yml

Diagnostics are stored in diag_scripts/seaice_drift/

• seaice_drift.py: Compute metrics and plot results

21.10. Seaice drift 477

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.10.3 User settings in recipe

1. Script diag_shapeselect.py

Required settings (scripts)

One of the following two combinations is required:

1. Latitude threshold:

• latitude_threshold: metric will be computed north of this latitude value

2. Polygon:

• polygon: metric will be computed inside the give polygon. Polygon is defined as a list of
(lon, lat) tuple

• polygon_name: name of the region defined by the polygon

21.10.4 Variables

• sispeed, sithick, siconc (daily)

21.10.5 Example plots

Scatter plots of modelled (red) and observed (blue) monthly mean sea-ice drift speed against sea-ice concentration (left
panel) and sea-ice thickness (right panel) temporally averaged over the period 1979–2005 and spatially averaged over
the SCICEX box.

21.11 Seaice feedback

21.11.1 Overview

In this recipe, one process-based diagnostic named the Ice Formation Efficiency (IFE) is computed based on monthly
mean sea-ice volume estimated north of 80°N. The choice of this domain is motivated by the desire to minimize the
influence of dynamic processes but also by the availability of sea-ice thickness measurements. The diagnostic intends to
evaluate the strength of the negative sea-ice thickness/growth feedback, which causes late-summer negative anomalies
in sea-ice area and volume to be partially recovered during the next growing season. A chief cause behind the existence
of this feedback is the non-linear inverse dependence between heat conduction fluxes and sea-ice thickness, which

478 Chapter 21. Other

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

implies that thin sea ice grows faster than thick sea ice. To estimate the strength of that feedback, anomalies of the
annual minimum of sea-ice volume north of 80°N are first estimated. Then, the increase in sea-ice volume until the
next annual maximum is computed for each year. The IFE is defined as the regression of this ice volume production
onto the baseline summer volume anomaly.

21.11.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_seaice_feedback.yml

Diagnostics are stored in diag_scripts/seaice_feedback/

• negative_seaice_feedback.py: scatterplot showing the feedback between seaice volume and seaice growth

21.11.3 User settings

script negative_seaice_feedback.py

Optional settings for script

• plot: dictionary containing plot options:

– point_color: color of the plot points. (Default: black)

– point_size: size of the plot points. (Default: 10)

– show_values: show numerical values of feedback in plot. (Default: True)

21.11.4 Variables

• sit (seaice, monthly mean, time latitude longitude)

21.11.5 References

• Massonnet, F., Vancoppenolle, M., Goosse, H., Docquier, D., Fichefet, T. and Blanchard-Wrigglesworth, E.,
2018. Arctic sea-ice change tied to its mean state through thermodynamic processes. Nature Climate Change,
8: 599-603.

21.11.6 Example plots

21.12 Shapeselect

21.12.1 Overview

Impact modelers are often interested in data for irregular regions best defined by a shapefile. With the shapefile selector
tool, the user can extract time series or CII data for a user defined region. The region is defined by a user provided
shapefile that includes one or several polygons. For each polygon, a new timeseries, or CII, is produced with only one
time series per polygon. The spatial information is reduced to a representative point for the polygon (‘representative’)
or as an average of all grid points within the polygon boundaries (‘mean_inside’). If there are no grid points strictly
inside the polygon, the ‘mean_inside’ method defaults to ‘representative’ for that polygon. An option for displaying
the grid points together with the shapefile polygon allows the user to assess which method is most optimal. In case

21.12. Shapeselect 479

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 9: Seaice negative feedback values (CMIP5 historical experiment 1979-2004).

interpolation to a high input grid is necessary, this can be provided in a pre-processing stage. Outputs are in the form
of a NetCDF file, or as ascii code in csv format.

21.12.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_shapeselect.yml

Diagnostics are stored in diag_scripts/shapeselect/

• diag_shapeselect.py: calculate the average of grid points inside the user provided shapefile and returns the result
as a NetCDF or Excel sheet.

21.12.3 User settings in recipe

1. Script diag_shapeselect.py

Required settings (scripts)

• shapefile: path to the user provided shapefile. A relative path is relative to the auxiliary_data_dir as con-
figured in config-user.yml.

• weighting_method: the preferred weighting method ‘mean_inside’ - mean of all grid points inside polygon;
‘representative’ - one point inside or close to the polygon is used to represent the complete area.

• write_xlsx: true or false to write output as Excel sheet or not.

480 Chapter 21. Other

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• write_netcdf: true or false to write output as NetCDF or not.

21.12.4 Variables

• pr,tas (daily)

21.12.5 Example plots

Fig. 10: Example of the selection of model grid points falling within (blue pluses) and without (red dots) a provided
shapefile (blue contour).

21.13 Short test versions of scientific recipes to check for backward
compatibility.

21.13.1 Overview

These recipes are created to cover typical functionalities in the ESMValTool and allow to test them quickly. Each recipe
should run less than 5 minutes to facilitate fast tests.

21.13. Short test versions of scientific recipes to check for backward compatibility. 481

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.13.2 Available recipes and diagnostics

Recipes are stored in recipes/testing/

• recipe_deangelis15nat_fig1_fast.yml

Diagnostics are stored in diag_scripts/

• deangelis15nat/deangelisf1b.py

Other recipes used for the continuous integration (CI) tests; these are run only by the automated tests:

• recipe_python_for_CI.yml

This is identical to the example Python recipe, with the only difference being the location extraction preprocessor,
which is replaced here with extract_point. The reason for this is that this recipe is used solely for CI tests, and the
geolocator/Nominatim engine for location extraction should not be used in CI runs as per their usage policy.

21.13.3 User settings in recipes

The recipe recipe_deangelis15nat_fig1_fast.yml calls the first diagnostic (deangelisf1b.py) from the original recipe
recipe_deangelis15nat.yml. It can be run with CMIP5 and CMIP6 models for any duration. Several flux variables
(W m-2) and up to 6 different model experiments can be handled. Each variable needs to be given for each model
experiment. The same experiments must be given for all models. For testing purpose it was reduce to two models, 3
experiments and one year. For a more detailed documentation see Evaluate water vapor short wave radiance absorption
schemes of ESMs with the observations.

21.14 Toymodel

21.14.1 Overview

The goal of this diagnostic is to simulate single-model ensembles from an observational dataset to investigate the
effect of observational uncertainty. For further discussion of this synthetic value generator, its general application to
forecasts and its limitations, see Weigel et al. (2008). The output is a netcdf file containing the synthetic observations.
Due to the sampling of the perturbations from a Gaussian distribution, running the recipe multiple times, with the same
observation dataset and input parameters, will result in different outputs.

21.14.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_toymodel.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• toymodel.R: generates a single model ensemble of synthetic observations

482 Chapter 21. Other

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.14.3 User settings

User setting files are stored in recipes/

1. recipe_toymodel.yml

Required settings for preprocessor

extract_region:

• start_longitude: minimum longitude

• end_longitude: maximum longitude

• start_latitude: minimum longitude

• end_latitude: maximum latitude

extract_levels: (for 3D variables)

• levels: [50000] # e.g. for 500 hPa level

Required settings for script

• number_of_members: integer specifying the number of members to be generated

• beta: the user defined underdispersion (beta >= 0)

21.14.4 Variables

• any variable (atmos/ocean, daily-monthly, longitude, latitude, time)

21.14.5 Observations and reformat scripts

None

21.14.6 References

• Bellprat, O., Massonnet, F., Siegert, S., Prodhomme, C., Macias-Gómez, D., Guemas, V., & Doblas-Reyes,
F. (2017). Uncertainty propagation in observational references to climate model scales. Remote Sensing of
Environment, 203, 101-108.

• Massonet, F., Bellprat, O. Guemas, V., & Doblas-Reyes, F. J. (2016). Using climate models to estimate the
quality of global observational data sets. Science, aaf6369.

• Weigel, A. P., Liniger, M. A., & Appenzeller, C. (2008). Can multi-model combinations really enhance the
prediction skill of probabilistic ensemble forecasts? Quarterly Journal of the Royal Meteorological Society,
134(630), 241-260.

21.14. Toymodel 483

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

21.14.7 Example plots

Twenty synthetic single-model ensemble generated by the recipe_toymodel.yml (see Section 3.7.2) for the 2051-2060
monthly data of r1i1p1 RCP 4.5 scenario of BCC_CSM1-1 simulation.

484 Chapter 21. Other

CHAPTER

TWENTYTWO

BROKEN RECIPE LIST

22.1 Broken recipe list

This table gives an overview of the recipes that are known to have issues. The table is always valid for the latest stable
release of ESMValTool. More details can be found in the broken recipe policy.

Table 1: Broken recipes

Broken recipe Affected diagnostics Problem GitHub issue
recipe_check_obs.yml ERA5_native6 Derivation of custom vari-

ables rlus and rsus
#1388

recipe_julia.yml example fill values are not inter-
preted, resulting in an un-
usable plot

#2595

recipe_seaice_drift.yml sea_ice_drift_SCICEX shapely 2 issue #3243
recipe_pysplot.yml plot_map shapely 2 issue #3483

485

https://github.com/ESMValGroup/ESMValCore/issues/1388
https://github.com/ESMValGroup/ESMValTool/issues/2595
https://github.com/ESMValGroup/ESMValTool/issues/3243
https://github.com/ESMValGroup/ESMValTool/issues/3483

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

486 Chapter 22. Broken recipe list

Part VI

Obtaining input data

487

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

ESMValTool supports input data from climate models participating in CMIP6, CMIP5, CMIP3, and CORDEX as well
as observations, reanalysis, and any other data, provided that it adheres to the CF conventions and the data is described
in a CMOR table as used in the various Climate Model Intercomparison Projects.

Note: CORDEX support is still work in progress. Contributions, in the form of pull request reviews or pull requests are
most welcome. We are particularly interested in contributions from people with good understanding of the CORDEX
project and its standards.

This section provides an introduction to getting (access to) climate data for use with ESMValTool.

Because the amount of data required by ESMValTool is typically large, it is recommended that you use the tool on a
compute cluster where the data is already available, for example because it is connected to an ESGF node. Examples
of such compute clusters are Levante and Jasmin, but many more exist around the world.

If you do not have access to such a facility through your institute or the project you are working on, you can request
access by applying for the ENES Climate Analytics Service or, if you need longer term access or more computational
resources, the IS-ENES3 Trans-national Access call.

If the options above are not available to you, ESMValTool also offers a feature to make it easy to download CMIP6,
CMIP5, CMIP3, CORDEX, and obs4MIPs from ESGF. ESMValTool also provides support to download some obser-
vational dataset from source.

The chapter in the ESMValCore documentation on finding data explains how to configure ESMValTool so it can find
locally available data and/or download it from ESGF if it isn’t available locally yet.

489

https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip5
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip3
https://cordex.org/
https://cfconventions.org/
http://pcmdi.github.io/software/cmorTable/index.html
http://pcmdi.github.io/mips/
https://github.com/orgs/ESMValGroup/projects/11
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/contributing.html#contributing
https://esgf.llnl.gov/index.html
https://docs.dkrz.de/doc/levante/index.html
https://www.jasmin.ac.uk/
https://portal.enes.org/data/data-metadata-service/climate-analytics-service
https://portal.enes.org/data/data-metadata-service/analysis-platforms
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/find_data.html#findingdata

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

490

CHAPTER

TWENTYTHREE

MODELS

If you do not have access to a compute cluster with the data already mounted, ESMValTool can automatically download
any required data that is available on ESGF. This is the recommended approach for first-time users to obtain some data
for running ESMValTool. For example, run

esmvaltool run --search_esgf=when_missing examples/recipe_python.yml

to run the default example recipe and automatically download the required data to the directory ~/climate_data.
The data only needs to be downloaded once, every following run will re-use previously downloaded data stored in this
directory. See ESGF configuration for a more in depth explanation and the available configuration options.

Alternatively, you can use an external tool called Synda to maintain your own collection of ESGF data.

491

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#config-esgf
http://prodiguer.github.io/synda/index.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

492 Chapter 23. Models

CHAPTER

TWENTYFOUR

OBSERVATIONS

Observational and reanalysis products in the standard CF/CMOR format used in CMIP and required by ESMValTool
are available via the obs4MIPs and ana4mips projects at the ESGF (e.g., https://esgf-data.dkrz.de/projects/esgf-dkrz/).
Their use is strongly recommended, when possible.

Other datasets not available in these archives can be obtained by the user from the respective sources and reformatted to
the CF/CMOR standard. ESMValTool currently supports two ways to perform this reformatting (aka ‘CMORization’):

1. Using a CMORizer script: The first is to use a CMORizer script to generate a local pool of reformatted data that
can readily be used by ESMValTool. This method is described in detail below.

2. Using fixes for on-the-fly CMORization: The second way is to implement specific ‘fixes’ for your dataset. In
that case, the reformatting is performed ‘on the fly’ during the execution of an ESMValTool recipe (note that one
of the first preprocessor tasks is ‘CMOR checks and fixes’). Details on this second method are given at the end
of this chapter.

A collection of readily CMORized OBS and OBS6 datasets can be accessed directly on CEDA/JASMIN and DKRZ.
At CEDA/JASMIN OBS and OBS6 data is stored in the esmeval Group Workspace (GWS), and to be granted read
(and execute) permissions to the GWS, one must apply at https://accounts.jasmin.ac.uk/services/group_workspaces/
esmeval/ ; after permission has been granted, the user is encouraged to use the data locally, and not move it elsewhere,
to minimize both data transfers and stale disk usage; to note that Tier 3 data is subject to data protection restrictions;
for further inquiries, the GWS is adminstered by [Valeriu Predoi](mailto:valeriu.predoi@ncas.ac.uk).

24.1 Using a CMORizer script

ESMValTool comes with a set of CMORizers readily available. The CMORizers are dataset-specific scripts that can
be run once to generate a local pool of CMOR-compliant data. The necessary information to download and process the
data is provided in the header of each CMORizing script. These scripts also serve as template to create new CMORizers
for datasets not yet included. Note that datasets CMORized for ESMValTool v1 may not be working with v2, due to
the much stronger constraints on metadata set by the iris library.

ESMValTool provides the esmvaltool data command line tool, which can be used to download and format datasets.

To list the available commands, run

esmvaltool data --help

It is also possible to get help on specific commands, e.g.

esmvaltool data download --help

The list of datasets supported by ESMValTool through a CMORizer script can be obtained with:

493

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/develop/fixing_data.html#fixing-data
https://accounts.jasmin.ac.uk/services/group_workspaces/esmeval/
https://accounts.jasmin.ac.uk/services/group_workspaces/esmeval/
mailto:valeriu.predoi@ncas.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool data list

Datasets for which auto-download is supported can be downloaded with:

esmvaltool data download --config_file [CONFIG_FILE] [DATASET_LIST]

Note that all Tier3 and some Tier2 datasets for which auto-download is supported will require an authentication. In
such cases enter your credentials in your ~/.netrc file as explained here.

An entry to the ~/.netrc should look like:

machine [server_name] login [user_name] password [password]

Make sure that the permissions of the ~/.netrc file are set so only you and administrators can read it, i.e.

chmod 600 ~/.netrc
ls -l ~/.netrc

The latter command should show -rw-------.

For other datasets, downloading instructions can be obtained with:

esmvaltool data info [DATASET]

To CMORize one or more datasets, run:

esmvaltool data format --config_file [CONFIG_FILE] [DATASET_LIST]

The path to the raw data to be CMORized must be specified in the user configuration file as RAWOBS. Within this path,
the data are expected to be organized in subdirectories corresponding to the data tier: Tier2 for freely-available datasets
(other than obs4MIPs and ana4mips) and Tier3 for restricted datasets (i.e., dataset which requires a registration to be
retrieved or provided upon request to the respective contact or PI). The CMORization follows the CMIP5 CMOR tables
or CMIP6 CMOR tables for the OBS and OBS6 projects respectively. The resulting output is saved in the output_dir,
again following the Tier structure. The output file names follow the definition given in config-developer file for the OBS
project:

[project]_[dataset]_[type]_[version]_[mip]_[short_name]_YYYYMM_YYYYMM.nc

where project may be OBS (CMIP5 format) or OBS6 (CMIP6 format), type may be sat (satellite data), reanaly
(reanalysis data), ground (ground observations), clim (derived climatologies), campaign (aircraft campaign).

At the moment, esmvaltool data format supports Python and NCL scripts.

24.2 Supported datasets for which a CMORizer script is available

A list of the datasets for which a CMORizers is available is provided in the following table.

Dataset Variables (MIP) Tier Script language
AGCD pr (Amon) 2 Python
APHRO-MA pr, tas (day), pr, tas (Amon) 3 Python
AURA-TES tro3 (Amon) 3 NCL
BerkelyEarth tas, tasa (Amon), sftlf (fx) 2 Python

continues on next page

494 Chapter 24. Observations

https://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html
https://github.com/PCMDI/cmip5-cmor-tables
https://github.com/PCMDI/cmip6-cmor-tables
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#config-developer

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page
Dataset Variables (MIP) Tier Script language
CALIPSO-GOCCP clcalipso (cfMon) 2 NCL
CALIPSO-
ICECLOUD

cli (AMon) 3 NCL

CDS-SATELLITE-
ALBEDO

bdalb (Lmon), bhalb (Lmon) 3 Python

CDS-SATELLITE-
LAI-FAPAR

fapar (Lmon), lai (Lmon) 3 Python

CDS-SATELLITE-
SOIL-MOISTURE

sm (day), sm (Lmon) 3 NCL

CDS-UERRA sm (E6hr) 3 Python
CDS-XCH4 xch4 (Amon) 3 NCL
CDS-XCO2 xco2 (Amon) 3 NCL
CERES-EBAF rlut, rlutcs, rsut, rsutcs (Amon) 2 Python
CERES-SYN1deg rlds, rldscs, rlus, rluscs, rlut, rlutcs, rsds, rs-

dscs, rsus, rsuscs, rsut, rsutcs (3hr) rlds, rld-
scs, rlus, rlut, rlutcs, rsds, rsdt, rsus, rsut,
rsutcs (Amon)

3 NCL

CLARA-AVHRR clt, clivi, clwvi, lwp (Amon) 3 NCL
CLOUDSAT-L2 clw, clivi, clwvi, lwp (Amon) 3 NCL
CowtanWay tasa (Amon) 2 Python
CRU tas, pr (Amon) 2 Python
CT2019 co2s (Amon) 2 Python
Duveiller2018 albDiffiTr13 2 Python
E-OBS tas, tasmin, tasmax, pr, psl (day, Amon) 2 Python
Eppley-VGPM-
MODIS

intpp (Omon) 2 Python

ERA51 cl, clt, evspsbl, evspsblpot, mrro, pr, prsn,
ps, psl, ptype, rls, rlds, rlns, rlus2, rsds, rsns,
rsusPage 497, 2, rsdt, rss, uas, vas, tas, tasmax,
tasmin, tdps, ts, tsn (E1hr/Amon), orog (fx)

3 n/a

ERA5-LandPage 497, 1 pr 3 n/a
ERA-Interim cl, cli, clivi, clt, clw, clwvi, evspsbl, hfds,

hur, hus, lwp, orog, pr, prsn, prw, ps, psl,
rlds, rlut, rlutcs, rsds, rsdt, rss, rsut, rsutcs,
sftlf, ta, tas, tasmax, tasmin, tauu, tauv,
tdps, tos, ts, tsn, ua, uas, va, vas, wap, zg

3 Python

ERA-Interim-Land sm (Lmon) 3 Python
ESACCI-AEROSOL abs550aer, od550aer, od550aerStderr,

od550lt1aer, od870aer, od870aerStderr
(aero)

2 NCL

ESACCI-CLOUD clivi, clt, cltStderr, clwvi, lwp, rlut, rlutcs,
rsut, rsutcs, rsdt, rlus, rsus, rsuscs (Amon)

2 NCL

ESACCI-FIRE burntArea (Lmon) 2 NCL
ESACCI-
LANDCOVER

baresoilFrac, cropFrac, grassFrac,
shrubFrac, treeFrac (Lmon)

2 NCL

ESACCI-LST ts (Amon) 2 Python
ESACCI-OC chl (Omon) 2 Python
ESACCI-OZONE toz, tozStderr, tro3prof, tro3profStderr

(Amon)
2 NCL

continues on next page

24.2. Supported datasets for which a CMORizer script is available 495

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page
Dataset Variables (MIP) Tier Script language
ESACCI-SEA-
SURFACE-
SALINITY

sos (Omon) 2 Python

ESACCI-
SOILMOISTURE

dos, dosStderr, sm, smStderr (Lmon) 2 NCL

ESACCI-SST ts, tsStderr (Amon) 2 NCL
ESACCI-
WATERVAPOUR

prw (Amon) 3 Python

ESDC tas, tasmax, tasmin (Amon) 2 Python
ESRL co2s (Amon) 2 NCL
FLUXCOM gpp (Lmon) 3 Python
GCP2018 fgco2 (Omon3), nbp (LmonPage 497, 3) 2 Python
GCP2020 fgco2 (OmonPage 497, 3), nbp

(LmonPage 497, 3)
2 Python

GHCN pr (Amon) 2 NCL
GHCN-CAMS tas (Amon) 2 Python
GISTEMP tasa (Amon) 2 Python
GLODAP dissic, ph, talk (Oyr) 2 Python
GPCC pr (Amon) 2 Python
GPCP-SG pr (Amon) 2 Python
GRACE lweGrace (Lmon) 3 Python
HadCRUT3 tas, tasa (Amon) 2 NCL
HadCRUT4 tas, tasa (Amon), tasConf5, tasConf95 2 NCL
HadCRUT5 tas, tasa (Amon) 2 Python
HadISST sic (OImon), tos (Omon), ts (Amon) 2 NCL
HALOE tro3, hus (Amon) 2 NCL
HWSD cSoil (Lmon), areacella (fx), sftlf (fx) 3 Python
ISCCP-FH alb, prw, ps, rlds, rlus, rlut, rlutcs, rsds, rsdt,

rsus, rsut, rsutcs, tas, ts (Amon)
2 NCL

JMA-TRANSCOM nbp (Lmon), fgco2 (Omon) 3 Python
JRA-25 clt, hus, prw, rlut, rlutcs, rsut, rsutcs

(Amon)
2 Python

Kadow2020 tasa (Amon) 2 Python
LAI3g lai (Lmon) 3 Python
LandFlux-EVAL et, etStderr (Lmon) 3 Python
Landschuetzer2016 dpco2, fgco2, spco2 (Omon) 2 Python
Landschuetzer2020 spco2 (Omon) 2 Python
MAC-LWP lwp, lwpStderr (Amon) 3 NCL
MERRA cli, clivi, clt, clw, clwvi, hur, hus, lwp, pr,

prw, ps, psl, rlut, rlutcs, rsdt, rsut, rsutcs, ta,
tas, ts, ua, va, wap, zg (Amon)

3 NCL

MERRA2 sm (Lmon) clt, pr, evspsbl, hfss, hfls, huss,
prc, prsn, prw, ps, psl, rlds, rldscs, rlus, rlut,
rlutcs, rsds, rsdscs, rsdt, tas, tasmin, tas-
max, tauu, tauv, ts, uas, vas, rsus, rsuscs,
rsut, rsutcs, ta, ua, va, tro3, zg, hus, wap,
hur, cl, clw, cli, clwvi, clivi (Amon)

3 Python

MLS-AURA hur, hurStderr (day) 3 Python
MOBO-DIC_MPIM dissic (Omon) 2 Python

continues on next page

496 Chapter 24. Observations

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page
Dataset Variables (MIP) Tier Script language
MOBO-DIC2004-
2019

dissic (Omon) 2 Python

MODIS cliwi, clt, clwvi, iwpStderr, lwpStderr
(Amon), od550aer (aero)

3 NCL

MSWEPPage 497, 1 pr 3 n/a
MTE gpp, gppStderr (Lmon) 3 Python
NCEP-NCAR-R1 clt, hur, hurs, hus, pr, prw, psl, rlut, rlutcs,

rsut, rsutcs, sfcWind, ta, tas, tasmax, tas-
min, ts, ua, va, wap, zg (Amon) pr, rlut, ua,
va (day)

2 Python

NCEP-DOE-R2 clt, hur, prw, ta, wap (Amon) 2 Python
NDP cVeg (Lmon) 3 Python
NIWA-BS toz, tozStderr (Amon) 3 NCL
NOAA-CIRES-
20CR-V2

clt, clwvi, hus, prw, rlut, rsut (Amon) 2 Python

NOAA-CIRES-
20CR-V3

clt, clwvi, hus, prw, rlut, rlutcs, rsut, rsutcs
(Amon)

2 Python

NOAA-ERSSTv3b tos (Omon) 2 Python
NOAA-ERSSTv5 tos (Omon) 2 Python
NOAA-MBL-CH4 ch4s (Amon) 2 Python
NOAAGlobalTemp tasa (Amon) 2 Python
NSIDC-0116-
[nh|sh]4

usi, vsi (day) 3 Python

NSIDC-g02202-[sh] siconc (SImon) 3 Python
OceanSODA-ETHZ areacello (Ofx), co3os, dissicos, fgco2,

phos, spco2, talkos (Omon)
2 Python

OSI-450-[nh|sh] sic (OImon), sic (day) 2 Python
PATMOS-x clt (Amon) 2 NCL
PERSIANN-CDR pr (Amon), pr (day) 2 Python
PHC thetao, so (Omon3) 2 Python
PIOMAS sit (day) 2 Python
REGEN pr (day, Amon) 2 Python
Scripps-CO2-KUM co2s (Amon) 2 Python
TCOM-CH4 ch4 (Amon3) 2 Python
TCOM-N2O n2o (Amon3) 2 Python
UWisc clwvi, lwpStderr (Amon) 3 NCL
WFDE5 tas, pr (Amon, day) 2 Python
WOA thetao, so, tos, sos (Omon) no3, o2, po4, si

(Oyr)
2 Python

1 CMORization is built into ESMValTool through the native6 project, so there is no separate CMORizer script.
2 Derived on the fly from down & net radiation.
3 The frequency of this variable differs from the one specified in the table. The correct entry that needs to be used in the recipe can be found in

the corresponding section of recipe_check_obs.yml.
4 The cmoriser requires PROJ>=9.3. Previous version of PROJ will return an error: Internal Proj Error: proj_create: unhandled

axis direction: UNKNOWN) You can check the version of PROJ in your conda environment by running: conda list PROJ.

24.2. Supported datasets for which a CMORizer script is available 497

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_check_obs.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

498 Chapter 24. Observations

CHAPTER

TWENTYFIVE

DATASETS IN NATIVE FORMAT

ESMValCore also provides support for some datasets in their native format. In this case, the steps needed to reformat
the data are executed as dataset fixes during the execution of an ESMValTool recipe, as one of the first preprocessor
steps, see fixing data. Compared to the workflow described above, this has the advantage that the user does not need
to store a duplicate (CMORized) copy of the data. Instead, the CMORization is performed ‘on the fly’ when running
a recipe. Native datasets can be hosted either under a dedicated project (usually done for native model output) or
under project native6 (usually done for native reanalysis/observational products). These projects are configured in
the config-developer file.

A list of all currently supported native datasets is provided here. A detailed description of how to include new native
datasets is given here.

To use this functionality, users need to provide a path in the User configuration file for the native6 project data and/or
the dedicated project used for the native dataset, e.g., ICON. Then, in the recipe, they can refer to those projects. For
example:

datasets:
- {project: native6, dataset: ERA5, type: reanaly, version: v1, tier: 3, start_year:␣
→˓1990, end_year: 1990}
- {project: ICON, dataset: ICON, exp: icon-2.6.1_atm_amip_R2B5_r1i1p1f1, mip: Amon,␣
→˓short_name: tas, start_year: 2000, end_year: 2014}

For project native6, more examples can be found in the diagnostics ERA5_native6 in the recipe exam-
ples/recipe_check_obs.yml.

499

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/develop/fixing_data.html#fixing-data
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#configure-native-models
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/find_data.html#read-native-datasets
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/develop/fixing_data.html#add-new-fix-native-datasets
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_check_obs.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_check_obs.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

500 Chapter 25. Datasets in native format

Part VII

Making a recipe or diagnostic

501

CHAPTER

TWENTYSIX

INTRODUCTION

This chapter contains instructions for developing your own recipes and/or diagnostics. It also contains a section de-
scribing how to use additional datasets with ESMValTool. While it is possible to use just the ESMValCore package and
run any recipes/diagnostics you develop with just this package, it is highly recommended that you consider contributing
the work you do back to the ESMValTool community. Among the advantages of contributing to the community are
improved visibility of your work and support by the community with making and maintaining your diagnostic. See the
Community chapter for a guide on how to contribute to the community.

503

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

504 Chapter 26. Introduction

CHAPTER

TWENTYSEVEN

RECIPE

27.1 Writing a basic recipe

The user will need to write a basic recipe to be able to run their own personal diagnostic. An example of such a recipe is
found in esmvaltool/recipes/recipe_my_personal_diagnostic.yml. For general guidelines with regards to ESMValTool
recipes please consult the User Guide; the specific parameters needed by a recipe that runs a personal diagnostic are:

scripts:
my_diagnostic:
script: /path/to/your/my_little_diagnostic.py

i.e. the full path to the personal diagnostic that the user needs to run.

There is also a lesson available in the ESMValTool tutorial that describes in a step-by-step procedure how to write your
own recipe. It can be found here.

505

https://tutorial.esmvaltool.org/
https://tutorial.esmvaltool.org/06-preprocessor/index.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

506 Chapter 27. Recipe

CHAPTER

TWENTYEIGHT

DIAGNOSTIC

28.1 Instructions for personal diagnostic

Anyone can run a personal diagnostic, no matter where the location of it; there is no need to install esmvaltool in
developer mode nor is it to git push or for that matter, do any git operations; the example recipe

esmvaltool/recipes/recipe_my_personal_diagnostic.yml

shows the use of running a personal diagnostic; the example

esmvaltool/diag_scripts/examples/my_little_diagnostic.py

and any of its alterations may be used as training wheels for the future ESMValTool diagnostic developer. The purpose
of this example is to familiarize the user with the framework of ESMValTool without the constraints of installing and
running the tool as developer.

28.2 Functionality

my_little_diagnostic (or whatever the user will call their diagnostic) makes full use of ESMValTool’s preprocessor
output (both phyisical files and run variables); this output comes in form of a nested dictionary, or config dictionary,
see an example below; it also makes full use of the ability to call any of the preprocessor’s functions, note that relative
imports of modules from the esmvaltool package are allowed and work without altering the $PYTHONPATH.

The user may parse this dictionary so that they execute a number of operations on the preprocessed data; for example
the my_little_diagnostic.plot_time_series grabs the preprocessed data output, computes global area averages for each
model, then plots a time-series for each model. Different manipulation functionalities for grouping, sorting etc of the
data in the config dictionary are available, please consult ESMValTool User Manual.

28.3 Example of config dictionary

To be added (use python-style code-block).

507

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

508 Chapter 28. Diagnostic

CHAPTER

TWENTYNINE

WRITING A CMORIZER SCRIPT FOR AN ADDITIONAL DATASET

ESMValTool is designed to work with CF compliant data and follows the CMOR tables from the CMIP data request,
therefore the observational datasets need to be CMORized for usage in ESMValTool. The following steps are necessary
to prepare an observational data set for the use in ESMValTool.

1. Check if your variable is CMOR standard
2. Edit your configuration file
3. Store your dataset in the right place
3.1 Downloader script (optional)
4. Create a cmorizer for the dataset
4.1 Cmorizer script written in python
4.2 Cmorizer script written in NCL
5. Run the cmorizing script
6. Naming convention of the observational data files
7. Test the cmorized dataset

Note: CMORization as a fix. As of early 2020, we’ve started implementing cmorization as fixes. As compared to
the workflow described below, this has the advantage that the user does not need to store a duplicate (CMORized) copy
of the data. Instead, the CMORization is performed ‘on the fly’ when running a recipe. ERA5 is the first dataset for
which this ‘CMORization on the fly’ is supported. For more information, see Datasets in native format.

29.1 1. Check if your variable is CMOR standard

Most variables are defined in the CMIP data request and can be found in the CMOR tables in the folder /esmval-
core/cmor/tables/cmip6/Tables/, differentiated according to the MIP they belong to. The tables are a copy of the PCMDI
guidelines. If you find the variable in one of these tables, you can proceed to the next section.

If your variable is not available in the standard CMOR tables, you need to write a custom CMOR table entry for the
variable as outlined below and add it to /esmvalcore/cmor/tables/custom/.

To create a new custom CMOR table you need to follow these guidelines:

• Provide the variable_entry;

• Provide the modeling_realm;

509

http://cfconventions.org/
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/cmip6/Tables
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/cmip6/Tables
https://github.com/PCMDI
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/custom

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Provide the variable attributes, but leave standard_name blank. Necessary variable attributes are: units,
cell_methods, cell_measures, long_name, comment.

• Provide some additional variable attributes. Necessary additional variable attributes are: dimensions,
out_name, type. There are also additional variable attributes that can be defined here (see the already available
cmorizers).

It is recommended to use an existing custom table as a template, to edit the content and save it as CMOR_<short_name>.
dat.

29.2 2. Edit your configuration file

Make sure that beside the paths to the model simulations and observations, also the path to raw observational data to
be cmorized (RAWOBS) is present in your configuration file.

29.3 3. Store your dataset in the right place

The folder RAWOBS needs the subdirectories Tier1, Tier2 and Tier3. The different tiers describe the different levels
of restrictions for downloading (e.g. providing contact information, licence agreements) and using the observations.
The unformatted (raw) observations should then be stored in the appropriate of these three folders.

For each additional dataset, an entry needs to be made to the file datasets.yml. The dataset entry should contain:

• the correct tier information;

• the source of the raw data;

• the last_access date;

• the info that explain how to download the data.

Note that these fields should be identical to the content of the header of the cmorizing script (see Section 4. Create a
cmorizer for the dataset).

29.3.1 3.1 Downloader script (optional)

A Python script can be written to download raw observations from source and store the data in the appropriate
tier subdirectory of the folder RAWOBS automatically. There are many downloading scripts available in /esmval-
tool/cmorizers/data/downloaders/datasets/ where several data download mechanisms are provided:

• A wget get based downloader for http(s) downloads, with a specific derivation for NASA datasets.

• A ftp downloader with a specific derivation for ESACCI datasets available from CEDA.

• A Climate Data Store downloader based on cdsapi.

Note that the name of this downloading script has to be identical to the name of the dataset.

Depending on the source server, the downloading script needs to contain paths to raw observations, filename patterns
and various necessary fields to retrieve the data. Default start_date and end_date can be provided in cases where
raw data are stored in daily, monthly, and yearly files.

The downloading script for the given dataset can be run with:

esmvaltool data download --config_file <config-user.yml> <dataset-name>

510 Chapter 29. Writing a CMORizer script for an additional dataset

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/datasets.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/data/downloaders/datasets/
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/data/downloaders/datasets/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

The options --start and --end can be added to the command above to restrict the download of raw data to a time
range. They will be ignored if a specific dataset does not support it (i.e. because it is provided as a single file). Valid
formats are YYYY, YYYYMM and YYYYMMDD. By default, already downloaded data are not overwritten unless the option
--overwrite=True is used.

29.4 4. Create a cmorizer for the dataset

There are many cmorizing scripts available in /esmvaltool/cmorizers/data/formatters/datasets/ where solutions to many
kinds of format issues with observational data are addressed. These scripts are either written in Python or in NCL.

Note: NCL support will terminate soon, so new cmorizer scripts should preferably be written in Python.

How much cmorizing an observational data set needs is strongly dependent on the original NetCDF file and how close
the original formatting already is to the strict CMOR standard.

In the following two subsections two cmorizing scripts, one written in Python and one written in NCL, are explained
in more detail.

29.4.1 4.1 Cmorizer script written in python

Find here an example of a cmorizing script, written for the MTE dataset that is available at the MPI for Biogeochemistry
in Jena: mte.py.

All the necessary information about the dataset to write the filename correctly, and which variable is of interest, is
stored in a separate configuration file: MTE.yml in the directory ESMValTool/esmvaltool/cmorizers/data/
cmor_config/. Note that both the name of this configuration file and the cmorizing script have to be identical to
the name of your dataset. It is recommended that you set project to OBS6 in the configuration file. That way, the
variables defined in the CMIP6 CMOR table, augmented with the custom variables described above, are available to
your script.

The first part of this configuration file defines the filename of the raw observations file. The second part defines the
common global attributes for the cmorizer output, e.g. information that is needed to piece together the final observations
file name in the correct structure (see Section 6. Naming convention of the observational data files). Another global
attribute is reference which includes a doi related to the dataset. Please see the section adding references on how to
add reference tags to the reference section in the configuration file. If a single dataset has more than one reference, it
is possible to add tags as a list e.g. reference: ['tag1', 'tag2']. The third part in the configuration file defines
the variables that are supposed to be cmorized.

The actual cmorizing script mte.py consists of a header with information on where and how to download the data, and
noting the last access of the data webpage.

The main body of the CMORizer script must contain a function called

def cmorization(in_dir, out_dir, cfg, cfg_user, start_date, end_date):

with this exact call signature. Here, in_dir corresponds to the input directory of the raw files, out_dir to the output
directory of final reformatted data set, cfg to the dataset-specific configuration file, cfg_user to the user configuration
file, start_date to the start of the period to format, and end_date to the end of the period to format. If not needed, the
last three arguments can be ignored using underscores. The return value of this function is ignored. All the work, i.e.
loading of the raw files, processing them and saving the final output, has to be performed inside its body. To simplify
this process, ESMValTool provides a set of predefined utilities.py, which can be imported into your CMORizer by

29.4. 4. Create a cmorizer for the dataset 511

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/datasets/
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/datasets/mte.py
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/cmor_config/MTE.yml
https://docs.esmvaltool.org/en/latest/community/diagnostic.html#adding-references
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/utilities.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

from esmvaltool.cmorizers.data import utilities as utils

Apart from a function to easily save data, this module contains different kinds of small fixes to the data attributes,
coordinates, and metadata which are necessary for the data field to be CMOR-compliant.

Note that this specific CMORizer script contains several subroutines in order to make the code clearer and more readable
(we strongly recommend to follow that code style). For example, the function _get_filepath converts the raw filepath
to the correct one and the function _extract_variable extracts and saves a single variable from the raw data.

29.4.2 4.2 Cmorizer script written in NCL

Find here an example of a cmorizing script, written for the ESACCI XCH4 dataset that is available on the Copernicus
Climate Data Store: cds_xch4.ncl.

The first part of the script collects all the information about the dataset that are necessary to write the filename correctly
and to understand which variable is of interest here. Please make sure to provide the correct information for following
key words: DIAG_SCRIPT, VAR, NAME, MIP, FREQ, CMOR_TABLE.

• Note: the fields VAR, NAME, MIP and FREQ all ask for one or more entries. If more than one entry is provided,
make sure that the order of the entries is the same for all four fields! (for example, that the first entry in all four
fields describe the variable xch4 that you would like to extract);

• Note: some functions in the script are NCL-specific and are available through the loading of the script inter-
face.ncl. There are similar functions available for python scripts.

In the second part of the script each variable defined in VAR is separately extracted from the original data file and
processed. Most parts of the code are commented, and therefore it should be easy to follow. ESMValTool provides
a set of predefined utilities.ncl, which are imported by default into your CMORizer. This module contains different
kinds of small fixes to the data attributes, coordinates, and metadata which are necessary for the data field to be CMOR-
compliant.

29.5 5. Run the cmorizing script

The cmorizing script for the given dataset can be run with:

esmvaltool data format --config_file <config-user.yml> <dataset-name>

The options --start and --end can be added to the command above to restrict the formatting of raw data to a time
range. They will be ignored if a specific dataset does not support it (i.e. because it is provided as a single file). Valid
formats are YYYY, YYYYMM and YYYYMMDD.

Note: The output path given in the configuration file is the path where your cmorized dataset will be stored. The
ESMValTool will create a folder with the correct tier information (see Section 2. Edit your configuration file) if that
tier folder is not already available, and then a folder named after the dataset. In this folder the cmorized data set will be
stored as a NetCDF file. The cmorized dataset will be automatically moved to the correct tier subfolder of your OBS
or OBS6 directory if the option --install=True is used in the command above and no such directory was already
created.

If your run was successful, one or more NetCDF files are produced in your output directory.

If a downloading script is available for the dataset, the downloading and the cmorizing scripts can be run in a single
command with:

512 Chapter 29. Writing a CMORizer script for an additional dataset

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/datasets/cds_xch4.ncl
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/interface.ncl
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/interface.ncl
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/formatters/utilities.ncl

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool data prepare --config_file <config-user.yml> <dataset-name>

Note that options from the `esmvaltool data download and esmvaltool data format commands can be passed
to the above command.

29.6 6. Naming convention of the observational data files

For the ESMValTool to be able to read the observations from the NetCDF file, the file name needs a very specific
structure and order of information parts (very similar to the naming convention for observations in ESMValTool v1.0).
The file name will be automatically correctly created if a cmorizing script has been used to create the netCDF file.

The correct structure of an observational data set is defined in config-developer.yml, and looks like the following:

OBS_[dataset]_[type]_[version]_[mip]_[short_name]_YYYYMM-YYYYMM.nc

For the example of the CDS-XCH4 data set, the correct structure of the file name looks then like this:

OBS_CDS-XCH4_sat_L3_Amon_xch4_200301-201612.nc

The different parts of the name are explained in more detail here:

• OBS: describes what kind of data can be expected in the file, in this case observations;

• CDS-XCH4: that is the name of the dataset. It has been named this way for illustration purposes (so that
everybody understands it is the xch4 dataset downloaded from the CDS), but a better name would indeed be
ESACCI-XCH4 since it is a ESA-CCI dataset;

• sat: describes the source of the data, here we are looking at satellite data (therefore sat), could also be reanaly
for reanalyses;

• L3: describes the version of the dataset:

• Amon: is the information in which mip the variable is to be expected, and what kind of temporal resolution it
has; here we expect xch4 to be part of the atmosphere (A) and we have the dataset in a monthly resolution (mon);

• xch4: Is the name of the variable. Each observational data file is supposed to only include one variable per file;

• 200301-201812: Is the period the dataset spans with 200301 being the start year and month, and 201812 being
the end year and month;

Note: There is a different naming convention for obs4MIPs data (see the exact specifications for the obs4MIPs data
file naming convention in the config-developer.yml file).

29.7 7. Test the cmorized dataset

To verify that the cmorized data file is indeed correctly formatted, you can run a dedicated test recipe, that does not
include any diagnostic, but only reads in the data file and has it processed in the preprocessor. Such a recipe is called
recipes/examples/recipe_check_obs.yml. You just need to add a diagnostic for your dataset following the ex-
isting entries. Only the diagnostic of interest needs to be run, the others should be commented out for testing.

29.6. 6. Naming convention of the observational data files 513

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/config-developer.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

514 Chapter 29. Writing a CMORizer script for an additional dataset

Part VIII

Contributing to the community

515

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Contributions are very welcome!
This chapter explains how to contribute to ESMValTool. We greatly value contributions of any kind. Contributions
could include, but are not limited to documentation improvements, bug reports, new or improved diagnostic code,
scientific and technical code reviews, infrastructure improvements, maintenance of recipes, mailing list and chat par-
ticipation, community help/building, education and outreach.

If you have a bug or other issue to report, please open an issue on the issues tab on the ESMValTool github repository.

In case anything is unclear feel free to contact us for more information and help, e.g. on our GitHub Discussions page.

517

https://github.com/ESMValGroup/ESMValTool/issues
https://github.com/ESMValGroup/ESMValTool/discussions

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

518

CHAPTER

THIRTY

CONTRIBUTING CODE AND DOCUMENTATION

If you would like to contribute a new diagnostic and recipe or a new feature, please discuss your idea with the develop-
ment team before getting started, to avoid double work and/or disappointment later. A good way to do this is to open
an issue on GitHub. This is also a good way to get help with the implementation.

We value the time you invest in contributing and strive to make the process as easy as possible. If you have suggestions
for improving the process of contributing, please do not hesitate to propose them, for example by starting a discussion
on our discussions page.

30.1 Getting started

See Install from source for instructions on how to set up a development installation.

New development should preferably be done in the ESMValTool GitHub repository. However, for scientists requiring
confidentiality, private repositories are available, see Moving work from the private to the public repository for more
information. The default git branch is main. Use this branch to create a new feature branch from and make a pull
request against. This page offers a good introduction to git branches, but it was written for BitBucket while we use
GitHub, so replace the word BitBucket by GitHub whenever you read it.

It is recommended that you open a draft pull request early, as this will cause CircleCI to run the unit tests, Codacy to
analyse your code, and readthedocs to build the documentation. It’s also easier to get help from other developers if
your code is visible in a pull request.

Please review the results of the automatic checks below your pull request. If one of the tests shows a red cross in-
stead of a green checkmark, please click the Details link behind the failing check and try to solve the issue. Ask
@ESMValGroup/tech-reviewers for help if you do not know how to fix the failing check. Note that this kind of au-
tomated checks make it easier to review code, but they are not flawless. Preferably Codacy code quality checks pass,
however a few remaining hard to solve Codacy issues are still acceptable. If you suspect Codacy may be wrong, please
ask by commenting on your pull request.

30.2 Checklist for pull requests

To clearly communicate up front what is expected from a pull request, we have the following checklist. Please try
to do everything on the list before requesting a review. If you are unsure about something on the list, please ask the
@ESMValGroup/tech-reviewers or @ESMValGroup/science-reviewers for help by commenting on your (draft) pull
request or by starting a new discussion.

In the ESMValTool community we use pull request reviews to ensure all code and documentation contributions are of
good quality. The icons indicate whether the item will be checked during the Technical review or Scientific review.

519

https://github.com/ESMValGroup/ESMValTool/issues
https://github.com/ESMValGroup/ESMValTool/discussions
https://github.com/ESMValGroup/ESMValTool
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/science-reviewers
https://github.com/ESMValGroup/ESMValTool/discussions

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

30.2.1 All pull requests

• The pull request has a descriptive title

• Code is written according to the code quality guidelines

• Documentation is available

• Tests run successfully

• The list of authors is up to date

• Changed dependencies are added or removed correctly

• The checks shown below the pull request are successful

If a pull request introduces a change that causes a recipe to no longer run successfully (breaking change), or which
results in scientifically significant changes in results (science change), additional requirements defined in the backward
compatibility policy apply. These include in particular:

• Instructions for the release notes to assist recipe developers to adapt their recipe in light of the backward-
incompatible change available.

• If applicable, instructions for recipe developers working on user recipes to enable them to adapt their code
related to backward-incompatible changes available (see ESMValTool_Tutorial: issue #263) available.

• Core development team tagged to notify them of the backward-incompatible change, and give at least 2 weeks
for objections to be raised before merging to the main branch. If a strong objection is raised the backward-
incompatible change should not be merged until the objection is resolved.

• Information required for the “backward-incompatible changes” section in the PR that introduces the backward-
incompatible change available.

30.2.2 New or updated recipe and/or diagnostic

See Making a new diagnostic or recipe for detailed instructions.

• Recipe runs successfully

• Recipe and diagnostic documentation is available

• Figure(s) and data look as expected from literature

• Provenance information has been added

30.2.3 New or updated data reformatting script

See new dataset for detailed instructions.

• Dataset documentation is available

• The dataset has been added to the CMOR check recipe

• Numbers and units of the data look physically meaningful

520 Chapter 30. Contributing code and documentation

https://github.com/ESMValGroup/ESMValTool_Tutorial/issues/263

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

30.3 Pull request title

The title of a pull request should clearly describe what the pull request changes. If you need more text to describe what
the pull request does, please add it in the description. The titles of pull requests are used to compile the Changelog,
therefore it is important that they are easy to understand for people who are not familiar with the code or people in the
project. Descriptive pull request titles also makes it easier to find back what was changed when, which is useful in case
a bug was introduced.

30.4 Code quality

To increase the readability and maintainability or the ESMValTool source code, we aim to adhere to best practices and
coding standards. For code in all languages, it is highly recommended that you split your code up in functions that are
short enough to view without scrolling, e.g. no more than 50 lines long.

We include checks for Python, R, NCL, and yaml files, most of which are described in more detail in the sections
below. This includes checks for invalid syntax and formatting errors. Pre-commit is a handy tool that can run all of
these checks automatically just before you commit your code. It knows knows which tool to run for each filetype, and
therefore provides a convenient way to check your code.

30.4.1 Python

The standard document on best practices for Python code is PEP8 and there is PEP257 for code documentation. We
make use of numpy style docstrings to document Python functions that are visible on readthedocs.

To check if your code adheres to the standard, go to the directory where the repository is cloned, e.g. cd ESMValTool,
and run prospector

prospector esmvaltool/diag_scripts/your_diagnostic/your_script.py

In addition to prospector, we also use flake8 to automatically check for obvious bugs and formatting mistakes.

When you make a pull request, adherence to the Python development best practices is checked in two ways:

1. As part of the unit tests, flake8 is run by CircleCI, see the section on Tests for more information.

2. Codacy is a service that runs prospector (and other code quality tools) on changed files and reports the results.
Click the ‘Details’ link behind the Codacy check entry and then click ‘View more details on Codacy Production’
to see the results of the static code analysis done by Codacy. If you need to log in, you can do so using your
GitHub account.

A pull request should preferably not introduce any new prospector issues. However, we understand that there is a limit
to how much time can be spent on polishing code, so up to 10 new (non-trivial) issues is still an acceptable amount.
Formatting issues are considered trivial and need to be addressed. Note that the automatic code quality checks by
prospector are really helpful to improve the quality of your code, but they are not flawless. If you suspect prospector
or Codacy may be wrong, please ask the @ESMValGroup/tech-reviewers by commenting on your pull request.

Note that running prospector locally will give you quicker and sometimes more accurate results than waiting for Codacy.

Most formatting issues in Python code can be fixed automatically by running the commands

isort some_file.py

to sort the imports in the standard way using isort and

30.3. Pull request title 521

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.esmvaltool.org
http://prospector.landscape.io/
https://flake8.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool
https://app.codacy.com/gh/ESMValGroup/ESMValTool/pullRequests
https://app.codacy.com/gh/ESMValGroup/ESMValTool/pullRequests
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://www.python.org/dev/peps/pep-0008/#imports
https://pycqa.github.io/isort/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

yapf -i some_file.py

to add/remove whitespace as required by the standard using yapf,

docformatter -i some_file.py

to run docformatter which helps formatting the docstrings (such as line length, spaces).

30.4.2 NCL

Because there is no standard best practices document for NCL, we use PEP8 for NCL code as well, with some minor
adjustments to accommodate for differences in the languages. The most important difference is that for NCL code the
indentation should be 2 spaces instead of 4. Use the command nclcodestyle /path/to/file.ncl to check if your
code follows the style guide. More information on the nclcodestyle command can be found here.

30.4.3 R

Best practices for R code are described in The tidyverse style guide. We check adherence to this style guide by using
lintr on CircleCI. Please use styler to automatically format your code according to this style guide. In the future we
would also like to make use of goodpractice to assess the quality of R code.

30.4.4 YAML

Please use yamllint to check that your YAML files do not contain mistakes. yamllint checks for valid syntax, common
mistakes like key repetition and cosmetic problems such as line length, trailing spaces, wrong indentation, etc. When
the tool complains about the maximum line length or too many spaces, please use your own best judgement about
whether solving the issue will make your recipe more readable.

30.4.5 Any text file

A generic tool to check for common spelling mistakes is codespell.

30.5 Documentation

The documentation lives on docs.esmvaltool.org and is built using Sphinx. There are two main ways of adding docu-
mentation:

1. As written text in the directory doc/sphinx/source. When writing reStructuredText (.rst) files, please try to
limit the line length to 80 characters and always start a sentence on a new line. This makes it easier to review
changes to documentation on GitHub.

2. As docstrings or comments in code. For Python code, the docstrings of Python modules, classes, and functions
that are mentioned in doc/sphinx/source/api are used to generate documentation. This results in the ESMValTool
Code API Documentation.

522 Chapter 30. Contributing code and documentation

https://github.com/google/yapf
https://github.com/myint/docformatter
https://www.python.org/dev/peps/pep-0008/
https://style.tidyverse.org/
https://cran.r-project.org/web/packages/lintr/index.html
https://styler.r-lib.org/
https://cran.r-project.org/web/packages/goodpractice/index.html
https://yamllint.readthedocs.io
https://pypi.org/project/codespell/
https://docs.esmvaltool.org
https://www.sphinx-doc.org
https://github.com/ESMValGroup/ESMValTool/tree/main/doc/sphinx/source
https://www.sphinx-doc.org/en/main/usage/restructuredtext/basics.html
https://www.python.org/dev/peps/pep-0257/
https://github.com/ESMValGroup/ESMValTool/tree/main/doc/sphinx/source/api

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

30.5.1 What should be documented

See also Recipe and diagnostic documentation and Dataset documentation.

Any code documentation that is visible on docs.esmvaltool.org should be well written and adhere to the standards for
documentation for the respective language. Note that there is no need to write extensive documentation for functions
that are not visible in the online documentation. However, a short description in the docstring helps other contributors to
understand what a function is intended to do and and what its capabilities are. For short functions, a one-line docstring
is usually sufficient, but more complex functions might require slightly more extensive documentation.

30.5.2 How to build and view the documentation

Whenever you make a pull request or push new commits to an existing pull request, readthedocs will automatically
build the documentation. The link to the documentation will be shown in the list of checks below your pull request,
click ‘Details’ behind the check docs/readthedocs.org:esmvaltool to preview the documentation. If all checks
were successful, you may need to click ‘Show all checks’ to see the individual checks.

To build the documentation on your own computer, go to the directory where the repository was cloned and run

sphinx-build doc/sphinx/source/ doc/sphinx/build/

or

sphinx-build -Ea doc/sphinx/source/ doc/sphinx/build/

to build it from scratch. Make sure that your newly added documentation builds without warnings or errors and looks
correctly formatted. CircleCI will build the documentation with the command

sphinx-build -W doc/sphinx/source/ doc/sphinx/build/

to catch mistakes that can be detected automatically.

The configuration file for Sphinx is doc/sphinx/source/conf.py and the configuration file for ReadTheDocs is .readthe-
docs.yaml.

When reviewing a pull request, always check that the documentation checks shown below the pull request were suc-
cessful. Successful checks have a green ✓ in front, a means the test job failed.

30.5.3 Integration with the ESMValCore documentation

The ESMValCore documentation is hosted as a subproject of the ESMValTool documentation on readthedocs. To link
to a section from the ESMValCore documentation from the reStructuredText (.rst) files, use the usual :ref: but
prefix the reference with esmvalcore:. For example, :ref:`esmvalcore:recipe` to link to The recipe format.

There is a script that generates the navigation menu shown on the left when you view the documentation. This script is
called doc/sphinx/source/gensidebar.py in the ESMValTool repository and it should be identical to doc/gensidebar.py
in the ESMValCore repository, or the sidebar will change when navigating from the ESMValTool documentation to the
ESMValCore documentation and vice-versa.

30.5. Documentation 523

https://docs.esmvaltool.org
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool
https://www.sphinx-doc.org
https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/conf.py
https://github.com/ESMValGroup/ESMValTool/blob/main/.readthedocs.yaml
https://github.com/ESMValGroup/ESMValTool/blob/main/.readthedocs.yaml
https://docs.esmvaltool.org/projects/esmvalcore
https://docs.readthedocs.io/en/stable/subprojects.html
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/index.html#recipe
https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/gensidebar.py
https://github.com/ESMValGroup/ESMValCore/blob/main/doc/gensidebar.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

30.6 Tests

To check various aspects of the recipes and code, there tests available in the tests directory.

Whenever you make a pull request or push new commits to an existing pull request, these tests will be run automatically
on CircleCI. The results appear at the bottom of the pull request. Click on ‘Details’ for more information on a specific
test job. To see some of the results on CircleCI, you may need to log in. You can do so using your GitHub account.

To run the tests on your own computer, go to the directory where the repository is cloned and run the command pytest.

Have a look at Testing recipes for information on testing recipes.

Every night, more extensive tests are run to make sure that problems with the installation of the tool are discovered by
the development team before users encounter them. These nightly tests have been designed to mimic the installation
procedures described in the documentation, e.g. in the Installation chapter. The nightly tests are run using both CircleCI
and GitHub Actions, the result of the tests ran by CircleCI can be seen on the CircleCI project page and the result of
the tests ran by GitHub Actions can be viewed on the Actions tab of the repository.

The configuration of the tests run by CircleCI can be found in the directory .circleci, while the configuration of the tests
run by GitHub Actions can be found in the directory .github/workflows.

When reviewing a pull request, always check that all test jobs on CircleCI were successful. Successful test jobs have a
green ✓ in front, a means the test job failed.

30.7 List of authors

If you make a contribution to ESMValTool and you would like to be listed as an author (e.g. on Zenodo), please add
your name to the list of authors in CITATION.cff and generate the entry for the .zenodo.json file by running the
commands

pip install cffconvert
cffconvert --infile CITATION.cff --format zenodo --outfile .zenodo.json

Presently, this method unfortunately discards entries communities and grants from that file; please restore them manu-
ally.

Note that authors of recipes and/or diagnostics also need to be added to the file esmvaltool/config-references.yml, see
Recording provenance for more information.

30.8 Dependencies

Before considering adding a new dependency, carefully check that the license of the dependency you want to add and
any of its dependencies are compatible with the Apache 2.0 license that applies to the ESMValTool. Note that GPL
version 2 license is considered incompatible with the Apache 2.0 license, while the compatibility of GPL version 3
license with the Apache 2.0 license is questionable. See this statement by the authors of the Apache 2.0 license for
more information.

When adding or removing dependencies, please consider applying the changes in the following files:

• environment.yml contains dependencies that cannot be installed from PyPI/Julia package registry

• environment_osx.yml contains development dependencies for MacOSX. Should be the same as
environment.yml, but currently without multi language support.

• esmvaltool/install/Julia/Project.toml contains Julia dependencies that can be installed from the de-
fault Julia package registry

524 Chapter 30. Contributing code and documentation

https://github.com/ESMValGroup/ESMValTool/tree/main/tests
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool?branch=main
https://github.com/ESMValGroup/ESMValTool/actions
https://github.com/ESMValGroup/ESMValTool/blob/main/.circleci
https://github.com/ESMValGroup/ESMValTool/blob/main/.github/workflows
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool
https://zenodo.org/record/4562215
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-software.html
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://github.com/ESMValGroup/ESMValTool/blob/main/LICENSE/
https://www.apache.org/licenses/GPL-compatibility.html
https://pypi.org/
https://github.com/JuliaRegistries/General

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• setup.py contains all Python dependencies, regardless of their installation source

Note that packages may have a different name on conda-forge than on PyPI or CRAN.

Several test jobs on CircleCI related to the installation of the tool will only run if you change the dependencies. These
will be skipped for most pull requests.

When reviewing a pull request where dependencies are added or removed, always check that the changes have been
applied in all relevant files.

30.9 Pull request checks

To check that a pull request is up to standard, several automatic checks are run when you make a pull request. Read
more about it in the Tests and Documentation sections. Successful checks have a green ✓ in front, a means the check
failed.

If you need help with the checks, please ask the technical reviewer of your pull request for help. Ask
@ESMValGroup/tech-reviewers if you do not have a technical reviewer yet.

If the checks are broken because of something unrelated to the current pull request, please check if there is an
open issue that reports the problem and create one if there is no issue yet. You can attract the attention of the
@ESMValGroup/esmvaltool-coreteam by mentioning them in the issue if it looks like no-one is working on solv-
ing the problem yet. The issue needs to be fixed in a separate pull request first. After that has been merged into the
main branch and all checks are green again on the main branch, merge it into your own branch to get the tests to pass.

When reviewing a pull request, always make sure that all checks were successful. If the Codacy check keeps failing,
please run prospector locally. If necessary, ask the pull request author to do the same and to address the reported issues.
See the section on code_quality for more information. Never merge a pull request with failing CircleCI or readthedocs
checks.

30.9. Pull request checks 525

https://conda-forge.org/
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

526 Chapter 30. Contributing code and documentation

CHAPTER

THIRTYONE

MAKING A NEW DIAGNOSTIC OR RECIPE

31.1 Getting started

Please discuss your idea for a new diagnostic or recipe with the development team before getting started, to avoid
disappointment later. A good way to do this is to open an issue on GitHub. This is also a good way to get help.

31.2 Creating a recipe and diagnostic script(s)

First create a recipe in esmvaltool/recipes to define the input data your analysis script needs and optionally preprocessing
and other settings. Also create a script in the esmvaltool/diag_scripts directory and make sure it is referenced from
your recipe. The easiest way to do this is probably to copy the example recipe and diagnostic script and adjust those to
your needs.

If you have no preferred programming language yet, Python 3 is highly recommended, because it is most well supported.
However, NCL, R, and Julia scripts are also supported.

Good example recipes for the different languages are:

• python: esmvaltool/recipes/examples/recipe_python.yml

• R: esmvaltool/recipes/examples/recipe_r.yml

• julia: esmvaltool/recipes/examples/recipe_julia.yml

• ncl: esmvaltool/recipes/examples/recipe_ncl.yml

Good example diagnostics are:

• python: esmvaltool/diag_scripts/examples/diagnostic.py

• R: esmvaltool/diag_scripts/examples/diagnostic.R

• julia: esmvaltool/diag_scripts/examples/diagnostic.jl

• ncl: esmvaltool/diag_scripts/examples/diagnostic.ncl

For an explanation of the recipe format, you might want to read about the ESMValTool recipe and have a look at the
available preprocessor functions. For further inspiration, check out the already available recipes and diagnostics.

There is a directory esmvaltool/diag_scripts/shared for code that is shared by many diagnostics. This directory contains
code for creating common plot types, generating output file names, selecting input data, and other commonly needed
functions. See Shared diagnostic script code for the documentation of the shared Python code.

527

https://github.com/ESMValGroup/ESMValTool/issues
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_r.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_julia.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_ncl.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.py
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.R
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.jl
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.ncl
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#recipe-overview
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html#preprocessor
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/diag_scripts/shared

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

31.3 Re-using existing code

Always make sure your code is or can be released under a license that is compatible with the Apache 2.0 license.

If you have existing code in a supported scripting language, you have two options for re-using it. If it is fairly mature
and a large amount of code, the preferred way is to package and publish it on the official package repository for that
language and add it as a dependency of ESMValTool. If it is just a few simple scripts or packaging is not possible (i.e.
for NCL) you can simply copy and paste the source code into the esmvaltool/diag_scripts directory.

If you have existing code in a compiled language like C, C++, or Fortran that you want to re-use, the recommended way
to proceed is to add Python bindings and publish the package on PyPI so it can be installed as a Python dependency.
You can then call the functions it provides using a Python diagnostic.

31.4 Recipe and diagnostic documentation

This section describes how to document a recipe. For more general information on writing documentation, see Docu-
mentation.

31.4.1 On readthedocs

Recipes should have a page in the Recipes chapter which describes what the recipe/diagnostic calculates.

When adding a completely new recipe, please start by copying doc/sphinx/source/recipes/recipe_template.rst.template
to a new file doc/sphinx/source/recipes/recipe_<name of diagnostic>.rst and do not forget to add your
recipe to the index.

Fill all sections from the template:

• Add a brief description of the method

• Add references

• Document recipe options for the diagnostic scripts

• Fill in the list of variables required to run the recipe

• Add example images

An example image for each type of plot produced by the recipe should be added to the documentation page to show
the kind of output the recipe produces. The ‘.png’ files can be stored in a subdirectory specific for the recipe under
doc/sphinx/source/recipes/figures and linked from the recipe documentation page. A resolution of 150 dpi is recom-
mended for these image files, as this is high enough for the images to look good on the documentation webpage, but
not so high that the files become large.

31.4.2 In the recipe

Fill in the documentation section of the recipe as described in Recipe section: documentation and add a description
to each diagnostic entry. Please note that the maintainer entry is per se not necessary to run a recipe, but mandatory
for recipes within the ESMValTool repository (enforced by a unit test). If no maintainer is available, use the single
entry unmaintained. When reviewing a recipe, check that these entries have been filled with descriptive content.

528 Chapter 31. Making a new diagnostic or recipe

https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/recipes/recipe_template.rst.template
https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/recipes/index.rst
https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/recipes/figures
https://en.wikipedia.org/wiki/Dots_per_inch
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#recipe-documentation

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

31.4.3 In the diagnostic scripts

Functions implementing scientific formula should contain comments with references to the source paper(s) and formula
number(s).

When reviewing diagnostic code, check that formulas are implemented according to the referenced paper(s) and/or
other resources and that the computed numbers look as expected from literature.

31.5 Diagnostic output

Typically, diagnostic scripts create plots, but any other output such as e.g. text files or tables is also possible. Figures
should be saved in the plot_dir, either in both .pdf and .png format (preferred), or respect the output_file_type
specified in the User configuration file. Data should be saved in the work_dir, preferably as a .nc (NetCDF) file,
following the CF-Conventions as much as possible.

Have a look at the example scripts for how to access the value of work_dir, plot_dir, and output_file_type
from the diagnostic script code. More information on the interface between ESMValCore and the diagnostic script is
available here and the description of the Output may also help to understand this.

If a diagnostic script creates plots, it should save the data used to create those plots also to a NetCDF file. If at all
possible, there will be one NetCDF file for each plot the diagnostic script creates. There are several reasons why it is
useful to have the plotted data available in a NetCDF file:

• for interactive visualization of the recipe on a website

• for automated regression tests, e.g. checking that the numbers are still the same with newer versions of libraries

If the output data is prohibitively large, diagnostics authors can choose to implement a write_netcdf: false
diagnostic script option, so writing the NetCDF files can be disabled from the recipe.

When doing a scientific review, please check that the figures and data look as expected from the literature and that
appropriate references have been added.

31.6 Recording provenance

When ESMValCore (the esmvaltool command) runs a recipe, it will first find all data and run the default preprocessor
steps plus any additional preprocessing steps defined in the recipe. Next it will run the diagnostic script defined in the
recipe and finally it will store provenance information. Provenance information is stored in the W3C PROV XML
format and provided that the provenance tree is small, also plotted in an SVG file for human inspection. In addition to
provenance information, a caption is also added to the plots.

Provenance information from the recipe is automatically recorded by ESMValCore, whereas diagnostic scripts must
include code specifically to record provenance. See below for documentation of provenance attributes that can be
included in a recipe. When contributing a diagnostic, please make sure it records the provenance, and that no warnings
related to provenance are generated when running the recipe. To allow the ESMValCore to keep track of provenance
(e.g. which input files were used to create what plots by the diagnostic script), it needs the Information provided by the
diagnostic script to ESMValCore.

Note: Provenance is recorded by the esmvaltool command provided by the ESMValCore package. No
*_provenance.xml files will be generated when re-running just the diagnostic script with the command that is dis-
played on the screen during a recipe run, because that will only run the diagnostic script.

31.5. Diagnostic output 529

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
https://www.unidata.ucar.edu/software/netcdf/
https://cfconventions.org/
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html#interface-esmvalcore-diagnostic
https://www.w3.org/TR/prov-xml/
https://www.w3.org/TR/prov-xml/
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html#interface-diagnostic-esmvalcore
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html#interface-diagnostic-esmvalcore

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

31.6.1 Provenance items provided by the recipe

Provenance tags can be added in several places in the recipe. The Recipe section: documentation section provides
information about the entire recipe.

For each diagnostic in the recipe, ESMValCore supports the following additional information:

• realms a list of high-level modeling components

• themes a list of themes

Please see the (installed version of the) file esmvaltool/config-references.yml for all available information on each item.

31.6.2 Provenance items provided by the diagnostic script

For each output file produced by the diagnostic script, ESMValCore supports the following additional information:

• ancestors a list of input files used to create the plot.

• caption a caption text for the plot

Note that the level of detail is limited, the only valid choices for ancestors are files produced by ancestor tasks.

It is also possible to add more information for the implemented diagnostics using the following items:

• authors a list of authors

• references a list of references, see Adding references below

• projects a list of projects

• domains a list of spatial coverage of the dataset

• plot_types a list of plot types if the diagnostic created a plot, e.g. error bar

• statistics a list of types of the statistic, e.g. anomaly

• long_names a list of long names of used variables, e.g. Air Temperature

Arbitrarily named other items are also supported.

Please see the (installed version of the) file esmvaltool/config-references.yml for all available information on each item,
see References configuration file for an introduction. It is also possible to add custom provenance information by adding
items to each category in this file. In this file, the information is written in the form

key:
value: description

for example

plot_types:
errorbar: error bar plot

To use these items, include them in the provenance record dictionary in the form key: [value] i.e. for the example
above as 'plot_types': ['errorbar'].

In order to communicate with the diagnostic script, two interfaces have been defined, which are described in the ESM-
ValCore documentation. Note that for Python and NCL diagnostics much more convenient methods are available than
directly reading and writing the interface files. For other languages these are not implemented (yet).

Depending on your preferred programming language for developing a diagnostic, see the instructions and examples
below on how to add provenance information:

530 Chapter 31. Making a new diagnostic or recipe

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#recipe-documentation
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/overview.html#ancestor-tasks
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#config-ref
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/interfaces.html
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/interfaces.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

31.6.3 Recording provenance in a Python diagnostic script

Always use esmvaltool.diag_scripts.shared.run_diagnostic() at the end of your script:

if __name__ == '__main__':
with run_diagnostic() as config:

main(config)

Create a provenance_record for each diagnostic file (i.e. image or data file) that the diagnostic script outputs. The
provenance_record is a dictionary of provenance items, for example:

provenance_record = {
'ancestors': ancestor_files,
'authors': [

'andela_bouwe',
'righi_mattia',

],
'caption': caption,
'domains': ['global'],
'plot_types': ['zonal'],
'references': [

'acknow_project',
],
'statistics': ['mean'],

}

To save a matplotlib figure, use the convenience function esmvaltool.diag_scripts.shared.save_figure().
Similarly, to save Iris cubes use esmvaltool.diag_scripts.shared.save_data(). Both of these functions take
provenance_record as an argument and log the provenance accordingly. Have a look at the example Python diag-
nostic in esmvaltool/diag_scripts/examples/diagnostic.py for a complete example.

For any other files created, you will need to make use of a esmvaltool.diag_scripts.shared.
ProvenanceLogger to log provenance. Include the following code directly after the file is saved:

with ProvenanceLogger(cfg) as provenance_logger:
provenance_logger.log(diagnostic_file, provenance_record)

The full path of a diagnostic_file can be obtained using esmvaltool.diag_scripts.shared.
get_diagnostic_filename.

31.6.4 Recording provenance in an NCL diagnostic script

Always call the log_provenance procedure after plotting from your NCL diag_script:

log_provenance(nc-file,plot_file,caption,statistics,domain,plottype,authors,references,
→˓input-files)

For example:

log_provenance(ncdf_outfile, \
map@outfile, \
"Mean of variable: " + var0, \
"mean", \
"global", \

(continues on next page)

31.6. Recording provenance 531

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

"geo", \
(/"righi_mattia", "gottschaldt_klaus-dirk"/), \
(/"acknow_author"/), \
metadata_att_as_array(info0, "filename"))

Have a look at the example NCL diagnostic in esmvaltool/diag_scripts/examples/diagnostic.ncl for a complete example.

31.6.5 Recording provenance in a Julia diagnostic script

The provenance information is written in a diagnostic_provenance.yml that will be located in run_dir. For
example a provenance_record can be stored in a yaml file as:

provenance_file = string(run_dir, "/diagnostic_provenance.yml")

open(provenance_file, "w") do io
JSON.print(io, provenance_records, 4)

end

The provenance_records can be defined as a dictionary of provenance items. For example:

provenance_records = Dict()

provenance_record = Dict(
"ancestors" => [input_file],
"authors" => ["vonhardenberg_jost", "arnone_enrico"],
"caption" => "Example diagnostic in Julia",
"domains" => ["global"],
"projects" => ["crescendo", "c3s-magic"],
"references" => ["zhang11wcc"],
"statistics" => ["other"],

)

provenance_records[output_file] = provenance_record

Have a look at the example Julia diagnostic in esmvaltool/diag_scripts/examples/diagnostic.jl for a complete example.

31.6.6 Recording provenance in an R diagnostic script

The provenance information is written in a diagnostic_provenance.yml that will be located in run_dir. For
example a provenance_record can be stored in a yaml file as:

provenance_file <- paste0(run_dir, "/", "diagnostic_provenance.yml")
write_yaml(provenance_records, provenance_file)

The provenance_records can be defined as a list of provenance items. For example:

provenance_records <- list()

provenance_record <- list(
ancestors = input_filenames,
authors = list("hunter_alasdair", "perez-zanon_nuria"),

(continues on next page)

532 Chapter 31. Making a new diagnostic or recipe

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.ncl
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/diag_scripts/examples/diagnostic.jl

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

caption = title,
projects = list("c3s-magic"),
statistics = list("other"),

)

provenance_records[[output_file]] <- provenance_record

31.7 Adding references

Recipes and diagnostic scripts can include references. When a recipe is run, citation information is stored in BibTeX
format. Follow the steps below to add a reference to a recipe (or a diagnostic):

• make a tag that is representative of the reference entry. For example, righi15gmd shows the last name of the
first author, year and journal abbreviation.

• add the tag to the references section in the recipe (or the diagnostic script provenance, see recording-
provenance).

• make a BibTeX file for the reference entry. There are some online tools to convert a doi to BibTeX format like
https://doi2bib.org/

• rename the file to the tag, keep the .bibtex extension.

• add the file to the folder esmvaltool/references.

Note: the references section in config-references.yaml has been replaced by the folder esmvaltool/
references.

31.8 Testing recipes

To test a recipe, you can run it yourself on your local infrastructure or you can ask the @esmvalbot to run it for you. To
request a run of recipe_xyz.yml, write the following comment below a pull request:

@esmvalbot Please run recipe_xyz.yml

Note that only members of the @ESMValGroup/esmvaltool-developmentteam can request runs. The memory of the
@esmvalbot is limited to 16 GB and it only has access to data available at DKRZ.

When reviewing a pull request, at the very least check that a recipes runs without any modifications. For a more
thorough check, you might want to try out different datasets or changing some settings if the diagnostic scripts support
those. A simple tool is available for testing recipes with various settings.

31.9 Detailed checklist for reviews

This (non-exhaustive) checklist provides ideas for things to check when reviewing pull requests for new or updated
recipes and/or diagnostic scripts.

31.7. Adding references 533

https://en.wikipedia.org/wiki/BibTeX
https://doi2bib.org/
https://github.com/apps/esmvalbot
https://github.com/orgs/ESMValGroup/teams/esmvaltool-developmentteam
https://github.com/apps/esmvalbot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

31.9.1 Technical reviews

Documentation

Check that the scientific documentation of the new diagnostic has been added to the user’s guide:

• A file doc/sphinx/source/recipes/recipe_<diagnostic>.rst exists

• New documentation is included in doc/sphinx/source/recipes/index.rst

• Documentation follows template doc/sphinx/source/recipes/recipe_template.rst.template

• Description of configuration options

• Description of variables

• Valid image files

• Resolution of image files (~150 dpi is usually enough; file size should be kept small)

Recipe

Check yaml syntax (with yamllint) and that new recipe contains:

• Documentation: description, authors, maintainer, references, projects

• Provenance tags: themes, realms

Diagnostic script

Check that the new diagnostic script(s) meet(s) standards. This includes the following items:

• In-code documentation (comments, docstrings)

• Code quality (e.g. no hardcoded pathnames)

• No Codacy errors reported

• Re-use of existing functions whenever possible

• Provenance implemented

Run recipe

Make sure new diagnostic(s) is working by running the ESMValTool with the recipe.

Check output of diagnostic

After successfully running the new recipe, check that:

• NetCDF output has been written

• Output contains (some) valid values (e.g. not only nan or zeros)

• Provenance information has been written

534 Chapter 31. Making a new diagnostic or recipe

https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/recipes/recipe_template.rst.template

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Check automated tests

Check for errors reported by automated tests

• Codacy

• CircleCI

• Documentation build

31.9.2 Scientific reviews

Documentation added to user’s guide

Check that the scientific documentation of the new diagnostic in doc/sphinx/source/recipes/
recipe_<diagnostic>.rst:

• Meets scientific documentation standard and

• Contains brief description of method

• Contains references

• Check for typos / broken text

• Documentation is complete and written in an understandable language

• References are complete

Recipe

Check that new recipe contains valid:

• Documentation: description, references

• Provenance tags: themes, realms

Diagnostic script

Check that the new diagnostic script(s) meet(s) scientific standards. This can include the following items:

• Clear and understandable in-code documentation including brief description of diagnostic

• References

• Method / equations match reference(s) given

Run recipe

Make sure new diagnostic(s) is working by running the ESMValTool.

31.9. Detailed checklist for reviews 535

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Check output of diagnostic

After successfully running the new recipe, check that:

• Output contains (some) valid values (e.g. not only nan or zeros)

• If applicable, check plots and compare with corresponding plots in the paper(s) cited

536 Chapter 31. Making a new diagnostic or recipe

CHAPTER

THIRTYTWO

ESMVALTOOL POLICY ON BACKWARD COMPATIBILITY

32.1 Motivation

Development of recipes or conducting project-related work may require a rather long period of time during which
new versions of the ESMValTool might become available. For a good user experience and a seamless workflow, users
and developers need to know before upgrading to a new version if and how their work might be affected (backward
compatibility). This includes, for instance, information about changes to technical features such as syntax of recipes
and configuration files, and interfaces of shared functions, but also changes that affect the results of an ESMValTool run,
e.g. modification of algorithms or changes to the order of operators. It is therefore essential that users and developers
have the best advice on how and when to upgrade to new versions.

While trying to minimise the impact of new code developments on users and developers by maintaining backward
compatibility where possible, this cannot always be guaranteed. A very restrictive policy might delay the ESMValTool
development and make it more complex for developers to contribute.

This document outlines the key principles of an updated ESMValTool policy on backward compatibility.

32.2 Definitions

Release: A numbered version of ESMValCore / ESMValTool that has been released to the community, e.g. 2.4.0. This
policy relates only to backward compatibility of releases, not to interim revisions of the main branch. Release numbers
are of the format x.y.z, where:

• x indicates a major release

• y indicates a minor release

• z indicates a patch release

Backward-incompatible change: A change in ESMValCore or ESMValTool that causes a recipe to no longer run
successfully (a breaking change), or which results in scientifically significant changes in results (a science change).

Breaking change: A change which causes a previously working recipe to no longer run successfully.

Science change: A change that alters scientific results. We do not formally distinguish between trivial science changes
(e.g. from changes in the order of calculations) and more significant changes that would affect interpretation, although
the detail that we communicate will share any understanding that we have regarding expected impact.

Benign third-party dependency changes: A change over which we have no control, but which we believe will only
have trivial technical impacts (such as a change in font). Such changes are outside of the scope of this policy, though
we will communicate about those we are aware of.

Developer of backward-incompatible change: For the purpose of this policy, developer is the individual that is
responsible for the pull request (PR) that is not backward compatible.

537

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Recipe developer: Someone who is developing a recipe that is not (yet) integrated into the repository.

Recipe user: For the purpose of this policy, a recipe user is anyone who runs a recipe using a release of ESMValTool.
In this context, someone can be both a recipe developer and a recipe user, but they perform different activities in each
capacity.

Recipe maintainer: First contact point for integrated recipes in case of problems with that recipe (see also Maintaining
a recipe).

Integrated recipes: Recipes that are contained within the main branch of the ESMValTool repository, and can therefore
be updated by any developer in line with the above guidance. Note that the recipe can be updated by someone other
than the original author.

User recipes: Recipes developed by any developer outside of the main branch of the repository (i.e. on a dev/feature
branch or outside the repository completely), and therefore cannot be updated by anyone else.

32.3 Scope

The ESMValTool and ESMValCore policy on backward compatibility aims at balancing two competing needs: the
occasional need of improvements or maintenance to break backward compatibility and the need for stability for existing
users and developers. The following aspects are covered by this policy:

• Key principles and approaches to backward compatibility

• Guidelines and requirements for developers of backward-incompatible changes

• Communication with users and developers about backward-incompatible changes

Not within the scope of this policy are:

• Versioning scheme of ESMValTool

• Breakage of recipes due to changes in input data or dependencies. This is covered by the broken recipe policy.

32.4 Expectations of developers, users & funders

Stakeholders and their expectations and aims:

Projects / Funders

• Aim to facilitate scientific discovery

• Expect deliverables, e.g. new features/recipes

• Expect reproducible results

Recipe users

• Expect the recipe to work

• Expect the recipe to be easy to run

• Expect reproducible results

• Expect easy installation of ESMValTool

Recipe developers

• Develop recipes

• Expect their recipe to keep working with every new release of ESMValCore

538 Chapter 32. ESMValTool policy on backward compatibility

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Expect ESMValCore bugfixes and new features to become available quickly

• Expect reproducible results

• Expect easy installation of ESMValTool

Core developers and recipe maintainers

• Fix bugs

• Add ESMValCore features requested by recipe developers

• Try to accommodate ESMValCore features contributed to by recipe developers

• Maintain existing recipes

• Add new recipes

• Try to help (other) recipe developers with contributing their recipe

• Try to make installation as easy as possible

There is a tension between making new features available and keeping everything as is. New features facilitate scientific
discovery because they enable recipe developers to do new research (e.g. analyse more data, new data, or perform a
different analysis). Ensuring that every recipe ever made works with every new feature is technically a lot of work, more
than we have funding for. Therefore we need to make sure that new features are added regularly, but we respect the
timescale on which recipe developers work when removing outdated features. Writing a paper and getting it published
may take up to a year, so this seems a good timescale for larger changes. For changes that only affect a few users, shorter
timescales could be acceptable. It is also good to note that we are part of a large software ecosystem (ESMValTool
currently depends on over 500 different software packages), so we may not always be able to control at what pace
changes are made to the software that we depend upon.

Two-way communication about new and removed features is needed to make this work. This requires active involve-
ment from both the people developing the new features and the recipe developers. ESMValTool core developers and
ESMValCore core developers need to make sure they clearly communicate changes. In the first place, this is done by
writing good descriptions in issues and pull requests on GitHub, but some of this material also makes it to the changelog
(where the GitHub pull requests are linked). It is highly recommended to communicate a relevant selection (e.g. im-
portant new, scheduled for removal, and removed features) also by other means, to ensure we reach as many people
potentially affected as possible (see Guidance on handling *backward-incompatible changes* section below). We or-
ganize monthly community meetings where recipe developers can learn about the latest developments and everyone is
welcome to join, ask questions, and provide feedback.

To meet the needs of users and funders, we should take reproducibility of older results seriously, but this should not
hold us back from advancing our tools. We can support this by uploading a well tested container image to an archive
that provides a DOI and by providing clear instructions on how to use such containers.

32.5 Helping developers to upgrade

Recipe users of ESMValTool should be able to successfully run integrated recipes using a release, since all backward-
incompatible changes introduced between releases will have been fixed before the release is created. Please note the
broken recipe policy.

However, recipe developers working on user recipes must be provided with information to enable them to adapt their
code to resolve issues related to backward-incompatible changes when backward-incompatible changes are introduced
to the main branch / when a release of ESMValTool is created.

32.5. Helping developers to upgrade 539

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

32.5.1 Guidance on handling backward-incompatible changes

As well as helping users to handle backward-incompatible changes, the policy and surrounding tools must help devel-
opers avoid making backward-incompatible changes. Not many ideas are developed on this yet, but components should
include:

• Testing; backward-incompatible changes should be discovered as early in the development process as possible.
This motivates continued investment in automated testing. To discover backward-incompatible changes early on
in the development cycle, every night a selection of recipes is run on CircleCI. A recipe can be added to the test
suite by adding it to the directory esmvaltool/recipes/testing. Only add recipes that require a small amount of
data, i.e. considerably less than a gigabyte.

• Guidance on how to minimise the likelihood of introducing backward-incompatible changes and how to use
deprecation warnings when needed (see developer guidance).

• Instructions on how to provide text for the release notes to assist recipe developers to adapt their recipe in light
of the backward-incompatible change

• General instructions for recipe developers working on user recipes to enable them to adapt their code related to
backward-incompatible changes (see ESMValTool_Tutorial: issue #263).

• The developer or reviewer must tag the core development team to notify them of the backward-incompatible
change, and give at least 2 weeks for objections to be raised before merging to the main branch. If a strong
objection is raised the backward-incompatible change should not be merged until the objection is resolved.

32.5.2 Guidance on releasing backward-incompatible changes

During the release process, the following information must be provided:

• Release notes: The release notes are already documented in the ESMValTool Changelog and ESMValCore
Changelog, and “backward-incompatible changes” is the first section after “Highlights”.

– backward-incompatible changes: This section must include clear instructions detailing how a recipe
developer should adapt their code for each item in this section, whether the adapted code would introduce
a science change, and the list of affected or fixed integrated recipes that had to be updated due to the
backward-incompatible changes, if applicable (to provide further examples to recipe developers working
on user recipes of how to adapt code).

– Developer guidance: Developers of backward-incompatible changes must:

∗ write and include the information required for the “backward-incompatible changes” section in the PR
that introduces the backward-incompatible change

∗ share details of the backward-incompatible change at the next monthly ESMValTool community meet-
ing

– Communication: The release notes must be shared with the community (for example, via the User mail-
ing list and the Community repository) at the point the first release candidate is made, highlighting the
“backward-incompatible changes” section. The User Engagement Team should organise the communica-
tion of new releases together with the Release manager.

540 Chapter 32. ESMValTool policy on backward compatibility

https://app.circleci.com/pipelines/github/ESMValGroup/ESMValTool?branch=main
https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/recipes/testing
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/contributing.html#backward-compatibility
https://github.com/ESMValGroup/ESMValTool_Tutorial/issues/263
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog
https://github.com/ESMValGroup/Community

CHAPTER

THIRTYTHREE

BROKEN RECIPE POLICY

Recipes might stop working for different reasons. Among those are, for instance, withdrawal of datasets used by
the recipe (i.e. the recipe contains data that are no longer publicly available), backward incompatible development
of the ESMValTool including new features or retiring old ones as well as changes to Python or used dependencies
such as library functions. In such cases, the Maintaining a recipe is contacted by the technical lead development
team (@ESMValGroup/technical-lead-development-team) to find a solution, fixing the affected recipe and checking the
scientific output after applying the fix. If no recipe maintainer is available, such recipes will be flagged by the release
manager during the Release schedule and procedure as “broken”. For this, the affected recipe will be added to the list
of broken recipes, together with the version number of the last known release in which the recipe was still working. If a
recipe continues to be broken for three releases of the ESMValTool (about one year) and no recipe maintainer could be
found during this time, the affected recipe and diagnostics will be retired. This means the recipe and diagnostic code
are removed from the ESMValTool main branch by the release manager and thus will not be included in future releases.
Only the scientific documentation of the recipe (and diagnostics) will be kept in the user and developer guide with an
additional note and link to the last release in which the recipe was still fully functional.

541

https://github.com/orgs/ESMValGroup/teams/technical-lead-development-team

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

542 Chapter 33. Broken recipe policy

CHAPTER

THIRTYFOUR

MAKING A NEW DATASET

If you are contributing a new dataset, please have a look at Writing a CMORizer script for an additional dataset for
how to do so. Please always create separate pull requests for CMORizer scripts, even when introducing a new dataset
or updating an existing dataset with a new recipe.

If you are updating a CMORizer script to support a different dataset version, please have a look at Support for multiple
versions of a dataset for how to handle multiple dataset versions.

34.1 Dataset documentation

The documentation required for a CMORizer script is the following:

• Make sure that the new dataset is added to the list of Supported datasets for which a CMORizer script is available
and to the file datasets.yml.

• The code documentation should contain clear instructions on how to obtain the data.

• A BibTeX file named <dataset>.bibtex defining the reference for the new dataset should be placed in the
directory esmvaltool/references/, see Adding references for detailed instructions.

For more general information on writing documentation, see Documentation.

34.2 Testing

When contributing a new script, add an entry for the CMORized data to recipes/examples/recipe_check_obs.yml and
run the recipe, to make sure the CMOR checks pass without warnings or errors.

To test a pull request for a new CMORizer script:

1. Download the data following the instructions included in the script and place it in the RAWOBS path specified in
your config-user.yml

2. If available, use the downloading script by running esmvaltool data download --config_file
<config-file> <dataset>

3. Run the cmorization by running esmvaltool data format <config-file> <dataset>

4. Copy the resulting data to the OBS (for CMIP5 compliant data) or OBS6 (for CMIP6 compliant data) path specified
in your config-user.yml

5. Run recipes/examples/recipe_check_obs.yml with the new dataset to check that the data can be used

543

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/datasets.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_check_obs.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

34.3 Scientific sanity check

When contributing a new dataset, we expect that the numbers and units of the dataset look physically meaningful. The
scientific reviewer needs to check this.

34.4 Data availability

Once your pull request has been approved by the reviewers, ask a member of @OBS-maintainers to add the new dataset
to the data pool at DKRZ and CEDA-Jasmin. This team is in charge of merging CMORizer pull requests.

34.5 Detailed checklist for reviews

This (non-exhaustive) checklist provides ideas for things to check when reviewing pull requests for new or updated
CMORizer scripts.

34.5.1 Dataset description

Check that new dataset has been added to the table of observations defined in the ESMValTool guide user’s guide in
section Obtaining input data (generated from doc/sphinx/source/input.rst). Check that the new dataset has also
been added to the file datasets.yml.

34.5.2 BibTeX info file

Check that a BibTeX file, i.e. <dataset>.bibtex defining the reference for the new dataset has been created in
esmvaltool/references/.

34.5.3 recipe_check_obs.yml

Check that new dataset has been added to the testing recipe esmvaltool/recipes/examples/recipe_check_obs.
yml

34.5.4 Downloader script

If present, check that the new downloader script esmvaltool/cmorizers/data/downloaders/datasets/
<dataset>.py meets standards. This includes the following items:

• Code quality checks

1. Code quality

2. No Codacy errors reported

544 Chapter 34. Making a new dataset

https://github.com/orgs/ESMValGroup/teams/obs-maintainers
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/cmorizers/data/datasets.yml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

34.5.5 CMORizer script

Check that the new CMORizer script esmvaltool/cmorizers/data/formatters/datasets/<dataset>.{py,
ncl} meets standards. This includes the following items:

• In-code documentation (header) contains

1. Download instructions

2. Reference(s)

• Code quality checks

1. Code quality (e.g. no hardcoded pathnames)

2. No Codacy errors reported

34.5.6 Config file

If present, check config file <dataset>.yml in esmvaltool/cmorizers/data/cmor_config/ for correctness. Use
yamllint to check for syntax errors and common mistakes.

34.5.7 Run downloader script

If available, make sure the downloader script is working by running esmvaltool data download --config_file
<config-file> <dataset>

34.5.8 Run CMORizer

Make sure CMORizer is working by running esmvaltool data format --config_file <config-file>
<dataset>

34.5.9 Check output of CMORizer

After successfully running the new CMORizer, check that:

• Output contains (some) valid values (e.g. not only nan or zeros)

• Metadata is defined properly

Run esmvaltool/recipes/examples/recipe_check_obs.yml for new dataset.

34.5.10 RAW data

Contact the team in charge of ESMValTool data pool (@OBS-maintainers) and request to copy RAW data to RA-
WOBS/Tier2 (Tier3).

34.5. Detailed checklist for reviews 545

https://github.com/orgs/ESMValGroup/teams/obs-maintainers

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

34.5.11 CMORized data

Contact the team in charge of ESMValTool data pool (@OBS-maintainers) and request to

• Merge the pull request

• Copy CMORized dataset to OBS/Tier2 (Tier3)

• Set file access rights for new dataset

546 Chapter 34. Making a new dataset

https://github.com/orgs/ESMValGroup/teams/obs-maintainers

CHAPTER

THIRTYFIVE

SUPPORT FOR MULTIPLE VERSIONS OF A DATASET

If you plan to update a CMORizer script to support a newer version of an existing dataset, indicate in the issue or pull
request if support for previous versions should be kept. If the dataset is used in recipes, please also indicate if the
recipes should be updated with the newest dataset version.

35.1 Policy for dropping support for older dataset versions

Support for older versions should preferably be kept as long as the data are publicly available. This ensures repro-
ducibility and eases comparison of results of recipes using this dataset.

Even when previous dataset versions are no longer available or data issues have been fixed in a newer dataset version,
it is preferable to keep support for the previous version in addition to supporting the newer version. In such cases, it
is recommended to ask the recipe maintainers of recipes using the older version of the dataset to update to the newer
version if possible so that support for the old version can be dropped in the future.

35.2 Naming conventions

If the data structure is rather similar between versions, a single CMORizer script (e.g. woa.py) and config file (e.g.
WOA.yml) should be favored to handle multiple versions and avoid code duplication. Version-dependent data fixes can
be applied based on the version keys defined in the config file.

In some cases, it can be simpler to use different names for different dataset versions (e.g. GCP2018 and GCP2020).
CMORizer scripts and config files should be named accordingly.

547

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

548 Chapter 35. Support for multiple versions of a dataset

CHAPTER

THIRTYSIX

REVIEW OF PULL REQUESTS

In the ESMValTool community we use pull request reviews to ensure all code and documentation contributions are
of good quality. An introduction to code reviews can be found in The Turing Way, including why code reviews are
important and advice on how to have constructive reviews.

Most pull requests will need two reviews before they can be merged. First a technical review takes place and then a
scientific review. Once both reviewers have approved a pull request, it can be merged. These three steps are described
in more detail below. If a pull request contains only technical changes, e.g. a pull request that corrects some spelling
errors in the documentation or a pull request that fixes some installation problem, a scientific review is not needed.

If you are a regular contributor, please try to review a bit more than two other pull requests for every pull request you
create yourself, to make sure that each pull request gets the attention it deserves.

If a pull request contains backward-incompatible changes, the developer or reviewer must tag the
@ESMValGroup/esmvaltool-coreteam team to notify them of the backward-incompatible change.

36.1 1. Technical review

Technical reviews are done by the technical review team. This team consists of regular contributors that have a strong
interest and experience in software engineering.

Technical reviewers use the technical checklist from the pull request template to make sure the pull request follows the
standards we would like to uphold as a community. The technical reviewer also keeps an eye on the design and checks
that no major design changes are made without the approval from the technical lead development team. If needed, the
technical reviewer can help with programming questions, design questions, and other technical issues.

The technical review team can be contacted by writing @ESMValGroup/tech-reviewers in a comment on an issue or
pull request on GitHub.

36.2 2. Scientific review

Scientific reviews are done by the scientific review team. This team consists of contributors that have a strong interest
and experience in climate science or related domains.

Scientific reviewers use the scientific checklist from the pull request template to make sure the pull request follows the
standards we would like to uphold as a community.

The scientific review team can be contacted by writing @ESMValGroup/science-reviewers in a comment on an issue
or pull request on GitHub.

549

https://the-turing-way.netlify.app/reproducible-research/reviewing.html
https://the-turing-way.netlify.app/reproducible-research/reviewing/reviewing-motivation.html
https://the-turing-way.netlify.app/reproducible-research/reviewing/reviewing-motivation.html
https://the-turing-way.netlify.app/reproducible-research/reviewing/reviewing-recommend.html
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/.github/pull_request_template.md
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/.github/pull_request_template.md
https://github.com/orgs/ESMValGroup/teams/science-reviewers

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

36.3 3. Merge

Pull requests are merged by the @ESMValGroup/esmvaltool-coreteam. Specifically, pull requests containing a
CMORizer script can only be merged by a member of @OBS-maintainers, who will then add the CMORized data
to the OBS data pool at DKRZ and CEDA-Jasmin. The team member who does the merge first checks that both the
technical and scientific reviewer approved the pull request and that the reviews were conducted thoroughly. He or she
looks at the list of files that were changed in the pull request and checks that all relevant checkboxes from the checklist
in the pull request template have been added and ticked. Finally, he or she checks that the Pull request checks passed
and merges the pull request. The person doing the merge commit edits the merge commit message so it contains a
concise and meaningful text.

Any issues that were solved by the pull request can be closed after merging. It is always a good idea to check with the
author of an issue and ask if it is completely solved by the related pull request before closing the issue.

If a pull request contains backward-incompatible changes, the person in charge of merging must give the core develop-
ment team at least 2 weeks for objections to be raised before merging to the main branch. If a strong objection is raised
the backward-incompatible change should not be merged until the objection is resolved.

The core development team can be contacted by writing @ESMValGroup/esmvaltool-coreteam in a comment on an
issue or pull request on GitHub.

36.4 Frequently asked questions

36.4.1 How do I request a review of my pull request?

If you know a suitable reviewer, e.g. because your pull request fixes an issue that they opened or they are otherwise
interested in the work you are contributing, you can ask them for a review by clicking the cogwheel next to ‘Reviewers’
on the pull request ‘Conversation’ tab and clicking on that person. When changing code, it is a good idea to ask the
original authors of that code for a review. An easy way to find out who previously worked on a particular piece of code
is to use git blame. GitHub will also suggest reviewers based on who previously worked on the files changed in a pull
request. All recipes contain a list of the recipe authors (and some of them in addition a list of recipe maintainers). It is
a good idea to ask these people for a review.

If there is no obvious reviewer, you can attract the attention of the relevant team of reviewers by writing to
@ESMValGroup/tech-reviewers or @ESMValGroup/science-reviewers in a comment on your pull request. You can
also label your pull request with one of the labels looking for technical reviewer or looking for scientific reviewer,
though asking people for a review directly is probably more effective.

36.4.2 How do I optimize for a fast review?

When authoring a pull request, please keep in mind that it is easier and faster to review a pull request that does not
contain many changes. Try to add one new feature per pull request and change only a few files. For the ESMValTool
repository, try to limit changes to a few hundred lines of code and new diagnostics to not much more than a thousand
lines of code. For the ESMValCore repository, a pull request should ideally change no more than about a hundred lines
of existing code, though adding more lines for unit tests and documentation is fine.

If you are a regular contributor, make sure you regularly review other people’s pull requests, that way they will be more
inclined to return the favor by reviewing your pull request.

550 Chapter 36. Review of pull requests

https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/orgs/ESMValGroup/teams/obs-maintainers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://www.freecodecamp.org/news/git-blame-explained-with-examples/
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/science-reviewers
https://github.com/ESMValGroup/ESMValTool/labels/looking%20for%20technical%20reviewer
https://github.com/ESMValGroup/ESMValTool/labels/looking%20for%20scientific%20reviewer

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

36.4.3 How do I find a pull request to review?

Please pick pull requests to review yourself based on your interest or expertise. We try to be self organizing, so there is
no central authority that will assign you to review anything. People may advertise that they are looking for a reviewer
by applying the label looking for technical reviewer or looking for scientific reviewer. If someone knows you have
expertise on a certain topic, they might request your review on a pull request though. If your review is requested, please
try to respond within a few days if at all possible. If you do not have the time to review the pull request, notify the
author and try to find a replacement reviewer.

36.4.4 How do I actually do a review?

To do a review, go to the pull request on GitHub, the list of all pull requests is available here https://github.com/
ESMValGroup/ESMValCore/pulls for the ESMValCore and here https://github.com/ESMValGroup/ESMValTool/
pulls for the ESMValTool, click the pull request you would like to review.

The top comment should contain (a selection of) the checklist available in the pull request template. If it is not there,
copy the relevant items from the pull request template. Which items from the checklist are relevant, depends on which
files are changed in the pull request. To see which files have changed, click the tab ‘Files changed’. Please make
sure you are familiar with all items from the checklist by reading the content linked from Checklist for pull requests
and check all items that are relevant. Checklists with some of the items to check are available: recipe and diagnostic
checklist and dataset checklist.

In addition to the items from the checklist, good questions to start a review with are ‘Do I understand why these
changes improve the tool?’ (if not, ask the author to improve the documentation contained in the pull request and/or
the description of the pull request on GitHub) and ‘What could possibly go wrong if I run this code?’.

To comment on specific lines of code or documentation, click the ‘plus’ icon next to a line of code and write your
comment. When you are done reviewing, use the ‘Review changes’ button in the top right corner to comment on,
request changes to, or approve the pull request.

36.4.5 What if the author and reviewer disagree?

When the author and the reviewer of a pull request have difficulty agreeing on what needs to be done before the pull
request can be approved, it is usually both more pleasant and more efficient to schedule a meeting or co-working session,
for example using Google meet or Jitsi meet.

When reviewing a pull request, try to refrain from making changes to the pull request yourself, unless the author
specifically agrees to those changes, as this could potentially be perceived as offensive.

If talking about the pull requests in a meeting still does not resolve the disagreement, ask a member of the
@ESMValGroup/esmvaltool-coreteam for their opinion and try to find a solution.

36.4. Frequently asked questions 551

https://github.com/ESMValGroup/ESMValTool/labels/looking%20for%20technical%20reviewer
https://github.com/ESMValGroup/ESMValTool/labels/looking%20for%20scientific%20reviewer
https://github.com/ESMValGroup/ESMValCore/pulls
https://github.com/ESMValGroup/ESMValCore/pulls
https://github.com/ESMValGroup/ESMValTool/pulls
https://github.com/ESMValGroup/ESMValTool/pulls
https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/.github/pull_request_template.md
https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/.github/pull_request_template.md
https://meet.google.com
https://meet.jit.si
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

552 Chapter 36. Review of pull requests

CHAPTER

THIRTYSEVEN

MAINTAINING A RECIPE

As development of the ESMValTool continues, new features may be added, old ones replaced or retired or the interface
of library functions may change when updating to new versions. This or for example the withdrawal of datasets used
by a recipe can result in an existing recipe to stop working. Such “broken” recipes might require some work to fix such
problems and make the recipe fully functional again.

A first contact point for the technical lead development team (@ESMValGroup/technical-lead-development-team) in
such cases is the recipe “maintainer”. The recipe maintainer is then asked to check the affected recipe and if possible,
fix the problems or work with the technical lead development team to find a solution. Ideally, a recipe maintainer is
able to tell whether the results of a fixed recipe are scientifically valid and look as expected. Being a recipe maintainer
consists of the following tasks:

• answering timely to requests from the technical lead development team, e.g. if a recipe is broken

• if needed, checking and trying to fix their recipe(s) / working with the technical lead development team (e.g.
fixing a recipe might include updating the actual recipe, diagnostic code or documentation)

• if needed, checking the output of the fixed recipe for scientific validity (asking science lead development team
for advice if needed)

• If needed, change the documentation to reflect that some differences from the original results might appear (for
reproducibility reasons. e.g. some missing datasets in the fixed recipe produce slight differences in the results
but do not modify the conclusions)

• informing the core development team when no longer available as maintainer

Ideally, a recipe maintainer is named when contributing a new recipe to the ESMValTool. Recipe maintainers are asked
to inform the core development team (@ESMValGroup/esmvaltool-coreteam) when they are no longer able to act as
maintainer or when they would like to step down from this duty for any reason. The core development team will then
try to find a successor. If no recipe maintainer can be found, the policy on unmaintained broken (non-working) recipes
might apply eventually leading to retirement of the affected recipe.

553

https://github.com/orgs/ESMValGroup/teams/technical-lead-development-team
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

554 Chapter 37. Maintaining a recipe

CHAPTER

THIRTYEIGHT

UPGRADING A NAMELIST (RECIPE) OR DIAGNOSTIC TO
ESMVALTOOL V2

This guide summarizes the main steps to be taken in order to port an ESMValTool namelist (now called recipe) and the
corresponding diagnostic(s) from v1.0 to v2.0, hereafter also referred as the “old” and the “new version”, respectively.
The new ESMValTool version is being developed in the public git branch main. An identical version of this branch is
maintained in the private repository as well and kept synchronized on an hourly basis.

In the following, it is assumed that the user has successfully installed ESMValTool v2 and has a rough overview of its
structure (see Technical Overview).

38.1 Create a github issue

Create an issue in the public repository to keep track of your work and inform other developers. See an example here.
Use the following title for the issue: “PORTING <recipe> into v2.0”. Do not forget to assign it to yourself.

38.2 Create your own branch

Create your own branch from main for each namelist (recipe) to be ported:

git checkout main
git pull
git checkout -b <recipe>

main contains only v2.0 under the ./esmvaltool/ directory.

38.3 Convert xml to yml

In ESMValTool v2.0, the namelist (now recipe) is written in yaml format (Yet Another Markup Language format). It
may be useful to activate the yaml syntax highlighting for the editor in use. This improves the readability of the recipe
file and facilitates the editing, especially concerning the indentations which are essential in this format (like in python).
Instructions can be easily found online, for example for emacs and vim.

A xml2yml converter is available in esmvaltool/utils/xml2yml/, please refer to the corresponding README file
for detailed instructions on how to use it.

Once the recipe is converted, a first attempt to run it can be done, possibly starting with a few datasets and one diag-
nostics and proceed gradually. The recipe file ./esmvaltool/recipes/recipe_perfmetrics_CMIP5.yml can be
used as an example, as it covers most of the common cases.

555

http://www.esmvaltool.org/download/Righi_ESMValTool2-TechnicalOverview.pdf
https://github.com/ESMValGroup/ESMValTool/issues/293
http://www.yaml.org/
https://www.emacswiki.org/emacs/YamlMode
http://www.vim.org/scripts/script.php?script_id=739

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Do not forget to also rewrite the recipe header in a documentation section using the yaml syntax and, if possible,
to add themes and realms item to each diagnostic section. All keys and tags used for this part must be defined in .
/esmvaltool/config-references.yml. See ./esmvaltool/recipes/recipe_perfmetrics_CMIP5.yml for
an example.

38.4 Create a copy of the diag script in v2.0

The diagnostic script to be ported goes into the directory ./esmvaltool/diag_script/. It is recommended to get a copy
of the very last version of the script to be ported from the version1 branch (either in the public or in the private
repository). Just create a local (offline) copy of this file from the repository and add it to ../esmvaltool/diag_script/ as
a new file.

Note that (in general) this is not necessary for plot scripts and for the libraries in ./esmvaltool/diag_script/ncl/
lib/, which have already been ported. Changes may however still be necessary, especially in the plot scripts which
have not yet been fully tested with all diagnostics.

38.5 Check and apply renamings

The new ESMValTool version includes a completely revised interface, handling the communication between the python
workflow and the (NCL) scripts. This required several variables and functions to be renamed or removed. These changes
are listed in the following table and have to be applied to the diagnostic code before starting with testing.

Name in v1.0 Name in v2.0 Affected code
getenv("ESMValTool_wrk_dir") config_user_info@work_dir all .ncl scripts
getenv(ESMValTool_att) diag_script_info@att or

config_user_info@att
all .ncl scripts

xml yml all scripts
var_attr_ref(0) variable_info@reference_dataset all .ncl scripts
var_attr_ref(1) variable_info@alternative_dataset all .ncl scripts
models input_file_info all .ncl scripts
models@name input_file_info@dataset all .ncl scripts
verbosity config_user_info@log_level all .ncl scripts
isfilepresent_esmval fileexists all .ncl scripts
messaging.ncl logging.ncl all .ncl scripts
info_output(arg1, arg2, arg3) log_info(arg1) if arg3=1 all .ncl scripts
info_output(arg1, arg2, arg3) log_debug(arg1) if arg3>1 all .ncl scripts
verbosity =
config_user_info@verbosity

remove this statement all .ncl scripts

enter_msg(arg1, arg2, arg3) enter_msg(arg1, arg2) all .ncl scripts
leave_msg(arg1, arg2, arg3) leave_msg(arg1, arg2) all .ncl scripts
noop() appropriate if-else statement all .ncl scripts
nooperation() appropriate if-else stsatement all .ncl scripts
fullpaths input_file_info@filename all .ncl scripts
get_output_dir(arg1, arg2) config_user_info@plot_dir all .ncl scripts
get_work_dir config_user_info@work_dir all .ncl scripts
inlist(arg1, arg2) any(arg1.eq.arg2) all .ncl scripts
load interface_scripts/*.ncl load $diag_scripts/../

interface_scripts/interface.ncl
all .ncl scripts

<varname>_info.tmp <varname>_info.ncl in preproc dir all .ncl scripts
continues on next page

556 Chapter 38. Upgrading a namelist (recipe) or diagnostic to ESMValTool v2

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Table 1 – continued from previous page
Name in v1.0 Name in v2.0 Affected code
ncl.interface settings.ncl in run_dir and

interface_scripts/interface.ncl
all .ncl scripts

load diag_scripts/lib/ncl/ load $diag_scripts/shared/ all .ncl scripts
load plot_scripts/ncl/ load $diag_scripts/shared/plot/ all .ncl scripts
load diag_scripts/lib/ncl/rgb/ load $diag_scripts/shared/plot/

rgb/
all .ncl scripts

load diag_scripts/lib/ncl/
styles/

load $diag_scripts/shared/plot/
styles

all .ncl scripts

load diag_scripts/lib/ncl/
misc_function.ncl

load $diag_scripts/shared/plot/
misc_function.ncl

all .ncl scripts

LW_CRE, SW_CRE lwcre, swcre some yml recipes
check_min_max_models check_min_max_datasets all .ncl scripts
get_ref_model_idx get_ref_dataset_idx all .ncl scripts
get_model_minus_ref get_dataset_minus_ref all .ncl scripts

The following changes may also have to be considered:

• namelists are now called recipes and collected in esmvaltool/recipes;

• models are now called datasets and all files have been updated accordingly, including NCL functions (see table
above);

• run_dir (previous interface_data), plot_dir, work_dir are now unique to each diagnostic script, so it is
no longer necessary to define specific paths in the diagnostic scripts to prevent file collision;

• input_file_info is now a list of a list of logicals, where each element describes one dataset and one variable.
Convenience functions to extract the required elements (e.g., all datasets of a given variable) are provided in
esmvaltool/interface_scripts/interface.ncl;

• the interface functions interface_get_* and get_figure_filename are no longer available: their function-
alities can be easily reproduced using the input_file_info and the convenience functions in esmvaltool/
interface_scripts/interface.ncl to access the required attributes;

• there are now only 4 log levels (debug, info, warning, and error) instead of (infinite) numerical values in
verbosity

• diagnostic scripts are now organized in subdirectories in esmvaltool/diag_scripts/: all scripts belong-
ing to the same diagnostics are to be collected in a single subdirectory (see esmvaltool/diag_scripts/
perfmetrics/ for example). This applies also to the aux_ scripts, unless they are shared among multiple
diagnostics (in this case they go in shared/);

• the relevant input_file_info items required by a plot routine should be passed as argument to the routine itself;

• upper case characters have to be avoided in script names, if possible.

As for the recipe, the diagnostic script ./esmvaltool/diag_scripts/perfmetrics/main.ncl can be followed as
working example.

38.5. Check and apply renamings 557

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

38.6 Move preprocessing from the diagnostic script to the backend

Many operations previously performed by the diagnostic scripts, are now included in the backend, including level
extraction, regridding, masking, and multi-model statistics. If the diagnostics to be ported contains code performing
any of such operations, the corresponding code has to be removed from the diagnostic script and the respective backend
functionality can be used instead.

The backend operations are fully controlled by the preprocessors section in the recipe. Here, a number of prepro-
cessor sets can be defined, with different options for each of the operations. The sets defined in this section are applied
in the diagnostics section to preprocess a given variable.

It is recommended to proceed step by step, porting and testing each operation separately before proceeding with the
next one. A useful setting in the user configuration file (config-private.yml) called write_intermediary_cube
allows writing out the variable field after each preprocessing step, thus facilitating the comparison with the old version
(e.g., after CMORization, level selection, after regridding, etc.). The CMORization step of the new backend exactly
corresponds to the operation performed by the old backend (and stored in the climo directory, now called preprec):
this is the very first step to be checked, by simply comparing the intermediary file produced by the new backend after
CMORization with the output of the old backend in the climo directorsy (see “Testing” below for instructions).

The new backend also performs variable derivation, replacing the calculate function in the variable_defs scripts.
If the recipe which is being ported makes use of derived variables, the corresponding calculation must be ported from
the ./variable_defs/<variable>.ncl file to ./esmvaltool/preprocessor/_derive.py.

Note that the Python library esmval_lib, containing the ESMValProject class is no longer available in version 2.
Most functionalities have been moved to the new preprocessor. If you miss a feature, please open an issue on github
[https://github.com/ESMValGroup/ESMValTool/issues].

38.7 Move diagnostic- and variable-specific settings to the recipe

In the new version, all settings are centralized in the recipe, completely replacing the diagnostic-specific settings
in ./nml/cfg_files/ (passed as diag_script_info to the diagnostic scripts) and the variable-specific settings
in variable_defs/<variable>.ncl (passed as variable_info). There is also no distinction anymore between
diagnostic- and variable-specific settings: they are collectively defined in the scripts dictionary of each diagnos-
tic in the recipe and passed as diag_script_info attributes by the new ESMValTool interface. Note that the
variable_info logical still exists, but it is used to pass variable information as given in the corresponding dictio-
nary of the recipe.

38.8 Make sure the diagnostic script writes NetCDF output

Each diagnostic script is required to write the output of the anaylsis in one or more NetCDF files. This is to give the
user the possibility to further look into the results, besides the plots, but (most importantly) for tagging purposes when
publishing the data in a report and/or on a website.

For each of the plot produced by the diagnostic script a single NetCDF file has to be generated. The variable saved in
this file should also contain all the necessary metadata that documents the plot (dataset names, units, statistical methods,
etc.). The files have to be saved in the work directory (defined in cfg[‘work_dir’] and config_user_info@work_dir, for
the python and NCL diagnostics, respectively).

558 Chapter 38. Upgrading a namelist (recipe) or diagnostic to ESMValTool v2

https://github.com/ESMValGroup/ESMValTool/issues

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

38.9 Test the recipe/diagnostic in the new version

Once complete, the porting of the diagnostic script can be tested. Most of the diagnostic script allows writing the output
in a NetCDF file before calling the plotting routine. This output can be used to check whether the results of v1.0 are
correctly reproduced. As a reference for v1.0, it is recommended to use the development branch.

There are two methods for comparing NetCDF files: cdo and ncdiff. The first method is applied with the command:

cdo diffv old_output.nc new_output.nc

which will print a log on the stdout, reporting how many records of the file differ and the absolute/relative differences.

The second method produces a NetCDF file (e.g., diff.nc) with the difference between two given files:

ncdiff old_output.nc new_output.nc diff.nc

This file can be opened with ncview to visually inspect the differences.

In general, binary identical results cannot be expected, due to the use of different languages and algorithms in the
two versions, especially for complex operations such as regridding. However, difference within machine precision are
desirable. At this stage, it is essential to test all datasets in the recipe and not just a subset of them.

It is also recommended to compare the graphical output (this may be necessary if the ported diagnostic does not produce
a NetCDF output). For this comparison, the PostScript format is preferable, since it is easy to directly compare two
PostScript files with the standard diff command in Linux:

diff old_graphic.ps new_graphic.ps

but it is very unlikely to produce no differences, therefore visual inspection of the output may also be required.

38.10 Clean the code

Before submitting a pull request, the code should be cleaned to adhere to the coding standard, which are somehow
stricter in v2.0. This check is performed automatically on GitHub (CircleCI and Codacy) when opening a pull request
on the public repository. A code-style checker (nclcodestyle) is available in the tool to check NCL scripts and
installed alongside the tool itself. When checking NCL code style, the following should be considered in addition to
the warning issued by the style checker:

• two-space instead of four-space indentation is now adopted for NCL as per NCL standard;

• load statements for NCL standard libraries should be removed: these are automatically loaded since NCL v6.4.0
(see NCL documentation);

• the description of diagnostic- and variable-specific settings can be moved from the header of the diagnostic script
to the recipe, since the settings are now defined there (see above);

• NCL print and printVarSummary statements must be avoided and replaced by the log_info and log_debug
functions;

• for error and warning statements, the error_msg function can be used, which automatically include an exit
statement.

38.9. Test the recipe/diagnostic in the new version 559

http://www.ncl.ucar.edu/current_release.shtml#PreloadedScripts6.4.0

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

38.11 Update the documentation

If necessary, add or update the documentation for your recipes in the corrsponding rst file, which is now in doc\
sphinx\source\recipes. Do not forget to also add the documentation file to the list in doc\sphinx\source\
annex_c to make sure it actually appears in the documentation.

38.12 Open a pull request

Create a pull request on github to merge your branch back to main, provide a short description of what has been done
and nominate one or more reviewers.

560 Chapter 38. Upgrading a namelist (recipe) or diagnostic to ESMValTool v2

CHAPTER

THIRTYNINE

GITHUB WORKFLOW

39.1 Basics

The source code of the ESMValTool is hosted on GitHub. The following description gives an overview of the typ-
ical workflow and usage for implementing new diagnostics or technical changes into the ESMValTool. For general
information on Git, see e.g. the online documentation at https://www.git-scm.com/doc.

There are two ESMValTool GitHub repositories available:

1. The PUBLIC GitHub repository is open to the public. The ESMValTool is released as open-source software
under the Apache License 2.0. Use of the software constitutes acceptance of this license and terms. The PUBLIC
ESMValTool repository is located at https://github.com/ESMValGroup/ESMValTool

2. The PRIVATE GitHub repository is restricted to the ESMValTool Development Team. This repository is only
accessible to ESMValTool developers that have accepted the terms of use for the ESMValTool development
environment. The use of the ESMValTool software and access to the private ESMValTool GitHub repository
constitutes acceptance of these terms. When you fork or copy this repository, you must ensure that you do not
copy the PRIVATE repository into an open domain! The PRIVATE ESMValTool repository for the ESMValTool
development team is located at https://github.com/ESMValGroup/ESMValTool-private

All developments can be made in either of the two repositories. The creation of FEATURE BRANCHES (see below),
however, is restricted to registered ESMValTool developers in both repositories. We encourage all developers to join
the ESMValTool development team. Please contact the ESMValTool Core Development Team if you want to join the
ESMValTool development team. The PRIVATE GitHub repository offers a central protected environment for ESM-
ValTool developers who would like to keep their contributions undisclosed (e.g., unpublished scientific work, work in
progress by PhD students) while at the same time benefiting from the possibilities of collaborating with other ESM-
ValTool developers and having a backup of their work. FEATURE BRANCHES created in the PRIVATE repository are
only visible to the ESMValTool development team but not to the public. The concept of a PRIVATE repository has
proven to be very useful to efficiently share code during the development across institutions and projects in a common
repository without having the contributions immediately accessible to the public.

Both, the PUBLIC and the PRIVATE repository, contain the following kinds of branches:

• MAIN BRANCH (official releases),

• DEVELOPMENT BRANCH (includes approved new contributions but version is not yet fully tested),

• FEATURE BRANCH (development branches for new features and diagnostics created by developers, the naming
convention for FEATURE BRANCHES is <Project>_<myfeature>).

561

https://www.git-scm.com/doc
https://github.com/ESMValGroup/ESMValTool
https://github.com/ESMValGroup/ESMValTool-private

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

39.2 Access rights

• Write access to the MAIN and DEVELOPMENT BRANCH in both, the PUBLIC and the PRIVATE GitHub
repositories, is restricted to the ESMValTool Core Development Team.

• FEATURE BRANCHES in both the PUBLIC and the PRIVATE repository can be created by all members of
the ESMValTool development team (i.e. members in the GitHub organization “ESMValGroup”). If needed,
branches can be individually write-protected within each repository so that other developers cannot accidently
push changes to these branches.

The MAIN BRANCH of the PRIVATE repository will be regularly synchronized with the MAIN BRANCH of the PUB-
LIC repository (currently by hand). This ensures that they are identical at all times (see schematic in Figure Fig. 1).
The recommended workflow for members of the ESMValTool development team is to create additional FEATURE
BRANCHES in either the PUBLIC or the PRIVATE repository, see further instructions below.

Fig. 1: Schematic diagram of the ESMValTool GitHub repositories.

39.3 Workflow

The following description gives an overview of the typical workflow and usage for implementing new diagnostics or
technical changes into the ESMValTool. The description assumes that your local development machine is running a
Unix-like operating system. For a general introduction to Git tutorials such as, for instance, https://www.git-scm.com/
docs/gittutorial are recommended.

562 Chapter 39. GitHub Workflow

https://www.git-scm.com/docs/gittutorial
https://www.git-scm.com/docs/gittutorial

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

39.3.1 Getting started

First make sure that you have Git installed on your development machine. On shared machines, software is usually
installed using the environment modules. Try e.g.

module avail git

if this is the case. You can ask your system administrator for assistance. You can test this with the command:

git --version

In order to properly identify your contributions to the ESMValTool you need to configure your local Git with some
personal data. This can be done with the following commands:

git config --global user.name "YOUR NAME"
git config --global user.email "YOUR EMAIL"

Note: For working on GitHub you need to create an account and login to https://github.com/.

39.3.2 Working with the ESMValTool GitHub Repositories

As a member of the ESMValTool development team you can create FEATURE BRANCHES in the PUBLIC as well as
in the PRIVATE repository. We encourage all ESMValTool developers to use the following workflow for long-lived
developments (>2 weeks).

• Login to GitHub.com

• On GitHub, go to the website of the ESMValTool repository (https://github.com/ESMValGroup/
ESMValTool-private or https://github.com/ESMValGroup/ESMValTool)

• Click on the button create FEATURE BRANCH

• Select the “DEVELOPMENT” BRANCH and create a new FEATURE BRANCH for the diagnostic/feature
you want to implement. Please follow the following naming convention for your new FEATURE BRANCH:
<Project>_<myfeature>.

• Click the button “Clone or Download” and copy the URL shown there

• Open a terminal window and go to the folder where you would like to store your local copy of the ESMValTool
source

• Type git clone, and paste the URL:

39.3. Workflow 563

https://github.com/
https://github.com/ESMValGroup/ESMValTool-private
https://github.com/ESMValGroup/ESMValTool-private
https://github.com/ESMValGroup/ESMValTool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

git clone <URL_FROM_CLIPBOARD>

This will clone the ESMValTool repository at GitHub to a local folder. You can now query the status of your local
working copy with:

git status

You will see that you are on a branch called main and your local working copy is up to date with the remote repository.
With

git branch --all

you can list all available remote and local branches. Now switch to your feature branch by:

git checkout <NAME_OF_YOUR_FEATURE_BRANCH>

You can now start coding. To check your current developments you can use the command

git status

You can add new files and folders that you want to have tracked by Git using:

git add <NEW_FILE|FOLDER>

Commit your tracked changes to your local working copy via:

git commit -m "YOUR COMMIT MESSAGE"

You can inspect your changes with (use man git-log for all options):

git log

To share your work and to have an online backup, push your local development to your FEATURE BRANCH on GitHub:

git push origin <YOUR_FEATURE_BRANCH>

Note: An overview on Git commands and best practices can be found e.g. here: https://zeroturnaround.com/rebellabs/
git-commands-and-best-practices-cheat-sheet/

39.3.3 Pull requests

Once your development is completely finished, go to the GitHub website of the ESMValTool repository and switch to
your FEATURE BRANCH. You can then initiate a pull request by clicking on the button “New pull request”. Select the
DEVELOPMENT BRANCH as “base branch” and click on “Create pull request”. Your pull request will then be tested,
discussed and implemented into the DEVELPOMENT BRANCH by the ESMValTool Core Development Team.

Attention: When creating a pull request, please carefully review the requirements and recommendations in CON-
TRIBUTING.md and try to implement those (see also checklist in the pull request template). It is recommended
that you create a draft pull request early in the development process, when it is still possible to implement feedback.
Do not wait until shortly before the deadline of the project you are working on. If you are unsure how to implement
any of the requirements, please do not hesitate to ask for help in the pull request.

564 Chapter 39. GitHub Workflow

https://zeroturnaround.com/rebellabs/git-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/git-commands-and-best-practices-cheat-sheet/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

39.3.4 GitHub issues

In case you encounter a bug of if you have a feature request or something similar you can open an issue on the PUBLIC
ESMValTool GitHub repository.

39.4 General do-s and don’t-s

39.4.1 Do-s

• Create a FEATURE BRANCH and use exclusively this branch for developing the ESMValTool. The naming
convention for FEATURE BRANCHES is <Project>_<myfeature>.

• Comment your code as much as possible and in English.

• Use short but self-explanatory variable names (e.g., model_input and reference_input instead of xm and xr).

• Consider a modular/functional programming style. This often makes code easier to read and deletes intermediate
variables immediately. If possible, separate diagnostic calculations from plotting routines.

• Consider reusing or extending existing code. General-purpose code can be found in esmval-
tool/diag_scripts/shared/.

• Comment all switches and parameters including a list of all possible settings/options in the header section of
your code (see also . . .).

• Use templates for recipes (see . . .) and diagnostics (see . . .) to help with proper documentation.

• Keep your FEATURE BRANCH regularly synchronized with the DEVELOPMENT BRANCH (git merge).

• Keep developments / modifications of the ESMValTool framework / backend / basic structure separate from
developments of diagnostics by creating different FEATURE BRANCHES for these two kinds of developments.
Create FEATURE BRANCHES for changes / modifications of the ESMValTool framework only in the PUBLIC
repository.

39.4.2 Don’t-s

• Do not use other programming languages than the ones currently supported (Python, R, NCL, Julia). If you are
unsure what language to use, Python is probably the best choice, because it has very good libraries available and
is supported by a large community. Contact the ESMValTool Core Development Team if you wish to use another
language, but remember that only open-source languages are supported by the ESMValTool.

• Do not develop without proper version control (see do-s above).

• Avoid large (memory, disk space) intermediate results. Delete intermediate files/variables or see modu-
lar/functional programming style.

• Do not use hard-coded pathnames or filenames.

• Do not mix developments / modifications of the ESMValTool framework and developments / modifications of
diagnostics in the same FEATURE BRANCH.

39.4. General do-s and don’t-s 565

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

566 Chapter 39. GitHub Workflow

CHAPTER

FORTY

MOVING WORK FROM THE PRIVATE TO THE PUBLIC REPOSITORY

In case you develop a new diagnostic with the ESMValTool, and you plan on publishing the results of the diagnostic in
a peer-reviewed paper, you might want to develop the diagnostic in a slightly less open setting than the ESMValTool-
public repository. That is what the ESMValTool-private repository is for. It would be great, though, if you would make
the diagnostic available for the whole community after your paper was accepted. The steps that you need to take to
develop a diagnostic in the private repository and then open a pull request for it in the public repository are described
in the following:

40.1 1. Clone the private repository

For example, to clone a repository called esmvaltool-private, you would run:

git clone git@github.com:esmvalgroup/esmvaltool-private

or

git clone https://github.com/esmvalgroup/esmvaltool-private

40.2 2. Make a branch to develop your recipe and diagnostic

git checkout main

git pull

git checkout -b my-awesome-diagnostic

40.3 3. Develop your diagnostic in that branch and push it to the pri-
vate repository

git push -u origin my-awesome-diagnostic

the first time and

git push

any other time

567

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

40.4 4. Write and submit your paper

40.5 5. Push your branch to the public repository

Add the public repository as a remote

git remote add public git@github.com:esmvalgroup/esmvaltool

or

git remote add public https://github.com/esmvalgroup/esmvaltool

and push your branch to the public repository

git push -u public my-awesome-diagnostic

40.6 6. Make a pull request in the public repository

Go to https://github.com/esmalgroup/esmvaltool/pulls and click the ‘New pull request button’. Process reviewer com-
ments and get it merged as described in Review of pull requests.

40.7 7. Obtain a DOI for your code and add it to your paper

Wait for a new release of ESMValTool. Releases are scheduled normally every four months. Find the release schedule
here: Release schedule. With the next release, your diagnostic recipe and source code will automatically be included
in the archive on Zenodo and you can add the DOI from Zenodo to your paper: https://zenodo.org/record/3698045

568 Chapter 40. Moving work from the private to the public repository

https://github.com/esmalgroup/esmvaltool/pulls
https://zenodo.org/record/3698045

CHAPTER

FORTYONE

RELEASE STRATEGY AND PROCEDURE

These pages detail the release strategy and technical procedures during a release; these pages are very helpful if you
are the next Release Manager.

For the release schdule, check the Release schedule to see upcoming and past releases.

41.1 Release schedule and procedure for ESMValCore and ESMVal-
Tool

This document describes the process for the release of ESMValCore and ESMValTool. By following a defined process,
we streamline the work, reduce uncertainty about required actions, and clarify the state of the code for the user.

ESMValTool follows a strategy of timed releases. That means that we do releases with a regular frequency and all
features that are implemented up to a certain cut-off-point can go into the upcoming release; those that are not are
deferred to the next release. This means that generally no release will be delayed due to a pending feature. Instead, the
regular nature of the release guarantees that every feature can be released in a timely manner even if a specific target
release is missed.

Because of limited resources, only the latest released versions of ESMValTool and ESMValCore is maintained. If
your project requires longer maintenance or you have other concerns about the release strategy, please contact the
ESMValTool core development team, see Support.

41.1.1 Overall Procedure

Timeline

1. Contributors assign issues (and pull requests) that they intend to finish before the due date, there is a separate
milestone for ESMValCore and ESMValTool

2. The ESMValCore feature freeze takes place on the ESMValCore due date

3. Some additional testing of ESMValCore takes place

4. ESMValCore release

5. The ESMValTool feature freeze takes place

6. Some additional testing of ESMValTool takes place

7. ESMValTool release

8. Soon after the release, the core development team meets to coordinate the content of the milestone for the next
release

569

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Fig. 1: Example of a Release Timeline (in this case for 2.1.0)

Release schedule

With the following release schedule, we strive to have three releases per year and to avoid releases too close to holidays,
as well as avoiding weekends.

Upcoming releases

• 2.11.0 (Release Manager: Met Office: Emma Hogan, Chris Billows, Ed Gillett)

Planned Done Event Changelog
2024-04-22 ESMValCore Feature Freeze
2023-05-03 ESMValCore released
2023-05-06 ESMValTool Feature Freeze
2023-05-17 ESMValTool released

Past releases

• 2.10.0 (Release Manager: Klaus Zimmermann)

Planned Done Event Changelog
2023-10-02 ESMValCore Feature Freeze
2023-10-09 2023-12-19 ESMValCore v2.10.0 released v2.10.0
2023-10-16 ESMValTool Feature Freeze
2023-10-16 2023-12-20 ESMValTool v2.10.0 released v2.10.0

• 2.9.0 (Release Manager: Bouwe Andela)

570 Chapter 41. Release strategy and procedure

https://github.com/ehogan
https://github.com/chrisbillowsMO
https://github.com/mo-gill
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.10.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-10-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.10.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-10-0
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Planned Done Event Changelog
2023-06-05 ESMValCore Feature Freeze
2023-06-12 2023-07-04 ESMValCore v2.9.0 released v2.9.0
2023-06-19 ESMValTool Feature Freeze
2023-06-26 2023-07-06 ESMValTool v2.9.0 released v2.9.0

• 2.8.1 (Bugfix, Release Manager: Valeriu Predoi)

Done Event Changelog
2023-06-02 ESMValCore Release 2.8.1 v2.8.1

• 2.8.0 (Release Manager: Rémi Kazeroni)

Planned Done Event Changelog
2023-03-03 ESMValCore Feature Freeze
2023-03-20 2023-03-23 ESMValCore Release 2.8.0 v2.8.0
2023-03-17 ESMValTool Feature Freeze
2023-03-27 2023-03-28 ESMValTool Release 2.8.0 v2.8.0

• 2.7.1 (Bugfix, Release Manager: Valeriu Predoi)

Done Event Changelog
2022-12-12 ESMValCore Release 2.7.1 v2.7.1

• 2.7.0 (Release Manager: Valeriu Predoi)

Planned Done Event Changelog
2022-10-03 ESMValCore Feature Freeze
2022-10-10 2022-10-13 ESMValCore Release 2.7.0 v2.7.0
2022-10-17 ESMValTool Feature Freeze
2022-10-24 2022-10-28 ESMValTool Release 2.7.0 v2.7.0

• 2.6.0 (Release Manager: Saskia Loosveldt Tomas)

Planned Done Event Changelog
2022-06-06 ESMValCore Feature Freeze
2022-06-13 2022-07-15 ESMValCore Release 2.6.0 v2.6.0
2022-06-20 ESMValTool Feature Freeze
2022-06-27 2022-07-25 ESMValTool Release 2.6.0 v2.6.0

• 2.5.0 (Coordinating Release Manager: Axel Lauer, team members: Manuel Schlund, Rémi Kazeroni)

Planned Done Event Changelog
2022-02-07 ESMValCore Feature Freeze
2022-02-14 2022-03-14 ESMValCore Release 2.5.0 v2.5.0
2022-02-21 ESMValTool Feature Freeze
2022-02-28 2022-03-15 ESMValTool Release 2.5.0 v2.5.0

41.1. Release schedule and procedure for ESMValCore and ESMValTool 571

https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.9.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-9-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.9.0
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.8.1
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-8-1
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.8.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-8-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.8.0
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.7.1
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-7-1
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.7.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-7-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.7.0
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.6.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-6-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.6.0
https://github.com/axel-lauer
https://github.com/schlunma
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.5.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-5-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.5.0

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• 2.4.0 (Release Manager: Klaus Zimmermann)

Planned Done Event Changelog
2021-10-04 ESMValCore Feature Freeze
2021-10-11 2021-11-08 ESMValCore Release 2.4.0 v2.4.0
2021-10-18 ESMValTool Feature Freeze
2021-10-25 2021-11-09 ESMValTool Release 2.4.0 v2.4.0

• 2.3.1 (Bugfix, Release Manager: Klaus Zimmermann)

Done Event Changelog
2021-07-23 ESMValCore Release 2.3.1 v2.3.1

• 2.3.0 (Release Manager: Klaus Zimmermann)

Planned Done Event Changelog
2021-06-07 ESMValCore Feature Freeze
2021-06-14 2021-06-14 ESMValCore Release 2.3.0 v2.3.0
2021-06-21 ESMValTool Feature Freeze
2021-06-28 2021-07-27 ESMValTool Release 2.3.0 v2.3.0

• 2.2.0 (Release Manager: Javier Vegas-Regidor)

Planned Done Event Changelog
2021-02-01 ESMValCore Feature Freeze
2021-02-07 2021-02-09 ESMValCore Release 2.2.0 v2.2.0
2021-02-14 ESMValTool Feature Freeze
2021-02-21 2021-02-25 ESMValTool Release 2.2.0 v2.2.0

• 2.1.1 (Bugfix, Release Manager: Valeriu Predoi)

Done Event Changelog
2020-12-01 ESMValTool Release 2.1.1 v2.1.1

• 2.1.0 (Release Manager: Valeriu Predoi)

Planned Done Event Changelog
2020-10-05 ESMValCore Feature Freeze
2020-10-12 2020-10-12 ESMValCore Release 2.1.0 v2.1.0
2020-10-19 ESMValTool Feature Freeze
2020-10-26 2020-10-26 ESMValTool Release 2.1.0 v2.1.0

• 2.0.0 (Release Manager: Bouwe Andela)

572 Chapter 41. Release strategy and procedure

https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.4.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-4-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.4.0
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.3.1
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-3-1
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.3.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-3-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.3.0
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.2.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-2-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.2.0
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.1.1
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.1.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-1-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.1.0
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Planned Done Event Changelog
2020-07-01 ESMValCore Feature Freeze
2020-07-20 2020-07-20 ESMValCore Release 2.0.0 v2.0.0
2020-07-22 ESMValTool Feature Freeze
2020-08-03 2020-08-03 ESMValTool Release 2.0.0 v2.0.0

Detailed timeline steps

These are the detailed steps to take to make a release.

1. Populate the milestone

• The core development team will make sure it adds issues that it intends to work on as early as possible.

• Any contributor is welcome to add issues or pull requests that they intend to work on themselves to a
milestone.

2. ESMValCore feature freeze, testing, and release candidates

• A release branch is created and branch protection rules are set up so only the release manager (i.e. the
person in charge of the release branch) can push commits to that branch.

• Make a release candidate with the release branch following the ESMValCore release instructions.

• Uncomment the release candidate channel item (i.e. conda-forge/label/esmvalcore_rc) in the
environment.yml of ESMValTool to add it to the list of channels used. Adjust the pin on ESMVal-
Core after each release candidate (e.g. esmvalcore==2.8.0rc1). Check that the environment creation of
ESMValTool works fine and contains the latest release candidate version.

• Run all the recipes (optionally with a reduced amount of data) to check that they still work with the release
candidate.

• If a bug is discovered that needs to be fixed before the release, a pull request can be made to the main
branch to fix the bug. The person making the pull request can then ask the release manager to cherry-pick
that commit into the release branch.

• Make another release candidate including the bugfix(es) and run the affected recipes again to check for
further bugs.

• Make as many release candidates for ESMValCore as needed in order to fix all the detected bugs.

3. ESMValTool feature freeze

• A release branch is created and branch protection rules are set up so only the release manager (i.e. the
person in charge of the release branch) can push commits to that branch.

• The creation of the release branch is announced to the ESMValTool development team along with the
procedures to use the branch for testing and making last-minute changes (see next step).

4. Some additional testing of ESMValTool

• Run all the recipes to check that they still work and generate the overview HTML pages.

• Upload the results to the webpage at https://esmvaltool.dkrz.de/shared/esmvaltool/.

• Compare the results to those obtained with the previous release.

• Create a GitHub discussion to communicate about the results.

• If there are differences with the previous release, ask recipe maintainers or authors to review the plots and
NetCDF files of their diagnostics, for example by mentioning them in the discussion.

41.1. Release schedule and procedure for ESMValCore and ESMValTool 573

https://github.com/ESMValGroup/ESMValCore/releases/tag/v2.0.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-0-0
https://github.com/ESMValGroup/ESMValTool/releases/tag/v2.0.0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/contributing.html#how-to-make-a-release
https://esmvaltool.dkrz.de/shared/esmvaltool/
https://github.com/ESMValGroup/ESMValTool/discussions
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax#mentioning-people-and-teams

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• If a bug is discovered that needs to be fixed before the release, a pull request can be made to the main
branch to fix the bug. The person making the pull request can then ask the release manager to cherry-pick
that commit into the release branch.

• Update the list of broken recipes with new recipes that could not be run successfully during the testing.
Open a separate GitHub issue for each failing recipe and assign the next milestone. Open an overview
issue, see Issue #3484 for an example, and review past overview issues. Take action to ensure that the
broken recipe policy is followed.

5. ESMValCore release

• Make the official ESMValCore release with the last release candidate by following the ESMValCore release
instructions.

6. ESMValTool release

• Pin ESMValCore to the same version as ESMValTool in the environment.yml and on conda-forge. This
way, we make sure that ESMValTool uses the ESMValCore version with which it has been tested. Make
sure to comment again the release candidate channel once ESMValCore has been released.

• Make the release by following How to make an ESMValTool release.

7. Announce the releases

• Ask the user engagement team to announce the releases to the user mailing list, the development team
mailing list, and on twitter.

8. Core development team meets to coordinate the content of next milestone

• Create a doodle for the meeting or even better, have the meeting during an ESMValTool workshop

• Prepare the meeting by filling the milestone

• At the meeting, discuss

– If the proposed issues cover everything we would like to accomplish

– Are there things we need to change about the release process

– Who will be the release manager(s) for the next release

41.1.2 Bugfix releases

Next to the feature releases described above, it is also possible to have bugfix releases (2.0.1, 2.0.2, etc). In general
bugfix releases will only be done on the latest release, and may include ESMValCore, ESMValTool, or both.

Procedure

1. One or more issues are resolved that are deemed (by the core development team) to warrant a bugfix release.

2. A release branch is created from the last release tag and the commit that fixes the bug/commits that fix the bugs
are cherry-picked into it from the main branch.

3. Some additional testing of the release branch takes place.

4. The release takes place.

Compatibility between ESMValTool and ESMValCore is ensured by the appropriate version pinning of ESMValCore
by ESMValTool.

574 Chapter 41. Release strategy and procedure

https://github.com/ESMValGroup/ESMValTool/issues/3484
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/contributing.html#how-to-make-a-release
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/contributing.html#how-to-make-a-release
https://github.com/conda-forge/esmvaltool-suite-feedstock

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

41.1.3 Glossary

Feature freeze

The date on which no new features may be submitted for the upcoming release. After this date, only critical bug fixes
can still be included to the Release branch. Development work can continue in the main branch. If you are unsure
whether new developments could interfere with the release, check with the Release manager.

Milestone

A milestone is a list of issues and pull-request on GitHub. It has a due date, this date is the date of the feature freeze.
Adding an issue or pull request indicates the intent to finish the work on this issue before the due date of the milestone.
If the due date is missed, the issue can be included in the next milestone.

Release manager

The person in charge of making the release, both technically and organizationally. Appointed for a single release.
Check the Release schedule to see who is the manager of the next release.

Release branch

The release branch can be used to do some additional testing before the release, while normal development work
continues in the main branch. It will be branched off from the main branch after the feature freeze and will be used to
make the release on the release date. The only way to still get something included in the release after the feature freeze
is to ask the release manager to cherry-pick a commit from the main branch into this branch.

41.1.4 How to make an ESMValTool release

Before the actual release, a number of tests, and pre-release steps must be performed, a detailed workflow description
can be found here Release: recipes runs and comparison.

The release manager makes the release, assisted by the release manager of the previous release, or if that person is
not available, another previous release manager. Perform the steps listed below with two persons, to reduce the risk of
error.

Note: The previous release manager ensures the current release manager has the required administrative permissions
to make the release. Consider the following services: conda-forge, DockerHub, PyPI, and readthedocs.

The release of ESMValTool should come after the release of ESMValCore. To make a new release of the package,
follow these steps:

41.1. Release schedule and procedure for ESMValCore and ESMValTool 575

https://github.com/conda-forge/esmvaltool-suite-feedstock
https://hub.docker.com/orgs/esmvalgroup
https://pypi.org/project/ESMValTool/
https://readthedocs.org/dashboard/esmvaltool/users/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

1. Check that all tests and builds work

• Check that the nightly test run on CircleCI was successful.

• Check that the GitHub Actions test runs were successful.

• Check that the documentation builds successfully on readthedocs.

• Check that the Docker images are building successfully.

All tests should pass before making a release (branch).

2. Increase the version number

The version number is automatically generated from the information provided by git using setuptools-scm, but a static
version number is stored in CITATION.cff. Make sure to update the version number and release date in CITATION.
cff. See https://semver.org for more information on choosing a version number. Make sure that the ESMValCore
version that is being used is set to the latest version. See the dependencies section in order to find more details on how
update the ESMValCore version. Make a pull request and get it merged into main.

3. Add release notes

Use the script draft_release_notes.py to create a draft of the release notes. This script uses the titles and labels of merged
pull requests since the previous release. Open a discussion to allow members of the development team to nominate pull
requests as highlights. Add the most voted pull requests as highlights at the beginning of changelog. After the highlights
section, list any backward incompatible changes that the release may include. The backward compatibility policy lists
the information that should be provided by the developer of any backward incompatible change. Make sure to also list
any deprecations that the release may include, as well as a brief description on how to upgrade a deprecated feature.
Review the results, and if anything needs changing, change it on GitHub and re-run the script until the changelog looks
acceptable. Copy the result to the file doc/sphinx/source/changelog.rst. If possible, try to set the script dates
to the date of the release you are managing. Make a pull request and get it merged into main.

4. Create a release branch

Create a branch off the main branch and push it to GitHub. Ask someone with administrative permissions to set up
branch protection rules for it so only you and the person helping you with the release can push to it. Announce the
name of the branch in an issue and ask the members of the ESMValTool development team to run their favourite recipe
using this branch.

5. Make the release on GitHub

Do a final check that all tests on CircleCI and GitHub Actions completed successfully. Then click the releases tab and
create the new release from the release branch (i.e. not from main). The release tag always starts with the letter v
followed by the version number, e.g. v2.1.0.

576 Chapter 41. Release strategy and procedure

https://circleci.com/gh/ESMValGroup/ESMValTool/tree/main
https://github.com/ESMValGroup/ESMValTool/actions
https://readthedocs.org/projects/esmvaltool/builds/
https://hub.docker.com/repository/docker/esmvalgroup/esmvaltool/builds
https://pypi.org/project/setuptools-scm/
https://semver.org
https://github.com/orgs/ESMValGroup/teams/esmvaltool-developmentteam
https://github.com/ESMValGroup/ESMValTool/releases

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

6. Merge the release branch back into the main branch

When the (pre-)release is tagged, it is time to merge the release branch back into main. We do this for two reasons,
namely, one, to mark the point up to which commits in main have been considered for inclusion into the present
release, and, two, to inform setuptools-scm about the version number so that it creates the correct version number in
main. However, unlike in a normal merge, we do not want to integrate any of the changes from the release branch into
main. This is because all changes that should be in both branches, i.e. bug fixes, originate from main anyway and the
only other changes in the release branch relate to the release itself. To take this into account, we perform the merge in
this case on the command line using the ours merge strategy (git merge -s ours), not to be confused with the ours
option to the ort merge strategy (git merge -X ours). For details about merge strategies, see the above-linked page.
To execute the merge use following sequence of steps

git fetch
git checkout main
git pull
git merge -s ours v2.1.x
git push

Note that the release branch remains intact and you should continue any work on the release on that branch.

7. Create and upload the PyPI package

The package is automatically uploaded to the PyPI by a GitHub action. If has failed for some reason, build and upload
the package manually by following the instructions below.

Follow these steps to create a new Python package:

• Check out the tag corresponding to the release, e.g. git checkout tags/v2.1.0

• Make sure your current working directory is clean by checking the output of git status and by running git
clean -xdf to remove any files ignored by git.

• Install the required packages: python3 -m pip install --upgrade pep517 twine

• Build the package: python3 -m pep517.build --source --binary --out-dir dist/ . This com-
mand should generate two files in the dist directory, e.g. ESMValTool-2.1.0-py3-none-any.whl and
ESMValTool-2.1.0.tar.gz.

• Upload the package: python3 -m twine upload dist/* You will be prompted for an API token if you have
not set this up before, see here for more information.

You can read more about this in Packaging Python Projects.

8. Create the Conda package

The esmvaltool package is published on the conda-forge conda channel. This is done via a pull request on the
esmvaltool-suite-feedstock repository.

After the upload of the PyPI package, this pull request is automatically opened by a bot. An example pull request
can be found here. Follow the instructions by the bot to finalize the pull request. This step mostly contains updating
dependencies that have been changed during the last release cycle. Once approved by the feedstock maintainers they
will merge the pull request, which will in turn publish the package on conda-forge some time later. Contact the feedstock
maintainers if you want to become a maintainer yourself.

41.1. Release schedule and procedure for ESMValCore and ESMValTool 577

https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-ours-1
https://pypi.org/project/ESMValTool/
https://pypi.org/help/#apitoken
https://packaging.python.org/tutorials/packaging-projects/
https://anaconda.org/conda-forge
https://github.com/conda-forge/esmvaltool-suite-feedstock
https://github.com/conda-forge/esmvaltool-suite-feedstock/pull/5
https://github.com/conda-forge/esmvaltool-suite-feedstock#feedstock-maintainers

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

9. Check the Docker images

There are three main Docker container images available for ESMValTool on Dockerhub:

• esmvalgroup/esmvaltool:stable, built from docker/Dockerfile, this is a tag that is always the same as the
latest released version. This image is only built by Dockerhub when a new release is created.

• esmvalgroup/esmvaltool:development, built from docker/Dockerfile.dev, this is a tag that always points
to the latest development version of ESMValTool. This image is built by Dockerhub every time there is a new
commit to the main branch on Github.

• esmvalgroup/esmvaltool:experimental, built from docker/Dockerfile.exp, this is a tag that always points
to the latest development version of ESMValTool with the latest development version of ESMValCore. Note that
some recipes may not work as expected with this image because the ESMValTool development version has been
designed to work with the latest release of ESMValCore (i.e. not with the development version). This image is
built by Dockerhub every time there is a new commit to the ESMValTool main branch on Github.

In addition to the three images mentioned above, there is an image available for every release (e.g. esmvalgroup/
esmvaltool:v2.5.0). When working on the Docker images, always try to follow the best practices.

After making the release, check that the Docker image for that release has been built correctly by

1. checking that the version tag is available on Dockerhub and the stable tag has been updated,

2. running some recipes with the stable tag Docker container, for example one recipe for Python, NCL, R, and
Julia,

3. running a recipe with a Singularity container built from the stable tag.

If there is a problem with the automatically built container image, you can fix the problem and build a new image
locally. For example, to build and upload the container image for v2.5.0 of the tool run:

git checkout v2.5.0
git clean -x
docker build -t esmvalgroup/esmvaltool:v2.5.0 . -f docker/Dockerfile
docker push esmvalgroup/esmvaltool:v2.5.0

and if it is the latest release that you are updating, also run

docker tag esmvalgroup/esmvaltool:v2.5.0 esmvalgroup/esmvaltool:stable
docker push esmvalgroup/esmvaltool:stable

Note that the docker push command will overwrite the existing tags on Dockerhub.

If you would like to make a small change to an existing Docker container image, it is also possible to do just that
using the docker commit command. Note that this is only recommended for very small changes, as it is not repro-
ducible and it will add an extra layer, increasing the size of the image. To do this, start the container with docker
run -it --entrypoint /bin/bash esmvalgroup/esmvaltool:v2.5.0 and make your changes. Exit the con-
tainer by pressing ctrl+d and find it back by running docker ps -a. Find the CONTAINER ID of the image you
would like to save and run docker commit -c 'ENTRYPOINT ["conda", "run", "--name", "esmvaltool",
"esmvaltool"]' 633696a8b53a esmvalgroup/esmvaltool:v2.5.0where 633696a8b53c is the an example of
a container ID, replace it by by the actual ID.

578 Chapter 41. Release strategy and procedure

https://hub.docker.com/r/esmvalgroup/esmvaltool/tags
https://github.com/ESMValGroup/ESMValTool/blob/main/docker/Dockerfile
https://github.com/ESMValGroup/ESMValTool/blob/main/docker/Dockerfile.dev
https://github.com/ESMValGroup/ESMValTool/blob/main/docker/Dockerfile.exp
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://hub.docker.com/r/esmvalgroup/esmvaltool/tags
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/commit/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

41.1.5 Changelog

• 2020-09-09 Converted to rst and added to repository (future changes tracked by git)

• 2020-09-03 Update during video conference (present: Bouwe Andela, Niels Drost, Javier Vegas, Valeriu Predoi,
Klaus Zimmermann)

• 2020-07-27 Update including tidying up and Glossary by Klaus Zimmermann and Bouwe Andela

• 2020-07-23 Update to timeline format by Bouwe Andela and Klaus Zimmermann

• 2020-06-08 First draft by Klaus Zimmermann and Bouwe Andela

41.2 Release: recipes runs and comparison

The release procedure for ESMValTool is a fairly involved process (at the moment), so it is important to be very well
organized and to have documented each procedural steps, so that the next release manager can follow said steps, and
finalize the release without any delays.

The workflow below assumes an ESMValCore release candidate, or a completed stable release, have been released and
deployed on conda-forge and PyPI; it also assumes the release manager has access to accounts on DKRZ/Levante.

Below is a list of steps that the release manager, together with the previous release manager, should go through before
the actual release; these include testing the new code by running all available recipes in the main branch, and comparing
the output against the previous release.

41.2.1 Open an issue on GitHub

First, open an issue on GitHub where the testing workflow before the release is documented (see example https://github.
com/ESMValGroup/ESMValTool/issues/2881). Name it something relevant like “Recipe testing and comparison for
release 2.x.x”, and populate the issue description with information about where the testing is taking place, what tools
are used, and what versions, here are some suggestions:

• path to the output directories on DKRZ/Levante

We should document various utilities’ versions so that the work can be reproduced in case there is an issue, or release
work needs to be picked up mid-release by another release manager:

• documenting conda/mamba versions:

mamba --version

• documenting git branch and its state:

git status

Furthermore, the runtime environment needs to be documented: make a copy of the environment file, and attach it in
the release testing issue; to record the environment in a yaml file use e.g.

conda env export > ToolEnv_v2xx_Test.txt

Modifications to configuration files need to be documented as well. To test recipes, it is recommended to only use the
default options and DKRZ data directories, simply by uncommenting the DKRZ-Levante block of a newly generated
config-user.yml file.

41.2. Release: recipes runs and comparison 579

https://docs.dkrz.de/
https://github.com/ESMValGroup/ESMValTool/issues/2881
https://github.com/ESMValGroup/ESMValTool/issues/2881

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

41.2.2 Submit run scripts - test recipe runs

We are now ready to start running all the available recipes, to compare output against previous release. Running
is currently done via batch scripts submitted to a schedulers (SLURM). Generate the submission scripts using the
generate.py utility Python script.

You will have to set the name of your environment, your email address (if you want to get email notifications for
successful/failed jobs) and the name of the directory you want to store the log files of the jobs. A compute project from
which resources are billed needs to be set, and the default partition is set to interactive. More information on running
jobs with SLURM on DKRZ/Levante can be found in the DKRZ documentation.

You can also specify the path to your config-user.yml file where max_parallel_tasks can be set. The script was
found to work well with max_parallel_tasks=8. Some recipes need to be run with max_parallel_tasks=1 (large
memory requirements, CMIP3 data, diagnostic issues, . . .). These recipes are listed in ONE_TASK_RECIPES.

Some recipes need other job requirements, you can add their headers in the SPECIAL_RECIPES dictionary. Otherwise
the header will be written following the template that is written in the lines below. If you want to exclude recipes, you
can do so by uncommenting the exclude lines.

Before submitting all jobs, it is recommended to try the batch script generation with submit = False and check
the generated files. If recipes with special runtime requirements have been added to ESMValTool since the previous
release, these may need to be added to SPECIAL_RECIPES and/or to ONE_TASK_RECIPES. Other recipes should run
successfully with the default SLURM settings set in this script.

The launch scripts will be saved in the same directory you execute the script from. These are named
like launch_recipe_<name>.sh. To submit these scripts to the SLURM scheduler, use the sbatch
launch_recipe_<name>.sh command. You can check the status of your BATCH queue by invoking:

squeue -u $USER

Also, for computationally-heavy recipes, you can require more memory and/or time, see e.g. edited batch header below
(note the compute partition which is used for such heavy runs):

#SBATCH --partition=compute
#SBATCH --time=08:00:00
#SBATCH --mem=0
#SBATCH --constraint=512G

Note: On DKRZ/Levante, a user can’t have more than 20 SLURM jobs running at a time. As soon as a job is finished,
the next one should start. More information on the job handling at DKRZ here. Also note that the --mem=0 argument
needs be specified if any of the --constraint arguments are used for memory requests, so that the node’s full memory
is allocated.

41.2.3 Analyse the results

Once all jobs are completed, assemble some statistics so that issues with certain recipes can be followed-up, and
document this information in the release issue, such as:

• number of successfully run recipes

• number of failed recipes with preprocessor errors (can they be fixed? Can the fixes be included in the release?)

• number of failed recipes with diagnostic errors (can they be fixed? Can the fixes be included in the release?)

• number of recipes that are missing data

580 Chapter 41. Release strategy and procedure

https://docs.dkrz.de/doc/levante/running-jobs/index.html
https://docs.dkrz.de/doc/levante/running-jobs/partitions-and-limits.html#levante-partitions-and-limits

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• number of recipes that have various other issues (and document them)

To parse the output of all these runs, use the parse_recipes_output.py utility Python script. It is recommended to
run the recipes with log_level: info in your config file to enable the parsing script to run fast.

41.2.4 Share the results with the community

Create the debug.html and index.html overview webpages by running the utility script in the directory containing the
recipe runs. These two files, together with the recipe output, need to be copied to the disk of a virtual machine (VM)
used to display recipe output in webpages. Do not store final release results on the VM including /preproc/ dirs, the
total size for all the recipes output, including /preproc/ dirs is in the 4.5TB ballpark, much too high for the VM storage
capacity! Therefore, we would recommend using the option to remove preprocessing directories upon recipe running
successfully --remove-preproc-dir=True at runtime, or set remove_preproc_dir: true in the configuration
file.

Login and access to the DKRZ esmvaltool VM - results from recipe runs are stored on the VM; log in to the Levante
head node and then continue to the VM with:

ssh user@esmvaltool.dkrz.de

where user is your DKRZ/Levante user name. Then create a new subdirectory in /shared/esmvaltool/ that will
contain recipe output. This should be named like the ESMValCore version used for the testing, e.g. v2.x.xrcx or
v2.x.x. Recipe output can be copied by doing from the VM:

nohup rsync --exclude preproc/ -rlt /path_to_testing/esmvaltool_output/* /shared/
→˓esmvaltool/v2.x.x/

By copying the debug.html and index.html files into /shared/esmvaltool/v2.x.x/, the output becomes available online,
see for example. Before copying the recipe output to the VM, you may want to clean up your directory containing the
results by removing any large preproc directories of failed runs and only keeping the last run for each recipe. This
will help generating a clearer overview webpage. Note that the summarize.py script needs to be rerun if recipe runs
were added or deleted from your testing directory.

Link the overview webpage to the release issue. This makes it much easier to ask for feedback from recipe developers
and analyse failures.

Results produced with the final ESMValCore release candidate should be put in a VM directory named after the version
number, e.g. v2.x.x. Once the release process is over, test results produced with previous release candidates can be
deleted to save space on the VM.

Note: If you wrote recipe runs output to Levante’s /scratch partition, be aware that the data will be removed after two
weeks, so you will have to quickly move the output data to the VM, using the nohup command above.

41.2.5 Running the comparison

To compare the newly produced output from running all recipes, follow these steps below.

Access to the DKRZ esmvaltool VM, then install miniconda on the VM, and if you have a Miniconda installer already
downloaded in your Levante $HOME

scp Miniconda3-py39_4.12.0-Linux-x86_64.sh user@esmvaltool.dkrz.de:/mnt/esmvaltool_disk2/
→˓work/<username>

41.2. Release: recipes runs and comparison 581

https://esmvaltool.dkrz.de/shared/esmvaltool/
https://esmvaltool.dkrz.de/shared/esmvaltool/v2.7.0

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Warning: conda environments should not be created in the home directory because it is on a very small disk, but
rather in a directory with your username under /mnt/esmvaltool_disk2/work/<username>

Next, we need to set up the input files

The /work partition is visible from the VM so you can run the compare tool straight on the VM.

The steps to running the compare tool on the VM are the following:

• run date: log the run date here

• conda env: log the name of the conda environment you are using

• ESMValTool branch: log the name of the code branch you are using (e.g. v2.8.x)

• prerequisite - install imagehash: pip install imagehash

• reference run (v2.7.0; previous stable release): export reference_dir=/work/bd0854/b382109/v270 (contains pre-
proc/ dirs too, 122 recipes)

• current run (v2.8.0): export current_dir=path_to_current_run

• run the comparison script with:

nohup python ESMValTool/esmvaltool/utils/testing/regression/compare.py --reference
→˓$reference_dir --current $current_dir > compare_v280_output.txt

Copy the comparison txt file to the release issue. Some of the recipes will appear as having iden-
tical output to the one from previous release. However, others will need human inspection. Ask
the recipe maintainers (@ESMValGroup/esmvaltool-recipe-maintainers) and ESMValTool Development Team
(@ESMValGroup/esmvaltool-developmentteam) to provide assistance in checking the results. Here are some guide-
lines on how to perform the human inspection:

• look at plots from current run vs previous release run: most of them will be identical, but if Matplotlib has
changed some plotting feature, images may look slightly different so the comparison script may report them if
the difference is larger than the threshold - but Mark I eyeball inspection will show they are identical

• other plots will differ due to changes in plot settings (different colours, axes etc) due to updated settings from the
diagnostic developers: if they look similar enough, then it’s fine

• report (and subsequently open issues) if you notice major differences in plots; most times a simple comment on
the release issue, whereby you tag the diagnostic developers leads to them having a look at the plots and OK-ing
them; if that’s not the case, then open a separate issue. You can example of release issues containing overview
lists and tables of failures and problems in 2881 and 3076.

41.2.6 Appendix

Here you can find a list of utility scripts used to run recipes and analyse the results:

• Python scripts that create slurm submission scripts and parse slurm log files.

• Python script that compares one or more recipe runs to known good previous run(s).

• Python script that creates the index.html and debug.html overview pages.

582 Chapter 41. Release strategy and procedure

https://github.com/orgs/ESMValGroup/teams/esmvaltool-recipe-maintainers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-developmentteam
https://github.com/ESMValGroup/ESMValTool/issues/2881
https://github.com/ESMValGroup/ESMValTool/issues/3076

Part IX

Utilities

583

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

This section provides information on tools that are useful when developing ESMValTool. Tools that are specific to
ESMValTool live in the esmvaltool/utils directory, while others can be installed using the usual package managers.

585

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/utils

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

586

CHAPTER

FORTYTWO

PRE-COMMIT

pre-commit is a handy tool that can run many tools for checking code quality with a single command. Usually it is used
just before committing, to avoid accidentally committing mistakes. It knows knows which tool to run for each filetype,
and therefore provides a convenient way to check your code!

To run pre-commit on your code, go to the ESMValTool directory (cd ESMValTool) and run

pre-commit run

By default, pre-commit will only run on the files that have been changed, meaning those that have been staged in git
(i.e. after git add your_script.py).

To make it only check some specific files, use

pre-commit run --files your_script.py

or

pre-commit run --files your_script.R

Alternatively, you can configure pre-commit to run on the staged files before every commit (i.e. git commit), by
installing it as a git hook using

pre-commit install

Pre-commit hooks are used to inspect the code that is about to be committed. The commit will be aborted if files are
changed or if any issues are found that cannot be fixed automatically. Some issues cannot be fixed (easily), so to bypass
the check, run

git commit --no-verify

or

git commit -n

or uninstall the pre-commit hook

pre-commit uninstall

Note that the configuration of pre-commit lives in .pre-commit-config.yaml.

587

https://pre-commit.com/
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/ESMValGroup/ESMValTool/blob/main/.pre-commit-config.yaml

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

588 Chapter 42. Pre-commit

CHAPTER

FORTYTHREE

NCLCODESTYLE

A tool for checking the style of NCL code, based on pycodestyle. Install ESMValTool in development mode (pip
install -e '.[develop]') to make it available. To use it, run

nclcodestyle /path/to/file.ncl

589

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

590 Chapter 43. nclcodestyle

CHAPTER

FORTYFOUR

COLORMAP SAMPLES

Tool to generate colormap samples for ESMValTool’s default Python and NCL colormaps.

Run

esmvaltool colortables python

or

esmvaltool colortables ncl

to generate the samples.

591

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

592 Chapter 44. Colormap samples

CHAPTER

FORTYFIVE

RUNNING MULTIPLE RECIPES

It is possible to run more than one recipe in one go.

This can for example be achieved by using rose and/or cylc, tools that may be available at your local HPC cluster.

In the case in which neither rose nor cylc are available at your HPC cluster, it is possible to automatically generate job
submission scripts, as well as a summary of the job outputs using the scripts available in esmvaltool/utils/batch-jobs.

45.1 Using cylc

A cylc suite for running all recipes is available in esmvaltool/utils/testing/regression. This suite is configured to work
with versions of cylc older than 8.0.0 .

To prepare for using this tool:

1. Log in to a system that uses slurm

2. Make sure the required CMIP and observational datasets are available and configured in config-user.yml

3. Make sure the required auxiliary data is available (see recipe documentation)

4. Install ESMValTool

5. Update config-user.yml so it points to the right data locations

Next, get started with cylc:

1. Run module load cylc

2. Register the suite with cylc cylc register run-esmvaltool-recipes ~/ESMValTool/esmvaltool/
utils/testing/regression

3. Edit the suite if needed, this allows e.g. choosing which recipes will be run

4. Validate the suite cylc validate run-esmvaltool-recipes --verbose, this will e.g. list the recipes in
the suite

5. Run all recipes cylc run run-esmvaltool-recipes

6. View progress cylc log run-esmvaltool-recipes, use e.g. cylc log run-all-esmvaltool-recipes
examples-recipe_python_yml.1 --stdout to see the log of an individual esmvaltool run. Once the suite
has finished running, you will see the message “WARNING - suite stalled” in the log.

7. Stop the cylc run once everything is done cylc stop run-esmvaltool-recipes.

To generate an overview page of the recipe runs, use the summarize.py utility script.

593

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/utils/batch-jobs
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/utils/testing/regression
https://slurm.schedmd.com/quickstart.html
https://cylc.github.io/cylc-doc/7.9.3/html/index.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

45.2 Using Rose and cylc

It is possible to run more than one recipe in one go: currently this relies on the user having access to a HPC that has
rose and cylc installed since the procedure involves installing and submitting a Rose suite. The utility that allows you
to do this is esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py.

45.2.1 Base suite

The base suite to run esmvaltool via rose-cylc is u-bd684; you can find this suite in the Met Office Rose repository at:

https://code.metoffice.gov.uk/svn/roses-u/b/d/6/8/4/trunk/

When rose will be working with python3.x, this location will become default and the pipeline will aceess it indepen-
dently of user, unless, of course the user will specify -s $SUITE_LOCATION; until then the user needs to grab a copy
of it in $HOME or specify the default location via -s option.

45.2.2 Environment

We will move to a unified and centrally-installed esmvaltool environment; until then, the user will have to alter the
env_setup script:

u-bd684/app/esmvaltool/env_setup

with the correct pointers to esmvaltool installation, if desired.

To be able to submit to cylc, you need to have the /metomi/ suite in path AND use a python2.7 environment. Use the
Jasmin-example below for guidance.

45.2.3 Jasmin-example

This shows how to interact with rose-cylc and run esmvaltool under cylc using this script:

export PATH=/apps/contrib/metomi/bin:$PATH
export PATH=/home/users/valeriu/miniconda2/bin:$PATH
mkdir esmvaltool_rose
cd esmvaltool_rose
cp ESMValTool/esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py .
svn checkout https://code.metoffice.gov.uk/svn/roses-u/b/d/6/8/4/trunk/ ~/u-bd684
[enter Met Office password]
[configure ~/u-bd684/rose_suite.conf]
[configure ~/u-bd684/app/esmvaltool/env_setup]
python esmvt_rose_wrapper.py -c config-user.yml \
-r recipe_autoassess_stratosphere.yml recipe_OceanPhysics.yml \
-d $HOME/esmvaltool_rose
rose suite-run u-bd684

Note that you need to pass FULL PATHS to cylc, no . or .. because all operations are done remotely on different nodes.

A practical actual example of running the tool can be found on JASMIN: /home/users/valeriu/esmvaltool_rose.
There you will find the run shell: run_example, as well as an example how to set the configuration file. If you don’t
have Met Office credentials, a copy of u-bd684 is always located in /home/users/valeriu/roses/u-bd684 on
Jasmin.

594 Chapter 45. Running multiple recipes

https://code.metoffice.gov.uk/svn/roses-u/b/d/6/8/4/trunk/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

45.3 Using the scripts in utils/batch-jobs

In utils/batch-jobs, you can find a script to generate slurm submission scripts for all available recipes in ESMValTool,
as well as a script to parse the job outputs.

45.3.1 Using generate.py

The script generate.py, is a simple python script that creates slurm submission scripts, and if configured, submits them
to the HPC cluster. It has been tested in DKRZ’s Levante cluster.

The following parameters have to be set in the script in order to make it run:

• env, str: Name of the conda environment in which esmvaltool is installed.

• mail, bool: Whether or not to receive mail notifications when a submitted job fails or finishes successfully.
Default is False.

• submit, bool: Whether or not to automatically submit the job after creating the launch script. Default value is
False.

• account, str: Name of the DKRZ account in which the job will be billed.

• outputs, str: Name of the directory in which the job outputs (.out and .err files) are going to be saved. The
outputs will be saved in /home/user/<outputs>.

• conda_path, str: Full path to the mambaforge/etc/profile.d/conda.sh executable.

Optionally, the following parameters can be edited:

• config_file, str: Path to config-user.yml if default ~/.esmvaltool/config-user.yml not used.

• partition, str: Name of the DKRZ partition used to run jobs. Default is interactive to minimize computing
cost compared to compute for which nodes cannot be shared.

• memory, str: Amount of memory requested for each run. Default is 64G to allow to run 4 recipes on the same
node in parallel.

• time, str: Time limit. Default is 04:00:00 to increase the job priority. Jobs can run for up to 8 hours and 12
hours on the compute and interactive partitions, respectively.

• default_max_parallel_tasks, int: Default is 8 which works for most recipes. For other cases, an entry
needs to be made to the MAX_PARALLEL_TASKS dictionary (see below).

The script will generate a submission script for all recipes using by default the interactive queue and with a time limit
of 4h. In case a recipe may require of additional resources, they can be defined in the SPECIAL_RECIPES dictionary.
The recipe name has to be given as a key in which the values are another dictionary. The latter are used to specify the
partition in which to submit the recipe, the new time limit and other memory requirements given by the slurm flags
--mem, --constraint or --ntasks. In general, an entry in SPECIAL_RECIPES should be set as:

SPECIAL_RECIPES = {
'recipe_name': {

'partition': '#SBATCH --partition=<name_of_the_partition>',
'time': '#SBATCH --time=<custom_time_limit>',
'memory': '#SBATCH --mem=<custom_memory_requirement>' # --constraint or --nstasks␣

→˓can be used instead.
},

}

45.3. Using the scripts in utils/batch-jobs 595

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/utils/batch-jobs
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/utils/batch-jobs/generate.py
https://docs.dkrz.de/doc/levante/index.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Some recipes can only be run with a number of tasks less than default_max_parallel_tasks for various reasons
(memory issues, diagnostic issues, CMIP3 data used). These recipes need to be added to the MAX_PARALLEL_TASKS
dictionary with a specific max_parallel_tasks value.

Note that the script has been optimized to use standard SLURM settings to run most recipes while minimizing the
computational cost of the jobs and tailored runtime settings for resource-intensive recipes. It is only necessary to edit
this script for recipes that have been added since the last release and cannot be run with the default settings.

In the case in which submit is set to True, but you want to exclude certain recipes from being submitted, their name
can be added in the exclude list:

exclude = ['recipe_to_be_excluded_1', 'recipe_to_be_excluded_2']

45.3.2 Using parse_recipes_outputs

You can run this script (simply as a standalone Python script) after all recipes have been run, to gather a bird’s eye
view of the run status for each recipe; running the script provides you with a Markdown-formatted list of recipes that
succeeded, recipes that failed due to a diagnostic error, and recipes that failed due to missing data (the two most common
causes for recipe run failure). You should provide the location of the output log files from SLURM (*.out and *.err)
to the script as well as a list of all available recipes. To generate the list, run the command:

for recipe in $(esmvaltool recipes list | grep '\.yml$'); do echo $(basename "$recipe");␣
→˓done > all_recipes.txt

To keep the script execution fast, it is recommended to use log_level: info in your config-user.yml file so that
SLURM output files are rather small.

596 Chapter 45. Running multiple recipes

CHAPTER

FORTYSIX

OVERVIEW OF RECIPE RUNS

To create overview webpages of a set of recipe runs, run:

python esmvaltool/utils/testing/regression/summarize.py ~/esmvaltool_output/

This will generate 2 html files:

• index.html that displays a summary of each recipe run, with a title and a representative plot, a short description
of the aim of the recipe, and links to each individual run.

• debug.html that provides an overview table of successful and failed runs with links to each individual run, and
computing resources used for each run.

597

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

598 Chapter 46. Overview of recipe runs

CHAPTER

FORTYSEVEN

COMPARING RECIPE RUNS

A command-line tool is available for comparing one or more recipe runs to known good previous run(s). This tool uses
xarray to compare NetCDF files and difference hashing provided by imagehash to compare PNG images. All other file
types are compared byte for byte.

To use it, first install the package imagehash:

pip install imagehash

Next, go to the location where ESMValTool is installed and run

python esmvaltool/utils/testing/regression/compare.py ~/reference_output/ ~/output/
→˓recipe_python_20220310_180417/

where the first argument is a reference run or a directory containing such runs and the second and following arguments
are directories with runs to compare to the reference run(s).

To compare all results from the current version to the previous version, use e.g.:

python esmvaltool/utils/testing/regression/compare.py /shared/esmvaltool/v2.4.0 /shared/
→˓esmvaltool/v2.5.0

To get more information on how a result is different, run the tool with the --verbose flag.

599

https://docs.xarray.dev/en/stable/
https://pypi.org/project/ImageHash/
https://pypi.org/project/ImageHash/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

600 Chapter 47. Comparing recipe runs

CHAPTER

FORTYEIGHT

TESTING RECIPE SETTINGS

A tool for generating recipes with various diagnostic settings, to test of those work. Install ESMValTool in development
mode (pip install -e '.[develop]') to make it available. To use it, run

test_recipe --help

601

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

602 Chapter 48. Testing recipe settings

CHAPTER

FORTYNINE

DRAFT_RELEASE_NOTES.PY

draft_release_notes.py is a script for drafting release notes based on the titles and labels of the GitHub pull requests
that have been merged since the previous release.

To use it, install the package pygithub:

pip install pygithub

Create a GitHub access token (leave all boxes for additional permissions unchecked) and store it in the file ~/.
github_api_key.

Edit the script and update the date and time of the previous release and run the script:

python esmvaltool/utils/draft_release_notes.py ${REPOSITORY}

REPOSITORY can be either esmvalcore or esmvaltool depending on the release notes you want to create.

Review the resulting output (in .rst format) and if anything needs changing, change it on GitHub and re-run the script
until the changelog looks acceptable. In particular, make sure that pull requests have the correct label, so they are listed
in the correct category. Finally, copy and paste the generated content at the top of the changelog.

603

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/utils/draft_release_notes.py
https://pygithub.readthedocs.io/en/latest/introduction.html
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

604 Chapter 49. draft_release_notes.py

CHAPTER

FIFTY

CONVERTING VERSION 1 NAMELISTS TO VERSION 2 RECIPES

The xml2yml converter can turn the old xml namelists into new-style yml recipes. It is implemented as a xslt stylesheet
that needs a processor that is xslt 2.0 capable. With this, you simply process your old namelist with the stylesheet
xml2yml.xsl to produce a new yml recipe.

After the conversion you need to manually check the mip information in the variables! Also, check the caveats below!

50.1 Howto

One freely available processor is the Java based saxon. You can download the free he edition here. Unpack the zip file
into a new directory. Then, provided you have Java installed, you can convert your namelist simply with:

java -jar $SAXONDIR/saxon9he.jar -xsl:xml2yml.xsl -s:namelist.xml -o:recipe.yml

50.2 Caveats/Known Limitations

• At the moment, not all model schemes (OBS, CMIP5, CMIP5_ETHZ. . .) are supported. They are, however,
relatively easy to add, so if you need help adding a new one, please let me know!

• The documentation section (namelist_summary in the old file) is not automatically converted.

• In version 1, one could name an exclude, similar to the reference model. This is no longer possible and the way
to do it is to include the models with another additional_models tag in the variable section. That conversion
is not performed by this tool.

Authored by Klaus Zimmermann, direct questions and comments to klaus.zimmermann@smhi.se

605

https://github.com/ESMValGroup/ESMValTool/tree/main/esmvaltool/utils/xml2yml
http://saxon.sourceforge.net/
https://sourceforge.net/projects/saxon/files/latest/download?source=files
mailto:klaus.zimmermann@smhi.se

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

606 Chapter 50. Converting Version 1 Namelists to Version 2 Recipes

CHAPTER

FIFTYONE

RECIPE FILLER

If you need to fill in a blank recipe with additional datasets, you can do that with the command recipe_filler. This
runs a tool to obtain a set of additional datasets when given a blank recipe, and you can give an arbitrary number of
data parameters. The blank recipe should contain, to the very least, a list of diagnostics, each with their variable(s).
Example of running the tool:

recipe_filler recipe.yml

where recipe.yml is the recipe that needs to be filled with additional datasets; a minimal example of this recipe could
be:

diagnostics:
diagnostic:
variables:
ta:
mip: Amon # required
start_year: 1850 # required
end_year: 1900 # required

51.1 Key features

• you can add as many variable parameters as are needed; if not added, the tool will use the "*" wildcard and find
all available combinations;

• you can restrict the number of datasets to be looked for with the dataset: key for each variable, pass a list of
datasets as value, e.g. dataset: [MPI-ESM1-2-LR, MPI-ESM-LR];

• you can specify a pair of experiments, e.g. exp: [historical, rcp85] for each variable; this will look for
each available dataset per experiment and assemble an aggregated data stretch from each experiment to complete
for the total data length specified by start_year and end_year; equivalent to ESMValTool’s syntax on multiple
experiments; this option needs an ensemble to be declared explicitly; it will return no entry if there are gaps in
data;

• start_year and end_year are required and are used to filter out the datasets that don’t have data in the interval;
as noted above, the tool will not return datasets with partial coverage from start_year to end_year; if you
want all possible years hence no filtering on years just use "*" for start and end years;

• config-user: rootpath: CMIPX may be a list, rootpath lists are supported;

• all major DRS paths (including default, BADC, ETHZ etc) are supported;

• speedup is achieved through CMIP mip tables lookup, so mip is required in recipe;

607

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

51.2 Caveats

• the tool doesn’t yet work with derived variables; it will not return any available datasets;

• operation restricted to CMIP data only, OBS lookup is not available yet.

608 Chapter 51. Recipe filler

CHAPTER

FIFTYTWO

EXTRACTING A LIST OF INPUT FILES FROM THE PROVENANCE

There is a small tool available to extract just the list of input files used to generate a figure from the *_provenance.xml
files (see Recording provenance for more information).

To use it, install ESMValTool from source and run

python esmvaltool/utils/prov2files.py /path/to/result_provenance.xml

The tool is based on the prov library, a useful library for working with provenance files. With minor adaptations, this
script could also print out global attributes of the input NetCDF files, e.g. the tracking_id.

609

https://prov.readthedocs.io/en/latest/readme.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

610 Chapter 52. Extracting a list of input files from the provenance

Part X

ESMValTool Code API Documentation

611

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

ESMValTool is mostly used as a command line tool. However, it is also possible to use (parts of) ESMValTool as a
library. This section documents the public API of ESMValTool.

613

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

614

CHAPTER

FIFTYTHREE

SHARED DIAGNOSTIC CODE

53.1 Shared diagnostic script code

Code that is shared between multiple diagnostic scripts.

Classes:

Datasets(cfg) Class to easily access a recipe's datasets in a diagnostic
script.

ProvenanceLogger(cfg) Open the provenance logger.
Variable(short_name, standard_name, ...) Variable class containing all relevant information.
Variables([cfg]) Class to easily access a recipe's variables in a diagnostic.

Functions:

apply_supermeans(ctrl, exper, obs_list) Apply supermeans on data components ie MEAN on
time.

extract_variables(cfg[, as_iris]) Extract basic variable information from configuration
dictionary.

get_cfg([filename]) Read diagnostic script configuration from settings.yml.
get_control_exper_obs(short_name, ...[, ...]) Get control, exper and obs datasets.
get_diagnostic_filename(basename, cfg[, ...]) Get a valid path for saving a diagnostic data file.
get_plot_filename(basename, cfg) Get a valid path for saving a diagnostic plot.
group_metadata(metadata, attribute[, sort]) Group metadata describing preprocessed data by at-

tribute.
run_diagnostic() Run a Python diagnostic.
save_data(basename, provenance, cfg, cube, ...) Save the data used to create a plot to file.
save_figure(basename, provenance, cfg[, ...]) Save a figure to file.
select_metadata(metadata, **attributes) Select specific metadata describing preprocessed data.
sorted_group_metadata(metadata_groups, sort) Sort grouped metadata.
sorted_metadata(metadata, sort) Sort a list of metadata describing preprocessed data.
variables_available(cfg, short_names) Check if data from certain variables is available.

class esmvaltool.diag_scripts.shared.Datasets(cfg)
Bases: object

Class to easily access a recipe’s datasets in a diagnostic script.

Note: This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

615

https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Examples

Get all variables of a recipe configuration cfg:

datasets = Datasets(cfg)

Access data of a dataset with path dataset_path:

datasets.get_data(path=dataset_path)

Access dataset information of the dataset:

datasets.get_dataset_info(path=dataset_path)

Access the data of all datasets with exp=piControl:

datasets.get_data_list(exp=piControl)

Methods:

add_dataset(path[, data]) Add dataset to class.
add_to_data(data[, path]) Add element to a dataset's data.
get_data([path]) Access a dataset's data.
get_data_list(**dataset_info) Access the datasets' data in a list.
get_dataset_info([path]) Access a dataset's information.
get_dataset_info_list(**dataset_info) Access dataset's information in a list.
get_info(key[, path]) Access a 'dataset_info`'s key.
get_info_list(key, **dataset_info) Access dataset_info's key values.
get_path (**dataset_info) Access a dataset's path.
get_path_list(**dataset_info) Access dataset's paths in a list.
set_data(data[, path]) Set element as a dataset's data.

add_dataset(path, data=None, **dataset_info)
Add dataset to class.

Parameters
• path (str) – (Unique) path to the dataset.

• data (optional) – Arbitrary object to be saved as data for the dataset.

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

add_to_data(data, path=None, **dataset_info)
Add element to a dataset’s data.

616 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambigu-
ous.

Parameters
• data – Element to be added to the dataset’s data.

• path (str, optional) – Path to the dataset

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Raises
RuntimeError – If data given by dataset_info is ambiguous.

get_data(path=None, **dataset_info)
Access a dataset’s data.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambigu-
ous.

Parameters
• path (str, optional) – Path to the dataset

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
Data of the selected dataset.

Return type
data_object

Raises
RuntimeError – If data given by dataset_info is ambiguous.

get_data_list(**dataset_info)
Access the datasets’ data in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters
**dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
Data of the selected datasets.

Return type
list

get_dataset_info(path=None, **dataset_info)
Access a dataset’s information.

53.1. Shared diagnostic script code 617

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#list

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambigu-
ous.

Parameters
• path (str, optional) – Path to the dataset.

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
All dataset information.

Return type
dict

Raises
RuntimeError – If data given by dataset_info is ambiguous.

get_dataset_info_list(**dataset_info)
Access dataset’s information in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters
**dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
Information dictionaries of the selected datasets.

Return type
list

get_info(key, path=None, **dataset_info)
Access a ‘dataset_info`’s key.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambigu-
ous. If the dataset_info does not contain the key, returns None.

Parameters
• key (str) – Desired dictionary key.

• path (str) – Path to the dataset.

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
key information of the given dataset.

Return type
str

618 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
RuntimeError – If data given by dataset_info is ambiguous.

get_info_list(key, **dataset_info)
Access dataset_info’s key values.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters
• key (str) – Desired dictionary key.

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
key information of the selected datasets.

Return type
list

get_path(**dataset_info)
Access a dataset’s path.

Notes

A unique dataset_info description has to be given. Fails when given information is ambiguous.

Parameters
**dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
Path of the selected dataset.

Return type
str

Raises
RuntimeError – If data given by dataset_info is ambiguous.

get_path_list(**dataset_info)
Access dataset’s paths in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters
**dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Returns
Paths of the selected datasets.

Return type
list

53.1. Shared diagnostic script code 619

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#list

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

set_data(data, path=None, **dataset_info)
Set element as a dataset’s data.

Notes

Either path or a unique dataset_info description have to be given. Fails when if given information is am-
biguous.

Parameters
• data – Element to be set as the dataset’s data.

• path (str, optional) – Path to the dataset.

• **dataset_info (optional) – Keyword arguments describing the dataset, e.g.
dataset=CanESM2, exp=piControl or short_name=tas.

Raises
RuntimeError – If data given by dataset_info is ambiguous.

class esmvaltool.diag_scripts.shared.ProvenanceLogger(cfg)
Bases: object

Open the provenance logger.

Parameters
cfg (dict) – Dictionary with diagnostic configuration.

Example

Use as a context manager:

record = {
'caption': "This is a nice plot.",
'statistics': ['mean'],
'domain': ['global'],
'plot_type': ['zonal'],
'authors': [

'first_author',
'second_author',

],
'references': [

'author20journal',
],
'ancestors': [

'/path/to/input_file_1.nc',
'/path/to/input_file_2.nc',

],
}
output_file = '/path/to/result.nc'

with ProvenanceLogger(cfg) as provenance_logger:
provenance_logger.log(output_file, record)

Methods:

620 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

log(filename, record) Record provenance.

log(filename, record)
Record provenance.

Parameters
• filename (str) – Name of the file containing the diagnostic data.

• record (dict) – Dictionary with the provenance information to be logged.

Typical keys are:
– ancestors

– authors

– caption

– domain

– plot_type

– references

– statistics

Note: See the provenance documentation for more information.

class esmvaltool.diag_scripts.shared.Variable(short_name, standard_name, long_name, units)
Bases: Variable

Variable class containing all relevant information.

Note: This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Methods:

count(value, /) Return number of occurrences of value.
index(value[, start, stop]) Return first index of value.

Attributes:

long_name Alias for field number 2
short_name Alias for field number 0
standard_name Alias for field number 1
units Alias for field number 3

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

53.1. Shared diagnostic script code 621

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.esmvaltool.org/en/latest/community/diagnostic.html#recording-provenance

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

long_name

Alias for field number 2

short_name

Alias for field number 0

standard_name

Alias for field number 1

units

Alias for field number 3

class esmvaltool.diag_scripts.shared.Variables(cfg=None, **names)
Bases: object

Class to easily access a recipe’s variables in a diagnostic.

Note: This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Examples

Get all variables of a recipe configuration cfg:

variables = Variables(cfg)

Access information of a variable tas:

variables.short_name('tas')
variables.standard_name('tas')
variables.long_name('tas')
variables.units('tas')

Access iris-suitable dictionary of a variable tas:

variables.iris_dict('tas')

Check if variables tas and pr are available:

variables.vars_available('tas', 'pr')

Methods:

add_vars(**names) Add custom variables to the class.
iris_dict(var) Access iris dictionary of the variable.
long_name(var) Access long name.
modify_var(var, **names) Modify an already existing variable of the class.
short_name(var) Access short name.
short_names() Get list of all short_names.
standard_name(var) Access standard name.
standard_names() Get list of all standard_names.
units(var) Access units.
var_name(var) Access var name.
vars_available(*args) Check if given variables are available.

622 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/functions.html#object
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

add_vars(**names)
Add custom variables to the class.

Parameters
**names (dict or Variable, optional) – Keyword arguments of the form
short_name=Variable_object where Variable_object can be given as dict or Variable.

iris_dict(var)
Access iris dictionary of the variable.

Parameters
var (str) – (Short) name of the variable.

Returns
Dictionary containing all attributes of the variable which can be used directly in iris
(short_name replaced by var_name).

Return type
dict

long_name(var)
Access long name.

Parameters
var (str) – (Short) name of the variable.

Returns
Long name of the variable.

Return type
str

modify_var(var, **names)
Modify an already existing variable of the class.

Parameters
• var (str) – (Short) name of the existing variable.

• **names – Keyword arguments of the form short_name=tas.

Raises
• ValueError – If var is not an existing variable.

• TypeError – If a non-valid keyword argument is given.

short_name(var)
Access short name.

Parameters
var (str) – (Short) name of the variable.

Returns
Short name of the variable.

Return type
str

short_names()

Get list of all short_names.

Returns
List of all short_names.

53.1. Shared diagnostic script code 623

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Return type
list

standard_name(var)
Access standard name.

Parameters
var (str) – (Short) name of the variable.

Returns
Standard name of the variable.

Return type
str

standard_names()

Get list of all standard_names.

Returns
List of all standard_names.

Return type
list

units(var)
Access units.

Parameters
var (str) – (Short) name of the variable.

Returns
Units of the variable.

Return type
str

var_name(var)
Access var name.

Parameters
var (str) – (Short) name of the variable.

Returns
Var name (=short name) of the variable.

Return type
str

vars_available(*args)
Check if given variables are available.

Parameters
*args – Short names of the variables to be tested.

Returns
True if variables are available, False if not.

Return type
bool

624 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.shared.apply_supermeans(ctrl, exper, obs_list)
Apply supermeans on data components ie MEAN on time.

This function is an extension of climate_statistics() meant to ease the time-meaning procedure when dealing with
CONTROL, EXPERIMENT and OBS (if any) datasets. ctrl: dictionary of CONTROL dataset exper: dictionary
of EXPERIMENT dataset obs_lis: list of dicts for OBS datasets (0, 1 or many)

Returns: control and experiment cubes and list of obs cubes

esmvaltool.diag_scripts.shared.extract_variables(cfg, as_iris=False)
Extract basic variable information from configuration dictionary.

Returns short_name, standard_name, long_name and units keys for each variable.

Parameters
• cfg (dict) – Diagnostic script configuration.

• as_iris (bool, optional) – Replace short_name by var_name, this can be used di-
rectly in iris classes.

Returns
Variable information in dict`s (values) for each `short_name (key).

Return type
dict

esmvaltool.diag_scripts.shared.get_cfg(filename=None)
Read diagnostic script configuration from settings.yml.

esmvaltool.diag_scripts.shared.get_control_exper_obs(short_name, input_data, cfg, cmip_type=None)
Get control, exper and obs datasets.

This function is used when running recipes that need a clear distinction between a control dataset, an experiment
dataset and have optional obs (OBS, obs4MIPs etc) datasets; such recipes include recipe_validation, and all the
autoassess ones; short_name: variable short name input_data: dict containing the input data info cfg: config file
as used in this module cmip_type: optional, CMIP project type (CMIP5 or CMIP6)

esmvaltool.diag_scripts.shared.get_diagnostic_filename(basename, cfg, extension='nc')
Get a valid path for saving a diagnostic data file.

Parameters
• basename (str) – The basename of the file.

• cfg (dict) – Dictionary with diagnostic configuration.

• extension (str) – File name extension.

Returns
A valid path for saving a diagnostic data file.

Return type
str

esmvaltool.diag_scripts.shared.get_plot_filename(basename, cfg)
Get a valid path for saving a diagnostic plot.

Parameters
• basename (str) – The basename of the file.

• cfg (dict) – Dictionary with diagnostic configuration.

53.1. Shared diagnostic script code 625

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
A valid path for saving a diagnostic plot.

Return type
str

esmvaltool.diag_scripts.shared.group_metadata(metadata, attribute, sort=None)
Group metadata describing preprocessed data by attribute.

Parameters
• metadata (list of dict) – A list of metadata describing preprocessed data.

• attribute (str) – The attribute name that the metadata should be grouped by.

• sort – See sorted_group_metadata.

Returns
A dictionary containing the requested groups.

Return type
dict of list of dict

esmvaltool.diag_scripts.shared.run_diagnostic()

Run a Python diagnostic.

This context manager is the main entry point for most Python diagnostics.

Example

See esmvaltool/diag_scripts/examples/diagnostic.py for an extensive example of how to start your diagnostic.

Basic usage is as follows, add these lines at the bottom of your script:

def main(cfg):
Your diagnostic code goes here.
print(cfg)

if __name__ == '__main__':
with run_diagnostic() as cfg:

main(cfg)

The cfg dict passed to main contains the script configuration that can be used with the other functions in this
module.

esmvaltool.diag_scripts.shared.save_data(basename, provenance, cfg, cube, **kwargs)
Save the data used to create a plot to file.

Parameters
• basename (str) – The basename of the file.

• provenance (dict) – The provenance record for the data.

• cfg (dict) – Dictionary with diagnostic configuration.

• cube (iris.cube.Cube) – Data cube to save.

• **kwargs – Extra keyword arguments to pass to iris.save.

See also:

626 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.save

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

ProvenanceLogger
For an example provenance record that can be used with this function.

esmvaltool.diag_scripts.shared.save_figure(basename, provenance, cfg, figure=None, close=True,
**kwargs)

Save a figure to file.

Parameters
• basename (str) – The basename of the file.

• provenance (dict) – The provenance record for the figure.

• cfg (dict) – Dictionary with diagnostic configuration.

• figure (matplotlib.figure.Figure) – Figure to save.

• close (bool) – Close the figure after saving.

• **kwargs – Keyword arguments to pass to matplotlib.figure.Figure.savefig.

See also:

ProvenanceLogger
For an example provenance record that can be used with this function.

esmvaltool.diag_scripts.shared.select_metadata(metadata, **attributes)
Select specific metadata describing preprocessed data.

Parameters
• metadata (list of dict) – A list of metadata describing preprocessed data.

• **attributes – Keyword arguments specifying the required variable attributes and their
values. Use the value ‘*’ to select any variable that has the attribute.

Returns
A list of matching metadata.

Return type
list of dict

esmvaltool.diag_scripts.shared.sorted_group_metadata(metadata_groups, sort)
Sort grouped metadata.

Sorting is done on strings and is not case sensitive.

Parameters
• metadata_groups (dict of list of dict) – Dictionary containing the groups of meta-

data.

• sort (bool or str or list of str) – One or more attributes to sort by or True to just sort
the groups but not the lists.

Returns
A dictionary containing the requested groups.

Return type
dict of list of dict

53.1. Shared diagnostic script code 627

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.shared.sorted_metadata(metadata, sort)
Sort a list of metadata describing preprocessed data.

Sorting is done on strings and is not case sensitive.

Parameters
• metadata (list of dict) – A list of metadata describing preprocessed data.

• sort (str or list of str) – One or more attributes to sort by.

Returns
The sorted list of variable metadata.

Return type
list of dict

esmvaltool.diag_scripts.shared.variables_available(cfg, short_names)
Check if data from certain variables is available.

Parameters
• cfg (dict) – Diagnostic script configuration.

• short_names (list of str) – Variable short_names which should be checked.

Returns
True if all variables available, False if not.

Return type
bool

53.1.1 Iris helper functions

Convenience functions for iris objects.

Functions:

check_coordinate(cubes, coord_name) Compare coordinate of cubes and raise error if not iden-
tical.

convert_to_iris(dict_) Change all appearances of short_name to var_name.
get_mean_cube(datasets) Get mean cube of a list of datasets.
intersect_dataset_coordinates(cubes) Compare dataset coordinates of cubes and match them if

necessary.
iris_project_constraint(projects, input_data) Create iris.Constraint to select specific projects

from data.
prepare_cube_for_merging(cube, cube_label) Prepare single iris.cube.Cube in order to merge it

later.
unify_1d_cubes(cubes, coord_name) Unify 1D cubes by transforming them to identical coor-

dinates.
unify_time_coord(cube[, target_units]) Unify time coordinate of cube in-place.

esmvaltool.diag_scripts.shared.iris_helpers.check_coordinate(cubes, coord_name)
Compare coordinate of cubes and raise error if not identical.

Parameters
• cubes (iris.cube.CubeList) – Cubes to be compared.

628 Chapter 53. Shared Diagnostic Code

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.Constraint
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.CubeList

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• coord_name (str) – Name of the coordinate.

Returns
Points of the coordinate.

Return type
numpy.array

Raises
• iris.exceptions.CoordinateNotFoundError – Coordinate coord_name is not a

coordinate of one of the cubes.

• ValueError – Given coordinate differs for the input cubes.

esmvaltool.diag_scripts.shared.iris_helpers.convert_to_iris(dict_)
Change all appearances of short_name to var_name.

Parameters
dict (dict) – Dictionary to convert.

Returns
Converted dictionary.

Return type
dict

Raises
KeyError – dict contains keys``’short_name’`` and 'var_name'.

esmvaltool.diag_scripts.shared.iris_helpers.get_mean_cube(datasets)
Get mean cube of a list of datasets.

Parameters
datasets (list of dict) – List of datasets (given as metadata dict).

Returns
Mean cube.

Return type
iris.cube.Cube

esmvaltool.diag_scripts.shared.iris_helpers.intersect_dataset_coordinates(cubes)
Compare dataset coordinates of cubes and match them if necessary.

Use intersection of coordinate ‘dataset’ of all given cubes and remove elements which are not given in all cubes.

Parameters
cubes (iris.cube.CubeList) – Cubes to be compared.

Returns
Transformed cubes.

Return type
iris.cube.CubeList

Raises
• iris.exceptions.CoordinateNotFoundError – Coordinate dataset is not a coor-

dinate of one of the cubes.

• ValueError – At least one of the cubes contains a dataset coordinate with duplicate
elements or the cubes do not share common elements.

53.1. Shared diagnostic script code 629

https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.CubeList
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.CubeList
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.shared.iris_helpers.iris_project_constraint(projects, input_data,
negate=False)

Create iris.Constraint to select specific projects from data.

Parameters
• projects (list of str) – Projects to be selected.

• input_data (list of dict) – List of dataset metadata used to extract all relevant
datasets belonging to given projects.

• negate (bool, optional (default: False)) – Negate constraint (False: select
all elements that fit projects, True` : select all elements that do not fit projects).

Returns
constraint for coordinate dataset.

Return type
iris.Constraint

esmvaltool.diag_scripts.shared.iris_helpers.prepare_cube_for_merging(cube, cube_label)
Prepare single iris.cube.Cube in order to merge it later.

Parameters
• cube (iris.cube.Cube) – Cube to be pre-processed.

• cube_label (str) – Label for the new scalar coordinate cube_label.

esmvaltool.diag_scripts.shared.iris_helpers.unify_1d_cubes(cubes, coord_name)
Unify 1D cubes by transforming them to identical coordinates.

Use union of all coordinates as reference and transform other cubes to it by adding missing values.

Parameters
• cubes (iris.cube.CubeList) – Cubes to be processed.

• coord_name (str) – Name of the coordinate.

Returns
Transformed cubes.

Return type
iris.cube.CubeList

Raises
ValueError – Cubes are not 1D, coordinate name differs or not all cube coordinates are sub-
sets of longest coordinate.

esmvaltool.diag_scripts.shared.iris_helpers.unify_time_coord(cube, target_units='days since
1850-01-01 00:00:00')

Unify time coordinate of cube in-place.

Parameters
• cube (iris.cube.Cube) – Cube whose time coordinate is transformed in-place.

• target_units (str or cf_units.Unit, optional) – Target time units.

Raises
iris.exceptions.CoordinateNotFoundError – Cube does not contain coordinate time.

630 Chapter 53. Shared Diagnostic Code

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.Constraint
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.Constraint
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.CubeList
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.CubeList
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

53.1.2 Plotting

Module that provides common plot functions.

Functions:

get_dataset_style(dataset[, style_file]) Retrieve the style information for the given dataset.
get_path_to_mpl_style([style_file]) Get path to matplotlib style file.
global_contourf (cube[, cbar_center, ...]) Plot global filled contour plot.
global_pcolormesh (cube[, cbar_center, ...]) Plot global color mesh.
multi_dataset_scatterplot(x_data, y_data, ...) Plot a multi dataset scatterplot.
quickplot(cube, plot_type[, filename]) Plot a cube using one of the iris.quickplot functions.
scatterplot(x_data, y_data, filepath, **kwargs) Plot a scatterplot.

esmvaltool.diag_scripts.shared.plot.get_dataset_style(dataset, style_file=None)
Retrieve the style information for the given dataset.

esmvaltool.diag_scripts.shared.plot.get_path_to_mpl_style(style_file=None)
Get path to matplotlib style file.

esmvaltool.diag_scripts.shared.plot.global_contourf(cube, cbar_center=None, cbar_label=None,
cbar_range=None, cbar_ticks=None, **kwargs)

Plot global filled contour plot.

Note: This is only possible if the cube is 2D with dimensional coordinates latitude and longitude.

Parameters
• cube (iris.cube.Cube) – Cube to plot.

• cbar_center (float, optional) – Central value for the colormap, useful for diverg-
ing colormaps. Can only be used if cbar_range is given.

• cbar_label (str, optional) – Label for the colorbar.

• cbar_range (list of float, optional) – Range of the colorbar (first and second
list element) and number of distinct colors (third element). See numpy.linspace.

• cbar_ticks (list, optional) – Ticks for the colorbar.

• **kwargs – Keyword argument for iris.plot.contourf().

Returns
Plot object.

Return type
matplotlib.contour.QuadContourSet

Raises
• iris.exceptions.CoordinateNotFoundError – Input iris.cube.Cube does not

contain the necessary dimensional coordinates 'latitude' and 'longitude'.

• ValueError – Input iris.cube.Cube is not 2D.

53.1. Shared diagnostic script code 631

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.contourf
https://matplotlib.org/stable/api/contour_api.html#matplotlib.contour.QuadContourSet
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.shared.plot.global_pcolormesh(cube, cbar_center=None, cbar_label=None,
cbar_ticks=None, **kwargs)

Plot global color mesh.

Note: This is only possible if the cube is 2D with dimensional coordinates latitude and longitude.

Parameters
• cube (iris.cube.Cube) – Cube to plot.

• cbar_center (float, optional) – Central value for the colormap, useful for diverg-
ing colormaps. Can only be used if vmin and vmax are given.

• cbar_label (str, optional) – Label for the colorbar.

• cbar_ticks (list, optional) – Ticks for the colorbar.

• **kwargs – Keyword argument for iris.plot.pcolormesh().

Returns
Plot object.

Return type
matplotlib.contour.QuadContourSet

Raises
• iris.exceptions.CoordinateNotFoundError – Input iris.cube.Cube does not

contain the necessary dimensional coordinates 'latitude' and 'longitude'.

• ValueError – Input iris.cube.Cube is not 2D.

esmvaltool.diag_scripts.shared.plot.multi_dataset_scatterplot(x_data, y_data, datasets, filepath,
**kwargs)

Plot a multi dataset scatterplot.

Notes

Allowed keyword arguments:

• mpl_style_file (str): Path to the matplotlib style file.

• dataset_style_file (str): Path to the dataset style file.

• plot_kwargs (array-like): Keyword arguments for the plot (e.g. label, makersize, etc.).

• save_kwargs (dict): Keyword arguments for saving the plot.

• axes_functions (dict): Arbitrary functions for axes, i.e. axes.set_title(‘title’).

Parameters
• x_data (array-like) – x data of each dataset.

• y_data (array-like) – y data of each dataset.

• datasets (array-like) – Names of the datasets.

• filepath (str) – Path to which plot is written.

• **kwargs – Keyword arguments.

632 Chapter 53. Shared Diagnostic Code

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.pcolormesh
https://matplotlib.org/stable/api/contour_api.html#matplotlib.contour.QuadContourSet
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
• TypeError – A non-valid keyword argument is given or x_data, y_data, datasets or (if

given) plot_kwargs is not array-like.

• ValueError – x_data, y_data, datasets or plot_kwargs do not have the same size.

esmvaltool.diag_scripts.shared.plot.quickplot(cube, plot_type, filename=None, **kwargs)
Plot a cube using one of the iris.quickplot functions.

esmvaltool.diag_scripts.shared.plot.scatterplot(x_data, y_data, filepath, **kwargs)
Plot a scatterplot.

Notes

Allowed keyword arguments:

• mpl_style_file (str): Path to the matplotlib style file.

• plot_kwargs (array-like): Keyword arguments for the plot (e.g. label, makersize, etc.).

• save_kwargs (dict): Keyword arguments for saving the plot.

• axes_functions (dict): Arbitrary functions for axes, i.e. axes.set_title(‘title’).

Parameters
• x_data (array-like) – x data of each dataset.

• y_data (array-like) – y data of each dataset.

• filepath (str) – Path to which plot is written.

• **kwargs – Keyword arguments.

Raises
• TypeError – A non-valid keyword argument is given or x_data, y_data or (if given)

plot_kwargs is not array-like.

• ValueError – x_data, y_data or plot_kwargs do not have the same size.

53.1. Shared diagnostic script code 633

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

634 Chapter 53. Shared Diagnostic Code

CHAPTER

FIFTYFOUR

DIAGNOSTIC SCRIPTS

54.1 Emergent constraints diagnostics

This module provides various tools to evaluate emergent constraints for arbitrary input variables.

54.1.1 Examples

• Emergent constraints for equilibrium climate sensitivity

• Emergent constraint on equilibrium climate sensitivity from global temperature variability

• Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?

54.1.2 Diagnostic scripts

Emergent constraint on ECS from global temperature variability

Diagnostic script to reproduce emergent constraint of Cox et al. (2018).

Description

Plot equilibrium climate sensitivity ECS vs. temperature variability metric to establish an emergent relationship for
ECS.

Author

Manuel Schlund (DLR, Germany)

635

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Project

CRESCENDO

Configuration options in recipe

confidence_level: float, optional (default: 0.66)
Confidence level for ECS error estimation.

Calculation of emergent constraints on ECS

Diagnostic script to calculate various emergent constraints for ECS.

Description

Calculate the X axis of various emergent constraints for the equilibrium climate sensitivity (ECS).

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

diag: str
Emergent constraint to calculate (must be one of 'brient_shal', 'su', 'volodin', 'zhai').

metric: str, optional (default: ‘regression_slope’)
Metric to measure model error. Only relevant for Su et al. (2014) constraint. Must be one of
'regression_slope', 'correlation_coefficient'.

n_jobs: int, optional (default: 1)
Maximum number of jobs spawned by this class.

output_attributes: dict, optional
Write additional attributes to netcdf files.

pattern: str, optional
Pattern matched against ancestor file names.

savefig_kwargs: dict
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict
Options for seaborn.set_theme() (affects all plots).

636 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Evaluate multiple emergent constraints simultaneously

Diagnostic script to evaluate multiple emergent constraints simultaneously.

Description

Establish multiple emergent constraints for arbitrary input variables and an arbitrary target variable. All input
datasets need to be one-dimensional and must include a coordinate 'dataset' or 'model' (thus, the data de-
scribes a single scalar value for each dataset). All input datasets must be marked with a var_type (either feature,
label, prediction_input or prediction_input_error) and a tag, which describes the type of data. This
diagnostic supports only a single tag for label and an arbitrary number of tag s for feature. For every tag,
a 'reference_dataset' can be specified, which will be automatically considered as prediction_input. If
reference_dataset contains '|' (e.g. 'OBS1|OBS2'), multiple datasets are considered as prediction_input
(in this case 'OBS1' and 'OBS2').

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

additional_data: list of dict, optional
Additional datasets given as list of metadata.

all_data_label: str, optional (default: ‘all’)
Label used in plots when all input data is considered. Only relevant if group_by is not used.

combine_groups: bool, optional (default: False)
Add results to plots for data generated by combining the data of all individual groups.

confidence_level: float, optional (default: 0.66)
Confidence level for estimation of target variable.

group_by: str, optional
Group input data by an attribute (e.g. produces separate plots for the individual groups, etc.).

ignore_patterns: list of str, optional
Patterns matched against ancestor files. Those files are ignored.

merge_identical_pred_input: bool, optional (default: True)
Use identical prediction_input values as single value.

numbers_as_markers: bool, optional (default: False)
Use numbers as markers in scatterplots.

patterns: list of str, optional
Patterns matched against ancestor files.

plot_regression_line_mean: bool, optional (default: False)
Plot means of regression lines in scatterplots.

54.1. Emergent constraints diagnostics 637

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

read_external_file: str, optional
Read input datasets from external file given as absolute path or relative path. In the latter case,
'auxiliary_data_dir' from the user configuration file is used as base directory.

savefig_kwargs: dict
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict
Options for seaborn.set_theme() (affects all plots).

Evaluate single emergent constraint

Diagnostic script to evaluate a single emergent constraint.

Description

Establish a single emergent constraint for an arbitrary input variable and an arbitrary target variable. All input datasets
need to be one-dimensional and must include a coordinate 'dataset' or 'model' (thus, the data describes a sin-
gle scalar value for each dataset). All input datasets must be marked with a var_type (either feature, label,
prediction_input or prediction_input_error) and a tag, which describes the type of data. This diagnostic
supports only a single tag for label and feature. For every tag, a 'reference_dataset' can be specified, which
will be automatically considered as prediction_input. If reference_dataset contains '|' (e.g. 'OBS1|OBS2'),
multiple datasets are considered as prediction_input (in this case 'OBS1' and 'OBS2').

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

additional_data: list of dict, optional
Additional datasets given as list of metadata.

all_data_label: str, optional (default: ‘all’)
Label used in plots when all input data is considered. Only relevant if group_by is not used.

combine_groups: bool, optional (default: False)
Add results to plots for data generated by combining the data of all individual groups.

confidence_level: float, optional (default: 0.66)
Confidence level for estimation of target variable.

group_by: str, optional
Group input data by an attribute (e.g. produces separate plots for the individual groups, etc.).

ignore_patterns: list of str, optional
Patterns matched against ancestor files. Those files are ignored.

638 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

merge_identical_pred_input: bool, optional (default: True)
Use identical prediction_input values as single value.

numbers_as_markers: bool, optional (default: False)
Use numbers as markers in scatterplots.

patterns: list of str, optional
Patterns matched against ancestor files.

plot_regression_line_mean: bool, optional (default: False)
Plot means of regression lines in scatterplots.

read_external_file: str, optional
Read input datasets from external file given as absolute path or relative path. In the latter case,
'auxiliary_data_dir' from the user configuration file is used as base directory.

savefig_kwargs: dict
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict
Options for seaborn.set_theme() (affects all plots).

54.1.3 Auxiliary scripts

Auxiliary functions for emergent constraints scripts

Convenience functions for emergent constraints diagnostics.

Functions:

54.1. Emergent constraints diagnostics 639

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

cdf (data, pdf) Calculate cumulative distribution function for a 1-
dimensional PDF.

check_metadata(metadata[, allowed_var_types]) Check metadata.
combine_groups(groups) Combine list of groups to a single str.
constraint_info_array(x_data, y_data, ...[, ...]) Get array with all relevant parameters of emergent con-

straint.
create_simple_scatterplot(x_data, y_data, ...) Create simple scatterplot of an emergent relationship

(without saving).
export_csv(data_frame, attributes, basename, cfg) Export CSV file.
get_caption(attributes, feature, label[, group]) Construct caption from plotting attributes for (feature,

label) pair.
get_colors(cfg[, groups]) Get color palette.
get_constraint(x_data, y_data, obs_mean, obs_std) Get constraint on target variable.
get_constraint_from_df (training_data, ...[, ...]) Get constraint on target variable from pandas.

DataFrame.
get_groups(training_data[, add_combined_group]) Extract groups from training data.
get_input_data(cfg) Extract input data.
get_input_files(cfg[, patterns, ignore_patterns]) Get input files.
get_provenance_record(attributes, tags, **kwargs) Get provenance record.
get_xy_data_without_nans(data_frame, ...) Get (X, Y) data for (feature, label) combination

without nans.
pandas_object_to_cube(pandas_object[, ...]) Convert pandas object to iris.cube.Cube.
plot_individual_scatterplots(training_data, ...) Plot individual scatterplots for the different groups.
plot_merged_scatterplots(training_data, ...) Plot merged scatterplots (all groups in one plot).
plot_target_distributions(training_data, ...) Plot distributions of target variable for every feature.
regression_line(x_data, y_data[, n_points]) Return x and y coordinates of the regression line (mean

and error).
set_plot_appearance(axes, attributes, **kwargs) Set appearance of a plot.
standard_prediction_error(x_data, y_data) Return a function to calculate standard prediction error.
target_pdf (x_data, y_data, obs_mean, obs_std) Calculate probability density function (PDF) for target

variable.

esmvaltool.diag_scripts.emergent_constraints.cdf(data, pdf)
Calculate cumulative distribution function for a 1-dimensional PDF.

Parameters
• data (numpy.ndarray) – Data points (1D array).

• pdf (numpy.ndarray) – Corresponding probability density function (PDF).

Returns
Corresponding cumulative distribution function (CDF).

Return type
numpy.ndarray

esmvaltool.diag_scripts.emergent_constraints.check_metadata(metadata, allowed_var_types=None)
Check metadata.

Parameters
• metadata (dict) – Metadata to check.

• allowed_var_types (list of str, optional) – Allowed var_types, defaults to
ALLOWED_VAR_TYPES.

640 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
• KeyError – Metadata does not contain necessary keys 'var_type' and 'tag'.

• ValueError – Got invalid value for key 'var_type'.

esmvaltool.diag_scripts.emergent_constraints.combine_groups(groups)
Combine list of groups to a single str.

Parameters
groups (list of str) – List of group names.

Returns
Combined str.

Return type
str

esmvaltool.diag_scripts.emergent_constraints.constraint_info_array(x_data, y_data, obs_mean,
obs_std, n_points=1000,
necessary_p_value=None)

Get array with all relevant parameters of emergent constraint.

Parameters
• x_data (numpy.ndarray) – X data of the emergent constraint.

• y_data (numpy.ndarray) – Y data of the emergent constraint.

• obs_mean (float) – Mean of observational data.

• obs_std (float) – Standard deviation of observational data.

• n_points (int, optional (default: 1000)) – Number of sampled points for
PDF of target variable.

• necessary_p_value (float, optional) – If given, replace constrained mean and
standard deviation with unconstrained values when p-value of emergent relationship is
greater than the given necessary p-value.

Returns
Array of shape (8,) with the elements:

0. Constrained mean of target variable.

1. Constrained standard deviation of target variable.

2. Unconstrained mean of target variable.

3. Unconstrained standard deviation of target variable.

4. Slope of emergent relationship.

5. Intercept of emergent relationship.

6. Correlation coefficient r of emergent relationship.

7. p-value of emergent relationship.

Return type
numpy.ndarray

esmvaltool.diag_scripts.emergent_constraints.create_simple_scatterplot(x_data, y_data,
obs_mean, obs_std)

Create simple scatterplot of an emergent relationship (without saving).

54.1. Emergent constraints diagnostics 641

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• x_data (numpy.ndarray) – X data of the emergent constraint.

• y_data (numpy.ndarray) – Y data of the emergent constraint.

• obs_mean (float) – Mean of observational data.

• obs_std (float) – Standard deviation of observational data.

esmvaltool.diag_scripts.emergent_constraints.export_csv(data_frame, attributes, basename, cfg,
tags=None)

Export CSV file.

Parameters
• data_frame (pandas.DataFrame) – Data to export.

• attributes (dict) – Plot attributes for the different features and the label data. Used to
retrieve provenance information.

• basename (str) – Basename for the name of the file.

• cfg (dict) – Recipe configuration.

• tags (iterable of str, optional) – Tags for which provenance information should
be retrieved (using attributes). If not specified, use (last level of) columns of the given
data_frame.

Returns
Path to the new CSV file.

Return type
str

esmvaltool.diag_scripts.emergent_constraints.get_caption(attributes, feature, label, group=None)
Construct caption from plotting attributes for (feature, label) pair.

Parameters
• attributes (dict) – Plot attributes.

• feature (str) – Feature.

• label (str) – Label.

• group (str, optional) – Group.

Returns
Caption.

Return type
str

Raises
KeyError – attributes does not include necessary keys.

esmvaltool.diag_scripts.emergent_constraints.get_colors(cfg, groups=None)
Get color palette.

Parameters
• cfg (dict) – Recipe configuration.

• groups (list, optional) – Use to check whether color for combining groups has to
be added.

642 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
List of colors that can be used for matplotlib.

Return type
list

esmvaltool.diag_scripts.emergent_constraints.get_constraint(x_data, y_data, obs_mean, obs_std,
confidence_level=0.66)

Get constraint on target variable.

Parameters
• x_data (numpy.ndarray) – X data of the emergent constraint.

• y_data (numpy.ndarray) – Y data of the emergent constraint.

• obs_mean (float) – Mean of observational data.

• obs_std (float) – Standard deviation of observational data.

• confidence_level (float, optional (default: 0.66)) – Confindence level to
estimate the range of the target variable.

Returns
Lower confidence limit, best estimate and upper confidence limit of target variable.

Return type
tuple of float

esmvaltool.diag_scripts.emergent_constraints.get_constraint_from_df(training_data,
pred_input_data,
confidence_level=0.66)

Get constraint on target variable from pandas.DataFrame.

Parameters
• training_data (pandas.DataFrame) – Training data (features, label).

• pred_input_data (pandas.DataFrame) – Prediction input data (mean and error).

• confidence_level (float, optional (default: 0.66)) – Confindence level to
estimate the range of the target variable.

Returns
Lower confidence limit, best estimate and upper confidence limit of target variable.

Return type
tuple of float

esmvaltool.diag_scripts.emergent_constraints.get_groups(training_data,
add_combined_group=False)

Extract groups from training data.

Parameters
• training_data (pandas.DataFrame) – Training data (features, label).

• add_combined_group (bool, optional (default: False)) – Add combined
group of all other groups at the beginning of the returned list.

Returns
Groups.

Return type
list of str

54.1. Emergent constraints diagnostics 643

https://matplotlib.org/stable/index.html#module-matplotlib
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.emergent_constraints.get_input_data(cfg)
Extract input data.

Return training data, prediction input data and corresponding attributes.

Parameters
cfg (dict) – Recipe configuration.

Returns
A tuple containing the training data (pandas.DataFrame), the prediction input data (pandas.
DataFrame) and the corresponding attributes (dict).

Return type
tuple

esmvaltool.diag_scripts.emergent_constraints.get_input_files(cfg, patterns=None,
ignore_patterns=None)

Get input files.

Parameters
• cfg (dict) – Recipe configuration.

• patterns (list of str, optional) – Use only ancestor files that match these pat-
terns as input files.

• ignore_patterns (list of str, optional) – Ignore input files that match these
patterns.

Returns
Input files.

Return type
list of str

esmvaltool.diag_scripts.emergent_constraints.get_provenance_record(attributes, tags, **kwargs)
Get provenance record.

Parameters
• attributes (dict) – Plot attributes. All provenance keys need to start with
'provenance_'.

• tags (list of str) – Tags used to retrieve data from the attributes dict, i.e. fea-
tures and/or label.

• **kwargs (Keyword arguments) – Additional key:value pairs directly passed to the
provenance record dict. All values may include the format strings {feature} and
{label}.

Returns
Provenance record.

Return type
dict

esmvaltool.diag_scripts.emergent_constraints.get_xy_data_without_nans(data_frame, feature,
label)

Get (X, Y) data for (feature, label) combination without nans.

Parameters
• data_frame (pandas.DataFrame) – Training data.

644 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• feature (str) – Name of the feature data.

• label (str) – Name of the label data.

Returns
Tuple containing a pandas.DataFrame for the X axis (feature) and a pandas.DataFrame for
the Y axis (label) without missing values.

Return type
tuple

esmvaltool.diag_scripts.emergent_constraints.pandas_object_to_cube(pandas_object,
index_droplevel=None,
columns_droplevel=None,
**kwargs)

Convert pandas object to iris.cube.Cube.

Parameters
• pandas_object (pandas.DataFrame or pandas.Series) – Data to convert.

• index_droplevel (int or list of int, optional) – Drop levels of index if not
None.

• columns_droplevel (int or list of int, optional) – Drop levels of columns
if not None. Can only be used if pandas_object is a pandas.DataFrame.

• **kwargs (Keyword arguments) – Keyword arguments used for the cube metadata, e.g.
standard_name, var_name, etc.

Returns
Data cube.

Return type
iris.cube.Cube

Raises
TypeError – columns_droplevel is used when pandas_object is not a pandas.
DataFrame.

esmvaltool.diag_scripts.emergent_constraints.plot_individual_scatterplots(training_data,
pred_input_data,
attributes,
basename, cfg)

Plot individual scatterplots for the different groups.

Plot scatterplots for all pairs of (feature, label) data (Separate plot for each group).

Parameters
• training_data (pandas.DataFrame) – Training data (features, label).

• pred_input_data (pandas.DataFrame) – Prediction input data (mean and error).

• attributes (dict) – Plot attributes for the different features and the label data.

• basename (str) – Basename for the name of the file.

• cfg (dict) – Recipe configuration.

esmvaltool.diag_scripts.emergent_constraints.plot_merged_scatterplots(training_data,
pred_input_data,
attributes, basename,
cfg)

54.1. Emergent constraints diagnostics 645

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#tuple
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#TypeError
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Plot merged scatterplots (all groups in one plot).

Plot scatterplots for all pairs of (feature, label) data (all groups in one plot).

Parameters
• training_data (pandas.DataFrame) – Training data (features, label).

• pred_input_data (pandas.DataFrame) – Prediction input data (mean and error).

• attributes (dict) – Plot attributes for the different features and the label data.

• basename (str) – Basename for the name of the file.

• cfg (dict) – Recipe configuration.

esmvaltool.diag_scripts.emergent_constraints.plot_target_distributions(training_data,
pred_input_data,
attributes, basename,
cfg)

Plot distributions of target variable for every feature.

Parameters
• training_data (pandas.DataFrame) – Training data (features, label).

• pred_input_data (pandas.DataFrame) – Prediction input data (mean and error).

• attributes (dict) – Plot attributes for the different features and the label data.

• basename (str) – Basename for the name of the file.

• cfg (dict) – Recipe configuration.

esmvaltool.diag_scripts.emergent_constraints.regression_line(x_data, y_data, n_points=1000)
Return x and y coordinates of the regression line (mean and error).

Parameters
• x_data (numpy.ndarray) – X data used to fit the linear regression.

• y_data (numpy.ndarray) – Y data used to fit the linear regression.

• n_points (int, optional (default: 1000)) – Number of points for the regres-
sion lines.

Returns
numpy.ndarray s for the keys 'x', 'y', 'y_minus_err', 'y_plus_err', 'slope',
'intercept', 'pvalue' and 'rvalue'.

Return type
dict

esmvaltool.diag_scripts.emergent_constraints.set_plot_appearance(axes, attributes, **kwargs)
Set appearance of a plot.

Parameters
• axes (matplotlib.axes.Axes) – Matplotlib Axes object which contains the plot.

• attributes (dict) – Plot attributes.

• **kwargs (Keyword arguments) – Keyword arguments of the form plot_option=tag
where plot_option is something like plot_title, plot_xlabel, plot_xlim, etc.

646 Chapter 54. Diagnostic Scripts

https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

and tag a key for the plot attributes dict that describes which attributes should be con-
sidered for that plot_option.

esmvaltool.diag_scripts.emergent_constraints.standard_prediction_error(x_data, y_data)
Return a function to calculate standard prediction error.

The standard prediction error of a linear regression is the error when predicting a data point which was not used
to fit the regression line in the first place.

Parameters
• x_data (numpy.ndarray) – X data used to fit the linear regression.

• y_data (numpy.ndarray) – Y data used to fit the linear regression.

Returns
Function that takes a float as single argument (representing the X value of a new data point)
and returns the standard prediction error for that.

Return type
callable

esmvaltool.diag_scripts.emergent_constraints.target_pdf(x_data, y_data, obs_mean, obs_std,
n_points=1000, necessary_p_value=None)

Calculate probability density function (PDF) for target variable.

Parameters
• x_data (numpy.ndarray) – X data of the emergent constraint.

• y_data (numpy.ndarray) – Y data of the emergent constraint.

• obs_mean (float) – Mean of observational data.

• obs_std (float) – Standard deviation of observational data.

• n_points (int, optional (default: 1000)) – Number of sampled points for
PDF of target variable.

• necessary_p_value (float, optional) – If given, return unconstrained PDF (using
Gaussian distribution with unconstrained mean and standard deviation) when p-value of
emergent relationship is greater than the given necessary p-value.

Returns
x and y values for the PDF.

Return type
tuple of numpy.ndarray

54.2 Machine Learning Regression (MLR) diagnostics

This module provides various tools to create and evaluate MLR models for arbitrary input variables.

54.2. Machine Learning Regression (MLR) diagnostics 647

https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.2.1 Examples

• Constraining uncertainty in projected gross primary production (GPP) with machine learning: Use Gradient
Boosted Regression Tree (GBRT) algorithm to constrain projected Gross Primary Production (GPP) in RCP 8.5
scenario using observations of process-based predictors.

54.2.2 Diagnostic scripts

Evaluate residuals

Simple evaluation of residuals (coming from MLR model output).

Description

This diagnostic evaluates residuals created by MLR models.

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

mse_plot: dict, optional
Additional options for plotting the mean square errors (MSE). Specify additional keyword arguments for
seaborn.boxplot() by plot_kwargs and plot appearance options by pyplot_kwargs (processed as func-
tions of matplotlib.pyplot).

pattern: str, optional
Pattern matched against ancestor file names.

rmse_plot: dict, optional
Additional options for plotting the root mean square errors (RMSE). Specify additional keyword arguments for
seaborn.boxplot() by plot_kwargs and plot appearance options by pyplot_kwargs (processed as func-
tions of matplotlib.pyplot).

savefig_kwargs: dict, optional
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict, optional
Options for seaborn.set_theme() (affects all plots).

weighted_samples: dict
If specified, use weighted root mean square error. The given keyword arguments are directly passed to
esmvaltool.diag_scripts.mlr.get_all_weights() to calculate the sample weights. By default, area
weights and time weights are used.

648 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://seaborn.pydata.org/generated/seaborn.boxplot.html#seaborn.boxplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://seaborn.pydata.org/generated/seaborn.boxplot.html#seaborn.boxplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

MLR main diagnostic

Main Diagnostic script to create MLR models.

Description

This diagnostic script creates Machine Learning Regression (MLR) models which use inter-model relations between
process-based predictors (usually from the past/present climate) and a target variable (usually a projection of the future
climate) to get a constrained prediction of the target variable. It provides an interface for using MLR models (subclasses
of esmvaltool.diag_scripts.mlr.models.MLRModel).

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

efecv_kwargs: dict, optional
If specified, use these additional keyword arguments to perform a exhaustive feature elimination using cross-
validation. May not be used together with grid_search_cv_param_grid or rfecv_kwargs.

grid_search_cv_kwargs: dict, optional
Keyword arguments for the grid search cross-validation, see https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html.

grid_search_cv_param_grid: dict or list of dict, optional
If specified, perform exhaustive parameter search using cross-validation instead of simply calling esmvaltool.
diag_scripts.mlr.models.MLRModel.fit(). Contains parameters (keys) and ranges (values) for the ex-
haustive parameter search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p
is the parameter p for step s. May not be used together with efecv_kwargs or rfecv_kwargs.

group_metadata: str, optional
Group input data by an attribute. For every group element (set of datasets), an individual MLR model is calcu-
lated. Only affects feature and label datasets. May be used together with the option pseudo_reality.

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

mlr_model_type: str
MLR model type. The given model has to be defined in esmvaltool.diag_scripts.mlr.models.

only_predict: bool, optional (default: False)
If True, only use esmvaltool.diag_scripts.mlr.models.MLRModel.predict() and do not create any
other output (CSV files, plots, etc.).

pattern: str, optional
Pattern matched against ancestor file names.

plot_partial_dependences: bool, optional (default: False)
Plot partial dependence of every feature in MLR model (computationally expensive).

54.2. Machine Learning Regression (MLR) diagnostics 649

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

predict_kwargs: dict, optional
Optional keyword arguments for the final regressor’s predict() function.

pseudo_reality: list of str, optional
List of dataset attributes which are used to group input data for a pseudo- reality test (also known as model-as-
truth or perfect-model setup). For every element of the group a single MLR model is fitted on all data except
for that of the specified group element. This group element is then used as additional prediction_input
and prediction_reference. This allows a direct assessment of the predictive power of the MLR model by
comparing the MLR prediction output and the true labels (similar to splitting the input data in a training and test
set, but not dividing the data randomly but using specific datasets, e.g. the different climate models). May be
used together with the option group_metadata.

rfecv_kwargs: dict, optional
If specified, use these additional keyword arguments to perform a recursive feature elimination using cross-
validation, see https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html. May
not be used together with efecv_kwargs or grid_search_cv_param_grid.

save_mlr_model_error: str or int, optional
Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction
caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by
including datasets with var_type set to prediction_input_error and setting save_propagated_errors
to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test
data set. Only possible if test data is available, i.e. the option test_size is not set to False during class
initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-
out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

save_lime_importance: bool, optional (default: False)
Additionally save local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

save_propagated_errors: bool, optional (default: False)
Additionally save propagated errors from prediction_input_error datasets.

select_metadata: dict, optional
Pre-select input data by specifying (key, value) pairs. Affects all datasets regardless of var_type.

Additional optional parameters are optional parameters for esmvaltool.diag_scripts.mlr.models.MLRModel
given here or optional parameters of esmvaltool.diag_scripts.mlr.mmm if mlr_model_type='mmm'.

Multi-model means (MMM)

Use simple multi-model mean for predictions.

Description

This diagnostic calculates the (unweighted) mean over all given datasets for a given target variable.

650 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

convert_units_to: str, optional
Convert units of the input data. Can also be given as dataset option.

dtype: str (default: ‘float64’)
Internal data type which is used for all calculations, see https://docs.scipy.org/doc/numpy/user/basics.types.html
for a list of allowed values.

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

mlr_model_name: str, optional (default: ‘MMM’)
Human-readable name of the MLR model instance (e.g used for labels).

mmm_error_type: str, optional
If given, additionally saves estimated squared MMM model error. If the option is set to 'loo', the (constant)
error is estimated as RMSEP using leave-one-out cross-validation. No other options are supported at the moment.

pattern: str, optional
Pattern matched against ancestor file names.

prediction_name: str, optional
Default prediction_name of output cubes if no ‘prediction_reference’ dataset is given.

weighted_samples: dict
If specified, use weighted mean square error to estimate prediction error. The given keyword arguments are
directly passed to esmvaltool.diag_scripts.mlr.get_all_weights() to calculate the sample weights.
By default, area weights and time weights are used.

Plotting functionalities

Plotting scripts for MLR models input/output.

Description

This diagnostic creates plots for MLR model input/output.

54.2. Machine Learning Regression (MLR) diagnostics 651

https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Notes

All configuration options starting with plot_ specify keyword arguments for a specific plot type. A certain plot type
is only plotted if the corresponding option is given in the recipe (if no additional keyword arguments are desired, use
{}).

Configuration options in recipe

additional_plot_kwargs_xy_plots: dict, optional
Optional keyword arguments (values) for single datasets used in X-Y plots. They keys may include a var_type
or values of the attribute given by group_by_attribute.

alias: dict, optional
str to str mapping for nicer plot labels (e.g. {'feature': 'Historical CMIP5 data'}.

apply_common_mask: bool, optional (default: False)
Apply common mask to all datasets prior to plotting. Requires identical shapes for all datasets.

group_attribute_as_default_alias: bool, optional (default: True)
If True, use value of attribute given by group_by_attribute as default alias if possible. If False, use full
group name (including var_type) as default alias.

group_by_attribute: str, optional (default: ‘mlr_model_name’)
By default, datasets are grouped using the var_type attribute. This option can be used to specify a further
attribute to group datasets. This diagnostic expects a single dataset per group.

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

legend_kwargs: dict, optional
Optional keyword arguments of matplotlib.pyplot.legend() (affects only plots with legends).

map_plot_type: str, optional (default: ‘pcolormesh’)
Type of plot used for plotting maps. Must be one of 'pcolormesh' or 'contourf'.

pattern: str, optional
Pattern matched against ancestor file names.

plot_map: dict, optional
Specify additional keyword arguments for plotting global maps showing datasets by plot_kwargs and plot
appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

plot_map_abs_biases: dict, optional
Specify additional keyword arguments for plotting global maps showing absolute biases by plot_kwargs and
plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

plot_map_ratios: dict, optional
Specify additional keyword arguments for plotting global maps showing ratios of datasets by plot_kwargs and
plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

652 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_map_rel_biases: dict, optional
Specify additional keyword arguments for plotting global maps showing relative biases of datasets by
plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.
pyplot).

plot_xy: dict, optional
Specify additional keyword arguments for simple X-Y plots by plot_kwargs and plot appearance options by
pyplot_kwargs (processed as functions of matplotlib.pyplot). By default, plots data against dimensional
coordinate (if available). Use x_coord (str) to use another coordinate as X-axis. Use reg_line: True to
additionally plot a linear regression line.

plot_xy_with_errors: dict, optional
Specify additional keyword arguments for X-Y plots with error ranges plot_kwargs and plot appearance op-
tions by pyplot_kwargs (processed as functions of matplotlib.pyplot). By default, plots data against di-
mensional coordinate (if available). Use x_coord (str) to use another coordinate as X-axis.

print_corr: bool, optional (default: False)
Print and save Pearson correlation coefficient between all datasets at the end. Requires identical shapes for all
datasets.

savefig_kwargs: dict, optional
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict, optional
Options for seaborn.set_theme() (affects all plots).

years_in_title: bool, optional (default: False)
Print years in default title of plots.

Postprocessing functionalities

Simple postprocessing of MLR model output.

Description

This diagnostic performs postprocessing operations for MLR model output (mean and error).

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

54.2. Machine Learning Regression (MLR) diagnostics 653

https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Notes

Prior to postprocessing, this diagnostic groups input datasets according to tag and prediction_name. For each group,
accepts datasets with three different var_type s:

• prediction_output: Exactly one necessary, refers to the mean prediction and serves as reference dataset
(regarding shape).

• prediction_output_error: Arbitrary number of error datasets. If not given, error calculation is skipped.
May be squared errors (marked by the attribute squared) or not. In addition, a single covariance dataset can be
specified (short_name ending with _cov).

• prediction_input: Dataset used to estimate covariance structure of the mean prediction (i.e. matrix
of Pearson correlation coefficients) for error estimation. At most one dataset allowed. Ignored when no
prediction_output_error is given. This is only possible when (1) the shape of the prediction_input
dataset is identical to the shape of the prediction_output_error datasets, (2) the number of dimensions of
the prediction_input dataset is higher than the number of dimensions of the prediction_output_error
datasets and they have identical trailing (rightmost) dimensions or (3) the number of dimensions of the
prediction_input dataset is higher than the number of dimensions of prediction_output_error datasets
and all dimensions of the prediction_output_error datasets are mapped to a corresponding dimen-
sion of the prediction_input using the cov_estimate_dim_map option (e.g. when prediction_input
has shape (10, 5, 100, 20) and prediction_output_error has shape (5, 20), you can use
cov_estimate_dim_map: [1, 3] to map the dimensions of prediction_output_error to dimension 1
and 3 of prediction_input).

All data with other var_type s is ignored (feature, label, etc.).

Real error calculation (using covariance dataset given as prediction_output_error) and estimation (using
prediction_input dataset to estimate covariance structure) is only possible if the mean prediction cube is collapsed
completely during postprocessing, i.e. all coordinates are listed for either mean or sum.

Configuration options in recipe

add_var_from_cov: bool, optional (default: True)
Calculate variances from covariance matrix (diagonal elements) and add those to (squared) error datasets. Set
to False if variance is already given separately in prediction output.

area_weighted: bool, optional (default: True)
Calculate weighted averages/sums when collapsing over latitude and/or longitude coordinates using grid cell
areas (calculated using grid cell bounds). Only possible for datasets on regular grids that contain latitude and
longitude coordinates.

convert_units_to: str, optional
Convert units of the input data.

cov_estimate_dim_map: list of int, optional
Map dimensions of prediction_output_error datasets to corresponding dimensions of prediction_input
used for estimating covariance. Only relevant if both dataset types are given. See notes above for more informa-
tion.

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

landsea_fraction_weighted: str, optional
When given, calculate weighted averages/sums when collapsing over latitude and/or longitude coordinates using
land/sea fraction (calculated using Natural Earth masks). Only possible if the datasets contains latitude and
longitude coordinates. Must be one of 'land', 'sea'.

654 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

mean: list of str, optional
Perform mean over the given coordinates.

pattern: str, optional
Pattern matched against ancestor file names.

sum: list of str, optional
Perform sum over the given coordinates.

time_weighted: bool, optional (default: True)
Calculate weighted averages/sums for time (using time bounds).

Preprocessing functionalities

Simple preprocessing of MLR model input.

Description

This diagnostic performs preprocessing operations for datasets used as MLR model input in a desired way. It can also
be used to process output of MLR models for plotting.

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

aggregate_by: dict, optional
Aggregate over given coordinates (dict values; given as list of str) using a desired aggregator (dict key; given
as str). Allowed aggregators are 'max', 'mean', 'median', 'min', 'sum', 'std', 'var', and 'trend'.

apply_common_mask: bool, optional (default: False)
Apply common mask to all datasets. Requires identical shapes for all datasets.

area_weighted: bool, optional (default: True)
Use weighted aggregation when collapsing over latitude and/or longitude using collapse. Weights are estimated
using grid cell bounds. Only possible for datasets on regular grids that contain latitude and longitude
coordinates.

argsort: dict, optional
Calculate numpy.ma.argsort() along given coordinate to get ranking. The coordinate can be specified by the
coord key. If descending is set to True, use descending order instead of ascending.

collapse: dict, optional
Collapse over given coordinates (dict values; given as list of str) using a desired aggregator (dict key; given
as str). Allowed aggregators are 'max', 'mean', 'median', 'min', 'sum', 'std', 'var', and 'trend'.

convert_units_to: str, optional
Convert units of the input data. Can also be given as dataset option.

54.2. Machine Learning Regression (MLR) diagnostics 655

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ma.argsort.html#numpy.ma.argsort
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

extract: dict, optional
Extract certain values (dict values, given as int, float or iterable of them) for certain coordinates (dict keys,
given as str).

extract_ignore_bounds: bool, optional (default: False)
If True, ignore coordinate bounds when using extract or extract_range. If False, consider coordinate
bounds when using extract or extract_range. For time coordinates, bounds are always ignored.

extract_range: dict, optional
Like extract, but instead of specific values extract ranges (dict values, given as iterable of exactly two int s or
float s) for certain coordinates (dict keys, given as str).

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

landsea_fraction_weighted: str, optional
When given, use land/sea fraction for weighted aggregation when collapsing over latitude and/or longitude using
collapse. Only possible if the dataset contains latitude and longitude coordinates and for regular grids.
Must be one of 'land', 'sea'.

mask: dict of dict
Mask datasets. Keys have to be numpy.ma conversion operations (see https://docs.scipy.org/doc/numpy/
reference/routines.ma.html) and values all the keyword arguments of them.

n_jobs: int (default: 1)
Maximum number of jobs spawned by this diagnostic script. Use -1 to use all processors. More details are given
here.

normalize_by_mean: bool, optional (default: False)
Remove total mean of the dataset in the last step (resulting mean will be 0.0). Calculates weighted mean if
area_weighted, time_weighted or landsea_fraction_weighted are set and the cube contains the corre-
sponding coordinates. Does not apply to error datasets.

normalize_by_std: bool, optional (default: False)
Scale total standard deviation of the dataset in the last step (resulting standard deviation will be 1.0).

output_attributes: dict, optional
Write additional attributes to netcdf files, e.g. 'tag'.

pattern: str, optional
Pattern matched against ancestor file names.

ref_calculation: str, optional
Perform calculations involving reference dataset. Must be one of merge (simply merge two datasets by adding
the data of the reference dataset as iris.coords.AuxCoord to the original dataset), add (add reference dataset),
divide (divide by reference dataset), multiply (multiply with reference dataset), subtract (subtract reference
dataset) or trend (use reference dataset as x axis for calculation of linear trend along a specified axis, see
ref_kwargs).

ref_kwargs: dict, optional
Keyword arguments for calculations involving reference datasets. Allowed keyword arguments are:

• matched_by (list of str, default: []): Use a given set of attributes to match datasets with their corre-
sponding reference datasets (specified by ref = True).

• collapse_over (str, default: 'time'): Coordinate which is collapsed. Only relevant when
ref_calculation is set to trend.

return_trend_stderr: bool, optional (default: True)
Return standard error of slope in case of trend calculations (as var_type prediction_input_error).

656 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/maskedarray.generic.html#module-numpy.ma
https://docs.scipy.org/doc/numpy/reference/routines.ma.html
https://docs.scipy.org/doc/numpy/reference/routines.ma.html
https://scikit-learn.org/stable/glossary.html#term-n-jobs
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.coords.html#iris.coords.AuxCoord
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

scalar_operations: dict, optional
Operations involving scalars. Allowed keys are add, divide, multiply or subtract. The corresponding
values (float or int) are scalars that are used with the operations.

time_weighted: bool, optional (default: True)
Use weighted aggregation when collapsing over time dimension using collapse. Weights are estimated using
time bounds.

unify_coords_to: dict, optional
If given, replace coordinates of all datasets with that of a reference cube (if necessary and possible, broadcast
beforehand). The reference dataset is determined by keyword arguments given to this option (keyword arguments
must point to exactly one dataset).

Rescale data with emergent constraints

Rescale label data using a single emergent constraint.

Description

This diagnostic uses an emergent relationship between data marked as var_type=label (Y axis) and
var_type=feature (X axis) together with an observation of the X axis (var_type=prediction_input and
var_type=prediction_input_error) to calculate factors that are necessary to rescale each input point so that
it matches the constraint. The rescaling is applied to data marked as var_type=label_to_rescale. All data
needs the attribute tag which needs to be identical for label, prediction_input, prediction_input_error
and label_to_rescale. Only a single tag for feature is possible.

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

group_by_attributes: list of str, optional (default: [‘dataset’])
List of attributes used to separate different input points.

ignore: list of dict, optional
Ignore specific datasets by specifying multiple dict s of metadata.

legend_kwargs: dict, optional
Optional keyword arguments of matplotlib.pyplot.legend() (affects only plots with legends).

pattern: str, optional
Pattern matched against ancestor file names.

plot_emergent_relationship: dict, optional
If given, plot emergent relationship between X and Y data. Specify additional keyword arguments by
plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.
pyplot). Use {} to plot with default settings.

54.2. Machine Learning Regression (MLR) diagnostics 657

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_kwargs_for_groups: dict, optional
Specify additional keyword arguments (values) for the different points defined by group_by_attributes (keys)
used in plots.

savefig_kwargs: dict, optional
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict, optional
Options for seaborn.set_theme() (affects all plots).

54.2.3 Auxiliary scripts

Auxiliary functions for MLR scripts

Convenience functions for MLR diagnostics.

Functions:

check_predict_kwargs(predict_kwargs) Check keyword argument for predict() functions.
create_alias(dataset, attributes[, delimiter]) Create alias key of a dataset using a list of attributes.
datasets_have_mlr_attributes(datasets[, ...]) Check (MLR) attributes of datasets.
get_1d_cube(x_data, y_data[, x_kwargs, y_kwargs]) Convert 2 arrays to iris.cube.Cube (with single coor-

dinate).
get_absolute_time_units(units) Convert time reference units to absolute ones.
get_alias(dataset) Get alias for dataset.
get_all_weights(cube[, area_weighted, ...]) Get all desired weights for a cube.
get_area_weights(cube[, normalize]) Get area weights calculated from grid cell areas.
get_horizontal_weights(cube[, ...]) Get horizontal (latitude/longitude) weights of cube.
get_input_data(cfg[, pattern, ...]) Get input data and check MLR attributes if desired.
get_landsea_fraction_weights(cube, area_type) Get land/sea fraction weights calculated from Natural

Earth files.
get_new_path (cfg, old_path) Convert old path to new diagnostic path.
get_squared_error_cube(ref_cube, error_datasets) Get array of squared errors.
get_time_weights(cube[, normalize]) Get time weights of cube calculated from time bounds.
ignore_warnings() Ignore warnings given by WARNINGS_TO_IGNORE.
square_root_metadata(cube) Take the square root of the cube metadata.
units_power(units, power) Raise a cf_units.Unit to given power preserving

symbols.

esmvaltool.diag_scripts.mlr.check_predict_kwargs(predict_kwargs)
Check keyword argument for predict() functions.

Parameters
predict_kwargs (keyword arguments, optional) – Keyword arguments for a
predict() function.

Raises
RuntimeError – return_var and return_cov are both set to True in the keyword argu-
ments.

esmvaltool.diag_scripts.mlr.create_alias(dataset, attributes, delimiter='-')
Create alias key of a dataset using a list of attributes.

Parameters
• dataset (dict) – Metadata dictionary representing a single dataset.

658 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• attributes (list of str) – List of attributes used to create the alias.

• delimiter (str, optional (default: '-')) – Delimiter used to separate different
attributes in the alias.

Returns
Dataset alias.

Return type
str

Raises
AttributeError – dataset does not contain one of the attributes.

esmvaltool.diag_scripts.mlr.datasets_have_mlr_attributes(datasets, log_level='debug', mode='full')
Check (MLR) attributes of datasets.

Parameters
• datasets (list of dict) – Datasets to check.

• log_level (str, optional (default: 'debug')) – Verbosity level of the logger.

• mode (str, optional (default: 'full')) – Checking mode. Must be one of
'only_missing' (only check if attributes are missing), 'only_var_type' (check only
var_type) or 'full' (check both).

Returns
True if all required attributes are available, False if not.

Return type
bool

Raises
ValueError – Invalid value for argument mode is given.

esmvaltool.diag_scripts.mlr.get_1d_cube(x_data, y_data, x_kwargs=None, y_kwargs=None)
Convert 2 arrays to iris.cube.Cube (with single coordinate).

Parameters
• x_data (numpy.ndarray) – Data for coordinate.

• y_data (numpy.ndarray) – Data for cube.

• x_kwargs (dict) – Keyword arguments passed to iris.coords.AuxCoord.

• y_kwargs (dict) – Keyword arguments passed to iris.cube.Cube.

Returns
1D cube with single auxiliary coordinate.

Return type
iris.cube.Cube

Raises
ValueError – Arrays are not 1D and do not have matching shapes.

esmvaltool.diag_scripts.mlr.get_absolute_time_units(units)
Convert time reference units to absolute ones.

This function converts reference time units (like 'days since YYYY') to absolute ones (like 'days').

Parameters
units (cf_units.Unit) – Time units to convert.

54.2. Machine Learning Regression (MLR) diagnostics 659

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.coords.html#iris.coords.AuxCoord
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Absolute time units.

Return type
cf_units.Unit

Raises
ValueError – If conversion failed (e.g. input units are not time units).

esmvaltool.diag_scripts.mlr.get_alias(dataset)
Get alias for dataset.

Parameters
dataset (dict) – Dataset metadata.

Returns
Alias.

Return type
str

esmvaltool.diag_scripts.mlr.get_all_weights(cube, area_weighted=True, time_weighted=True,
landsea_fraction_weighted=None, normalize=False)

Get all desired weights for a cube.

Parameters
• cube (iris.cube.Cube) – Input cube.

• area_weighted (bool, optional (default: True)) – Use area weights calcu-
lated from grid cell areas using iris.analysis.cartography.area_weights().
Only works for regular grids.

• time_weighted (bool, optional (default: True)) – Use time weights calcu-
lated from time bounds.

• landsea_fraction_weighted (str, optional) – If given, use land/sea fraction
weights calculated from Natural Earth files. Must be one of 'land', 'sea'. Only works
for regular grids.

• normalize (bool, optional (default: False)) – Normalize weights with total
area and total time range.

Returns
Area weights.

Return type
numpy.ndarray

Raises
• iris.exceptions.CoordinateMultiDimError – Dimension of latitude or
longitude coordinate is greater than 1.

• iris.exceptions.CoordinateNotFoundError – Cube does not contain
the coordinates latitude and longitude (if used with area_weighted or
landsea_fraction_weighted) or cube does not contain the coordinate time (if
used with time_weighted).

• ValueError – landsea_fraction_weighted is not one of None, 'land', 'sea' or
coordinates latitude and longitude share dimensions.

660 Chapter 54. Diagnostic Scripts

https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.cartography.html#iris.analysis.cartography.area_weights
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateMultiDimError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.mlr.get_area_weights(cube, normalize=False)
Get area weights calculated from grid cell areas.

Note: Only works for regular grids. Uses iris.analysis.cartography.area_weights() for an approxi-
mate calculation of the grid cell areas.

Parameters
• cube (iris.cube.Cube) – Input cube.

• normalize (bool, optional (default: False)) – Normalize weights with total
area.

Returns
Area weights.

Return type
numpy.ndarray

Raises
iris.exceptions.CoordinateNotFoundError – Cube does not contain the coordinates
latitude and longitude.

esmvaltool.diag_scripts.mlr.get_horizontal_weights(cube, area_weighted=True,
landsea_fraction_weighted=None,
normalize=False)

Get horizontal (latitude/longitude) weights of cube.

Parameters
• cube (iris.cube.Cube) – Input cube.

• area_weighted (bool, optional (default: True)) – Use area weights calcu-
lated from grid cell areas using iris.analysis.cartography.area_weights().
Only works for regular grids.

• landsea_fraction_weighted (str, optional) – If given, use land/sea fraction
weights calculated from Natural Earth files. Must be one of 'land', 'sea'. Only works
for regular grids.

• normalize (bool, optional (default: False)) – Normalize weights with sum
of weights over latitude and longitude (i.e. if only area_weighted is given, this is equal
to the total area).

Returns
Horizontal (latitude/longitude) weights.

Return type
numpy.ndarray

Raises
• iris.exceptions.CoordinateMultiDimError – Dimension of latitude or
longitude coordinate is greater than 1.

• iris.exceptions.CoordinateNotFoundError – Cube does not contain the coordi-
nates latitude and longitude.

• ValueError – landsea_fraction_weighted is not one of 'land', 'sea'.

54.2. Machine Learning Regression (MLR) diagnostics 661

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.cartography.html#iris.analysis.cartography.area_weights
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.cartography.html#iris.analysis.cartography.area_weights
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateMultiDimError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.mlr.get_input_data(cfg, pattern=None, check_mlr_attributes=True,
ignore=None)

Get input data and check MLR attributes if desired.

Use input_data and ancestors to get all relevant input files.

Parameters
• cfg (dict) – Recipe configuration.

• pattern (str, optional) – Pattern matched against ancestor file names.

• check_mlr_attributes (bool, optional (default: True)) – If True, only re-
turns datasets with valid MLR attributes. If False, returns all found datasets.

• ignore (list of dict, optional) – Ignore specific datasets by specifying mul-
tiple dict`s of metadata. By setting an attribute to ``None`, ignore all
datasets which do not have that attribute.

Returns
List of input datasets.

Return type
list of dict

Raises
ValueError – No input data found or at least one dataset has invalid attributes.

esmvaltool.diag_scripts.mlr.get_landsea_fraction_weights(cube, area_type, normalize=False)
Get land/sea fraction weights calculated from Natural Earth files.

Note: The implementation of this feature is not optimal. For large cubes, calculating the land/sea fraction
weights might be very slow. Only works for regular grids.

Parameters
• cube (iris.cube.Cube) – Input cube.

• area_type (str) – Area type. Must be one of 'land' (land fraction weighting) or 'sea'
(sea fraction weighting).

• normalize (bool, optional (default: False)) – Normalize weights with total
land/sea fraction.

Raises
• iris.exceptions.CoordinateMultiDimError – Dimension of latitude or
longitude coordinate is greater than 1.

• iris.exceptions.CoordinateNotFoundError – Cube does not contain the coordi-
nates latitude and longitude.

• ValueError – area_type is not one of 'land', 'sea' or coordinates latitude and
longitude share dimensions.

esmvaltool.diag_scripts.mlr.get_new_path(cfg, old_path)
Convert old path to new diagnostic path.

Parameters
• cfg (dict) – Recipe configuration.

662 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateMultiDimError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• old_path (str) – Old path.

Returns
New diagnostic path.

Return type
str

esmvaltool.diag_scripts.mlr.get_squared_error_cube(ref_cube, error_datasets)
Get array of squared errors.

Parameters
• ref_cube (iris.cube.Cube) – Reference cube (determines mask, coordinates and at-

tributes of output).

• error_datasets (list of dict) – List of metadata dictionaries where each dictio-
nary represents a single dataset.

Returns
Cube containing squared errors.

Return type
iris.cube.Cube

Raises
ValueError – Shape of a dataset does not match shape of reference cube.

esmvaltool.diag_scripts.mlr.get_time_weights(cube, normalize=False)
Get time weights of cube calculated from time bounds.

Parameters
• cube (iris.cube.Cube) – Input cube.

• normalize (bool, optional (default: False)) – Normalize weights with total
time range.

Returns
Time weights.

Return type
numpy.ndarray

Raises
iris.exceptions.CoordinateNotFoundError – Cube does not contain the coordinate
time.

esmvaltool.diag_scripts.mlr.ignore_warnings()

Ignore warnings given by WARNINGS_TO_IGNORE.

esmvaltool.diag_scripts.mlr.square_root_metadata(cube)
Take the square root of the cube metadata.

Parameters
cube (iris.cube.Cube) – Cube (will be modified in-place).

esmvaltool.diag_scripts.mlr.units_power(units, power)
Raise a cf_units.Unit to given power preserving symbols.

Raise cf_units.Unit to given power without expanding it first. For example, using
units_power(Unit('J'), 2) gives Unit('J2'). In contrast, simply using Unit('J')**2 would
yield 'kg2 m4 s-4'.

54.2. Machine Learning Regression (MLR) diagnostics 663

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.exceptions.html#iris.exceptions.CoordinateNotFoundError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• units (cf_units.Unit) – Input units.

• power (int) – Desired exponent.

Returns
Input units raised to given power.

Return type
cf_units.Unit

Raises
• TypeError – Argument power is not int-like.

• ValueError – Invalid unit given.

Custom extensions of sklearn functionalities

Custom expansions of sklearn functionalities.

Note: This module provides custom expansions of some sklearn classes and functions which are necessary to fit
the purposes for the desired functionalities of the MLR module. As long-term goal we would like to include these
functionalities to the sklearn package since we believe these additions might be helpful for everyone. This module
serves as interim solution. To ensure that all features are properly working this module is also covered by extensive
tests.

Parts of this code have been copied from sklearn.

License: BSD 3-Clause License

Copyright (c) 2007-2020 The scikit-learn developers. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline(steps, *, memory=None,
verbose=False)

664 Chapter 54. Diagnostic Scripts

https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit
https://docs.python.org/3/library/functions.html#int
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://scikit-learn.org/stable/modules/classes.html#module-sklearn
https://scikit-learn.org/stable/modules/classes.html#module-sklearn
https://scikit-learn.org/stable/modules/classes.html#module-sklearn
https://scikit-learn.org/stable/modules/classes.html#module-sklearn

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Bases: Pipeline

Expand sklearn.pipeline.Pipeline.

property classes_

The classes labels. Only exist if the last step is a classifier.

property coef_

Model coefficients.

Type
numpy.ndarray

decision_function(X, **params)
Transform the data, and apply decision_function with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the final esti-
mator that calls decision_function method. Only valid if the final estimator implements decision_function.

Parameters
• X (iterable) – Data to predict on. Must fulfill input requirements of first step of the

pipeline.

• **params (dict of string -> object) – Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters to be for-
warded to them.

Added in version 1.4: Only available if enable_metadata_routing=True. See Metadata
Routing User Guide for more details.

Returns
y_score – Result of calling decision_function on the final estimator.

Return type
ndarray of shape (n_samples, n_classes)

property feature_importances_

Feature importances.

Type
numpy.ndarray

property feature_names_in_

Names of features seen during first step fit method.

fit(X, y=None, **params)
Fit the model.

Fit all the transformers one after the other and sequentially transform the data. Finally, fit the transformed
data using the final estimator.

Parameters
• X (iterable) – Training data. Must fulfill input requirements of first step of the

pipeline.

• y (iterable, default=None) – Training targets. Must fulfill label requirements for
all steps of the pipeline.

• **params (dict of str -> object) –

– If enable_metadata_routing=False (default):

54.2. Machine Learning Regression (MLR) diagnostics 665

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters passed to the fitmethod of each step, where each parameter name
is prefixed such that parameter p for step s has key s__p.

– If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Changed in version 1.4: Parameters are now passed to the transform method of the
intermediate steps as well, if requested, and if enable_metadata_routing=True is set
via set_config().

See Metadata Routing User Guide for more details.

Returns
self – Pipeline with fitted steps.

Return type
object

fit_predict(X, y=None, **params)
Transform the data, and apply fit_predict with the final estimator.

Call fit_transform of each transformer in the pipeline. The transformed data are finally passed to the final
estimator that calls fit_predict method. Only valid if the final estimator implements fit_predict.

Parameters
• X (iterable) – Training data. Must fulfill input requirements of first step of the

pipeline.

• y (iterable, default=None) – Training targets. Must fulfill label requirements for
all steps of the pipeline.

• **params (dict of str -> object) –

– If enable_metadata_routing=False (default):

Parameters to the predict called at the end of all transformations in the
pipeline.

– If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Added in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform method of the
intermediate steps as well, if requested, and if enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Note that while this may be used to return uncertainties from some models with
return_std or return_cov, uncertainties that are generated by the transformations
in the pipeline are not propagated to the final estimator.

Returns
y_pred – Result of calling fit_predict on the final estimator.

Return type
ndarray

666 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

fit_target_transformer_only(y_data, **fit_kwargs)
Fit only transform step of of target regressor.

fit_transform(X, y=None, **params)
Fit the model and transform with the final estimator.

Fit all the transformers one after the other and sequentially transform the data. Only valid if the final
estimator either implements fit_transform or fit and transform.

Parameters
• X (iterable) – Training data. Must fulfill input requirements of first step of the

pipeline.

• y (iterable, default=None) – Training targets. Must fulfill label requirements for
all steps of the pipeline.

• **params (dict of str -> object) –

– If enable_metadata_routing=False (default):

Parameters passed to the fitmethod of each step, where each parameter name
is prefixed such that parameter p for step s has key s__p.

– If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Changed in version 1.4: Parameters are now passed to the transform method of the
intermediate steps as well, if requested, and if enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns
Xt – Transformed samples.

Return type
ndarray of shape (n_samples, n_transformed_features)

fit_transformers_only(x_data, y_data, **fit_kwargs)
Fit only transform steps of Pipeline.

get_feature_names_out(input_features=None)
Get output feature names for transformation.

Transform input features using the pipeline.

Parameters
input_features (array-like of str or None, default=None) – Input features.

Returns
feature_names_out – Transformed feature names.

Return type
ndarray of str objects

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRouter encapsulating routing information.

54.2. Machine Learning Regression (MLR) diagnostics 667

https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRouter.html#sklearn.utils.metadata_routing.MetadataRouter

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Return type
MetadataRouter

get_params(deep=True)
Get parameters for this estimator.

Returns the parameters given in the constructor as well as the estimators contained within the steps of the
Pipeline.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
mapping of string to any

inverse_transform(Xt, **params)
Apply inverse_transform for each step in a reverse order.

All estimators in the pipeline must support inverse_transform.

Parameters
• Xt (array-like of shape (n_samples, n_transformed_features)) – Data

samples, where n_samples is the number of samples and n_features is the
number of features. Must fulfill input requirements of last step of pipeline’s
inverse_transform method.

• **params (dict of str -> object) – Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters to be for-
warded to them.

Added in version 1.4: Only available if enable_metadata_routing=True. See Metadata
Routing User Guide for more details.

Returns
Xt – Inverse transformed data, that is, data in the original feature space.

Return type
ndarray of shape (n_samples, n_features)

property n_features_in_

Number of features seen during first step fit method.

property named_steps

Access the steps by name.

Read-only attribute to access any step by given name. Keys are steps names and values are the steps objects.

predict(X, **params)
Transform the data, and apply predict with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the final
estimator that calls predict method. Only valid if the final estimator implements predict.

Parameters
• X (iterable) – Data to predict on. Must fulfill input requirements of first step of the

pipeline.

668 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• **params (dict of str -> object) –

– If enable_metadata_routing=False (default):

Parameters to the predict called at the end of all transformations in the
pipeline.

– If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Added in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform method of the
intermediate steps as well, if requested, and if enable_metadata_routing=True is set
via set_config().

See Metadata Routing User Guide for more details.

Note that while this may be used to return uncertainties from some models with
return_std or return_cov, uncertainties that are generated by the transformations
in the pipeline are not propagated to the final estimator.

Returns
y_pred – Result of calling predict on the final estimator.

Return type
ndarray

predict_log_proba(X, **params)
Transform the data, and apply predict_log_proba with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the fi-
nal estimator that calls predict_log_proba method. Only valid if the final estimator implements pre-
dict_log_proba.

Parameters
• X (iterable) – Data to predict on. Must fulfill input requirements of first step of the

pipeline.

• **params (dict of str -> object) –

– If enable_metadata_routing=False (default):

Parameters to the predict_log_proba called at the end of all transformations in
the pipeline.

– If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Added in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform method of the
intermediate steps as well, if requested, and if enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns
y_log_proba – Result of calling predict_log_proba on the final estimator.

Return type
ndarray of shape (n_samples, n_classes)

54.2. Machine Learning Regression (MLR) diagnostics 669

https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

predict_proba(X, **params)
Transform the data, and apply predict_proba with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the final
estimator that calls predict_proba method. Only valid if the final estimator implements predict_proba.

Parameters
• X (iterable) – Data to predict on. Must fulfill input requirements of first step of the

pipeline.

• **params (dict of str -> object) –

– If enable_metadata_routing=False (default):

Parameters to the predict_proba called at the end of all transformations in the
pipeline.

– If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Added in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform method of the
intermediate steps as well, if requested, and if enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns
y_proba – Result of calling predict_proba on the final estimator.

Return type
ndarray of shape (n_samples, n_classes)

score(X, y=None, sample_weight=None, **params)
Transform the data, and apply score with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the final
estimator that calls score method. Only valid if the final estimator implements score.

Parameters
• X (iterable) – Data to predict on. Must fulfill input requirements of first step of the

pipeline.

• y (iterable, default=None) – Targets used for scoring. Must fulfill label require-
ments for all steps of the pipeline.

• sample_weight (array-like, default=None) – If not None, this argument is
passed as sample_weight keyword argument to the score method of the final es-
timator.

• **params (dict of str -> object) – Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters to be for-
warded to them.

Added in version 1.4: Only available if enable_metadata_routing=True. See Metadata
Routing User Guide for more details.

Returns
score – Result of calling score on the final estimator.

670 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Return type
float

score_samples(X)
Transform the data, and apply score_samples with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the final
estimator that calls score_samples method. Only valid if the final estimator implements score_samples.

Parameters
X (iterable) – Data to predict on. Must fulfill input requirements of first step of the
pipeline.

Returns
y_score – Result of calling score_samples on the final estimator.

Return type
ndarray of shape (n_samples,)

set_output(*, transform=None)
Set the output container when “transform” and “fit_transform” are called.

Calling set_output will set the output of all estimators in steps.

Parameters
transform ({"default", "pandas"}, default=None) – Configure output of trans-
form and fit_transform.

• ”default”: Default output format of a transformer

• ”pandas”: DataFrame output

• ”polars”: Polars output

• None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns
self – Estimator instance.

Return type
estimator instance

set_params(**kwargs)
Set the parameters of this estimator.

Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of
the estimators contained in steps.

Parameters
**kwargs (dict) – Parameters of this estimator or parameters of estimators contained in
steps. Parameters of the steps may be set using its name and the parameter name separated
by a ‘__’.

Returns
self – Pipeline class instance.

Return type
object

54.2. Machine Learning Regression (MLR) diagnostics 671

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$')→ AdvancedPipeline
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

steps: List[Any]

transform(X, **params)
Transform the data, and apply transform with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are finally passed to the final
estimator that calls transform method. Only valid if the final estimator implements transform.

This also works where final estimator is None in which case all prior transformations are applied.

Parameters
• X (iterable) – Data to transform. Must fulfill input requirements of first step of the

pipeline.

• **params (dict of str -> object) – Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters to be for-
warded to them.

Added in version 1.4: Only available if enable_metadata_routing=True. See Metadata
Routing User Guide for more details.

Returns
Xt – Transformed data.

672 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Return type
ndarray of shape (n_samples, n_transformed_features)

transform_only(x_data)
Only perform transform steps of Pipeline.

transform_target_only(y_data)
Only perform transform steps of target regressor.

class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFE(estimator, *,
n_features_to_select=None, step=1,
verbose=0,
importance_getter='auto')

Bases: RFE

Expand sklearn.feature_selection.RFE.

property classes_

Classes labels available when estimator is a classifier.

Return type
ndarray of shape (n_classes,)

decision_function(X)
Compute the decision function of X.

Parameters
X ({array-like or sparse matrix} of shape (n_samples, n_features)) –
The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse
matrix is provided to a sparse csr_matrix.

Returns
score – The decision function of the input samples. The order of the classes corresponds
to that in the attribute classes_. Regression and binary classification produce an array of
shape [n_samples].

Return type
array, shape = [n_samples, n_classes] or [n_samples]

fit(x_data, y_data, **fit_kwargs)
Expand fit() to accept kwargs.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
• X (array-like of shape (n_samples, n_features)) – Input samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs),
default=None) – Target values (None for unsupervised transformations).

• **fit_params (dict) – Additional fit parameters.

Returns
X_new – Transformed array.

Return type
ndarray array of shape (n_samples, n_features_new)

54.2. Machine Learning Regression (MLR) diagnostics 673

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
https://scikit-learn.org/stable/glossary.html#term-classes_
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

get_feature_names_out(input_features=None)
Mask feature names according to selected features.

Parameters
input_features (array-like of str or None, default=None) – Input features.

• If input_features is None, then feature_names_in_ is used as feature names in. If fea-
ture_names_in_ is not defined, then the following input feature names are generated:
[“x0”, “x1”, . . . , “x(n_features_in_ - 1)”].

• If input_features is an array-like, then input_features must match feature_names_in_
if feature_names_in_ is defined.

Returns
feature_names_out – Transformed feature names.

Return type
ndarray of str objects

get_metadata_routing()

Raise NotImplementedError.

This estimator does not support metadata routing yet.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

get_support(indices=False)
Get a mask, or integer index, of the features selected.

Parameters
indices (bool, default=False) – If True, the return value will be an array of integers,
rather than a boolean mask.

Returns
support – An index that selects the retained features from a feature vector. If indices is
False, this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array of
shape [# output features] whose values are indices into the input feature vector.

Return type
array

inverse_transform(X)
Reverse the transformation operation.

Parameters
X (array of shape [n_samples, n_selected_features]) – The input samples.

Returns
X_r – X with columns of zeros inserted where features would have been removed by
transform().

674 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Return type
array of shape [n_samples, n_original_features]

predict(x_data, **predict_kwargs)
Expand predict() to accept kwargs.

predict_log_proba(X)
Predict class log-probabilities for X.

Parameters
X (array of shape [n_samples, n_features]) – The input samples.

Returns
p – The class log-probabilities of the input samples. The order of the classes corresponds
to that in the attribute classes_.

Return type
array of shape (n_samples, n_classes)

predict_proba(X)
Predict class probabilities for X.

Parameters
X ({array-like or sparse matrix} of shape (n_samples, n_features)) –
The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse
matrix is provided to a sparse csr_matrix.

Returns
p – The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

Return type
array of shape (n_samples, n_classes)

score(X, y, **fit_params)
Reduce X to the selected features and return the score of the estimator.

Parameters
• X (array of shape [n_samples, n_features]) – The input samples.

• y (array of shape [n_samples]) – The target values.

• **fit_params (dict) – Parameters to pass to the score method of the underlying
estimator.

Added in version 1.0.

Returns
score – Score of the underlying base estimator computed with the selected features returned
by rfe.transform(X) and y.

Return type
float

set_fit_request(*, x_data: bool | None | str = '$UNCHANGED$', y_data: bool | None | str =
'$UNCHANGED$')→ AdvancedRFE

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

54.2. Machine Learning Regression (MLR) diagnostics 675

https://scikit-learn.org/stable/glossary.html#term-classes_
https://scikit-learn.org/stable/glossary.html#term-classes_
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
• x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
fit.

• y_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for y_data parameter in
fit.

Returns
self – The updated object.

Return type
object

set_output(*, transform=None)
Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters
transform ({"default", "pandas"}, default=None) – Configure output of trans-
form and fit_transform.

• ”default”: Default output format of a transformer

• ”pandas”: DataFrame output

• ”polars”: Polars output

• None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns
self – Estimator instance.

Return type
estimator instance

676 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of
a nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

set_predict_request(*, x_data: bool | None | str = '$UNCHANGED$')→ AdvancedRFE
Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
predict.

Returns
self – The updated object.

Return type
object

transform(X)
Reduce X to the selected features.

Parameters
X (array of shape [n_samples, n_features]) – The input samples.

54.2. Machine Learning Regression (MLR) diagnostics 677

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
X_r – The input samples with only the selected features.

Return type
array of shape [n_samples, n_selected_features]

class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV(estimator, step=1,
min_features_to_select=1,
cv=None, scoring=None,
verbose=0, n_jobs=None)

Bases: AdvancedRFE

Expand sklearn.feature_selection.RFECV.

property classes_

Classes labels available when estimator is a classifier.

Return type
ndarray of shape (n_classes,)

decision_function(X)
Compute the decision function of X.

Parameters
X ({array-like or sparse matrix} of shape (n_samples, n_features)) –
The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse
matrix is provided to a sparse csr_matrix.

Returns
score – The decision function of the input samples. The order of the classes corresponds
to that in the attribute classes_. Regression and binary classification produce an array of
shape [n_samples].

Return type
array, shape = [n_samples, n_classes] or [n_samples]

fit(x_data, y_data, groups=None, **fit_kwargs)
Expand fit() to accept kwargs.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
• X (array-like of shape (n_samples, n_features)) – Input samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs),
default=None) – Target values (None for unsupervised transformations).

• **fit_params (dict) – Additional fit parameters.

Returns
X_new – Transformed array.

Return type
ndarray array of shape (n_samples, n_features_new)

get_feature_names_out(input_features=None)
Mask feature names according to selected features.

678 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/glossary.html#term-classes_
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
input_features (array-like of str or None, default=None) – Input features.

• If input_features is None, then feature_names_in_ is used as feature names in. If fea-
ture_names_in_ is not defined, then the following input feature names are generated:
[“x0”, “x1”, . . . , “x(n_features_in_ - 1)”].

• If input_features is an array-like, then input_features must match feature_names_in_
if feature_names_in_ is defined.

Returns
feature_names_out – Transformed feature names.

Return type
ndarray of str objects

get_metadata_routing()

Raise NotImplementedError.

This estimator does not support metadata routing yet.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

get_support(indices=False)
Get a mask, or integer index, of the features selected.

Parameters
indices (bool, default=False) – If True, the return value will be an array of integers,
rather than a boolean mask.

Returns
support – An index that selects the retained features from a feature vector. If indices is
False, this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array of
shape [# output features] whose values are indices into the input feature vector.

Return type
array

inverse_transform(X)
Reverse the transformation operation.

Parameters
X (array of shape [n_samples, n_selected_features]) – The input samples.

Returns
X_r – X with columns of zeros inserted where features would have been removed by
transform().

Return type
array of shape [n_samples, n_original_features]

54.2. Machine Learning Regression (MLR) diagnostics 679

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

predict(x_data, **predict_kwargs)
Expand predict() to accept kwargs.

predict_log_proba(X)
Predict class log-probabilities for X.

Parameters
X (array of shape [n_samples, n_features]) – The input samples.

Returns
p – The class log-probabilities of the input samples. The order of the classes corresponds
to that in the attribute classes_.

Return type
array of shape (n_samples, n_classes)

predict_proba(X)
Predict class probabilities for X.

Parameters
X ({array-like or sparse matrix} of shape (n_samples, n_features)) –
The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse
matrix is provided to a sparse csr_matrix.

Returns
p – The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

Return type
array of shape (n_samples, n_classes)

score(X, y, **fit_params)
Reduce X to the selected features and return the score of the estimator.

Parameters
• X (array of shape [n_samples, n_features]) – The input samples.

• y (array of shape [n_samples]) – The target values.

• **fit_params (dict) – Parameters to pass to the score method of the underlying
estimator.

Added in version 1.0.

Returns
score – Score of the underlying base estimator computed with the selected features returned
by rfe.transform(X) and y.

Return type
float

set_fit_request(*, groups: bool | None | str = '$UNCHANGED$', x_data: bool | None | str =
'$UNCHANGED$', y_data: bool | None | str = '$UNCHANGED$')→ AdvancedRFECV

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

680 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/glossary.html#term-classes_
https://scikit-learn.org/stable/glossary.html#term-classes_
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
• groups (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for groups parameter in
fit.

• x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
fit.

• y_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for y_data parameter in
fit.

Returns
self – The updated object.

Return type
object

set_output(*, transform=None)
Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters
transform ({"default", "pandas"}, default=None) – Configure output of trans-
form and fit_transform.

• ”default”: Default output format of a transformer

• ”pandas”: DataFrame output

• ”polars”: Polars output

• None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns
self – Estimator instance.

Return type
estimator instance

54.2. Machine Learning Regression (MLR) diagnostics 681

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of
a nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

set_predict_request(*, x_data: bool | None | str = '$UNCHANGED$')→ AdvancedRFECV
Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
predict.

Returns
self – The updated object.

Return type
object

transform(X)
Reduce X to the selected features.

Parameters
X (array of shape [n_samples, n_features]) – The input samples.

682 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
X_r – The input samples with only the selected features.

Return type
array of shape [n_samples, n_selected_features]

class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor(regressor=None,
*,
trans-
former=None,
func=None,
in-
verse_func=None,
check_inverse=True)

Bases: TransformedTargetRegressor

Expand sklearn.compose.TransformedTargetRegressor.

property coef_

Model coefficients.

Type
numpy.ndarray

property feature_importances_

Feature importances.

Type
numpy.ndarray

fit(x_data, y_data, **fit_kwargs)
Expand fit() to accept kwargs.

fit_transformer_only(y_data, **fit_kwargs)
Fit only transformer step.

get_metadata_routing()

Raise NotImplementedError.

This estimator does not support metadata routing yet.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

property n_features_in_

Number of features seen during fit.

predict(x_data, always_return_1d=True, **predict_kwargs)
Expand predict() to accept kwargs.

54.2. Machine Learning Regression (MLR) diagnostics 683

https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/glossary.html#term-fit

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination𝑅2 is defined as (1− 𝑢
𝑣), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters
• X (array-like of shape (n_samples, n_features)) – Test samples. For

some estimators this may be a precomputed kernel matrix or a list of generic objects in-
stead with shape (n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
True values for X.

• sample_weight (array-like of shape (n_samples,), default=None) –
Sample weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_fit_request(*, x_data: bool | None | str = '$UNCHANGED$', y_data: bool | None | str =
'$UNCHANGED$')→ AdvancedTransformedTargetRegressor

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

• False: metadata is not requested and the meta-estimator will not pass it to fit.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

684 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
• x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
fit.

• y_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for y_data parameter in
fit.

Returns
self – The updated object.

Return type
object

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of
a nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

set_predict_request(*, always_return_1d: bool | None | str = '$UNCHANGED$', x_data: bool | None |
str = '$UNCHANGED$')→ AdvancedTransformedTargetRegressor

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

54.2. Machine Learning Regression (MLR) diagnostics 685

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
• always_return_1d (str, True, False, or None, default=sklearn.
utils.metadata_routing.UNCHANGED) – Metadata routing for
always_return_1d parameter in predict.

• x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
predict.

Returns
self – The updated object.

Return type
object

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$')→
AdvancedTransformedTargetRegressor

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

686 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

class esmvaltool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer(grid_scores,
n_features,
ranking,
support)

Bases: BaseEstimator, SelectorMixin

Transformer step of a feature selection estimator.

fit(*_, **__)
Empty method.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
• X (array-like of shape (n_samples, n_features)) – Input samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs),
default=None) – Target values (None for unsupervised transformations).

• **fit_params (dict) – Additional fit parameters.

Returns
X_new – Transformed array.

Return type
ndarray array of shape (n_samples, n_features_new)

get_feature_names_out(input_features=None)
Mask feature names according to selected features.

Parameters
input_features (array-like of str or None, default=None) – Input features.

• If input_features is None, then feature_names_in_ is used as feature names in. If fea-
ture_names_in_ is not defined, then the following input feature names are generated:
[“x0”, “x1”, . . . , “x(n_features_in_ - 1)”].

• If input_features is an array-like, then input_features must match feature_names_in_
if feature_names_in_ is defined.

Returns
feature_names_out – Transformed feature names.

Return type
ndarray of str objects

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

54.2. Machine Learning Regression (MLR) diagnostics 687

https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectorMixin.html#sklearn.feature_selection.SelectorMixin
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

get_support(indices=False)
Get a mask, or integer index, of the features selected.

Parameters
indices (bool, default=False) – If True, the return value will be an array of integers,
rather than a boolean mask.

Returns
support – An index that selects the retained features from a feature vector. If indices is
False, this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array of
shape [# output features] whose values are indices into the input feature vector.

Return type
array

inverse_transform(X)
Reverse the transformation operation.

Parameters
X (array of shape [n_samples, n_selected_features]) – The input samples.

Returns
X_r – X with columns of zeros inserted where features would have been removed by
transform().

Return type
array of shape [n_samples, n_original_features]

set_output(*, transform=None)
Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters
transform ({"default", "pandas"}, default=None) – Configure output of trans-
form and fit_transform.

• ”default”: Default output format of a transformer

• ”pandas”: DataFrame output

• ”polars”: Polars output

• None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns
self – Estimator instance.

688 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Return type
estimator instance

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of
a nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

transform(X)
Reduce X to the selected features.

Parameters
X (array of shape [n_samples, n_features]) – The input samples.

Returns
X_r – The input samples with only the selected features.

Return type
array of shape [n_samples, n_selected_features]

esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted(estimator, x_data,
y_data=None,
groups=None,
scoring=None, cv=None,
n_jobs=None, verbose=0,
fit_params=None,
pre_dispatch='2*n_jobs',
error_score=nan,
sample_weights=None)

Expand sklearn.model_selection.cross_val_score().

esmvaltool.diag_scripts.mlr.custom_sklearn.get_rfecv_transformer(rfecv_estimator)
Get transformer step of RFECV estimator.

esmvaltool.diag_scripts.mlr.custom_sklearn.perform_efecv(estimator, x_data, y_data, **kwargs)
Perform exhaustive feature selection.

MLRModel base class

Base class for MLR models.

54.2. Machine Learning Regression (MLR) diagnostics 689

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Example recipe

The MLR main diagnostic script provides an interface for using MLR models in recipes. The following recipe shows
a typical example on how to setup MLR recipes/diagnostics with the following properties:

1. Setup an MLR model with target variable y (using the tag Y) and three predictors x1, x2 and latitude (with
tags X1, X2 and latitude, respectively). The target variable needs the attribute var_type: label; the pre-
dictors x1 and x2 the attribute var_type: feature. The coordinate feature latitude is added via the option
coords_as_features: [latitude].

2. Suppose y and x1 are 3D fields (pressure, latitude, longitude); x2 is a 2D field (latitude, longitude). Thus, it
is necessary to add the attribute broadcast_from: [1, 2] to it (see dim_map parameter in iris.util.
broadcast_to_shape() for details). In order to consider multiple climate models (A, B and C) at once, the
option group_datasets_by_attributes: [dataset] is necessary. Otherwise the diagnostic will com-
plain about duplicate data.

3. For the prediction, data from dataset D is used (with var_type: prediction_input). For the feature X1
additional input error (with var_type: prediction_input_error) is used.

diag_feature_x1:
variables:
feature:

... # specify project, mip, start_year, end_year, etc.
short_name: x1
var_type: feature
tag: X1
additional_datasets:
- {dataset: A, ...}
- {dataset: B, ...}
- {dataset: C, ...}

prediction_input:
... # specify project, mip, start_year, end_year, etc.
short_name: x1
var_type: prediction_input
tag: X1
additional_datasets:
- {dataset: D, ...}

prediction_input_error:
... # specify project, mip, start_year, end_year, etc.
short_name: x1Stderr
var_type: prediction_input_error
tag: X1
additional_datasets:
- {dataset: D, ...}

scripts:
null

diag_feature_x2:
variables:
feature:

... # specify project, mip, start_year, end_year, etc.
short_name: x2
var_type: feature
broadcast_from: [1, 2]
tag: X2

(continues on next page)

690 Chapter 54. Diagnostic Scripts

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.util.html#iris.util.broadcast_to_shape
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.util.html#iris.util.broadcast_to_shape

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

additional_datasets:
- {dataset: A, ...}
- {dataset: B, ...}
- {dataset: C, ...}

prediction_input:
... # specify project, mip, start_year, end_year, etc.
short_name: x2
var_type: prediction_input
broadcast_from: [1, 2]
tag: X2
additional_datasets:
- {dataset: D, ...}

scripts:
null

diag_label:
variables:
label:

... # specify project, mip, start_year, end_year, etc.
short_name: y
var_type: label
tag: Y
additional_datasets:
- {dataset: A, ...}
- {dataset: B, ...}
- {dataset: C, ...}

scripts:
null

4. In this example, a GBRT model (with mlr_model_type: gbr_sklearn) is used. Parameters for this
are specified via parameters_final_regressor. Apart from the best-estimate prediction, the esti-
mated MLR model error (save_mlr_model_error: test) and the propagated prediction input error
(save_propagated_errors: true) are returned.

5. With postprocess.py, the global mean of the best estimate prediction and the corresponding errors (MLR
model + propagated input error) are calculted.

diag_mlr_gbrt:
scripts:
mlr:
script: mlr/main.py
ancestors: [
'diag_label/y',
'diag_feature_*/*',

]
coords_as_features: [latitude]
group_datasets_by_attributes: [dataset]
mlr_model_name: GBRT
mlr_model_type: gbr_sklearn
parameters_final_regressor:
learning_rate: 0.1
n_estimators: 100

save_mlr_model_error: test
(continues on next page)

54.2. Machine Learning Regression (MLR) diagnostics 691

https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

(continued from previous page)

save_propagated_errors: true
postprocess:
script: mlr/postprocess.py
ancestors: ['diag_mlr_gbrt/mlr']
ignore:
- {var_type: null}

mean: [pressure, latitude, longitude]

6. Plots of the global distribution (latitude, longitude) are created with plot.py after calculating the mean over the
pressure coordinate using preprocess.py.

diag_plot:
scripts:
preprocess:
script: mlr/preprocess.py
ancestors: ['diag_mlr_gbrt/mlr']
collapse: [pressure]
ignore:
- {var_type: null}

plot:
script: mlr/plot.py
ancestors: ['diag_plot/preprocess']
plot_map:
plot_kwargs:
cbar_label: 'Y'
cbar_ticks: [0, 1, 2, 3]
vmin: 0
vmax: 3

All datasets must have the attribute var_type which specifies the type of the dataset. Possible values are feature
(independent variables used for training/testing), label (dependent variables, y-axis), prediction_input (indepen-
dent variables used for prediction of dependent variables, usually observational data), prediction_input_error
(standard error of the prediction_input data, optional) or prediction_reference (true values for the
prediction_input data, optional). In addition, all datasets must habe the attribute tag, which specifies the
name of variable/diagnostic. All datasets can be converted to new units in the loading step by specifying the key
convert_units_to in the respective dataset(s).

Training data

All groups (specified in group_datasets_by_attributes, if desired) given for label datasets must also be given
for the feature datasets. Within these groups, all feature and label datasets must have the same shape, except
the attribute broadcast_from is set to a list of suitable coordinate indices to map this dataset to regular datasets (see
parameter dim_map in iris.util.broadcast_to_shape()).

692 Chapter 54. Diagnostic Scripts

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.util.html#iris.util.broadcast_to_shape

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Prediction data

All tag s specified for prediction_input datasets must also be given for the feature datasets (except
allow_missing_features is set to True). Multiple predictions can be specified by prediction_name. Within
these predictions, all prediction_input datasets must have the same shape, except the attribute broadcast_from
is given. Errors in the prediction input data can be specified by prediction_input_error. If given, these errors
are used to calculate errors in the final prediction using linear error propagation given by LIME. Additionally, true
values for prediction_input can be specified with prediction_reference datasets (together with the respective
prediction_name). This allows an evaluation of the performance of the MLR model by calculating residuals (true
minus predicted values).

Available MLR models

MLR models are subclasses of this base class. A list of all available MLR models can be found here. To add a new
MLR model, create a new file in esmvaltool/diag_scripts/mlr/models/ with a child class of esmvaltool.
diag_scripts.mlr.models.MLRModel decorated with esmvaltool.diag_scripts.mlr.models.MLRModel.
register_mlr_model().

Optional parameters for class initialization

accept_only_scalar_data: bool (default: False)
If set to True, only accept scalar input data. Should be used together with the option
group_datasets_by_attributes.

allow_missing_features: bool (default: False)
Allow missing features in the training data.

cache_intermediate_results: bool (default: True)
Cache the intermediate results of the pipeline’s transformers.

categorical_features: list of str
Names of features which are interpreted as categorical features (in contrast to numerical features).

coords_as_features: list of str
If given, specify a list of coordinates which should be used as features.

dtype: str (default: ‘float64’)
Internal data type which is used for all calculations, see https://docs.scipy.org/doc/numpy/user/basics.types.html
for a list of allowed values.

fit_kwargs: dict
Optional keyword arguments for the pipeline’s fit() function. These arguments have to be given for each step
of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

group_datasets_by_attributes: list of str
List of dataset attributes which are used to group input data for feature s and label s. For example, this is
necessary if the MLR model should consider multiple climate models in the training phase. If this option is not
given, specifying multiple datasets with identical var_type and tag entries results in an error. If given, all the
input data is first grouped by the given attributes and then checked for uniqueness within this group. After that,
all groups are stacked to form a single set of training data.

imputation_strategy: str (default: ‘remove’)
Strategy for the imputation of missing values in the features. Must be one of 'remove', 'mean', 'median',
'most_frequent' or 'constant'.

54.2. Machine Learning Regression (MLR) diagnostics 693

https://arxiv.org/abs/1602.04938
https://docs.scipy.org/doc/numpy/user/basics.types.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

log_level: str (default: ‘info’)
Verbosity for the logger. Must be one of 'debug', 'info', 'warning' or 'error'.

mlr_model_name: str
Human-readable name of the MLR model instance (e.g used for labels).

n_jobs: int (default: 1)
Maximum number of jobs spawned by this class. Use -1 to use all processors. More details are given here.

output_file_type: str (default: ‘png’)
File type for the plots.

parameters: dict
Parameters used for the whole pipeline. Have to be given for each step of the pipeline separated by two under-
scores, i.e. s__p is the parameter p for step s. random_state parameters are explicitly allowed here (in contrast
to parameters_final_regressor).

parameters_final_regressor: dict
Parameters used for the final regressor. If these parameters are updated using the function
update_parameters(), the new names have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s. Note: to pass an argument for random_state, use the
option random_state of this class.

pca: bool (default: False)
Preprocess numerical input features using PCA. Parameters for this pipeline step can be given via the
parameters argument.

plot_dir: str (default: ~/plots)
Root directory to save plots.

plot_units: dict
Replace specific units (keys) with other text (values) in plots.

random_state: int or None (default: None)
Random seed for numpy.random.RandomState that is used by all functionalities of this class that require ran-
domness (e.g., probabilistic ML algorithms like Gradient Boosting Regression models, random train test splits,
etc.). If None, use a random seed. Use an int to get reproducible results. See https://scikit-learn.org/stable/
common_pitfalls.html#controlling-randomness for more details.

savefig_kwargs: dict
Keyword arguments for matplotlib.pyplot.savefig().

seaborn_settings: dict
Options for seaborn.set_theme() (affects all plots).

standardize_data: bool (default: True)
Linearly standardize numerical input data by removing mean and scaling to unit variance.

sub_dir: str
Create additional subdirectory for output in work_dir and plot_dir.

test_size: float (default: 0.25)
If given, randomly exclude the desired fraction of input data from training and use it as test data.

weighted_samples: dict
If specified, use weighted samples in the loss function used for the training of the MLR model. The given key-
word arguments are directly passed to esmvaltool.diag_scripts.mlr.get_all_weights() to calculate
the sample weights. By default, no weights are used. Raises errors if the desired weights cannot be calculated
for the data, e.g., when time_weighted=True is used but the data does not contain a dimension time.

work_dir: str (default: ~/work)
Root directory to save all other files (mainly *.nc files).

694 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/glossary.html#term-n-jobs
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/common_pitfalls.html#controlling-randomness
https://scikit-learn.org/stable/common_pitfalls.html#controlling-randomness
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Classes:

MLRModel(input_datasets, **kwargs) Base class for MLR models.

class esmvaltool.diag_scripts.mlr.models.MLRModel(input_datasets, **kwargs)
Bases: object

Base class for MLR models.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 695

https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

696 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

54.2. Machine Learning Regression (MLR) diagnostics 697

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

698 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

54.2. Machine Learning Regression (MLR) diagnostics 699

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

700 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

54.2. Machine Learning Regression (MLR) diagnostics 701

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

702 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Base class for Gradient Boosted Regression models

Base class for Gradient Boosting Regression model.

Classes:

GBRModel(input_datasets, **kwargs) Base class for Gradient Boosting Regression models.

class esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel(input_datasets, **kwargs)
Bases: MLRModel

Base class for Gradient Boosting Regression models.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 703

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_feature_importance([filename,
color_coded])

Plot feature importance.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

704 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

54.2. Machine Learning Regression (MLR) diagnostics 705

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

706 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

54.2. Machine Learning Regression (MLR) diagnostics 707

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance.

This function uses properties of the GBR model based on the number of appearances of that feature in the
regression trees and the improvements made by the individual splits (see Friedman, 2001).

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

708 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

54.2. Machine Learning Regression (MLR) diagnostics 709

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

710 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Base class for Linear models

Base class for linear Machine Learning Regression models.

Classes:

LinearModel(input_datasets, **kwargs) Base class for linear Machine Learning models.

class esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel(input_datasets, **kwargs)
Bases: MLRModel

Base class for linear Machine Learning models.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 711

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters

712 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

54.2. Machine Learning Regression (MLR) diagnostics 713

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters

714 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

54.2. Machine Learning Regression (MLR) diagnostics 715

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

716 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input

54.2. Machine Learning Regression (MLR) diagnostics 717

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

718 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

54.2.4 Available MLR models

Gradient Boosted Regression Trees (sklearn implementation)

Gradient Boosting Regression model (using sklearn).

Use mlr_model_type: gbr_sklearn to use this MLR model in the recipe.

Classes:

SklearnGBRModel(input_datasets, **kwargs) Gradient Boosting Regression model (sklearn imple-
mentation).

class esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel(input_datasets, **kwargs)
Bases: GBRModel

Gradient Boosting Regression model (sklearn implementation).

Attributes:

54.2. Machine Learning Regression (MLR) diagnostics 719

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://scikit-learn.org/stable/modules/classes.html#module-sklearn
https://scikit-learn.org/stable/modules/classes.html#module-sklearn
https://scikit-learn.org/stable/modules/classes.html#module-sklearn

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_feature_importance([filename,
color_coded])

Plot feature importance.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
plot_training_progress([filename]) Plot training progress for training and (if possible)

test data.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

720 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

54.2. Machine Learning Regression (MLR) diagnostics 721

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

722 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

54.2. Machine Learning Regression (MLR) diagnostics 723

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance.

This function uses properties of the GBR model based on the number of appearances of that feature in the
regression trees and the improvements made by the individual splits (see Friedman, 2001).

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

724 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

54.2. Machine Learning Regression (MLR) diagnostics 725

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_training_progress(filename=None)
Plot training progress for training and (if possible) test data.

Parameters
filename (str, optional (default: 'training_progress')) – Name of the plot
file.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

726 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

54.2. Machine Learning Regression (MLR) diagnostics 727

https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Gradient Boosted Regression Trees (xgboost implementation)

Gradient Boosting Regression model (using xgboost).

Use mlr_model_type: gbr_xgboost to use this MLR model in the recipe.

Classes:

XGBoostGBRModel(input_datasets, **kwargs) Gradient Boosting Regression model (xgboost imple-
mentation).

class esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel(input_datasets, **kwargs)
Bases: GBRModel

Gradient Boosting Regression model (xgboost implementation).

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

728 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_feature_importance([filename,
color_coded])

Plot feature importance.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
plot_training_progress([filename]) Plot training progress for training and (if possible)

test data.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

54.2. Machine Learning Regression (MLR) diagnostics 729

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

730 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters

54.2. Machine Learning Regression (MLR) diagnostics 731

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

732 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance.

This function uses properties of the GBR model based on the number of appearances of that feature in the
regression trees and the improvements made by the individual splits (see Friedman, 2001).

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

54.2. Machine Learning Regression (MLR) diagnostics 733

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_training_progress(filename=None)
Plot training progress for training and (if possible) test data.

Parameters
filename (str, optional (default: 'training_progress')) – Name of the plot
file.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input

734 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

54.2. Machine Learning Regression (MLR) diagnostics 735

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Gaussian Process Regression (sklearn implementation)

Gaussian Process Regression model (using sklearn).

Use mlr_model_type: gpr_sklearn to use this MLR model in the recipe.

Classes:

AdvancedGaussianProcessRegressor([kernel, ...]) Expand sklearn.gaussian_process.
GaussianProcessRegressor.

SklearnGPRModel(input_datasets, **kwargs) Gaussian Process Regression model (sklearn imple-
mentation).

736 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://scikit-learn.org/stable/modules/classes.html#module-sklearn
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/modules/classes.html#module-sklearn

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

class esmvaltool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor(kernel=None,
*,
alpha=1e-
10,
op-
ti-
mizer='fmin_l_bfgs_b',
n_restarts_optimizer=0,
nor-
mal-
ize_y=False,
copy_X_train=True,
n_targets=None,
ran-
dom_state=None)

Bases: GaussianProcessRegressor

Expand sklearn.gaussian_process.GaussianProcessRegressor.

Methods:

fit(X, y) Fit Gaussian process regression model.
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
log_marginal_likelihood([theta, ...]) Return log-marginal likelihood of theta for training

data.
predict(x_data[, return_var, return_cov]) Expand predict() to accept return_var.
sample_y(X[, n_samples, random_state]) Draw samples from Gaussian process and evaluate at

X.
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_params(**params) Set the parameters of this estimator.
set_predict_request(*[, return_cov, ...]) Request metadata passed to the predict method.
set_score_request(*[, sample_weight]) Request metadata passed to the score method.

fit(X, y)
Fit Gaussian process regression model.

Parameters
• X (array-like of shape (n_samples, n_features) or list of object)

– Feature vectors or other representations of training data.

• y (array-like of shape (n_samples,) or (n_samples, n_targets)) –
Target values.

Returns
self – GaussianProcessRegressor class instance.

Return type
object

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

54.2. Machine Learning Regression (MLR) diagnostics 737

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
routing – A MetadataRequest encapsulating routing information.

Return type
MetadataRequest

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

log_marginal_likelihood(theta=None, eval_gradient=False, clone_kernel=True)
Return log-marginal likelihood of theta for training data.

Parameters
• theta (array-like of shape (n_kernel_params,) default=None) – Ker-

nel hyperparameters for which the log-marginal likelihood is evaluated. If None, the
precomputed log_marginal_likelihood of self.kernel_.theta is returned.

• eval_gradient (bool, default=False) – If True, the gradient of the log-
marginal likelihood with respect to the kernel hyperparameters at position theta is
returned additionally. If True, theta must not be None.

• clone_kernel (bool, default=True) – If True, the kernel attribute is copied. If
False, the kernel attribute is modified, but may result in a performance improvement.

Returns
• log_likelihood (float) – Log-marginal likelihood of theta for training data.

• log_likelihood_gradient (ndarray of shape (n_kernel_params,), optional) – Gradient
of the log-marginal likelihood with respect to the kernel hyperparameters at position
theta. Only returned when eval_gradient is True.

predict(x_data, return_var=False, return_cov=False)
Expand predict() to accept return_var.

sample_y(X, n_samples=1, random_state=0)
Draw samples from Gaussian process and evaluate at X.

Parameters
• X (array-like of shape (n_samples_X, n_features) or list of
object) – Query points where the GP is evaluated.

• n_samples (int, default=1) – Number of samples drawn from the Gaussian pro-
cess per query point.

• random_state (int, RandomState instance or None, default=0) – Deter-
mines random number generation to randomly draw samples. Pass an int for repro-
ducible results across multiple function calls. See Glossary.

738 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/glossary.html#term-random_state

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
y_samples – Values of n_samples samples drawn from Gaussian process and evaluated at
query points.

Return type
ndarray of shape (n_samples_X, n_samples), or (n_samples_X, n_targets, n_samples)

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination𝑅2 is defined as (1− 𝑢
𝑣), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters
• X (array-like of shape (n_samples, n_features)) – Test samples. For

some estimators this may be a precomputed kernel matrix or a list of generic objects in-
stead with shape (n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
True values for X.

• sample_weight (array-like of shape (n_samples,), default=None) –
Sample weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of
a nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

set_predict_request(*, return_cov: bool | None | str = '$UNCHANGED$', return_var: bool | None | str =
'$UNCHANGED$', x_data: bool | None | str = '$UNCHANGED$')→
AdvancedGaussianProcessRegressor

54.2. Machine Learning Regression (MLR) diagnostics 739

https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to predict if provided. The request is ignored if metadata
is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to predict.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
• return_cov (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for return_cov parameter in
predict.

• return_var (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for return_var parameter in
predict.

• x_data (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for x_data parameter in
predict.

Returns
self – The updated object.

Return type
object

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$')→
AdvancedGaussianProcessRegressor

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

• False: metadata is not requested and the meta-estimator will not pass it to score.

• None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

740 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

Added in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.
metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in
score.

Returns
self – The updated object.

Return type
object

class esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel(input_datasets, **kwargs)
Bases: MLRModel

Gaussian Process Regression model (sklearn implementation).

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 741

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://scikit-learn.org/stable/modules/classes.html#module-sklearn

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_kernel_info() Print information of the fitted kernel of the GPR

model.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

742 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

54.2. Machine Learning Regression (MLR) diagnostics 743

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

744 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

54.2. Machine Learning Regression (MLR) diagnostics 745

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

746 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

54.2. Machine Learning Regression (MLR) diagnostics 747

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

print_correlation_matrices()

Print correlation matrices for all datasets.

print_kernel_info()

Print information of the fitted kernel of the GPR model.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

748 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
ValueError – Invalid parameter for pipeline given.

Huber Regression

Huber Regression model.

Use mlr_model_type: huber to use this MLR model in the recipe.

Classes:

HuberRegressionModel(input_datasets, **kwargs) Huber Regression model.

class esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel(input_datasets, **kwargs)
Bases: LinearModel

Huber Regression model.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 749

https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters

750 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

54.2. Machine Learning Regression (MLR) diagnostics 751

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters

752 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

54.2. Machine Learning Regression (MLR) diagnostics 753

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

754 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input

54.2. Machine Learning Regression (MLR) diagnostics 755

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

756 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Kernel Ridge Regression

Kernel Ridge Regression model.

Use mlr_model_type: krr to use this MLR model in the recipe.

Classes:

KRRModel(input_datasets, **kwargs) Kernel Ridge Regression model.

class esmvaltool.diag_scripts.mlr.models.krr.KRRModel(input_datasets, **kwargs)
Bases: MLRModel

Kernel Ridge Regression model.

Attributes:

54.2. Machine Learning Regression (MLR) diagnostics 757

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

758 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

54.2. Machine Learning Regression (MLR) diagnostics 759

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

760 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

54.2. Machine Learning Regression (MLR) diagnostics 761

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

762 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

54.2. Machine Learning Regression (MLR) diagnostics 763

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

764 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

LASSO Regression

Lasso Regression model.

Use mlr_model_type: lasso to use this MLR model in the recipe.

Classes:

LassoModel(input_datasets, **kwargs) Lasso Regression model.

class esmvaltool.diag_scripts.mlr.models.lasso.LassoModel(input_datasets, **kwargs)
Bases: LinearModel

Lasso Regression model.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 765

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters

766 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

54.2. Machine Learning Regression (MLR) diagnostics 767

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters

768 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

54.2. Machine Learning Regression (MLR) diagnostics 769

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

770 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input

54.2. Machine Learning Regression (MLR) diagnostics 771

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

772 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

LASSO Regression with built-in CV

Lasso Regression model with built-in CV.

Use mlr_model_type: lasso_cv to use this MLR model in the recipe.

Classes:

LassoCVModel(input_datasets, **kwargs) Lasso Regression model with built-in CV.

class esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel(input_datasets, **kwargs)
Bases: LinearModel

Lasso Regression model with built-in CV.

Attributes:

54.2. Machine Learning Regression (MLR) diagnostics 773

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Print final alpha after successful fitting.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

774 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

54.2. Machine Learning Regression (MLR) diagnostics 775

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

fit()

Print final alpha after successful fitting.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

776 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

54.2. Machine Learning Regression (MLR) diagnostics 777

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

778 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

54.2. Machine Learning Regression (MLR) diagnostics 779

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

780 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

LASSO Regression (using Least-angle Regression algorithm) with built-in CV

Lasso Regression model with built-in CV using LARS algorithm.

Use mlr_model_type: lasso_lars_cv to use this MLR model in the recipe.

Classes:

LassoLarsCVModel(input_datasets, **kwargs) Lasso Regression model with built-in CV using LARS
algorithm.

54.2. Machine Learning Regression (MLR) diagnostics 781

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

class esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel(input_datasets,
**kwargs)

Bases: LinearModel

Lasso Regression model with built-in CV using LARS algorithm.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

782 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Print final alpha after successful fitting.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters

54.2. Machine Learning Regression (MLR) diagnostics 783

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Print final alpha after successful fitting.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

784 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

54.2. Machine Learning Regression (MLR) diagnostics 785

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

786 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

54.2. Machine Learning Regression (MLR) diagnostics 787

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)

788 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

54.2. Machine Learning Regression (MLR) diagnostics 789

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Linear Regression

Linear Regression model.

Use mlr_model_type: linear to use this MLR model in the recipe.

Classes:

LinearRegressionModel(input_datasets, **kwargs) Linear Regression model.

class esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel(input_datasets,
**kwargs)

Bases: LinearModel

Linear Regression model.

Attributes:

790 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

54.2. Machine Learning Regression (MLR) diagnostics 791

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

792 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

54.2. Machine Learning Regression (MLR) diagnostics 793

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

794 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

54.2. Machine Learning Regression (MLR) diagnostics 795

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

796 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

54.2. Machine Learning Regression (MLR) diagnostics 797

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Random Forest Regression

Random Forest Regression model.

Use mlr_model_type: rfr to use this MLR model in the recipe.

Classes:

RFRModel(input_datasets, **kwargs) Random Forest Regression model.

798 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

class esmvaltool.diag_scripts.mlr.models.rfr.RFRModel(input_datasets, **kwargs)
Bases: MLRModel

Random Forest Regression model.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 799

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

800 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

54.2. Machine Learning Regression (MLR) diagnostics 801

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

802 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

54.2. Machine Learning Regression (MLR) diagnostics 803

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

804 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

54.2. Machine Learning Regression (MLR) diagnostics 805

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

806 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Ridge Regression

Ridge Regression model.

Use mlr_model_type: ridge to use this MLR model in the recipe.

Classes:

RidgeModel(input_datasets, **kwargs) Ridge Regression model.

class esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel(input_datasets, **kwargs)
Bases: LinearModel

Ridge Regression model.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

54.2. Machine Learning Regression (MLR) diagnostics 807

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters

808 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

54.2. Machine Learning Regression (MLR) diagnostics 809

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters

810 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

54.2. Machine Learning Regression (MLR) diagnostics 811

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

812 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input

54.2. Machine Learning Regression (MLR) diagnostics 813

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

814 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Ridge Regression with built-in CV

Ridge Regression model with built-in CV.

Use mlr_model_type: ridge_cv to use this MLR model in the recipe.

Classes:

RidgeCVModel(input_datasets, **kwargs) Ridge Regression model with built-in CV.

class esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel(input_datasets, **kwargs)
Bases: LinearModel

Ridge Regression model with built-in CV.

Attributes:

54.2. Machine Learning Regression (MLR) diagnostics 815

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Print final alpha after successful fitting.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_coefs([filename]) Plot linear coefficients of models.
plot_feature_importance([filename,
color_coded])

Plot feature importance given by linear coefficients.

plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

816 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

54.2. Machine Learning Regression (MLR) diagnostics 817

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

fit()

Print final alpha after successful fitting.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

818 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

54.2. Machine Learning Regression (MLR) diagnostics 819

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_coefs(filename=None)
Plot linear coefficients of models.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
filename (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance(filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters
• filename (str, optional (default: 'feature_importance')) – Name of

the plot file.

820 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• color_coded (bool, optional (default: True)) – If True, mark positive
(linear) correlations with red bars and negative (linear) correlations with blue bars.
If False, all bars are blue.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

54.2. Machine Learning Regression (MLR) diagnostics 821

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

822 Chapter 54. Diagnostic Scripts

https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

Support Vector Regression

Support Vector Regression model.

Use mlr_model_type: svr to use this MLR model in the recipe.

Classes:

SVRModel(input_datasets, **kwargs) Support Vector Regression model.

54.2. Machine Learning Regression (MLR) diagnostics 823

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

class esmvaltool.diag_scripts.mlr.models.svr.SVRModel(input_datasets, **kwargs)
Bases: MLRModel

Support Vector Regression model.

Attributes:

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
features_types Types of the features.
features_units Units of the features.
fit_kwargs Keyword arguments for fit().
group_attributes Group attributes of the input data.
label Label of the input data.
label_units Units of the label.
mlr_model_type MLR model type.
numerical_features Numerical features.
parameters Parameters of the complete MLR model pipeline.
random_state Random state instance.

Methods:

824 Chapter 54. Diagnostic Scripts

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

create(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory
method).

efecv(**kwargs) Perform exhaustive feature elimination using cross-
validation.

export_prediction_data([filename]) Export all prediction data contained in self._data.
export_training_data([filename]) Export all training data contained in self._data.
fit() Fit MLR model.
get_ancestors([label, features, ...]) Return ancestor files.
get_data_frame(data_type[, impute_nans]) Return data frame of specified type.
get_x_array(data_type[, impute_nans]) Return x data of specific type.
get_y_array(data_type[, impute_nans]) Return y data of specific type.
grid_search_cv(param_grid, **kwargs) Perform exhaustive parameter search using cross-

validation.
plot_1d_model([filename, n_points]) Plot lineplot that represents the MLR model.
plot_partial_dependences([filename]) Plot partial dependences for every feature.
plot_prediction_errors([filename]) Plot predicted vs.
plot_residuals([filename]) Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename]) Plot distribution of residuals of training and test data

(KDE).
plot_residuals_histogram([filename]) Plot histogram of residuals of training and test data.
plot_scatterplots([filename]) Plot scatterplots label vs.
predict([save_mlr_model_error, ...]) Perform prediction using the MLR model(s) and

write *.nc files.
print_correlation_matrices() Print correlation matrices for all datasets.
print_regression_metrics([logo]) Print all available regression metrics for training data.
register_mlr_model(mlr_model_type) Add MLR model (subclass of this class) (decorator).
reset_pipeline() Reset regressor pipeline.
rfecv(**kwargs) Perform recursive feature elimination using cross-

validation.
test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params) Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type
numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.

Type
dict

efecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters
**kwargs (keyword arguments, optional) – Additional options for esmvaltool.
diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

54.2. Machine Learning Regression (MLR) diagnostics 825

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}_{pred_name}.csv')) –
Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters
filename (str, optional (default: '{data_type}.csv')) – Name of the ex-
ported files.

property features

Features of the input data.

Type
numpy.ndarray

property features_after_preprocessing

Features of the input data after preprocessing.

Type
numpy.ndarray

property features_types

Types of the features.

Type
pandas.Series

property features_units

Units of the features.

Type
pandas.Series

fit()

Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs
during class initialization instead.

property fit_kwargs

Keyword arguments for fit().

Type
dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters
• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which
files should be returned. If None, return files for all features.

826 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• prediction_names (list of str, optional (default: None)) – Predic-
tion names for which files should be returned. If None, return files for all prediction
names.

• prediction_reference (bool, optional (default: False)) – Return
prediction_reference files if available for given prediction_names.

Returns
Ancestor files.

Return type
list of str

Raises
ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
pandas.DataFrame

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)
Return x data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)
Return y data of specific type.

Parameters
• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or
'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

54.2. Machine Learning Regression (MLR) diagnostics 827

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Desired data.

Return type
numpy.ndarray

Raises
TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• param_grid (dict or list of dict) – Parameter names (keys) and ranges (val-

ues) for the search. Have to be given for each step of the pipeline separated by two
underscores, i.e. s__p is the parameter p for step s.

• **kwargs (keyword arguments, optional) – Additional options for sklearn.
model_selection.GridSearchCV.

Raises
ValueError – Final regressor does not supply the attributes best_estimator_ or
best_params_.

property group_attributes

Group attributes of the input data.

Type
numpy.ndarray

property label

Label of the input data.

Type
str

property label_units

Units of the label.

Type
str

property mlr_model_type

MLR model type.

Type
str

property numerical_features

Numerical features.

Type
numpy.ndarray

property parameters

Parameters of the complete MLR model pipeline.

Type
dict

828 Chapter 54. Diagnostic Scripts

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_1d_model(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters
• filename (str, optional (default: '1d_mlr_model')) – Name of the plot

file.

• n_points (int, optional (default: 1000)) – Number of sampled points for
the single feature (using linear spacing between minimum and maximum value).

Raises
• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – MLR model is built from more than 1 feature.

plot_partial_dependences(filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependece_{feature}')) –
Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors(filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot
file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals(filename=None)
Plot residuals of training and test (if available) data.

Parameters
filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution(filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters
filename (str, optional (default: 'residuals_distribution')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

54.2. Machine Learning Regression (MLR) diagnostics 829

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals_histogram(filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) – Name of the
plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots(filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) – Name of
the plot file.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False,
**kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters
• save_mlr_model_error (str or int, optional) – Additionally saves esti-

mated squared MLR model error. This error represents the uncertainty of the pre-
diction caused by the MLR model itself and not by errors in the prediction input
data (errors in that will be considered by including datasets with var_type set to
prediction_input_error and setting save_propagated_errors to True). If the
option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out)
test data set. Only possible if test data is available, i.e. the option test_size is
not set to False during class initialization. If the option is set to 'logo', the (con-
stant) error is estimated as RMSEP using leave-one-group-out cross-validation using
the group_attributes. Only possible if group_datasets_by_attributes is given.
If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP
using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Addition-
ally saves local feature importance given by LIME (Local Interpretable Model-
agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Addi-
tionally saves propagated errors from prediction_input_error datasets. Only
possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final re-
gressors predict() function.

Raises
• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no
prediction_input_error data is available.

830 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

print_correlation_matrices()

Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters
logo (bool, optional (default: False)) – Print regression metrics using
sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible
when group_datasets_by_attributes was given during class initialization.

property random_state

Random state instance.

Type
numpy.random.RandomState

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()

Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either
through a coef_ attribute or through a feature_importances_ attribute.

Parameters
**kwargs (keyword arguments, optional) – Additional options for sklearn.
feature_selection.RFECV.

Raises
RuntimeError – Final estimator does not provide coef_ or feature_importances_
attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises
sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e.
s__p is the parameter p for step s.

Parameters
**params (keyword arguments, optional) – Parameters for the pipeline which
should be updated.

Raises
ValueError – Invalid parameter for pipeline given.

54.2. Machine Learning Regression (MLR) diagnostics 831

https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.3 Monitor Diagnostic

This module provides various tools to monitor climate model simulations. It can be used to plot arbitrary variables
from arbitrary datasets.

54.3.1 Examples

• Monitor

• General model evaluation

54.3.2 Diagnostic scripts

Monitoring diagnostic to plot arbitrary preprocessor output

Diagnostic to plot preprocessor output.

Description

This diagnostic can be used to visualize arbitrary preprocessor output.

Currently supported plot types (use the option plots to specify them):
• Climatology (plot type clim): Plots climatology. Supported coordinates: (latitude, longitude,

month_number).

• Seasonal climatologies (plot type seasonclim): It produces a multi panel (2x2) plot with the seasonal
climatologies. Supported coordinates: (latitude, longitude, month_number).

• Monthly climatologies (plot type monclim): It produces a multi panel (3x4) plot with the monthly clima-
tologies. Can be customized to show only certain months and to rearrange the number of columns and
rows. Supported coordinates: (latitude, longitude, month_number).

• Time series (plot type timeseries): Generate time series plots. It will always generate the full period
time series, but if the period is longer than 75 years, it will also generate two extra time series for the first
and last 50 years. It will produce multi panel plots for data with shape_id or region coordinates of length
> 1. Supported coordinates: time, shape_id (optional) and region (optional).

• Annual cycle (plot type annual_cycle): Generate an annual cycle plot (timeseries like climatological
from January to December). It will produce multi panel plots for data with shape_id or region coordinates
of length > 1. Supported coordinates: time, shape_id (optional) and region (optional).

Configuration options in recipe

cartopy_data_dir: str, optional (default: None)
Path to cartopy data dir. Defaults to None. See https://scitools.org.uk/cartopy/docs/latest/.

config_file: str, optional
Path to the monitor configuration file. Defaults to monitor_config.yml in the same folder as the diagnostic
script. More information on the monitor configuration file can be found here.

plots: dict, optional
Plot types plotted by this diagnostic (see list above). Dictionary keys must be clim, seasonclim, monclim,

832 Chapter 54. Diagnostic Scripts

https://scitools.org.uk/cartopy/docs/latest/

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

timeseries or annual_cycle. Dictionary values are dictionaries used as options for the corresponding plot.
The allowed options for the different plot types are given below.

plot_filename: str, optional
Filename pattern for the plots. Defaults to {plot_type}_{real_name}_{dataset}_{mip}_{exp}_{ensemble}.
All tags (i.e., the entries in curly brackets, e.g., {dataset}, are replaced with the corresponding tags).

plot_folder: str, optional
Path to the folder to store figures. Defaults to {plot_dir}/../../{dataset}/{exp}/{modeling_realm}/
{real_name}. All tags (i.e., the entries in curly brackets, e.g., {dataset}, are replaced with the correspond-
ing tags). {plot_dir} is replaced with the default ESMValTool plot directory (i.e., output_dir/plots/
diagnostic_name/script_name/, see User configuration file).

rasterize_maps: bool, optional (default: True)
If True, use rasterization for map plots to produce smaller files. This is only relevant for vector graphics (e.g.,
output_file_type=pdf,svg,ps).

In the variable definitions, users can set the attribute plot_name to fix the variable name that will be used for the
plot’s title. If it is not set, mapgenerator will try to choose a sensible one from the name attributes (long_name,
standard_name and var_name).

Configuration options for plot type clim

maps: list of str, optional (default: [‘global’])
List of maps to plot, as defined in the monitor configuration file.

Configuration options for plot type seasonclim

maps: list of str, optional (default: [‘global’])
List of maps to plot, as defined in the monitor configuration file.

Configuration options for plot type monclim

maps: list of str, optional (default: [‘global’])
List of maps to plot, as defined in the monitor configuration file.

months: list of int, optional
Select only specific months. Defaults to None (i.e. show all months).

plot_size: tuple of int, optional (default: (5, 4))
Size of each individual figure.

columns: int, optional (default: 3)
Number of columns in the plot.

rows: int, optional (default: 4)
Number of rows in the plot.

54.3. Monitor Diagnostic 833

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
https://matplotlib.org/stable/gallery/misc/rasterization_demo.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Configuration options for plot type timeseries

None

Configuration options for plot type annual_cycle

None

Hint: Extra arguments given to the recipe are ignored, so it is safe to use yaml anchors to share the configuration of
common arguments with other monitor diagnostic script.

Monitoring diagnostic to plot EOF maps and associated PC timeseries

Diagnostic to compute and plot the first EOF of an arbitrary input.

Description

This diagnostic can be used to compute and show Empirical Orthogonal Functions (EOFs) and Principal Components
(PCs) of arbitrary input. It creates a map plot of the first EOF and the associated PC time series.

Configuration options in recipe

cartopy_data_dir: str, optional (default: None)
Path to cartopy data dir. Defaults to None. See https://scitools.org.uk/cartopy/docs/latest/.

config_file: str, optional
Path to the monitor configuration file. Defaults to monitor_config.yml in the same folder as the diagnostic
script. More information on the monitor configuration file can be found here.

plot_filename: str, optional
Filename pattern for the plots. Defaults to {plot_type}_{real_name}_{dataset}_{mip}_{exp}_{ensemble}.
All tags (i.e., the entries in curly brackets, e.g., {dataset}, are replaced with the corresponding tags).

plot_folder: str, optional
Path to the folder to store figures. Defaults to {plot_dir}/../../{dataset}/{exp}/{modeling_realm}/
{real_name}. All tags (i.e., the entries in curly brackets, e.g., {dataset}, are replaced with the correspond-
ing tags). {plot_dir} is replaced with the default ESMValTool plot directory (i.e., output_dir/plots/
diagnostic_name/script_name/, see User configuration file).

rasterize_maps: bool, optional (default: True)
If True, use rasterization for map plots to produce smaller files. This is only relevant for vector graphics (e.g.,
output_file_type=pdf,svg,ps).

Hint: Extra arguments given to the recipe are ignored, so it is safe to use yaml anchors to share the configuration of
common arguments with other monitor diagnostic script.

834 Chapter 54. Diagnostic Scripts

https://scitools.org.uk/cartopy/docs/latest/
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
https://matplotlib.org/stable/gallery/misc/rasterization_demo.html

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Monitoring diagnostic to show multiple datasets in one plot (incl. biases)

Monitoring diagnostic to show multiple datasets in one plot (incl. biases).

Description

This diagnostic can be used to visualize multiple datasets in one plot.

For some plot types, a reference dataset can be defined. For this, use the facet reference_for_monitor_diags:
true in the definition of the dataset in the recipe. Note that at most one reference dataset per variable is supported.

Currently supported plot types (use the option plots to specify them):
• Time series (plot type timeseries): for each variable separately, all datasets are plotted in one single

figure. Input data needs to be 1D with single dimension time.

• Annual cycle (plot type annual_cycle): for each variable separately, all datasets are plotted in one single
figure. Input data needs to be 1D with single dimension month_number.

• Maps (plot type map): for each variable and dataset, an individual map is plotted. If a reference dataset is
defined, also include this dataset and a bias plot into the figure. Note that if a reference dataset is defined,
all input datasets need to be given on the same horizontal grid (you can use the preprocessor esmvalcore.
preprocessor.regrid() for this). Input data needs to be 2D with dimensions latitude, longitude.

• Zonal mean profiles (plot type zonal_mean_profile): for each variable and dataset, an individual pro-
file is plotted. If a reference dataset is defined, also include this dataset and a bias plot into the figure.
Note that if a reference dataset is defined, all input datasets need to be given on the same horizontal and
vertical grid (you can use the preprocessors esmvalcore.preprocessor.regrid() and esmvalcore.
preprocessor.extract_levels() for this). Input data needs to be 2D with dimensions latitude, alti-
tude/air_pressure.

Warning: The plot_type profile for zonal mean profiles has been deprecated in ESMValTool ver-
sion 2.9.0 and is scheduled for removal in version 2.11.0. Please use plot type zonal_mean_profile
instead. This is an exact replacement.

• 1D profiles (plot type 1d_profile): for each variable separately, all datasets are plotted in one single
figure. Input data needs to be 1D with single dimension altitude / air_pressure

• Variable vs. latitude plot (plot type variable_vs_lat): for each variable separately, all datasets are
plotted in one single figure. Input data needs to be 1D with single dimension latitude.

• Hovmoeller Z vs. time (plot type hovmoeller_z_vs_time): for each variable and dataset, an individ-
ual figure is plotted. If a reference dataset is defined, also include this dataset and a bias plot into the
figure. Note that if a reference dataset is defined, all input datasets need to be given on the same tempo-
ral and vertical grid (you can use the preprocessors esmvalcore.preprocessor.regrid_time() and
esmvalcore.preprocessor.extract_levels() for this). Input data needs to be 2D with dimensions
time, altitude/air_pressure.

• Hovmoeller time vs. latitude or longitude (plot type hovmoeller_time_vs_lat_or_lon): for each vari-
able and dataset, an individual figure is plotted. If a reference dataset is defined, also include this dataset
and a bias plot into the figure. Note that if a reference dataset is defined, all input datasets need to be given
on the same temporal and horizontal grid (you can use the preprocessors esmvalcore.preprocessor.
regrid_time() and esmvalcore.preprocessor.regrid() for this). Input data needs to be 2D with
dimensions time, latitude/longitude.

54.3. Monitor Diagnostic 835

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.extract_levels
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.extract_levels
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid_time
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.extract_levels
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid_time
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid_time
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.regrid

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Author

Manuel Schlund (DLR, Germany)

Configuration options in recipe

facet_used_for_labels: str, optional (default: ‘dataset’)
Facet used to label different datasets in plot titles and legends. For example, facet_used_for_labels:
dataset will use dataset names in plot titles and legends; facet_used_for_labels: exp will use ex-
periments in plot titles and legends. In addition, facet_used_for_labels is used to select the correct
plot_kwargs for the different datasets (see configuration options for the different plot types below).

figure_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.figure(). By default, uses constrained_layout:
true.

group_variables_by: str, optional (default: ‘short_name’)
Facet which is used to create variable groups. For each variable group, an individual plot is created.

plots: dict, optional
Plot types plotted by this diagnostic (see list above). Dictionary keys must be timeseries,
annual_cycle, map, zonal_mean_profile, 1d_profile, variable_vs_lat, hovmoeller_z_vs_time,
hovmoeller_time_vs_lat_or_lon. Dictionary values are dictionaries used as options for the corresponding
plot. The allowed options for the different plot types are given below.

plot_filename: str, optional
Filename pattern for the plots. Defaults to {plot_type}_{real_name}_{dataset}_{mip}_{exp}_{ensemble}.
All tags (i.e., the entries in curly brackets, e.g., {dataset}, are replaced with the corresponding tags).

plot_folder: str, optional
Path to the folder to store figures. Defaults to {plot_dir}/../../{dataset}/{exp}/{modeling_realm}/
{real_name}. All tags (i.e., the entries in curly brackets, e.g., {dataset}, are replaced with the correspond-
ing tags). {plot_dir} is replaced with the default ESMValTool plot directory (i.e., output_dir/plots/
diagnostic_name/script_name/, see User configuration file).

savefig_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.savefig(). By default, uses bbox_inches:
tight, dpi: 300, orientation: landscape.

seaborn_settings: dict, optional
Options for seaborn.set_theme() (affects all plots). By default, uses style: ticks.

Configuration options for plot type timeseries

annual_mean_kwargs: dict, optional
Optional keyword arguments for iris.plot.plot() for plotting annual means. These keyword arguments
update (and potentially overwrite) the plot_kwargs for the annual mean plots. Use annual_mean_kwargs to
not show annual means.

gridline_kwargs: dict, optional
Optional keyword arguments for grid lines. By default, color: lightgrey, alpha: 0.5 are used. Use
gridline_kwargs: false to not show grid lines.

legend_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.legend(). Use legend_kwargs: false to not show
legends.

836 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#user-configuration-file
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_kwargs: dict, optional
Optional keyword arguments for iris.plot.plot(). Dictionary keys are elements identified by
facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword
arguments for iris.plot.plot(). String arguments can include facets in curly brackets which will be
derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{linestyle: '-', label: '{project}'}, CMIP6: {color: red, linestyle: '--'},
OBS: {color: black}.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.
pyplot. Dictionary values are used as single argument for these functions. String arguments can include
facets in curly brackets which will be derived from the datasets plotted in the corresponding plot, e.g.,
{short_name}, {exp}. Facets like {project} that vary between the different datasets will be transformed to
something like ambiguous_project. Examples: title: 'Awesome Plot of {long_name}', xlabel:
'{short_name}', xlim: [0, 5].

time_format: str, optional (default: None)
strftime() format string that is used to format the time axis using matplotlib.dates.DateFormatter. If
None, use the default formatting imposed by the iris plotting function.

Configuration options for plot type annual_cycle

gridline_kwargs: dict, optional
Optional keyword arguments for grid lines. By default, color: lightgrey, alpha: 0.5 are used. Use
gridline_kwargs: false to not show grid lines.

legend_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.legend(). Use legend_kwargs: false to not show
legends.

plot_kwargs: dict, optional
Optional keyword arguments for iris.plot.plot(). Dictionary keys are elements identified by
facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword
arguments for iris.plot.plot(). String arguments can include facets in curly brackets which will be
derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{linestyle: '-', label: '{project}'}, CMIP6: {color: red, linestyle: '--'},
OBS: {color: black}.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.
pyplot. Dictionary values are used as single argument for these functions. String arguments can include
facets in curly brackets which will be derived from the datasets plotted in the corresponding plot, e.g.,
{short_name}, {exp}. Facets like {project} that vary between the different datasets will be transformed to
something like ambiguous_project. Examples: title: 'Awesome Plot of {long_name}', xlabel:
'{short_name}', xlim: [0, 5].

54.3. Monitor Diagnostic 837

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/dates_api.html#matplotlib.dates.DateFormatter
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Configuration options for plot type map

cbar_label: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label. Can include facets in curly brackets which will be derived from the corresponding dataset, e.g.,
{project}, {short_name}, {exp}.

cbar_label_bias: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label for plotting biases. Can include facets in curly brackets which will be derived from the corre-
sponding dataset, e.g., {project}, {short_name}, {exp}. This option has no effect if no reference dataset is
given.

cbar_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar(). By default, uses orientation:
horizontal, aspect: 30.

cbar_kwargs_bias: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar() for plotting biases. These keyword argu-
ments update (and potentially overwrite) the cbar_kwargs for the bias plot. This option has no effect if no
reference dataset is given.

common_cbar: bool, optional (default: False)
Use a common colorbar for the top panels (i.e., plots of the dataset and the corresponding reference dataset) when
using a reference dataset. If neither vmin and vmix nor levels is given in plot_kwargs, the colorbar bounds
are inferred from the dataset in the top left panel, which might lead to an inappropriate colorbar for the reference
dataset (top right panel). Thus, the use of the plot_kwargs vmin and vmax or levels is highly recommend
when using this common_cbar: true. This option has no effect if no reference dataset is given.

fontsize: int, optional (default: 10)
Fontsize used for ticks, labels and titles. For the latter, use the given fontsize plus 2. Does not affect suptitles.

gridline_kwargs: dict, optional
Optional keyword arguments for grid lines. By default, color: lightgrey, alpha: 0.5 are used. Use
gridline_kwargs: false to not show grid lines.

plot_func: str, optional (default: ‘contourf’)
Plot function used to plot the maps. Must be a function of iris.plot that supports plotting of 2D cubes with
coordinates latitude and longitude.

plot_kwargs: dict, optional
Optional keyword arguments for the plot function defined by plot_func. Dictionary keys are elements iden-
tified by facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword argu-
ments for the plot function defined by plot_func. String arguments can include facets in curly brackets which
will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{levels: 2}, CMIP6: {vmin: 200, vmax: 250}. In addition to the normalization options supported
by the plot function, the option norm: centered can be specified. In this case, the keywords vcenter and
halfrange should be used instead of vmin or vmax (see CenteredNorm).

plot_kwargs_bias: dict, optional
Optional keyword arguments for the plot function defined by plot_func for plotting biases. These keyword
arguments update (and potentially overwrite) the plot_kwargs for the bias plot. This option has no effect if no
reference dataset is given. See option plot_kwargs for more details. By default, uses cmap: bwr and norm:
centered.

projection: str, optional (default: ‘Robinson’)
Projection used for the map plot. Needs to be a valid projection class of cartopy.crs. Keyword arguments can
be specified using the option projection_kwargs.

838 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#module-iris.plot
https://matplotlib.org/stable/users/explain/colors/colormapnorms.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.CenteredNorm.html#matplotlib.colors.CenteredNorm
https://scitools.org.uk/cartopy/docs/latest/reference/crs.html#module-cartopy.crs

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

projection_kwargs: dict, optional
Optional keyword arguments for the projection given by projection. For the default projection Robinson, the
default keyword arguments central_longitude: 10 are used.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.pyplot.
Dictionary values are used as single argument for these functions. String arguments can include facets in curly
brackets which will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Ex-
amples: title: 'Awesome Plot of {long_name}', xlabel: '{short_name}', xlim: [0, 5].

rasterize: bool, optional (default: True)
If True, use rasterization for map plots to produce smaller files. This is only relevant for vector graphics (e.g.,
output_file_type: pdf,svg,ps).

show_stats: bool, optional (default: True)
Show basic statistics on the plots.

x_pos_stats_avg: float, optional (default: 0.0)
Text x-position of average (shown on the left) in Axes coordinates. Can be adjusted to avoid overlap with the
figure. Only relevant if show_stats: true.

x_pos_stats_bias: float, optional (default: 0.92)
Text x-position of bias statistics (shown on the right) in Axes coordinates. Can be adjusted to avoid overlap with
the figure. Only relevant if show_stats: true.

Configuration options for plot type zonal_mean_profile

cbar_label: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label. Can include facets in curly brackets which will be derived from the corresponding dataset, e.g.,
{project}, {short_name}, {exp}.

cbar_label_bias: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label for plotting biases. Can include facets in curly brackets which will be derived from the corre-
sponding dataset, e.g., {project}, {short_name}, {exp}. This option has no effect if no reference dataset is
given.

cbar_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar(). By default, uses orientation:
vertical.

cbar_kwargs_bias: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar() for plotting biases. These keyword argu-
ments update (and potentially overwrite) the cbar_kwargs for the bias plot. This option has no effect if no
reference dataset is given.

common_cbar: bool, optional (default: False)
Use a common colorbar for the top panels (i.e., plots of the dataset and the corresponding reference dataset) when
using a reference dataset. If neither vmin and vmix nor levels is given in plot_kwargs, the colorbar bounds
are inferred from the dataset in the top left panel, which might lead to an inappropriate colorbar for the reference
dataset (top right panel). Thus, the use of the plot_kwargs vmin and vmax or levels is highly recommend
when using this common_cbar: true. This option has no effect if no reference dataset is given.

fontsize: int, optional (default: 10)
Fontsize used for ticks, labels and titles. For the latter, use the given fontsize plus 2. Does not affect suptitles.

log_y: bool, optional (default: True)
Use logarithmic Y-axis.

54.3. Monitor Diagnostic 839

https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/gallery/misc/rasterization_demo.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_func: str, optional (default: ‘contourf’)
Plot function used to plot the profiles. Must be a function of iris.plot that supports plotting of 2D cubes with
coordinates latitude and altitude/air_pressure.

plot_kwargs: dict, optional
Optional keyword arguments for the plot function defined by plot_func. Dictionary keys are elements iden-
tified by facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword argu-
ments for the plot function defined by plot_func. String arguments can include facets in curly brackets which
will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{levels: 2}, CMIP6: {vmin: 200, vmax: 250}. In addition to the normalization options supported
by the plot function, the option norm: centered can be specified. In this case, the keywords vcenter and
halfrange should be used instead of vmin or vmax (see CenteredNorm).

plot_kwargs_bias: dict, optional
Optional keyword arguments for the plot function defined by plot_func for plotting biases. These keyword
arguments update (and potentially overwrite) the plot_kwargs for the bias plot. This option has no effect if no
reference dataset is given. See option plot_kwargs for more details. By default, uses cmap: bwr and norm:
centered.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.pyplot.
Dictionary values are used as single argument for these functions. String arguments can include facets in curly
brackets which will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Ex-
amples: title: 'Awesome Plot of {long_name}', xlabel: '{short_name}', xlim: [0, 5].

rasterize: bool, optional (default: True)
If True, use rasterization for profile plots to produce smaller files. This is only relevant for vector graphics (e.g.,
output_file_type: pdf,svg,ps).

show_stats: bool, optional (default: True)
Show basic statistics on the plots.

show_y_minor_ticklabels: bool, optional (default: False)
Show tick labels for the minor ticks on the Y axis.

x_pos_stats_avg: float, optional (default: 0.01)
Text x-position of average (shown on the left) in Axes coordinates. Can be adjusted to avoid overlap with the
figure. Only relevant if show_stats: true.

x_pos_stats_bias: float, optional (default: 0.7)
Text x-position of bias statistics (shown on the right) in Axes coordinates. Can be adjusted to avoid overlap with
the figure. Only relevant if show_stats: true.

Configuration options for plot type 1d_profile

aspect_ratio: float, optional (default: 1.5)
Aspect ratio of the plot. The default value results in a slender upright plot.

gridline_kwargs: dict, optional
Optional keyword arguments for grid lines. By default, color: lightgrey, alpha: 0.5 are used. Use
gridline_kwargs: false to not show grid lines.

legend_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.legend(). Use legend_kwargs: false to not show
legends.

840 Chapter 54. Diagnostic Scripts

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#module-iris.plot
https://matplotlib.org/stable/users/explain/colors/colormapnorms.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.CenteredNorm.html#matplotlib.colors.CenteredNorm
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/gallery/misc/rasterization_demo.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

log_x: bool, optional (default: False)
Use logarithmic X-axis. Note that for the logarithmic x axis tickmarks are set so that minor tickmarks show up.
Setting of individual tickmarks by pyplot_kwargs is not recommended in this case.

log_y: bool, optional (default: True)
Use logarithmic Y-axis.

plot_kwargs: dict, optional
Optional keyword arguments for iris.plot.plot(). Dictionary keys are elements identified by
facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword
arguments for iris.plot.plot(). String arguments can include facets in curly brackets which will be
derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{linestyle: '-', label: '{project}'}, CMIP6: {color: red, linestyle: '--'},
OBS: {color: black}.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.
pyplot. Dictionary values are used as single argument for these functions. String arguments can include
facets in curly brackets which will be derived from the datasets plotted in the corresponding plot, e.g.,
{short_name}, {exp}. Facets like {project} that vary between the different datasets will be transformed to
something like ambiguous_project. Examples: title: 'Awesome Plot of {long_name}', xlabel:
'{short_name}', xlim: [0, 5].

show_y_minor_ticklabels: bool, optional (default: False)
Show tick labels for the minor ticks on the Y axis.

Configuration options for plot type variable_vs_lat

gridline_kwargs: dict, optional
Optional keyword arguments for grid lines. By default, color: lightgrey, alpha: 0.5 are used. Use
gridline_kwargs: false to not show grid lines.

legend_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.legend(). Use legend_kwargs: false to not show
legends.

plot_kwargs: dict, optional
Optional keyword arguments for iris.plot.plot(). Dictionary keys are elements identified by
facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword
arguments for iris.plot.plot(). String arguments can include facets in curly brackets which will be
derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{linestyle: '-', label: '{project}'}, CMIP6: {color: red, linestyle: '--'},
OBS: {color: black}.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.
pyplot. Dictionary values are used as single argument for these functions. String arguments can include
facets in curly brackets which will be derived from the datasets plotted in the corresponding plot, e.g.,
{short_name}, {exp}. Facets like {project} that vary between the different datasets will be transformed to
something like ambiguous_project. Examples: title: 'Awesome Plot of {long_name}', xlabel:
'{short_name}', xlim: [0, 5].

54.3. Monitor Diagnostic 841

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#iris.plot.plot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Configuration options for plot type hovmoeller_z_vs_time

cbar_label: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label. Can include facets in curly brackets which will be derived from the corresponding dataset, e.g.,
{project}, {short_name}, {exp}.

cbar_label_bias: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label for plotting biases. Can include facets in curly brackets which will be derived from the corre-
sponding dataset, e.g., {project}, {short_name}, {exp}. This option has no effect if no reference dataset is
given.

cbar_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar(). By default, uses orientation:
vertical.

cbar_kwargs_bias: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar() for plotting biases. These keyword argu-
ments update (and potentially overwrite) the cbar_kwargs for the bias plot. This option has no effect if no
reference dataset is given.

common_cbar: bool, optional (default: False)
Use a common colorbar for the top panels (i.e., plots of the dataset and the corresponding reference dataset) when
using a reference dataset. If neither vmin and vmix nor levels is given in plot_kwargs, the colorbar bounds
are inferred from the dataset in the top left panel, which might lead to an inappropriate colorbar for the reference
dataset (top right panel). Thus, the use of the plot_kwargs vmin and vmax or levels is highly recommend
when using this common_cbar: true. This option has no effect if no reference dataset is given.

fontsize: int, optional (default: 10)
Fontsize used for ticks, labels and titles. For the latter, use the given fontsize plus 2. Does not affect suptitles.

log_y: bool, optional (default: True)
Use logarithmic Y-axis.

plot_func: str, optional (default: ‘contourf’)
Plot function used to plot the profiles. Must be a function of iris.plot that supports plotting of 2D cubes with
coordinates latitude and altitude/air_pressure.

plot_kwargs: dict, optional
Optional keyword arguments for the plot function defined by plot_func. Dictionary keys are elements iden-
tified by facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or
historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword argu-
ments for the plot function defined by plot_func. String arguments can include facets in curly brackets which
will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{levels: 2}, CMIP6: {vmin: 200, vmax: 250}. In addition to the normalization options supported
by the plot function, the option norm: centered can be specified. In this case, the keywords vcenter and
halfrange should be used instead of vmin or vmax (see CenteredNorm).

plot_kwargs_bias: dict, optional
Optional keyword arguments for the plot function defined by plot_func for plotting biases. These keyword
arguments update (and potentially overwrite) the plot_kwargs for the bias plot. This option has no effect if no
reference dataset is given. See option plot_kwargs for more details. By default, uses cmap: bwr and norm:
centered.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.pyplot.
Dictionary values are used as single argument for these functions. String arguments can include facets in curly
brackets which will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Ex-
amples: title: 'Awesome Plot of {long_name}', xlabel: '{short_name}', xlim: [0, 5].

842 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#module-iris.plot
https://matplotlib.org/stable/users/explain/colors/colormapnorms.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.CenteredNorm.html#matplotlib.colors.CenteredNorm
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

rasterize: bool, optional (default: True)
If True, use rasterization for profile plots to produce smaller files. This is only relevant for vector graphics (e.g.,
output_file_type: pdf,svg,ps).

show_stats: bool, optional (default: True)
Show basic statistics on the plots.

show_y_minor_ticklabels: bool, optional (default: False)
Show tick labels for the minor ticks on the Y axis.

x_pos_stats_avg: float, optional (default: 0.01)
Text x-position of average (shown on the left) in Axes coordinates. Can be adjusted to avoid overlap with the
figure. Only relevant if show_stats: true.

x_pos_stats_bias: float, optional (default: 0.7)
Text x-position of bias statistics (shown on the right) in Axes coordinates. Can be adjusted to avoid overlap with
the figure. Only relevant if show_stats: true.

time_format: str, optional (default: None)
strftime() format string that is used to format the time axis using matplotlib.dates.DateFormatter. If
None, use the default formatting imposed by the iris plotting function.

Configuration options for plot type hovmoeller_time_vs_lat_or_lon

cbar_label: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label. Can include facets in curly brackets which will be derived from the corresponding dataset, e.g.,
{project}, {short_name}, {exp}.

cbar_label_bias: str, optional (default: ‘{short_name} [{units}]’)
Colorbar label for plotting biases. Can include facets in curly brackets which will be derived from the corre-
sponding dataset, e.g., {project}, {short_name}, {exp}. This option has no effect if no reference dataset is
given.

cbar_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar(). By default, uses orientation:
vertical.

cbar_kwargs_bias: dict, optional
Optional keyword arguments for matplotlib.pyplot.colorbar() for plotting biases. These keyword argu-
ments update (and potentially overwrite) the cbar_kwargs for the bias plot. This option has no effect if no
reference dataset is given.

common_cbar: bool, optional (default: False)
Use a common colorbar for the top panels (i.e., plots of the dataset and the corresponding reference dataset) when
using a reference dataset. If neither vmin and vmix nor levels is given in plot_kwargs, the colorbar bounds
are inferred from the dataset in the top left panel, which might lead to an inappropriate colorbar for the reference
dataset (top right panel). Thus, the use of the plot_kwargs vmin and vmax or levels is highly recommend
when using this common_cbar: true. This option has no effect if no reference dataset is given.

fontsize: int, optional (default: 10)
Fontsize used for ticks, labels and titles. For the latter, use the given fontsize plus 2. Does not affect suptitles.

plot_func: str, optional (default: ‘contourf’)
Plot function used to plot the profiles. Must be a function of iris.plot that supports plotting of 2D cubes with
coordinates latitude and height/air_pressure.

plot_kwargs: dict, optional
Optional keyword arguments for the plot function defined by plot_func. Dictionary keys are elements iden-
tified by facet_used_for_labels or default, e.g., CMIP6 if facet_used_for_labels: project or

54.3. Monitor Diagnostic 843

https://matplotlib.org/stable/gallery/misc/rasterization_demo.html
https://matplotlib.org/stable/api/dates_api.html#matplotlib.dates.DateFormatter
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html#matplotlib.pyplot.colorbar
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.plot.html#module-iris.plot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

historical if facet_used_for_labels: exp. Dictionary values are dictionaries used as keyword argu-
ments for the plot function defined by plot_func. String arguments can include facets in curly brackets which
will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Examples: default:
{levels: 2}, CMIP6: {vmin: 200, vmax: 250}. In addition to the normalization options supported
by the plot function, the option norm: centered can be specified. In this case, the keywords vcenter and
halfrange should be used instead of vmin or vmax (see CenteredNorm).

plot_kwargs_bias: dict, optional
Optional keyword arguments for the plot function defined by plot_func for plotting biases. These keyword
arguments update (and potentially overwrite) the plot_kwargs for the bias plot. This option has no effect if no
reference dataset is given. See option plot_kwargs for more details. By default, uses cmap: bwr and norm:
centered.

pyplot_kwargs: dict, optional
Optional calls to functions of matplotlib.pyplot. Dictionary keys are functions of matplotlib.pyplot.
Dictionary values are used as single argument for these functions. String arguments can include facets in curly
brackets which will be derived from the corresponding dataset, e.g., {project}, {short_name}, {exp}. Ex-
amples: title: 'Awesome Plot of {long_name}', xlabel: '{short_name}', xlim: [0, 5].

rasterize: bool, optional (default: True)
If True, use rasterization for profile plots to produce smaller files. This is only relevant for vector graphics (e.g.,
output_file_type: pdf,svg,ps).

show_y_minor_ticks: bool, optional (default: True)
Show minor ticks for time on the Y axis.

show_x_minor_ticks: bool, optional (default: True)
Show minor ticks for latitude or longitude on the X axis.

time_format: str, optional (default: None)
strftime() format string that is used to format the time axis using matplotlib.dates.DateFormatter. If
None, use the default formatting imposed by the iris plotting function.

Hint: Extra arguments given to the recipe are ignored, so it is safe to use yaml anchors to share the configuration of
common arguments with other monitor diagnostic script.

54.3.3 Base class for monitoring diagnostics

Base class for monitoring diagnostics

Base class for monitoring diagnostics.

Classes:

MonitorBase(config) Base class for monitoring diagnostic.

class esmvaltool.diag_scripts.monitor.monitor_base.MonitorBase(config)
Bases: object

Base class for monitoring diagnostic.

It contains the common methods for path creation, provenance recording, option parsing and to create some
common plots.

Methods:

844 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/users/explain/colors/colormapnorms.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.CenteredNorm.html#matplotlib.colors.CenteredNorm
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/gallery/misc/rasterization_demo.html
https://matplotlib.org/stable/api/dates_api.html#matplotlib.dates.DateFormatter
https://docs.python.org/3/library/functions.html#object

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

get_plot_folder(var_info) Get plot storage folder from variable info.
get_plot_name(plot_type, var_info[, add_ext]) Get plot filename from variable info.
get_plot_path (plot_type, var_info[, add_ext]) Get plot full path from variable info.
get_provenance_record(ancestor_files,
**kwargs)

Create provenance record for the diagnostic data and
plots.

plot_cube(cube, filename[, linestyle]) Plot a timeseries from a cube.
plot_timeseries(cube, var_info[, period]) Plot timeseries from a cube.
record_plot_provenance(filename, var_info, ...) Write provenance info for a given file.

get_plot_folder(var_info)
Get plot storage folder from variable info.

Parameters
var_info (dict) – Variable information from ESMValTool

get_plot_name(plot_type, var_info, add_ext=True)
Get plot filename from variable info.

Parameters
• plot_type (str) – Name of the plot

• var_info (dict) – Variable information from ESMValTool

• add_ext (bool, optional (default: True)) – Add filename extension from
configuration file.

get_plot_path(plot_type, var_info, add_ext=True)
Get plot full path from variable info.

Parameters
• plot_type (str) – Name of the plot

• var_info (dict) – Variable information from ESMValTool

• add_ext (bool, optional (default: True)) – Add filename extension from
configuration file.

static get_provenance_record(ancestor_files, **kwargs)
Create provenance record for the diagnostic data and plots.

plot_cube(cube, filename, linestyle='-', **kwargs)
Plot a timeseries from a cube.

Supports multiplot layouts for cubes with extra dimensions shape_id or region.

plot_timeseries(cube, var_info, period='', **kwargs)
Plot timeseries from a cube.

It also automatically smoothes it for long timeseries of monthly data:
• Between 10 and 70 years long, it also plots the 12-month rolling average along the raw series

• For more than ten years, it plots the 12-month and 10-years rolling averages and not the raw
series

record_plot_provenance(filename, var_info, plot_type, **kwargs)
Write provenance info for a given file.

54.3. Monitor Diagnostic 845

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.4 Ocean diagnostics toolkit

Welcome to the API documentation for the ocean diagnostics tool kit. This toolkit is built to assist in the evaluation of
models of the ocean.

This toolkit is part of ESMValTool v2.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

54.4.1 Maps diagnostics

Diagnostic to produce images of a map with coastlines from a cube. These plost show latitude vs longitude and the
cube value is used as the colour scale.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a
latitude and longitude coordinates.

An approproate preprocessor for a 3D+time field would be:

preprocessors:
prep_map:
extract_levels:
levels: [100.,]
scheme: linear_extrap

climate_statistics:
operator: mean

Note that this recipe may not function on machines with no access to the internet, as cartopy may try to download the
shapefiles. The solution to this issue is the put the relevant cartopy shapefiles on a disk visible to your machine, then
link that path to ESMValTool via the auxiliary_data_dir variable. The cartopy masking files can be downloaded from:

https://www.naturalearthdata.com/downloads/

Here, cartopy uses the 1:10, physical coastlines and land files:

110m_coastline.dbf 110m_coastline.shp 110m_coastline.shx
110m_land.dbf 110m_land.shp 110m_land.shx

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

main(cfg) Load the config file, and send it to the plot makers.
make_map_contour(cfg, metadata, filename) Make a simple contour map plot for an individual model.
make_map_plots(cfg, metadata, filename) Make a simple map plot for an individual model.
multi_model_contours(cfg, metadata) Make a contour map showing several models.

esmvaltool.diag_scripts.ocean.diagnostic_maps.main(cfg)
Load the config file, and send it to the plot makers.

846 Chapter 54. Diagnostic Scripts

mailto:ledm@pml.ac.uk
mailto:ledm@pml.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
cfg (dict) – the opened global config dictionary, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_maps.make_map_contour(cfg, metadata, filename)
Make a simple contour map plot for an individual model.

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

• metadata (dict) – the metadata dictionary

• filename (str) – the preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_maps.make_map_plots(cfg, metadata, filename)
Make a simple map plot for an individual model.

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

• metadata (dict) – the metadata dictionary

• filename (str) – the preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_maps.multi_model_contours(cfg, metadata)
Make a contour map showing several models.

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

• metadata (dict) – the metadata dictionary.

54.4.2 Model 1 vs Model 2 vs Observations diagnostics.

Diagnostic to produce an image showing four maps, based on a comparison of two differnt models results against an
observational dataset. This process is often used to compare a new iteration of a model under development against a
previous version of the same model. The four map plots are:

• Top left: model 1

• Top right: model 1 minus model 2

• Bottom left: model 2 minus obs

• Bottom right: model 1 minus obs

All four plots show latitude vs longitude and the cube value is used as the colour scale.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a
latitude and longitude coordinates.

An approproate preprocessor for a 3D+time field would be:

preprocessors:
prep_map:
extract_levels:
levels: [100.,]
scheme: linear_extrap

climate_statistics:
operator: mean

54.4. Ocean diagnostics toolkit 847

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

This diagnostic also requires the exper_model, exper_model and observational_dataset keys in the recipe:

diagnostics:
diag_name:
...
scripts:
Global_Ocean_map:
script: ocean/diagnostic_maps_quad.py
exper_model: {Model 1 dataset details}
control_model: {Model 2 dataset details}
observational_dataset: {Observational dataset details}

This tool is part of the ocean diagnostic tools package in the ESMValTool, and was based on the plots produced by the
Ocean Assess/Marine Assess toolkit.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

add_map_subplot(subplot, cube, nspace[, ...]) Add a map subplot to the current pyplot figure.
main(cfg) Load the config file, and send it to the plot maker.
multi_model_maps(cfg, input_files) Make the four pane model vs model vs obs comparison

plot.

esmvaltool.diag_scripts.ocean.diagnostic_maps_quad.add_map_subplot(subplot, cube, nspace,
title='', cmap='')

Add a map subplot to the current pyplot figure.

Parameters
• subplot (int) – The matplotlib.pyplot subplot number. (ie 221)

• cube (iris.cube.Cube) – the iris cube to be plotted.

• nspace (numpy.array) – An array of the ticks of the colour part.

• title (str) – A string to set as the subplot title.

• cmap (str) – A string to describe the matplotlib colour map.

esmvaltool.diag_scripts.ocean.diagnostic_maps_quad.main(cfg)
Load the config file, and send it to the plot maker.

Parameters
cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_maps_quad.multi_model_maps(cfg, input_files)
Make the four pane model vs model vs obs comparison plot.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• input_files (dict) – the metadata dictionairy

848 Chapter 54. Diagnostic Scripts

mailto:ledm@pml.ac.uk
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.4.3 Model vs Observations maps Diagnostic.

Diagnostic to produce comparison of model and data. The first kind of image shows four maps and the other shows a
scatter plot.

The four pane image is a latitude vs longitude figures showing:

• Top left: model

• Top right: observations

• Bottom left: model minus observations

• Bottom right: model over observations

The scatter plots plot the matched model coordinate on the x axis, and the observational dataset on the y coordinate,
then performs a linear regression of those data and plots the line of best fit on the plot. The parameters of the fit are
also shown on the figure.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a
latitude and longitude coordinates.

An appropriate preprocessor for a 3D + time field would be:

preprocessors:
prep_map:
extract_levels:
levels: [100.,]
scheme: linear_extrap

climate_statistics:
operator: mean

regrid:
target_grid: 1x1
scheme: linear

This tool is part of the ocean diagnostic tools package in the ESMValTool, and was based on the plots produced by the
Ocean Assess/Marine Assess toolkit.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

add_linear_regression(plot_axes, arr_x, arr_y) Add a straight line fit to an axis.
add_map_subplot(subplot, cube, nspace[, ...]) Add a map subplot to the current pyplot figure.
main(cfg) Load the config file, and send it to the plot maker.
make_model_vs_obs_plots(cfg, metadata, ...) Make a figure showing four maps and the other shows a

scatter plot.
make_scatter(cfg, metadata, model_filename, ...) Makes Scatter plots of model vs observational data.
rounds_sig(value[, sig]) Round a float to sig significant digits & return it as a

string.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.add_linear_regression(plot_axes, arr_x,
arr_y,
showtext=True,
add_diagonal=False,
extent=None)

54.4. Ocean diagnostics toolkit 849

mailto:ledm@pml.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Add a straight line fit to an axis.

Parameters
• plot_axes (matplotlib.pyplot.axes) – The matplotlib axes on which to plot the

linear regression.

• arr_x (numpy.array) – The data for the x coordinate.

• arr_y (numpy array) – The data for the y coordinate.

• showtext (bool) – A flag to turn on or off the result of the fit on the plot.

• add_diagonal (bool) – A flag to also add the 1:1 diagonal line to the figure

• extent (list of floats) – The extent of the plot axes.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.add_map_subplot(subplot, cube, nspace,
title='', cmap='',
extend='neither',
log=False)

Add a map subplot to the current pyplot figure.

Parameters
• subplot (int) – The matplotlib.pyplot subplot number. (ie 221)

• cube (iris.cube.Cube) – the iris cube to be plotted.

• nspace (numpy.array) – An array of the ticks of the colour part.

• title (str) – A string to set as the subplot title.

• cmap (str) – A string to describe the matplotlib colour map.

• extend (str) – Contourf-coloring of values outside the levels range

• log (bool) – Flag to plot the colour scale linearly (False) or logarithmically (True)

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.main(cfg)
Load the config file, and send it to the plot maker.

Parameters
cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.make_model_vs_obs_plots(cfg, metadata,
model_filename,
obs_filename)

Make a figure showing four maps and the other shows a scatter plot.

The four pane image is a latitude vs longitude figures showing:

• Top left: model

• Top right: observations

• Bottom left: model minus observations

• Bottom right: model over observations

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – the input files dictionairy

850 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• model_filename (str) – the preprocessed model file.

• obs_filename (str) – the preprocessed observations file.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.make_scatter(cfg, metadata,
model_filename,
obs_filename)

Makes Scatter plots of model vs observational data.

Make scatter plot showing the matched model and observational data with the model data as the x-axis coordinate
and the observational data as the y-axis coordinate. A linear regression is also applied to the matched data and
the result of the fit is shown on the figure.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – the input files dictionairy

• model_filename (str) – the preprocessed model file.

• obs_filename (str) – the preprocessed observations file.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.rounds_sig(value, sig=3)
Round a float to sig significant digits & return it as a string.

Parameters
• value (float) – The float that is to be rounded.

• sig (int) – The number of significant figures.

Returns
The rounded output string.

Return type
str

54.4.4 Profile diagnostics.

Diagnostic to produce figure of the profile over time from a cube. These plost show cube value (ie temperature) on the
x-axis, and depth/height on the y axis. The colour scale is the time series.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has a time component, and depth component, but no latitude
or longitude coordinates.

An approproate preprocessor for a 3D+time field would be:

preprocessors:
prep_profile:
extract_volume:
long1: 0.
long2: 20.
lat1: -30.
lat2: 30.
z_min: 0.
z_max: 3000.

area_statistics:
operator: mean

54.4. Ocean diagnostics toolkit 851

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

In order to add an observational dataset to the profile plot, the following arguments are needed in the diagnostic script:

diagnostics:
diagnostic_name:
variables:
...

additional_datasets:
- {observational dataset description}
scripts:
script_name:
script: ocean/diagnostic_profiles.py
observational_dataset: {observational dataset description}

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

determine_profiles_str(cube) Determine a string from the cube, to describe the profile.
main(cfg) Run the diagnostics profile tool.
make_profiles_plots(cfg, metadata, filename) Make a profile plot for an individual model.

esmvaltool.diag_scripts.ocean.diagnostic_profiles.determine_profiles_str(cube)
Determine a string from the cube, to describe the profile.

Parameters
cube (iris.cube.Cube) – the opened dataset as a cube.

Returns
Returns a string which describes the profile.

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_profiles.main(cfg)
Run the diagnostics profile tool.

Load the config file, find an observational dataset filename, pass loaded into the plot making tool.

Parameters
cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_profiles.make_profiles_plots(cfg, metadata, filename,
obs_metadata={},
obs_filename='')

Make a profile plot for an individual model.

The optional observational dataset can also be added.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

• obs_metadata (dict) – The metadata dictionairy for the observational dataset.

852 Chapter 54. Diagnostic Scripts

mailto:ledm@pml.ac.uk
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• obs_filename (str) – The preprocessed observational dataset file.

54.4.5 Time series diagnostics

Diagnostic to produce figures of the time development of a field from cubes. These plost show time on the x-axis and
cube value (ie temperature) on the y-axis.

Two types of plots are produced: individual model timeseries plots and multi model time series plots. The inidivual
plots show the results from a single cube, even if this is a mutli-model mean made by the _multimodel.py preproccessor.
The multi model time series plots show several models on the same axes, where each model is represented by a different
line colour.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has a time component, no depth component, and no latitude or
longitude coordinates.

An approproate preprocessor for a 3D+time field would be:

preprocessors:
prep_timeseries_1:# For Global Volume Averaged
volume_statistics:
operator: mean

An approproate preprocessor for a 3D+time field at the surface would be:

prep_timeseries_2: # For Global surface Averaged
extract_levels:
levels: [0.,]
scheme: linear_extrap

area_statistics:
operator: mean

An approproate preprocessor for a 2D+time field would be:

prep_timeseries_2: # For Global surface Averaged
area_statistics:
operator: mean

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

main(cfg) Load the config file and some metadata, then pass them
the plot making tools.

make_time_series_plots(cfg, metadata, filename) Make a simple time series plot for an indivudual model
1D cube.

moving_average(cube, window) Calculate a moving average.
multi_model_time_series(cfg, metadata) Make a time series plot showing several preprocesssed

datasets.
timeplot(cube, **kwargs) Create a time series plot from the cube.

54.4. Ocean diagnostics toolkit 853

https://docs.python.org/3/library/stdtypes.html#str
mailto:ledm@pml.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.main(cfg)
Load the config file and some metadata, then pass them the plot making tools.

Parameters
cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.make_time_series_plots(cfg, metadata,
filename)

Make a simple time series plot for an indivudual model 1D cube.

This tool loads the cube from the file, checks that the units are sensible BGC units, checks for layers, adjusts the
titles accordingly, determines the ultimate file name and format, then saves the image.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.moving_average(cube, window)
Calculate a moving average.

The window is a string which is a number and a measuremet of time. For instance, the following are acceptable
window strings:

• 5 days

• 12 years

• 1 month

• 5 yr

Also note the the value used is the total width of the window. For instance, if the window provided was ‘10
years’, the the moving average returned would be the average of all values within 5 years of the central value.

In the case of edge conditions, at the start an end of the data, they only include the average of the data available.
Ie the first value in the moving average of a 10 year window will only include the average of the five subsequent
years.

Parameters
• cube (iris.cube.Cube) – Input cube

• window (str) – A description of the window to use for the

Returns
A cube with the movinage average set as the data points.

Return type
iris.cube.Cube

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.multi_model_time_series(cfg, metadata)
Make a time series plot showing several preprocesssed datasets.

This tool loads several cubes from the files, checks that the units are sensible BGC units, checks for layers, adjusts
the titles accordingly, determines the ultimate file name and format, then saves the image.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

854 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.timeplot(cube, **kwargs)
Create a time series plot from the cube.

Note that this function simple does the plotting, it does not save the image or do any of the complex work.
This function also takes and of the key word arguments accepted by the matplotlib.pyplot.plot function. These
arguments are typically, color, linewidth, linestyle, etc. . .

If there’s only one datapoint in the cube, it is plotted as a horizontal line.

Parameters
cube (iris.cube.Cube) – Input cube

54.4.6 Transects diagnostics

Diagnostic to produce images of a transect. These plost show either latitude or longitude against depth, and the cube
value is used as the colour scale.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, and one of the latitude or longitude
coordinates has been reduced to a single value.

An approproate preprocessor for a 3D+time field would be:

preprocessors:
prep_transect:
climate_statistics:
operator: mean

extract_transect: # Atlantic Meridional Transect
latitude: [-50.,50.]
longitude: 332.

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

add_sea_floor(cube) Add a simple sea floor line from the cube mask.
determine_set_y_logscale(cfg, metadata) Determine whether to use a log scale y axis.
determine_transect_str(cube[, region]) Determine the Transect String.
main(cfg) Load the config file and some metadata, then pass them

the plot making tools.
make_cube_region_dict(cube) Take a cube and return a dictionairy region: cube.
make_depth_safe(cube) Make the depth coordinate safe.
make_transect_contours(cfg, metadata, filename) Make a contour plot of the transect for an indivudual

model.
make_transects_plots(cfg, metadata, filename) Make a simple plot of the transect for an indivudual

model.
multi_model_contours(cfg, metadatas) Make a multi model comparison plot showing several

transect contour plots.
titlify(title) Check whether a title is too long then add it to current

figure.

54.4. Ocean diagnostics toolkit 855

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
mailto:ledm@pml.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.ocean.diagnostic_transects.add_sea_floor(cube)
Add a simple sea floor line from the cube mask.

Parameters
cube (iris.cube.Cube) – Input cube to use to produce the sea floor.

esmvaltool.diag_scripts.ocean.diagnostic_transects.determine_set_y_logscale(cfg, metadata)
Determine whether to use a log scale y axis.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

Returns
Boolean to flag whether to plot as a log scale.

Return type
bool

esmvaltool.diag_scripts.ocean.diagnostic_transects.determine_transect_str(cube, region='')
Determine the Transect String.

Takes a guess at a string to describe the transect.

Parameters
cube (iris.cube.Cube) – Input cube to use to determine the transect name.

esmvaltool.diag_scripts.ocean.diagnostic_transects.main(cfg)
Load the config file and some metadata, then pass them the plot making tools.

Parameters
cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_transects.make_cube_region_dict(cube)
Take a cube and return a dictionairy region: cube.

Each item in the dict is a layer with a separate cube for each layer. ie: cubes[region] = cube from specific region

Cubes with no region component are returns as: cubes[‘’] = cube with no region component.

This is based on the method diagnostics_tools.make_cube_layer_dict, however, it wouldn’t make sense to look
for depth layers here.

Parameters
cube (iris.cube.Cube) – the opened dataset as a cube.

Returns
A dictionairy of layer name : layer cube.

Return type
dict

esmvaltool.diag_scripts.ocean.diagnostic_transects.make_depth_safe(cube)
Make the depth coordinate safe.

If the depth coordinate has a value of zero or above, we replace the zero with the average point of the first depth
layer.

Parameters
cube (iris.cube.Cube) – Input cube to make the depth coordinate safe

856 Chapter 54. Diagnostic Scripts

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
Output cube with a safe depth coordinate

Return type
iris.cube.Cube

esmvaltool.diag_scripts.ocean.diagnostic_transects.make_transect_contours(cfg, metadata,
filename)

Make a contour plot of the transect for an indivudual model.

This tool loads the cube from the file, checks that the units are sensible BGC units, checks for layers, adjusts the
titles accordingly, determines the ultimate file name and format, then saves the image.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_transects.make_transects_plots(cfg, metadata,
filename)

Make a simple plot of the transect for an indivudual model.

This tool loads the cube from the file, checks that the units are sensible BGC units, checks for layers, adjusts the
titles accordingly, determines the ultimate file name and format, then saves the image.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_transects.multi_model_contours(cfg, metadatas)
Make a multi model comparison plot showing several transect contour plots.

This tool loads several cubes from the files, checks that the units are sensible BGC units, checks for layers, adjusts
the titles accordingly, determines the ultimate file name and format, then saves the image.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadatas (dict) – The metadatas dictionairy for a specific model.

esmvaltool.diag_scripts.ocean.diagnostic_transects.titlify(title)
Check whether a title is too long then add it to current figure.

Parameters
title (str) – The title for the figure.

54.4. Ocean diagnostics toolkit 857

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.4.7 Sea Ice Diagnostics.

Diagnostic to produce a series of images which are useful for evaluating the behaviour of the a sea ice model.

There are three kinds of plots shown here. 1. Sea ice Extent maps plots with a stereoscoic projection. 2. Maps plots
of individual models ice fracrtion. 3. Time series plots for the total ice extent.

All three kinds of plots are made for both Summer and Winter in both the North and Southern hemisphere.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this
diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a
latitude and longitude coordinates.

This diagnostic takes data from either North or South hemisphere, and from either December-January-February or
June-July-August. This diagnostic requires the data to be 2D+time, and typically expects the data field to be the sea ice
cover. An approproate preprocessor would be:

preprocessors:
timeseries_NHW_ice_extent: # North Hemisphere Winter ice_extent
custom_order: true
extract_time:

start_year: 1960
start_month: 12
start_day: 1
end_year: 2005
end_month: 9
end_day: 31

extract_season:
season: DJF

extract_region:
start_longitude: -180.
end_longitude: 180.
start_latitude: 0.
end_latitude: 90.

Note that this recipe may not function on machines with no access to the internet, as cartopy may try to download the
shapefiles. The solution to this issue is the put the relevant cartopy shapefiles on a disk visible to your machine, then
link that path to ESMValTool via the auxiliary_data_dir variable. The cartopy masking files can be downloaded from:

https://www.naturalearthdata.com/downloads/

Here, cartopy uses the 1:10, physical coastlines and land files:

110m_coastline.dbf 110m_coastline.shp 110m_coastline.shx
110m_land.dbf 110m_land.shp 110m_land.shx

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

Functions:

858 Chapter 54. Diagnostic Scripts

mailto:ledm@pml.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

agregate_by_season(cube) Aggregate the cube into seasonal means.
calculate_area_time_series(cube, plot_type, ...) Calculate the area of unmasked cube cells.
create_ice_cmap([threshold]) Create colour map with ocean blue below a threshold and

white above.
get_pole(cube) Figure out the hemisphere and returns it as a string

(North or South).
get_season(cube) Return a climatological season time string.
get_time_string(cube) Return a climatological season string in the format:

"year season".
get_year(cube) Return the cube year as a string.
main(cfg) Load the config file and metadata, then pass them the

plot making tools.
make_map_extent_plots(cfg, metadata, filename) Make an extent map plot showing several times for an

individual model.
make_map_plots(cfg, metadata, filename) Make a simple map plot for an individual model.
make_polar_map(cube[, pole, cmap]) Make a polar stereoscopic map plot.
make_ts_plots(cfg, metadata, filename) Make a ice extent and ice area time series plot for an

individual model.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.agregate_by_season(cube)
Aggregate the cube into seasonal means.

Note that it is not currently possible to do this in the preprocessor, as the seasonal mean changes the cube units.

Parameters
cube (iris.cube.Cube) – Data Cube

Returns
Data Cube with the seasonal means

Return type
iris.cube.Cube

esmvaltool.diag_scripts.ocean.diagnostic_seaice.calculate_area_time_series(cube, plot_type,
threshold)

Calculate the area of unmasked cube cells.

Requires a cube with two spacial dimensions. (no depth coordinate).

Parameters
• cube (iris.cube.Cube) – Data Cube

• plot_type (str) – The type of plot: ice extent or ice area

• threshold (float) – The threshold for ice fraction (typically 15%)

Returns
• numpy array – An numpy array containing the time points.

• numpy.array – An numpy array containing the total ice extent or total ice area.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.create_ice_cmap(threshold=0.15)
Create colour map with ocean blue below a threshold and white above.

Parameters
threshold (float) – The threshold for the line between blue and white.

54.4. Ocean diagnostics toolkit 859

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
The resulting colour map.

Return type
matplotlib.colors.LinearSegmentedColormap

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_pole(cube)
Figure out the hemisphere and returns it as a string (North or South).

Parameters
cube (iris.cube.Cube) – Data Cube

Returns
The hemisphere (North or South)

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_season(cube)
Return a climatological season time string.

Parameters
cube (iris.cube.Cube) – Data Cube

Returns
The climatological season as a string

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_time_string(cube)
Return a climatological season string in the format: “year season”.

Parameters
cube (iris.cube.Cube) – Data Cube

Returns
The climatological season as a string

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_year(cube)
Return the cube year as a string.

Parameters
cube (iris.cube.Cube) – Data Cube

Returns
The year as a string

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_seaice.main(cfg)
Load the config file and metadata, then pass them the plot making tools.

Parameters
cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

860 Chapter 54. Diagnostic Scripts

https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_map_extent_plots(cfg, metadata, filename)
Make an extent map plot showing several times for an individual model.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_map_plots(cfg, metadata, filename)
Make a simple map plot for an individual model.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_polar_map(cube, pole='North',
cmap='Blues_r')

Make a polar stereoscopic map plot.

The cube is the opened cube (two dimensional), pole is the polar region (North/South) cmap is the colourmap,

Parameters
• cube (iris.cube.Cube) – Data Cube

• pole (str) – The hemisphere

• cmap (str) – The string describing the matplotlib colourmap.

Returns
• matplotlib.pyplot.figure – The matplotlib figure where the map was drawn.

• matplotlib.pyplot.axes – The matplotlib axes where the map was drawn.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_ts_plots(cfg, metadata, filename)
Make a ice extent and ice area time series plot for an individual model.

Parameters
• cfg (dict) – the opened global config dictionairy, passed by ESMValTool.

• metadata (dict) – The metadata dictionairy for a specific model.

• filename (str) – The preprocessed model file.

54.4.8 Diagnostic tools

This module contains several python tools used elsewhere by the ocean diagnostics package.

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)
ledm@pml.ac.uk

54.4. Ocean diagnostics toolkit 861

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
mailto:ledm@pml.ac.uk

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Functions:

add_legend_outside_right(plot_details, ax1) Add a legend outside the plot, to the right.
bgc_units(cube, name) Convert the cubes into some friendlier units.
cube_time_to_float(cube) Convert from time coordinate into decimal time.
decadal_average(cube) Calculate the decadal_average.
folder(name) Make a directory out of a string or list or strings.
get_array_range(arrays) Determinue the minimum and maximum values of a list

of arrays..
get_colour_from_cmap(number, total[, cmap]) Get a colour number of total from a cmap.
get_cube_range(cubes) Determinue the minimum and maximum values of a list

of cubes.
get_cube_range_diff (cubes) Determinue the largest deviation from zero in an list of

cubes.
get_decade(coord, value) Determine the decade.
get_image_format(cfg[, default]) Load the image format from the global config file.
get_image_path (cfg, metadata[, prefix, ...]) Produce a path to the final location of the image.
get_input_files(cfg[, index]) Load input configuration file as a Dictionairy.
get_obs_projects() Return a list of strings with the names of observations

projects.
guess_calendar_datetime(cube) Guess the cftime.datetime form to create datetimes.
load_thresholds(cfg, metadata) Load the thresholds for contour plots from the config

files.
make_cube_layer_dict(cube) Take a cube and return a dictionary layer:cube
match_model_to_key(model_type, cfg_dict, ...) Match up model or observations dataset dictionairies

from config file.
prepare_provenance_record(cfg, ...) Prepare informations to feed provenance

esmvaltool.diag_scripts.ocean.diagnostic_tools.add_legend_outside_right(plot_details, ax1,
column_width=0.1,
loc='right')

Add a legend outside the plot, to the right.

plot_details is a 2 level dict, where the first level is some key (which is hidden) and the 2nd level contains the
keys: ‘c’: color ‘lw’: line width ‘label’: label for the legend. ax1 is the axis where the plot was drawn.

Parameters
• plot_details (dict) – A dictionary of the plot details (color, linestyle, linewidth, label)

• ax1 (matplotlib.pyplot.axes) – The pyplot axes to add the

• column_width (float) – The width of the legend column. This is used to adjust for
longer words in the legends

• loc (string) – Location of the legend. Options are “right” and “below”.

Returns
A datetime creator function from cftime, based on the cube’s calendar.

Return type
cftime.datetime

esmvaltool.diag_scripts.ocean.diagnostic_tools.bgc_units(cube, name)
Convert the cubes into some friendlier units.

This is because many CMIP standard units are not the standard units used by the BGC community (ie, Celsius
is prefered over Kelvin, etc.)

862 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• cube (iris.cube.Cube) – the opened dataset as a cube.

• name (str) – The string describing the data field.

Returns
the cube with the new units.

Return type
iris.cube.Cube

esmvaltool.diag_scripts.ocean.diagnostic_tools.cube_time_to_float(cube)
Convert from time coordinate into decimal time.

Takes an iris time coordinate and returns a list of floats. :param cube: the opened dataset as a cube. :type cube:
iris.cube.Cube

Returns
List of floats showing the time coordinate in decimal time.

Return type
list

esmvaltool.diag_scripts.ocean.diagnostic_tools.decadal_average(cube)
Calculate the decadal_average.

Parameters
cube (iris.cube.Cube) – The input cube

Return type
iris.cube

esmvaltool.diag_scripts.ocean.diagnostic_tools.folder(name)
Make a directory out of a string or list or strings.

Take a string or a list of strings, convert it to a directory style, then make the folder and the string. Returns folder
string and final character is always os.sep. (‘/’)

Parameters
name (list or string) – A list of nested directories, or a path to a directory.

Returns
Returns a string of a full (potentially new) path of the directory.

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_array_range(arrays)
Determinue the minimum and maximum values of a list of arrays..

Parameters
arrays (list of numpy.array) – A list of numpy.array.

Returns
A list of two values, the overall minumum and maximum values of the list of cubes.

Return type
list

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_colour_from_cmap(number, total, cmap='jet')
Get a colour number of total from a cmap.

This function is used when several lines are created evenly along a colour map.

54.4. Ocean diagnostics toolkit 863

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Parameters
• number (int, float) – The

• total (int)

• cmap (string, plt.cm) – A colour map, either by name (string) or from matplotlib

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_cube_range(cubes)
Determinue the minimum and maximum values of a list of cubes.

Parameters
cubes (list of iris.cube.Cube) – A list of cubes.

Returns
A list of two values: the overall minumum and maximum values of the list of cubes.

Return type
list

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_cube_range_diff(cubes)
Determinue the largest deviation from zero in an list of cubes.

Parameters
cubes (list of iris.cube.Cube) – A list of cubes.

Returns
A list of two values: the maximum deviation from zero and its opposite.

Return type
list

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_decade(coord, value)
Determine the decade.

Called by iris.coord_categorisation.add_categorised_coord.

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_image_format(cfg, default='png')
Load the image format from the global config file.

Current tested options are svg, png.

The cfg is the opened global config. The default format is used if no specific format is requested. The default is set
in the user config.yml Individual diagnostics can set their own format which will supercede the main config.yml.

Parameters
cfg (dict) – the opened global config dictionary, passed by ESMValTool.

Returns
The image format extention.

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_image_path(cfg, metadata, prefix='diag',
suffix='image',
metadata_id_list='default')

Produce a path to the final location of the image.

The cfg is the opened global config, metadata is the metadata dictionary (for the individual dataset file)

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

864 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• metadata (dict) – The metadata dictionary for a specific model.

• prefix (str) – A string to prepend to the image basename.

• suffix (str) – A string to append to the image basename

• metadata_id_list (list) – A list of strings to add to the file path. It loads these from
the cfg.

Returns
The ultimate image path

Return type
str

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_input_files(cfg, index='')
Load input configuration file as a Dictionairy.

Get a dictionary with input files from the metadata.yml files. This is a wrappper for the _get_input_data_files
function from diag_scripts.shared._base.

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

• index (int) – the index of the file in the cfg file.

Returns
A dictionary of the input files and their linked details.

Return type
dict

esmvaltool.diag_scripts.ocean.diagnostic_tools.get_obs_projects()

Return a list of strings with the names of observations projects.

Please keep this list up to date, or replace it with something more sensible.

Returns
Returns a list of strings of the various types of observational data.

Return type
list

esmvaltool.diag_scripts.ocean.diagnostic_tools.guess_calendar_datetime(cube)
Guess the cftime.datetime form to create datetimes.

Parameters
cube (iris.cube.Cube) – the opened dataset as a cube.

Returns
A datetime creator function from cftime, based on the cube’s calendar.

Return type
cftime.datetime

esmvaltool.diag_scripts.ocean.diagnostic_tools.load_thresholds(cfg, metadata)
Load the thresholds for contour plots from the config files.

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

• metadata (dict) – the metadata dictionary

54.4. Ocean diagnostics toolkit 865

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

Returns
List of thresholds

Return type
list

esmvaltool.diag_scripts.ocean.diagnostic_tools.make_cube_layer_dict(cube)
Take a cube and return a dictionary layer:cube

Each item in the dict is a layer with a separate cube for each layer. ie: cubes[depth] = cube from specific layer

Cubes with no depth component are returned as dict, where the dict key is a blank empty string, and the value is
the cube.

Parameters
cube (iris.cube.Cube) – the opened dataset as a cube.

Returns
A dictionary of layer name : layer cube.

Return type
dict

esmvaltool.diag_scripts.ocean.diagnostic_tools.match_model_to_key(model_type, cfg_dict,
input_files_dict)

Match up model or observations dataset dictionairies from config file.

This function checks that the control_model, exper_model and observational_dataset dictionairies from the
recipe are matched with the input file dictionary in the cfg metadata.

Parameters
• model_type (str) – The string model_type to match (only used in debugging).

• cfg_dict (dict) – the config dictionary item for this model type, parsed directly from
the diagnostics/ scripts, part of the recipe.

• input_files_dict (dict) –

The input file dictionary, loaded directly from the get_input_files()
function, in diagnostics_tools.py.

Returns
A dictionary of the input files and their linked details.

Return type
dict

esmvaltool.diag_scripts.ocean.diagnostic_tools.prepare_provenance_record(cfg, **prove-
nance_record)

Prepare informations to feed provenance

Parameters
• cfg (dict) – the opened global config dictionary, passed by ESMValTool.

• provenance_record (dict) – dictionary for a specific diagnostic provenance details.

866 Chapter 54. Diagnostic Scripts

https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.5 Psyplot Diagnostic

Create arbitrary Psyplot plots.

54.5.1 Description

This diagnostic provides a high-level interface to Psyplot.

54.5.2 Author

Manuel Schlund (DLR, Germany)

Notes

For each input dataset, an individual plot is created. This diagnostic supports arbitrary variables of arbitrary datasets.

54.5.3 Configuration options in recipe

psyplot_func: str
Function used to plot the data. Must be a function of psyplot.project.plot. Run python -c "from
psyplot.project import plot; print(plot.show_plot_methods())" to get a list of all currently sup-
ported plotting functions (make sure to run this command in your ESMValTool environment).

psyplot_kwargs: dict, optional
Optional keyword arguments for the plotting function given by psyplot_func. String arguments can include
facets in curly brackets which will be derived from the corresponding dataset, e.g., clabel: '{long_name}
[{units}]', title: '{long_name} Climatology of {dataset} ({start_year}-{end_year})'.

savefig_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.savefig(). By default, uses bbox_inches:
tight, dpi: 300, orientation: landscape.

seaborn_settings: dict, optional
Options for seaborn.set_theme() (affects all plots).

54.6 Seaborn Diagnostic

Create arbitrary Seaborn plots.

54.6.1 Description

This diagnostic provides a high-level interface to Seaborn. For this, the input data is arranged into a single pandas.
DataFrame, which is then used as input for the Seaborn function defined by the option seaborn_func.

54.5. Psyplot Diagnostic 867

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

54.6.2 Caveats

All datasets of a given variable must have the same units (e.g., it is not allowed to use datasets with units K and datasets
with units °C for the variable tas).

54.6.3 Author

Manuel Schlund (DLR, Germany)

54.6.4 Configuration options in recipe

add_ancillary_variables: bool, optional (default: False)
Add ancillary_variables() to the main data frame. Note that this will assume that ancillary variables are
identical across cubes within a group (see option groupby_facet). This equality is not checked!

add_aux_coords: bool, optional (default: False)
Add aux_coords to the main data frame. Note that this will assume that auxiliary coordinates are identical
across cubes within a group (see option groupby_facet). This equality is not checked!

add_cell_measures: bool, optional (default: False)
Add cell_measures() to the main data frame. Note that this will assume that cell measures are identical across
cubes within a group (see option groupby_facet). This equality is not checked!

data_frame_ops: dict, optional
Perform additional operations on the main data frame. Allowed operations are pandas.DataFrame.query()
(dict key query) and pandas.DataFrame.eval() (dict key eval). Operations are defined by strings (dict val-
ues). Examples: {'query': 'latitude > 80', 'eval': 'longitude = longitude - 180.0'}.

dropna_kwargs: dict, optional
Optional keyword arguments for pandas.DataFrame.dropna() to drop missing values in the input data. If
not given, do not drop NaNs. Note: NaNs are dropped after potential data_frame_ops.

facets_as_columns: list of str, optional
Facets that will be added as a columns to the main data frame. Values for these facets must be identical across
all datasets within a group (see option groupby_facet).

groupby_facet: str, optional (default: ‘alias’)
Facet which is used to group input datasets when creating the main data frame. All datasets within a group are
expected to have the same index after calling iris.pandas.as_data_frame() on them. These datasets within
a group will then get merged (combined along axis 1, i.e., columns) into a single data frame per group. Finally,
the data frames for all groups are concatenated (combined along axis 0, i.e., rows) into one main data frame.
groupby_facet is also added as a column to this main data frame.

legend_title: str, optional (default: None)
Title for legend. If None, Seaborn will determine the legend title (if possible).

plot_object_methods: dict, optional
Execute methods of the object returned by the plotting function (seaborn_func). This object will either be a
matplotlib.axes.Axes (e.g., scatterplot(), lineplot()), a seaborn.FacetGrid (e.g., relplot(),
displot()), a seaborn.JointGrid (e.g., jointplot()), or a seaborn.PairGrid (e.g., pairplot()).
Dictionary keys are method names, dictionary values function arguments (use a dict to specify keyword ar-
guments). Example (for relplot()): {'set': {'xlabel': 'X [km]'}, 'set_titles': 'Model
{col_name}'}.

868 Chapter 54. Diagnostic Scripts

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube.ancillary_variables
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube.aux_coords
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube.cell_measures
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.eval.html#pandas.DataFrame.eval
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.dropna.html#pandas.DataFrame.dropna
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.pandas.html#iris.pandas.as_data_frame
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot
https://seaborn.pydata.org/generated/seaborn.lineplot.html#seaborn.lineplot
https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.displot.html#seaborn.displot
https://seaborn.pydata.org/generated/seaborn.JointGrid.html#seaborn.JointGrid
https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot
https://seaborn.pydata.org/generated/seaborn.PairGrid.html#seaborn.PairGrid
https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot
https://docs.python.org/3/library/stdtypes.html#dict
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

reset_index: bool, optional (default: False)
Put coordinate information of datasets into columns instead of (multi-) indices. This avoids the deletion of coor-
dinate information if different groups of datasets have different dimensions but increases the memory footprint
of this diagnostic.

savefig_kwargs: dict, optional
Optional keyword arguments for matplotlib.pyplot.savefig(). By default, uses bbox_inches:
tight, dpi: 300, orientation: landscape.

seaborn_func: str
Function used to plot the data. Must be a function of Seaborn. An overview of Seaborn’s plotting functions is
given here.

seaborn_kwargs: dict, optional
Optional keyword arguments for the plotting function given by seaborn_func. Must not include an argument
called data. Example: {'x': 'variable_1', 'y': 'variable_2', 'hue': 'coord_1'}. Note:
variables (here: variable_1 and variable_2 are identified by their variable_group in the recipe, i.e., the keys
that specify variable groups in variables.

seaborn_settings: dict, optional
Options for seaborn.set_theme() (affects all plots).

suptitle: str or None, optional (default: None)
Suptitle for the plot (see matplotlib.pyplot.suptitle()). If None, do not create a suptitle. If the plot shows
only a single panel, use plot_object_methods with {'set': {'title': 'TITLE'}} instead.

54.6. Seaborn Diagnostic 869

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://seaborn.pydata.org/tutorial/function_overview.html
https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.suptitle.html#matplotlib.pyplot.suptitle

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

870 Chapter 54. Diagnostic Scripts

Part XI

Frequently Asked Questions

871

CHAPTER

FIFTYFIVE

IS THERE A MAILING LIST?

Yes, you can subscribe to the ESMValTool user mailing list and join the discussion on general topics (installation,
configuration, etc). See User mailing list.

873

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

874 Chapter 55. Is there a mailing list?

CHAPTER

FIFTYSIX

WHAT IS YAML?

While .yaml or .yml is a relatively common format, users may not have encountered this language before. The key
information about this format is:

• yaml is a human friendly markup language;

• yaml is commonly used for configuration files (gradually replacing the venerable .ini);

• the syntax is relatively straightforward;

• indentation matters a lot (like Python)!

• yaml is case sensitive;

More information can be found in the yaml tutorial and yaml quick reference card. ESMValTool uses the yamllint linter
tool to check recipe syntax.

875

https://learnxinyminutes.com/docs/yaml/
https://yaml.org/refcard.html
http://www.yamllint.com

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

876 Chapter 56. What is YAML?

CHAPTER

FIFTYSEVEN

RE-RUNNING DIAGNOSTICS

If a diagnostic fails, you will get the message

INFO To re-run this diagnostic script, run:

If you run the command in the stdout you will be able to re-run the diagnostic without having to re-run the whole
preprocessor. If you add the -f argument (available only for Python diagnostics, check your options with --help) that
will force an overwrite, and it will delete not just the failed diagnostic, but the contents of its work_dir and plot_dir
directories - this is useful when needing to redo the whole work. Adding -i or --ignore-existing will not delete
any existing files, and it can be used to skip work that was already done successfully, provided that the diagnostic script
supports this.

877

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

878 Chapter 57. Re-running diagnostics

CHAPTER

FIFTYEIGHT

ENTER INTERACTIVE MODE WITH IPYTHON

Sometimes it is useful to enter an interactive session to have a look what’s going on. Insert a single line in the code
where you want to enter IPython: import IPython; IPython.embed()

This is a useful functionality because it allows the user to fix things on-the-fly and after quitting the Ipython console,
code execution continues as per normal.

879

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

880 Chapter 58. Enter interactive mode with iPython

CHAPTER

FIFTYNINE

USE MULTIPLE CONFIG-USER.YML FILES

The user selects the configuration yaml file at run time. It’s possible to have several configurations files. For instance,
it may be practical to have one config file for debugging runs and another for production runs.

881

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

882 Chapter 59. Use multiple config-user.yml files

CHAPTER

SIXTY

CREATE A SYMBOLIC LINK TO THE LATEST OUTPUT DIRECTORY

When running multiple times the same recipe, the tool creates separate output directories sorted by the time tag that
they were created at; sometimes, when running quite a few times, it is not straightforward to detect which one is the
latest output directory, so a symbolic link attached to it would make things more clear e.g.:

recipe_example_20190905_163431
recipe_example_20190905_163519
recipe_example_latest -> recipe_example_20190905_163519

You can do that by running the tool using the latest output as basis and creating a symbolic link to it so it gets picked
up at every re-run iteration:

esmvaltool run recipe_example.yml; \
ln -sfT $(ls -1d ~/esmvaltool_output/recipe_example_* | tail -1) ~/esmvaltool_output/
→˓recipe_example_latest

883

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

884 Chapter 60. Create a symbolic link to the latest output directory

CHAPTER

SIXTYONE

CAN ESMVALTOOL PLOT ARBITRARY MODEL OUTPUT?

General model evaluation provides a set of recipes that can be used for a basic climate model evaluation with observa-
tional data. This is especially useful to get an overview of the general performance of a simulation.

Furthermore, recipe Monitor allows for the plotting of any preprocessed model. The plotting parameters are set through
a yaml configuration file, and the type of plots to be generated are determined in the recipe.

Moreover, recipe Psyplot Diagnostics and the corresponding diagnostic psyplot_diag.py provide a high-level interface
to the Psyplot package which can be used to create a large variety of different plots.

Similarly, recipe Seaborn Diagnostics and the corresponding diagnostic seaborn_diag.py provide a high-level interface
to the Seaborn package which can also be used to create a large variety of different plots.

See also General-purpose diagnostics.

885

https://psyplot.github.io/
https://seaborn.pydata.org

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

886 Chapter 61. Can ESMValTool plot arbitrary model output?

Part XII

Changelog

887

CHAPTER

SIXTYTWO

V2.10.0

Highlights

• Add a realistic IPCC example recipe that reproduces figure 9.3 from AR6. It computes the mean sea-surface
temperature anomaly between 1850-2100 over all available CMIP6 models. See the recipe documentation or
read the blog post for more information.

• Added more plot types to monitoring diagnostic: Hovmoeller Z vs. time, Hovmoeller time vs latlon, variable vs.
latitude are now available. See the recipe documentation for more information.

• Add support for 4 new datasets:

– NOAA-CIRES-20CR v3 reanalysis

– NASA MERRA reanalysis

– NOAA marine boundary layer data for CH4

– MOBO-DIC2004-2019

See Supported datasets for which a CMORizer script is available and Observations for more information.

• Many recipes now have up-to-date obs4MIPs dataset names so required data can automatically be downloaded
from ESGF.

This release includes

62.1 Bug fixes

• Update recipe shapeselect to work with shapely v2 (Pull request #3283) @lukruh

• Correctly handle ~when reading plot_folder option of monitoring diagnostic (Pull request #3449) @schlunma

• Fixed provenance tracking for NCL multipanel PNGs (Pull request #3332) @schlunma

• Fixed plot paths in NCL provenance tracking (Pull request #3422) @schlunma

• Fix erroneous file_type handling in certain NCL diagnostics (Pull request #3474) @zklaus

• Fix NCL provenance tracking (Pull request #3477) @schlunma

• Fix plots and provenance in Russell diagnostics (Pull request #3479) @schlunma

889

https://blog.esciencecenter.nl/easy-ipcc-powered-by-esmvalcore-19a0b6366ea7
https://github.com/ESMValGroup/ESMValTool/pull/3283
https://github.com/lukruh
https://github.com/ESMValGroup/ESMValTool/pull/3449
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3332
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3422
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3474
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/3477
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3479
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

62.2 Documentation

• Add merge instructions to release instructions (Pull request #3292) @remi-kazeroni

• Update release schedule after release of v2.9.0 (Pull request #3289) @remi-kazeroni

• Add list of failing recipes for v2.9.0 release (Pull request #3294) @remi-kazeroni

• Update mamba version in readthedocs configuration docs builds (Pull request #3310) @valeriupredoi

• Add Romain Beucher to citation file as contributor (Pull request #3318) @valeriupredoi

• Removed recipe_carvalhais14nat from list of broken recipes (Pull request #3319) @remi-kazeroni

• Add OBS-maintainers team to documentation on OBS data maintenance and CMORizer reviews (Pull request
#3335) @remi-kazeroni

• Add Pauline Bonnet to citation file (Pull request #3347) @Paulinebonnet111

• Ensure compatible zstandard and zstd in readthedocs builds (Pull request #3362) @zklaus

• Fix documentation build (Pull request #3397) @bouweandela

• Minor updates to release tools (Pull request #3216) @bouweandela

• Enhance provenance documentation (Pull request #3305) @alistairsellar

• Re-add communities and grants in zenodo file (Pull request #3416) @valeriupredoi

• Update Anconda badge in README (Pull request #3375, Pull request #3453) @valeriupredoi

62.3 Diagnostics

• Slight refactoring of diagnostic script galytska23/select_variables_for_tigramite.py for generality
and portability (Pull request #3298) @valeriupredoi and @egalytska

• Allow custom variable grouping in diagnostic script monitor/multi_datasets.py (Pull request #3343)
@schlunma

• Extended monitor diagnostic with plot type variable vs. latitude (Pull request #3340) @ellensarauer

• Add Hovmoeller Z vs. time plot to monitoring diagnostic (Pull request #3345) @cubeme and @helgehr

• Adding Hovmoeller time vs latlon plots to monitoring recipes (Pull request #3341) @lukruh and @jeremykraftdlr

• Implied heat transport new diagnostic (Pull request #3177) @mo-abodas

• Recipe changes for new statistics preprocessors (percentiles) (Pull request #3351) @schlunma

• Add a realistic example recipe (Pull request #3356) @Peter9191 and @bouweandela

• Support CenteredNorm in diagnostic monitor/multidatasets.py (Pull request #3415) @schlunma

• Use new preprocessor statistics calling convention for recipe_easy_ipcc.yml (Pull request #3418) @bouweandela

• Adapt to changed style scheme name in matplotlib (Pull request #3475) @zklaus

• Add version to dataset in python example recipe to avoid “Unknown file format” issue on JASMIN (Pull request
#3322) @ehogan

• Add the dataset version in the heatwaves_coldwaves recipe to avoid the “Unknown file format” issue on JASMIN
(Pull request #3373) @ehogan

890 Chapter 62. v2.10.0

https://github.com/ESMValGroup/ESMValTool/pull/3292
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3289
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3294
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3310
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3318
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3319
https://github.com/remi-kazeroni
https://github.com/orgs/ESMValGroup/teams/obs-maintainers
https://github.com/ESMValGroup/ESMValTool/pull/3335
https://github.com/ESMValGroup/ESMValTool/pull/3335
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3347
https://github.com/Paulinebonnet111
https://github.com/ESMValGroup/ESMValTool/pull/3362
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/3397
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3216
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3305
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/3416
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3375
https://github.com/ESMValGroup/ESMValTool/pull/3453
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3298
https://github.com/valeriupredoi
https://github.com/egalytska
https://github.com/ESMValGroup/ESMValTool/pull/3343
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3340
https://github.com/ellensarauer
https://github.com/ESMValGroup/ESMValTool/pull/3345
https://github.com/cubeme
https://github.com/helgehr
https://github.com/ESMValGroup/ESMValTool/pull/3341
https://github.com/lukruh
https://github.com/jeremykraftdlr
https://github.com/ESMValGroup/ESMValTool/pull/3177
https://github.com/mo-abodas
https://github.com/ESMValGroup/ESMValTool/pull/3351
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3356
https://github.com/Peter9191
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3415
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3418
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3475
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/3322
https://github.com/ESMValGroup/ESMValTool/pull/3322
https://github.com/ehogan
https://github.com/ESMValGroup/ESMValTool/pull/3373
https://github.com/ehogan

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

62.4 Observational and re-analysis dataset support

• Cmorizer for NOAA-CIRES-20CR v3 reanalysis (clt, clwvi, hus, prw, rlut, rlutcs, rsut, rsutcs) (Pull request
#3137) @LisaBock

• CMORizer for NASA MERRA reanalysis (Pull request #3039) @axel-lauer

• Download and formatting of NOAA marine boundary layer data for CH4 (NOAA-MBL-CH4) (Pull request
#3301) @FranziskaWinterstein

• Added CMORizer for MOBO-DIC2004-2019 (Pull request #3297) @schlunma

• Update obs4MIPs dataset names in quantilebias recipe (Pull request #3330) @rbeucher

• Update obs4MIPs dataset names in Schlund20esd recipe (Pull request #3329) @rbeucher

• Update obs4MIPs dataset names in flatoipcc recipes (Pull request #3328) @rbeucher

• Update obs4mips dataset names in clouds recipes (Pull request #3326) @rbeucher

• Update Obs4MIPs dataset names in ECS recipes (Pull request #3327) @rbeucher

• Update obs4mips dataset names in Bock et al recipes (Pull request #3324, Pull request #3389 and Pull request
#3473) @rbeucher and @bouweandela

• Update obs4mips dataset names in radiation budget recipe (Pull request #3323) @rbeucher

• Update Obs4MIPs dataset names in perfmetrics CMIP5 recipe (Pull request #3325) @rbeucher

62.5 Automatic testing

• Made sklearn test backwards-compatible with sklearn < 1.3 (Pull request #3285) @schlunma

• Update conda lock creation Github Action workflow and ship updated conda-lock file (Pull request #3307, Pull
request #3407) @valeriupredoi

• Compress all bash shell setters into one default option per GitHub Action workflow (Pull request #3315) @va-
leriupredoi

• Remove deprecated option offline from CI configuration (Pull request #3367) @schlunma

62.6 Installation

• Use ESMValCore v2.10 (Pull request #3486) @bouweandela

62.7 Improvements

• Merge v2.9.x into main (Pull request #3286) @schlunma

• Allow NCL unit conversion kg s-1 -> GtC y-1 (Pull request #3300) @schlunma

62.4. Observational and re-analysis dataset support 891

https://github.com/ESMValGroup/ESMValTool/pull/3137
https://github.com/ESMValGroup/ESMValTool/pull/3137
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/3039
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/3301
https://github.com/ESMValGroup/ESMValTool/pull/3301
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/3297
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3330
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3329
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3328
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3326
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3327
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3324
https://github.com/ESMValGroup/ESMValTool/pull/3389
https://github.com/ESMValGroup/ESMValTool/pull/3473
https://github.com/ESMValGroup/ESMValTool/pull/3473
https://github.com/rbeucher
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3323
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3325
https://github.com/rbeucher
https://github.com/ESMValGroup/ESMValTool/pull/3285
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3307
https://github.com/ESMValGroup/ESMValTool/pull/3407
https://github.com/ESMValGroup/ESMValTool/pull/3407
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3315
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3367
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3486
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3286
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3300
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

892 Chapter 62. v2.10.0

CHAPTER

SIXTYTHREE

V2.9.0

63.1 Highlights

• A new diagnostic has been added to provide a high-level interface to seaborn, a Python data visualization library
based on matplotlib. See the recipe documentation for more information.

• We have included a new recipe and diagnostic that represent the major physical processes that describe Arctic-
midlatitude teleconnections and provide the basis for the CMIP6 model evaluation for the further application
of causal discovery. The results are discussed in the article “Causal model evaluation of Arctic-midlatitude
teleconnections in CMIP6” by Galytska et al. (in review in Journal of Geophysical Research: Atmospheres).

• It is now possible to use the Dask distributed scheduler, which can significantly reduce the run-time of recipes.
Configuration examples and advice are available in the ESMValCore documentation. If configured, the Dask dis-
tributed scheduler will also be used by diagnostic scripts written in Python, so make sure to use lazy data wherever
it is possible in your (new) diagnostics. More work on improving the computational performance is planned, so
please share your experiences, good and bad, with this new feature in ESMValGroup/ESMValCore#1763.

This release includes

63.2 Bug fixes

• Fixed usage of work_dir in some CMORizer scripts (Pull request #3192) @remi-kazeroni

• Realize data for scalar cube in recipe_carvalhais14nat to avert issue from dask latest (2023.6.0) (Pull request
#3265) @valeriupredoi

• Fix failing mlr diagnostic test by adding new scikit-learn default tag (Pull request #3273) @remi-kazeroni

• Fix ordering of models in perfmetrics diagnostic script (Pull request #3275) @LisaBock

63.3 Documentation

• Update release schedule after v2.8.0 (Pull request #3138) @remi-kazeroni

• Added reference entry for Winterstein (Pull request #3154) @FranziskaWinterstein

• Show logo on PyPI (Pull request #3185) @valeriupredoi

• Add Release Managers for v2.9.0 and v2.10.0 (Pull request #3184) @remi-kazeroni

• Fix readthedocs build with esmpy>=8.4.0 and missing ESMFMKFILE variable (Pull request #3205) @valeri-
upredoi

893

https://seaborn.pydata.org/
https://matplotlib.org/
https://essopenarchive.org/doi/full/10.1002/essoar.10512569.1
https://essopenarchive.org/doi/full/10.1002/essoar.10512569.1
https://docs.dask.org/en/latest/deploying.html
https://github.com/ESMValGroup/ESMValCore/pull/2049#pullrequestreview-1446279391
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/configure.html#config-dask
https://scitools-iris.readthedocs.io/en/latest/userguide/real_and_lazy_data.html#real-and-lazy-data
https://github.com/ESMValGroup/ESMValCore/discussions/1763
https://github.com/ESMValGroup/ESMValTool/pull/3192
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3265
https://github.com/ESMValGroup/ESMValTool/pull/3265
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3273
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3275
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/3138
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3154
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/3185
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3184
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3205
https://github.com/valeriupredoi
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Add ESMValCore release v2.8.1 into the documentation (Pull request #3235) @remi-kazeroni

• Modified links to the tutorial (Pull request #3236) @remi-kazeroni

• Fix gitter badge in README (Pull request #3258) @remi-kazeroni

• Add release notes for v2.9.0 (Pull request #3266) @bouweandela

63.4 Diagnostics

• New plot_type 1d_profile in monitor (Pull request #3178) @FranziskaWinterstein

• Add Seaborn diagnostic (Pull request #3155) @schlunma

• New recipe and diagnostic for Arctic-midlatitude research (Pull request #3021) @egalytska

• Generate climatology on the fly for AutoAssess soil moisture (Pull request #3197) @alistairsellar

• Remove “fx_variables” from recipe_tebaldi21esd.yml (Pull request #3211) @hb326

• Remove “fx_variables” from ipccwg1ar5ch9 recipes (Pull request #3215) @katjaweigel

• Remove “fx_variables” from recipe_wenzel14jgr.yml (Pull request #3212) @hb326

• Update obs4MIPs dataset to the current naming scheme in recipe_smpi.yml (Pull request #2991) @bouweandela

• Fixed pandas diagnostics for pandas>=2.0.0 (Pull request #3209) @schlunma

• Update recipe_impact.yml to work with newer versions of pandas (Pull request #3220) @bouweandela

• Add variable long names to provenance record in monitoring diagnostics (Pull request #3222) @bsolino

63.5 Observational and re-analysis dataset support

• Add CMORizer for GPCP-SG (pr) (Pull request #3150) @FranziskaWinterstein

• Extension of NASA MERRA2 CMORizer (cl, cli, clivi, clw, clwvi) (Pull request #3167) @axel-lauer

63.6 Automatic testing

• Add a CircleCI-testing-specific recipe_python_for_CI.yml to avoid calling geolocator/Nominatim over CI
(Pull request #3159) @valeriupredoi

• Check if Python minor version changed after Julia install in development installation test (Pull request #3213)
@valeriupredoi

• Fix tests using deprecated esmvalcore._config module that has been removed in ESMValCore v2.9 (Pull
request #3204) @valeriupredoi

894 Chapter 63. v2.9.0

https://github.com/ESMValGroup/ESMValTool/pull/3235
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3236
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3258
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3266
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3178
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/3155
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3021
https://github.com/egalytska
https://github.com/ESMValGroup/ESMValTool/pull/3197
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/3211
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/3215
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/3212
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/2991
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3209
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3220
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3222
https://github.com/bsolino
https://github.com/ESMValGroup/ESMValTool/pull/3150
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/3167
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/3159
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3213
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3204
https://github.com/ESMValGroup/ESMValTool/pull/3204
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

63.7 Installation

• Add support for Python=3.11 (Pull request #3173) @valeriupredoi

• Drop python=3.8 support (Pull request #3193) @valeriupredoi

• Repair generation of conda lock files (Pull request #3148) @valeriupredoi

• Modernize lock creation script and repair lock generation (Pull request #3174) @valeriupredoi

• Pin numpy !=1.24.3 due to severe masking bug (Pull request #3182) @valeriupredoi

• Update xesmf to versions >= 0.4.0 (Pull request #2728) @zklaus

• Update esmpy import for ESMF version 8.4.0 or larger (Pull request #3188) @valeriupredoi

• Relax the pin on iris to allow the use of older versions for performance reasons (Pull request #3270) @bouwe-
andela

• Use ESMValCore v2.9.0 (Pull request #3274) @bouweandela

63.8 Improvements

• Update pre-commit hooks (Pull request #3189) @bouweandela

• Add support for using a dask distributed scheduler (Pull request #3151) @bouweandela

63.7. Installation 895

https://github.com/ESMValGroup/ESMValTool/pull/3173
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3193
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3148
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3174
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3182
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2728
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/3188
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3270
https://github.com/bouweandela
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3274
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3189
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3151
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

896 Chapter 63. v2.9.0

CHAPTER

SIXTYFOUR

V2.8.0

64.1 Highlights

• This release includes the diagnostics for reproducing figures 3.9, 3.19, 3.42 and 3.43 of the IPCC AR6 WG1
report. See recipe documentation about added recipes.

• A new set of recipes and diagnostics has been included to evaluate cloud climatologies from CMIP models as
used in Lauer et al. (2023), J. Climate. See recipe documentation about added recipes.

• Addition of a set of recipes for extreme events, regional and impact evaluation as used in Weigel et al. (2021), J.
Climate and in IPCC AR5. See recipe documentation about added recipes.

Highlights from ESMValCore v2.8.0 here:

• ESMValCore now supports wildcards in recipes and offers improved support for ancillary variables and dataset
versioning.

• Support for CORDEX datasets in a rotated pole coordinate system has been added.

• Native ICON output is now made UGRID-compliant on-the-fly.

• The Python API has been extended with the addition of three modules: esmvalcore.config, esmvalcore.
dataset, and esmvalcore.local

• The preprocessor multi_model_statistics() has been extended to support more use-cases.

This release includes:

64.2 Backwards incompatible changes

Please read the descriptions of the linked pull requests for detailed upgrade instructions.

• Deprecated features scheduled for removal in v2.8.0 or earlier have now been removed (Pull request #2941)
@schlunma. Removed esmvaltool.iris_helpers.var_name_constraint (has been deprecated in v2.6.0;
please use iris.NameConstraint with the keyword argument var_name instead). Removed write_netcdf and
write_plots from recipe_filer.py.

• No files from the native6 project will be found if a non-existent version of a dataset is specified (#3041) @remi-
kazeroni. The tool now searches for exact version of native6 datasets. Therefore, it is necessary to make sure
that the version number in the directory tree matches with the version number in the recipe to find the files.

• The conversion of precipitation units from monitoring diagnostic is now done at the preprocessor stage (#3049)
@schlunma. To use the unit conversion for precipitation in the new version of this diagnostic, add it as a prepro-
cessor for the precipitation dataset to the recipe.

897

https://doi.org/10.1175/JCLI-D-22-0181.1
https://doi.org/10.5194/gmd-14-3159-2021
https://doi.org/10.5194/gmd-14-3159-2021
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-8-0
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/quickstart/find_data.html#read-icon
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.config.html#module-esmvalcore.config
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.dataset.html#module-esmvalcore.dataset
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.dataset.html#module-esmvalcore.dataset
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.local.html#module-esmvalcore.local
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/api/esmvalcore.preprocessor.html#esmvalcore.preprocessor.multi_model_statistics
https://github.com/ESMValGroup/ESMValTool/pull/2941
https://github.com/schlunma
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.NameConstraint
https://github.com/ESMValGroup/ESMValTool/pull/3041
https://github.com/remi-kazeroni
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3049
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

64.3 Bug fixes

• Fix for provenance records from seaice_tsline.ncl (Pull request #2938) @axel-lauer

• Fix in validation.py for resolving datasets with identical names by using distinct aliases (Pull request #2955)
@FranziskaWinterstein

• Bugfix: masking of non-significant differences in zonal.ncl (perfmetrics) (Pull request #2957) @axel-lauer

• Fix typo in perfmetrics/main.ncl to add tropopause (Pull request #2966) @FranziskaWinterstein

• Fix .png bug in wenzel16nat diagnostics (Pull request #2976) @axel-lauer

• Recipe_ocean_Landschuetzer2016: Fix typo in filename to run model vs OBS diagnostics (Pull request #2997)
@TomasTorsvik

• Fix read_cmor in NCL utilities (Pull request #3007) @axel-lauer

• Removed usages of deprecated features that cause diagnostic crashes (Pull request #3009) @schlunma

• Replace removed matplotlib.pyplot.savefig option additional_artists (Pull request #3075) @schlunma

• Added missing comma to sommer17joss.bibtex (Pull request #3078) @schlunma

• Fix call of output_type in aux_plotting.ncl (Pull request #3083) @LisaBock

• Remove colorbar from bbox_extra_artists (Pull request #3087) @schlunma

• Fix MPI-ESM1-2-HR entries in recipe_tebaldi21esd (Pull request #3093) @remi-kazeroni

• Fix bug in provenance writing of perfmetrics recipes v2.8.0 (Pull request #3098) @axel-lauer

• Fix recipe_sea_surface_salinity for v2.8 (Pull request #3102) @sloosvel

• Fix variable short_name and metadata for ESACCI-LST CMORizer (Pull request #3104) @remi-kazeroni

• Fix recipe_carvalhais14: replace outline patch with splines (Pull request #3111) @valeriupredoi

• Replace deprecated function cm.register_cmap with mpl.colormaps.register for recipe_ arctic_ocean (Pull re-
quest #3112) @TomasTorsvik

• Fix recipe_extract_shape.yml (lacking caption for provenance) (Pull request #3126) @valeriupredoi

64.4 Community

• Update documentation on pre-installed versions on HPC clusters (Pull request #2934) @remi-kazeroni

64.5 Deprecations

• Remove radiation recipes that have been superseded by recipe_radiation_budget along with associated diagnostic
scripts (#3115) @alistairsellar

898 Chapter 64. v2.8.0

https://github.com/ESMValGroup/ESMValTool/pull/2938
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2955
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/2957
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2966
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/2976
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2997
https://github.com/TomasTorsvik
https://github.com/ESMValGroup/ESMValTool/pull/3007
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/3009
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3075
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3078
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3083
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/3087
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3093
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3098
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/3102
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/3104
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3111
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3112
https://github.com/ESMValGroup/ESMValTool/pull/3112
https://github.com/TomasTorsvik
https://github.com/ESMValGroup/ESMValTool/pull/3126
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2934
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3115
https://github.com/alistairsellar

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

64.6 Documentation

• Backward compatibility policy (Pull request #2879) @alistairsellar

• Suppress installing and reinstalling dependencies with pip during readthedocs builds (Pull request #2913) @va-
leriupredoi

• Update installation instructions (Pull request #2939) @bouweandela

• Update documentation for recipe_extreme_index (Pull request #2951) @katjaweigel

• Update documentation and recipe_check_obs (ERA5) (Pull request #2952) @axel-lauer

• Updated ICON dataset entry in documentation (Pull request #2954) @schlunma

• Add Franziska Winterstein as collaborator in CITATION file (Pull request #3001) @valeriupredoi

• Update release schedule for v2.7.0 and v2.8.0 (Pull request #3010) @remi-kazeroni

• Add ESMValCore Bugfix release v2.7.1 to the release overview table (Pull request #3028) @valeriupredoi

• Detailed instructions for release procedure: running recipes and analyzing the output (Pull request #3032) @va-
leriupredoi

• Link backward compatibility policy to top level of ESMValCore changelog (Pull request #3052) @alistairsellar

• Update release instructions (Pull request #3066) @remi-kazeroni

• Updated docs and tests regarding new search_esgf option (Pull request #3069) @schlunma

• Update script to draft release notes (Pull request #3070) @remi-kazeroni

• Synchronize documentation table of contents with ESMValCore (Pull request #3073) @bouweandela

• Update environment handling in release documentation (Pull request #3096) @remi-kazeroni

• Clarify use (or not) of Jasmin climatology files by soil moisture & permafrost recipes (Pull request #3103)
@alistairsellar

• Add link to recipe portal in the gallery page (Pull request #3113) @remi-kazeroni

• Improve stratosphere documentation (Pull request #3114) @alistairsellar

• Added note to documentation that not all datasets used in schlund20jgr recipes are available on ESGF (Pull
request #3121) @schlunma

• Draft changelog for v2.8.0 (Pull request #3124) @remi-kazeroni

• Documenting broken recipes after recipe testing for releases (Pull request #3129) @remi-kazeroni

• Increase ESMValTool version to 2.8.0 and update release dates (Pull request #3136) @remi-kazeroni

64.7 Diagnostics

• Cloud diagnostics for Lauer et al. (2023) (Pull request #2750) @axel-lauer

• Splitting of flato13ipcc.yml into separate recipes and adding recipes for regional Figures (Pull request #2156)
@katjaweigel

• Adding IPCC AR6 Chapter 3 Figure 3.43 - Pattern Correlation (Pull request #2772) @LisaBock

• Adding IPCC AR6 Chapter 3 Fig. 3.42 - Perfmetrics (Pull request #2856) @LisaBock

• Comment missing datasets and remove deprecated argument in recipe_climate_change_hotspot (Pull request
#2920) @sloosvel

64.6. Documentation 899

https://github.com/ESMValGroup/ESMValTool/pull/2879
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/2913
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2939
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2951
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2952
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2954
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3001
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3010
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3028
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3032
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3052
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/3066
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3069
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3070
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3073
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3096
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3103
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/3113
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3114
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/3121
https://github.com/ESMValGroup/ESMValTool/pull/3121
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3124
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3129
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3136
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2750
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2156
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2772
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2856
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2920
https://github.com/ESMValGroup/ESMValTool/pull/2920
https://github.com/sloosvel

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Add plot type annual_cycle to multi-dataset monitoring diagnostic (Pull request #2922) @schlunma

• Adding IPCC AR6 Chapter 3 Fig. 3.19 - Speed-Up Of Zonal Mean Wind (Pull request #2984) @LisaBock

• Adding IPCC AR6 Chapter 3 Fig. 3.9 - Attribution (Pull request #2986) @LisaBock

• Obs4mips CERES-EBAF: update version to latest available through esgf in recipe_validation.yml (Pull request
#3002) @valeriupredoi

• Improve flexibility of cloud diagnostics (Pull request #3016) @axel-lauer

• Let recipe_impact.yml write a CSV file that can directly be used in C4I portal (Pull request #2258) @Peter9192

• Fix version numbers of native6 datasets in recipes (#3041) @remi-kazeroni

• Removed automatic conversion of precipitation units from monitoring diagnostic (#3049) @schlunma.

• Updated recipes for ESMValCore v2.8 (Pull request #3064) @schlunma

• Fix cos22esd for release of 2.8 (Pull request #3097) @sloosvel

• Diagnostic for recipe_autoassess_stratosphere.yml: remove unused feature incompatible with Matplotlib=3.7.1
(Pull request #3089) @valeriupredoi

• Fix numpy deprecation in hype diagnostic (Pull request #3101) @Peter9192

• Remove superseded radiation recipes (#3115) @alistairsellar

• Removed fx_variables in recipe_mpqb_xch4 and recipe_lauer22jclim_fig8 (Pull request #3117) @axel-lauer

• Update Python example recipe (Pull request #3119) @bouweandela

• Updated figure settings to account for newer matplotlib version (Pull request #3133) @katjaweigel

64.8 Observational and re-analysis dataset support

• Earth System Data Cube (ESDC) cmorizer (Pull request #2799) @bsolino

• Added CMORizer for Landschützer2020 (spco2) (Pull request #2908) @schlunma

• Added CMORizer for MOBO-DIC_MPIM (dissic) (Pull request #2909) @schlunma

• Added CMORizer for OceanSODA-ETHZ (areacello, co3os, dissicos, fgco2, phos, spco2, talkos) (Pull request
#2915) @schlunma

• Extension of ERA-Interim CMORizer (cl, cli, clw, lwp, rlut, rlutcs, rsut, rsutcs) (Pull request #2923) @axel-lauer

• Add JRA-25 cmorizer (clt, hus, prw, rlut, rlutcs, rsut, rsutcs) (Pull request #2927) @LisaBock

• New CMORizers for datasets from the NCEP family (NCEP-DOE-R2, NCEP-NCAR-R1, NOAA-CIRES-20CR)
(Pull request #2931) @hb326

• Updates to the recipes that use the NCEP reanalysis dataset (Pull request #2932) @hb326

• MERRA2 cmorizer convert vertical level coordinate units from hPa to Pa (Pull request #3003) @valeriupredoi

• MERRA2 cmorizer set UNLIMITED time coordinate (Pull request #3006) @valeriupredoi

• Added CMORizers for TCOM-CH4 (CH4) and TCOM-N2O (N2O) (Pull request #3014) @schlunma

• Update HadISST cmorizer to include recent years (Pull request #3027) @remi-kazeroni

900 Chapter 64. v2.8.0

https://github.com/ESMValGroup/ESMValTool/pull/2922
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2984
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2986
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/3002
https://github.com/ESMValGroup/ESMValTool/pull/3002
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3016
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2258
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/3041
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3049
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3064
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3097
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/3089
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3101
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/3115
https://github.com/alistairsellar
https://github.com/ESMValGroup/ESMValTool/pull/3117
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/3119
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3133
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2799
https://github.com/bsolino
https://github.com/ESMValGroup/ESMValTool/pull/2908
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2909
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2915
https://github.com/ESMValGroup/ESMValTool/pull/2915
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2923
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2927
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2931
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/2932
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/3003
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3006
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3014
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3027
https://github.com/remi-kazeroni

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

64.9 Automatic testing

• Add DKRZ/Levante batch scripts for release recipe running (Pull request #2883) @valeriupredoi

• Remove pytest-flake8 and call the use of flake8 straight (Pull request #2904) @valeriupredoi

• Unpin flake8 (Pull request #2937) @valeriupredoi

• Fix failing tests that use deprecated feature of sklearn (Pull request #2961) @schlunma

• Fix recipe loading tests for esmvalcore before and after version 2.8 (Pull request #3020) @valeriupredoi

• Update recipe load test for v2.8 (Pull request #3040) @bouweandela

• Test running recipes with the development version of ESMValCore (Pull request #3072) @bouweandela

• Fix test_naming.py so it doesn’t let through directories that need be ignored (Pull request #3082) @valeriupredoi

• Conda environment files for interim use of esmvalcore=2.8.0rc1 (Pull request #3090) @valeriupredoi

• Move flake8 check to a step separate from installation on CircleCI (Pull request #3105) @bouweandela

• Recreate conda lock file to harpoon esmvalcore=2.8.0rc1 (Pull request #3108) @valeriupredoi

• Update batch script generation to run all recipes in one command (Pull request #3130) @remi-kazeroni

64.10 Installation

• Merge release branch release_270stable in main so we pick up unsquashed commits and set the correct version
2.7.0 for main (and up version in CITATION.cff) (Pull request #2896) @valeriupredoi

• Unpin NetCDF4 (Pull request #2929) @valeriupredoi

• Unpin cf-units (Pull request #2930) @bouweandela

• Set the version number on the development branches to one minor version more than the last release (Pull request
#2964) @bouweandela

• Pin shapely<2.0.0 for linux64 (Pull request #2970) @valeriupredoi

• Unpin matplotlib (Pull request #3068) @valeriupredoi

• Add packaging as direct dependency to ESMValTool (Pull request #3099) @valeriupredoi

• Re-pin sphinx to latest (6.1.3) and add nbsphinx to the environment (Pull request #3118) @valeriupredoi

• Conda environment files for esmvalcore=2.8.0rc2 (Pull request #3120) @remi-kazeroni

• Remove rc (release candidates) conda channel and re-pin esmvalcore to new stable 2.8 (Pull request #3131)
@valeriupredoi

64.9. Automatic testing 901

https://github.com/ESMValGroup/ESMValTool/pull/2883
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2904
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2937
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2961
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3020
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3040
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3072
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3082
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3090
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3105
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3108
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3130
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2896
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2929
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2930
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2964
https://github.com/ESMValGroup/ESMValTool/pull/2964
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2970
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3068
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3099
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3118
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/3120
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/3131
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

64.11 Improvements

• Read config-user.yml using esmvalcore.config module (Pull request #2736) @bouweandela

• Make results of recipes schlund20jgr_*.yml deterministic (Pull request #2900) @schlunma

• Recipe_gier2020bg.yml: add sorting to SA barplot (Pull request #2905) @bettina-gier

• Add the outline of a climatological tropopause to the zonalmean_profile plots (Pull request #2947)
@FranziskaWinterstein

• Update data finder imports (Pull request #2958) @bouweandela

• Add support for the upcoming ESMValCore v2.8 release to the recipe filler tool (Pull request #2995) @bouwe-
andela

• Updated monitoring diagnostics with netCDF output and additional logging (Pull request #3029) @schlunma

• Use aliases in perfmetrics (Pull request #3058) @FranziskaWinterstein

902 Chapter 64. v2.8.0

https://github.com/ESMValGroup/ESMValTool/pull/2736
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2900
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2905
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/2947
https://github.com/FranziskaWinterstein
https://github.com/ESMValGroup/ESMValTool/pull/2958
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2995
https://github.com/bouweandela
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/3029
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/3058
https://github.com/FranziskaWinterstein

CHAPTER

SIXTYFIVE

V2.7.0

65.1 Highlights

• This release has seen the inclusion of the code for figures 3.3, 3.4, 3.5, 3,13 and 3.15 of the IPCC AR6 WG1
report, see them in the new documentation

• We have also included new diagnostics and recipe necessary to produce the plots and tables for the journal
article “Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6”
by Tebaldi et al. in ESD 2020-68 from 2021; also see the recipe entry

• We have also extended the support for MERRA2 observational dataset, by adding support for a large number of
variables, including 3D variables, see the table of supported obs datasets

65.2 Backwards incompatible changes

• Remove installation of R dependencies from the help message (Pull request #2761) @remi-kazeroni

65.3 Bug fixes

• Fix misplaced provenance records from IPCC AR5 Ch.12 diags (Pull request #2758) @axel-lauer

• Fix esmvaltool.utils.testing.regression.compare module to run with Python<3.10 too (Pull request #2778) @va-
leriupredoi

• Fixed small bug that could lead to wrong pr units in monitor/multi_datasets.py (Pull request #2788) @schlunma

• Pin xgboost>1.6.1 so we avert documentation failing to build with 1.6.1 (Pull request #2780) @valeriupredoi

• Pin matplotlib-base<3.6.0 to avoid conflict from mapgenerator that fails doc builds (Pull request #2830) @va-
leriupredoi

• Fixed wrong latitudes in NDP CMORizer (Pull request #2832) @schlunma

• Fix indexer in Autoassess supermeans module use a tuple of (slice(), idx, idx) (Pull request #2838) @valeriupre-
doi

• Replace xarray ufuncs with bogstandard numpy in weighting/climwip/calibrate_sigmas.py (Pull request #2848)
@valeriupredoi

• Fix units MERRA2 CMORizer (Pull request #2850) @axel-lauer

• Fix bug when using log-scale y-axis for ocean transects. (Pull request #2862) @TomasTorsvik

903

https://esmvaltool--2533.org.readthedocs.build/en/2533/recipes/recipe_ipccwg1ar6ch3.html
https://doi.org/10.5194/esd-2020-68
https://docs.esmvaltool.org/en/latest/recipes/recipe_tebaldi21esd.html
https://docs.esmvaltool.org/en/latest/input.html#supported-datasets-for-which-a-cmorizer-script-is-available
https://github.com/ESMValGroup/ESMValTool/pull/2761
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2758
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2778
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2788
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2780
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2830
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2832
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2838
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2848
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2850
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2862
https://github.com/TomasTorsvik

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

65.4 Community

• Add MO-paths to config file (Pull request #2784) mo-tgeddes

65.5 Deprecations

• Recipe recipe_esacci_oc.yml replace with new regrid scheme nearest_extrapolate (Pull request #2841) @valeri-
upredoi

65.6 Documentation

• Update release schedule for v2.7 (Pull request #2747) @bouweandela

• Add Met Office installation method (Pull request #2751) mo-tgeddes

• Add release dates for 2023 (Pull request #2769) @remi-kazeroni

• Made maintainer entry mandatory for published recipes (Pull request #2703) @schlunma

• Use command with current command line opts for cffconvert in documentation (Pull request #2791) @valeri-
upredoi

• Update CMORizer documentation with command options (Pull request #2795) @remi-kazeroni

• Fixed broken link for monthly meetings (Pull request #2806) @remi-kazeroni

• Update MO obs4MIPs paths in the user configuration file (Pull request #2813) mo-tgeddes

• Fix Windows incompatible file names in documentation of recipe_climate_change_hotspot.yml (Pull request
#2823) @ledm

• Update documentation for the Landschuetzer 2016 recipe. (Pull request #2801) @TomasTorsvik

• Fixed anaconda badge in README (Pull request #2866) @valeriupredoi

• Update release strategy notes (Pull request #2734) @sloosvel

• Add documentation on how to handle CMORizers for multiple dataset versions (Pull request #2730) @remi-
kazeroni

• Extending documentation: recipe maintainer + broken recipe policy (Pull request #2719) @axel-lauer

65.7 Diagnostics

• Recipe and diagnostics for : Tebaldi et al.,ESD, 2021 (Pull request #2052) debe-kevin

• Figures for IPCC AR6 WG1 Chapter 3 (Atmosphere) (Pull request #2533) @LisaBock

904 Chapter 65. v2.7.0

https://github.com/ESMValGroup/ESMValTool/pull/2784
https://github.com/mo-tgeddes
https://github.com/ESMValGroup/ESMValTool/pull/2841
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2747
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2751
https://github.com/mo-tgeddes
https://github.com/ESMValGroup/ESMValTool/pull/2769
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2703
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2791
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2795
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2806
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2813
https://github.com/mo-tgeddes
https://github.com/ESMValGroup/ESMValTool/pull/2823
https://github.com/ESMValGroup/ESMValTool/pull/2823
https://github.com/ledm
https://github.com/ESMValGroup/ESMValTool/pull/2801
https://github.com/TomasTorsvik
https://github.com/ESMValGroup/ESMValTool/pull/2866
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2734
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2730
https://github.com/remi-kazeroni
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2719
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2052
https://github.com/debe-kevin
https://github.com/ESMValGroup/ESMValTool/pull/2533
https://github.com/LisaBock

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

65.8 Observational and re-analysis dataset support

• Update CERES-EBAF to Ed4.1 (Pull request #2752) @axel-lauer

• New CMORizer for CALIPSO-ICECLOUD (Pull request #2753) @axel-lauer

• New CMORizer for CLOUDSAT-L2 (Pull request #2754) @axel-lauer

• Update MERRA2 cmorizer with extra 2D and 3D variables (Pull request #2774) @valeriupredoi

65.9 Automatic testing

• Pin netcdf4 != 1.6.1 since that is spitting large numbers of SegFaults (Pull request #2796) @valeriupredoi

65.10 Installation

• Increase esmvalcore version to 2.7.0 in environment files (Pull request #2860) @valeriupredoi

• Add iris-esmf-regrid as a dependency (Pull request #2880) @zklaus

65.11 Improvements

• Fix tebaldi21esd (Pull request #2749) @axel-lauer

• Added option to show basic statistics in plots of monitor/multi_datasets.py (Pull request #2790) @schlunma

• Remove retracted datasets from recipe_climate_change_hotspot (Pull request #2854) @sloosvel

65.8. Observational and re-analysis dataset support 905

https://github.com/ESMValGroup/ESMValTool/pull/2752
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2753
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2754
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2774
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2796
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2860
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2880
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2749
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2790
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2854
https://github.com/sloosvel

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

906 Chapter 65. v2.7.0

CHAPTER

SIXTYSIX

V2.6.0

66.1 Highlights

• A new monitoring diagnostic has been added to allow the comparison of model runs against reference datasets.
For details, see Monitoring diagnostic to show multiple datasets in one plot (incl. biases).

• A tool has been developed to compare the output of recipe runs against previous runs, in order to detect in an
automated way breaking changes between releases. Find more information in Comparing recipe runs.

• The recipe Climate Change Hotspot allows to compute hotspots in any rectangular region.

Please also note the highlights from the corresponding ESMValCore release here. Thanks to that ESMValTool has
gained the following features:

• A new set of CMOR fixes is now available in order to load native EMAC model output and CMORize it on the
fly.

• The version number of ESMValCore is now automatically generated using setuptools_scm, which extracts Python
package versions from git metadata.

This release includes

66.2 Bug fixes

• Fix dtype for Marrmot recipe results (Pull request #2646) @SarahAlidoost

• Adapt test_fix_coords to new version of cf-units (Pull request #2707) @zklaus

• Fix nested axes in recipe_martin18_grl and recipe_li17natcc (Pull request #2712) @lukruh

• Update common_climdex_preprocessing_for_plots.R (Pull request #2727) @earnone

66.3 Community

• Collecting github user names for config-references (Pull request #2677) @lukruh

907

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-6-0
https://github.com/pypa/setuptools_scm/#default-versioning-scheme
https://github.com/ESMValGroup/ESMValTool/pull/2646
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/2707
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2712
https://github.com/lukruh
https://github.com/ESMValGroup/ESMValTool/pull/2727
https://github.com/earnone
https://github.com/ESMValGroup/ESMValTool/pull/2677
https://github.com/lukruh

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

66.4 Deprecations

• Deprecate the function esmvaltool.diag_scripts.shared.var_name_constraint. This function is scheduled for re-
moval in v2.8.0. Please use iris.NameConstraint with the keyword argument var_name instead: this is an
exact replacement. (Pull request #2655) @schlunma

66.5 Documentation

• Documentation Improvements (Pull request #2580) @stacristo

• Fixed broken label in the documentation (Pull request #2616) @remi-kazeroni

• Add readthedocs configuration file (Pull request #2627) @bouweandela

• Update the command for building the documentation (Pull request #2622) @bouweandela

• Added DKRZ-Levante to config-user-example.yml (Pull request #2632) @remi-kazeroni

• Improved documentation on native dataset support (Pull request #2635) @schlunma

• Add documentation on building and uploading Docker images (Pull request #2662) @bouweandela

• Remove support for Mistral in config-user-example.yml (Pull request #2667) @remi-kazeroni

• Add note to clarify that CORDEX support is work in progress (Pull request #2682) @bouweandela

• Restore accidentally deleted text from input data docs (Pull request #2683) @bouweandela

• Add running settings note in recipe_wenzel16nat.yml documentation (Pull request #2692) @sloosvel

• Add a note on transferring permissions to the release manager (Pull request #2688) @bouweandela

• Update documentation on ESMValTool module at DKRZ (Pull request #2696) @remi-kazeroni

• Add note on how to run recipe_wenzel14jgr.yml (Pull request #2717) @sloosvel

• Added conda forge feedstock repo link in README (Pull request #2555) @valeriupredoi

66.6 Diagnostics

• Compute bias instead of correlation in compare_salinity.py (Pull request #2642) @sloosvel

• Update monitor diagnostics (Pull request #2608) @schlunma

• Add new Psyplot diagnostic (Pull request #2653) @schlunma

• Reduce memory usage of lisflood recipe (Pull request #2634) @sverhoeven

• Provenance in ocean diagnostics (Pull request #2651) @tomaslovato

• Extend monitor diagnostics with multi-dataset plots (Pull request #2657) @schlunma

• Recipe and diagnostics to plot climate change hotspots: Cos et al., ESD 2022 (Pull request #2614) @pepcos

• Update plots of consecutive dry days recipe (Pull request #2671) @bouweandela

• Fix the format of ids in Hype forcing files (Pull request #2679) @SarahAlidoost

• WFlow diagnostic script: remove manual rechunking (Pull request #2680) @Peter9192

908 Chapter 66. v2.6.0

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.NameConstraint
https://github.com/ESMValGroup/ESMValTool/pull/2655
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2580
https://github.com/stacristo
https://github.com/ESMValGroup/ESMValTool/pull/2616
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2627
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2622
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2632
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2635
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2662
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2667
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2682
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2683
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2692
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2688
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2696
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2717
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2555
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2642
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2608
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2653
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2634
https://github.com/sverhoeven
https://github.com/ESMValGroup/ESMValTool/pull/2651
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValTool/pull/2657
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2614
https://github.com/pepcos
https://github.com/ESMValGroup/ESMValTool/pull/2671
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2679
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/2680
https://github.com/Peter9192

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

66.7 Observational and re-analysis dataset support

• Extending the HadCRUT5 cmorizer (Pull request #2509) @LisaBock

• Cmorize Kadow2020 dataset (Pull request #2513) @LisaBock

• Cmorize NOAAGlobalTemp dataset (Pull request #2515) @LisaBock

• Add option to CMORize ts as tos in ESACCI data (Pull request #2731) @sloosvel

66.8 Automatic testing

• Add a tool for comparing recipe runs to previous runs (Pull request #2613) @bouweandela

• Ignore NCL interface files when comparing recipe runs (Pull request #2673) @bouweandela

• Add a short version of recipe deangelis15nat for testing (Pull request #2685) @katjaweigel

• Expanded recipe output comparison tool to better handle absolute paths in output (Pull request #2709)
@schlunma

• Update development infrastructure (Pull request #2663) @bouweandela

66.9 Installation

• Removed package/meta.yaml and all references to it (Pull request #2612) @schlunma

66.10 Improvements

• Improved handling of weights in MLR diagnostics (Pull request #2625) @schlunma

• Fixed order of variables in perfemetrics plot of Anav13jclim recipe (Pull request #2706) @schlunma

• Added input file sorting to many diagnostic to make output exactly reproducible (Pull request #2710) @schlunma

• Removed ‘ancestors’ attributes before saving netcdf files in emergent constraints diagnostics (Pull request #2713)
@schlunma

66.7. Observational and re-analysis dataset support 909

https://github.com/ESMValGroup/ESMValTool/pull/2509
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2513
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2515
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2731
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2613
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2673
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2685
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2709
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2663
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2612
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2625
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2706
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2710
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2713
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

910 Chapter 66. v2.6.0

CHAPTER

SIXTYSEVEN

V2.5.0

67.1 Highlights

• A new recipe to plot generic preprocessor output is now available. For details, see Monitor.

• The CMORization of observational and other datasets has been overhauled. For many datasets, an automatic
download script is now available. For details, see Observations and Writing a CMORizer script for an additional
dataset.

Please also note the highlights from the corresponding ESMValCore release here. Thanks to that ESMValTool has
gained the following features:

• The new preprocessor extract_location can extract arbitrary locations on the Earth.

• Time ranges can now be extracted using the ISO 8601 format.

• The new preprocessor ensemble_statistics can calculate arbitrary statistics over all ensemble members of
a simulation.

This release includes

67.2 Backwards incompatible changes

• Streamline observations download (Pull request #1657) Javier Vegas-Regidor. This change removes the
cmorize_obs command which has previously been used to CMORize observations and other datasets. The new
command esmvaltool data provides many new features apart from the CMORization (esmvaltool data
format), for example, automatic downloading of observational datasets (esmvaltool data download). More
details on this can be found here and here.

• Dropped Python 3.7 (Pull request #2585) @schlunma. ESMValTool v2.5.0 dropped support for Python 3.7.
From now on Python >=3.8 is required to install ESMValTool. The main reason for this is that conda-forge
dropped support for Python 3.7 for OSX and arm64 (more details are given here).

911

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-5-0
https://en.wikipedia.org/wiki/ISO_8601
https://github.com/ESMValGroup/ESMValTool/pull/1657
https://github.com/jvegreg
https://github.com/ESMValGroup/ESMValTool/pull/2585
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/issues/2584#issuecomment-1063853630

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

67.3 Bug fixes

• Remove the use of esmvalgroup channel from the conda install Github Action workflow (Pull request #2420)
@valeriupredoi

• Ignore .pymon-journal file in test discovery (Pull request #2491) @zklaus

• Relocate pytest-monitor outputted database .pymon so .pymon-journal file should not be looked for by pytest
(Pull request #2501) @valeriupredoi

• Re-establish Python 3.7 compatibility (Pull request #2506) @zklaus

• Update intersphinx mapping (Pull request #2531) @zklaus

• Fixed KeyError in recipe_ocean_bgc.yml (Pull request #2540) @schlunma

• Corrected ESACCI-SEA-SURFACE-SALINITY from OBS to OBS6 (Pull request #2542) @axel-lauer

• Fixed recipe_kcs.yml (Pull request #2541) @schlunma

• Fix MDER diagnostic regression_stepwise (Pull request #2545) @axel-lauer

• Fix for recipe_wenzel16nat (Pull request #2547) @axel-lauer

• Fixed recipe_carvalhais14nat and removed deprecated use of np.float (Pull request #2558) @schlunma

• Fix recipe_wenzel14jgr (Pull request #2577) @remi-kazeroni

• Fixed various recipes by removing faulty or non-available datasets (Pull request #2563) @schlunma

• Remove missing CMIP5 data from 2 recipes (Pull request #2579) @remi-kazeroni

• Fix recipe_seaice (Pull request #2578) @remi-kazeroni

• Fix recipe_climwip_brunner20esd (Pull request #2581) @remi-kazeroni

67.4 Deprecations

• Remove –use-feature=2020-resolver command line option for obsolete pip 2020 solver (Pull request #2493)
@valeriupredoi

• Renamed vertical regridding schemes in affected recipes (Pull request #2487) @schlunma

67.5 Documentation

• Update release manager for v2.5 (Pull request #2429) @axel-lauer

• Mention ENES Climate Analytics service (Pull request #2438) @bouweandela

• Add recipe overview page (Pull request #2439) @bouweandela

• Fix pointer to Tutorial lesson on preprocessor from 05 to 06 (Pull request #2473) @valeriupredoi

• Removed obsolete option synda-download from documentation (Pull request #2485) @schlunma

• Update CMUG XCH4 docu figure (Pull request #2502) @axel-lauer

• Add Python=3.10 to package info, update Circle CI auto install and documentation for Python=3.10 (Pull request
#2503) @schlunma

• Unify user configuration file (Pull request #2507) @schlunma

912 Chapter 67. v2.5.0

https://github.com/ESMValGroup/ESMValTool/pull/2420
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2491
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2501
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2506
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2531
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2540
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2542
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2541
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2545
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2547
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2558
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2577
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2563
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2579
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2578
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2581
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2493
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2487
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2429
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2438
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2439
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2473
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2485
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2502
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2503
https://github.com/ESMValGroup/ESMValTool/pull/2503
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2507
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Synchronized config-user.yml with version from ESMValCore (Pull request #2516) @schlunma

• CITATION.cff fix and automatic validation of your citation metadata (Pull request #2517) @abelsiqueira

• Add backwards incompatible changes at the top of the release notes draft (Pull request #2431) @bouweandela

• Fixed intersphinx mapping of scipy (Pull request #2523) @schlunma

• Add authors to citation cff (Pull request #2525) @SarahAlidoost

• Update documentation on running a recipe (Pull request #2432) @bouweandela

• Fix recipe hydrology/recipe_wflow.yml (Pull request #2549) @remi-kazeroni

• Update draft_release_notes.py for new release (Pull request #2553) @schlunma

• Added stand with Ukraine badge (Pull request #2565) @valeriupredoi

• Updated CREM docu (recipe_williams09climdyn.yml) (Pull request #2567) @axel-lauer

• First draft for v2.5.0 changelog (Pull request #2554) @schlunma

• Replace nonfunctional Github Actions badge with cool one in README (Pull request #2582) @valeriupredoi

• Updated changelog (Pull request #2589) @schlunma

• Updated release strategy with current release and upcoming release (Pull request #2597) @schlunma

• Increased ESMValTool version to 2.5.0 (Pull request #2600) @schlunma

67.6 Diagnostics

• AutoAssess: Add new diagnostic for radiation budget (Pull request #2282) @Jon-Lillis

• CMUG Sea Surface Salinity dataset and diagnostic (Pull request #1832) Javier Vegas-Regidor

• Recipe with new diagnostics for ESA-CMUG H2O (Pull request #1834) @katjaweigel

• Cleaned Schlund et al. (2020) recipe and fixed small bugs in corresponding diagnostic (Pull request #2484)
@schlunma

• Add ESA CCI LST cmorizer and diagnostic (Pull request #1897) @morobking

• XCH4 ESA CMUG diagnostics (subset of the MPQB diagnostics) (Pull request #1960) @hb326

• Add support for ESACCI Ocean Color (Chlorophyll) observations (Pull request #2055) ulrikaw-cloud

• Updated recipe_zmnam.yml with hemisphere selection (Pull request #2230) @fserva

• Add recipe and diagnostic scripts to compute figures of D9.4 of ISENES3 (Pull request #2441) @sloosvel

• Save resampled climates from KCS diagnostic local_resampling.py (Pull request #2221) @Emmadd

• Use years from KCS recipe (Pull request #2223) @Emmadd

• Recipe to plot generic output from the preprocessor (Pull request #2184) Javier Vegas-Regidor

• Fixed provenance tracking for emergent constraint diagnostics (Pull request #2573) @schlunma

67.6. Diagnostics 913

https://github.com/ESMValGroup/ESMValTool/pull/2516
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2517
https://github.com/abelsiqueira
https://github.com/ESMValGroup/ESMValTool/pull/2431
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2523
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2525
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/2432
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2549
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2553
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2565
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2567
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2554
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2582
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2589
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2597
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2600
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2282
https://github.com/Jon-Lillis
https://github.com/ESMValGroup/ESMValTool/pull/1832
https://github.com/jvegreg
https://github.com/ESMValGroup/ESMValTool/pull/1834
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2484
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1897
https://github.com/morobking
https://github.com/ESMValGroup/ESMValTool/pull/1960
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/2055
https://github.com/ulrikaw-cloud
https://github.com/ESMValGroup/ESMValTool/pull/2230
https://github.com/fserva
https://github.com/ESMValGroup/ESMValTool/pull/2441
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2221
https://github.com/Emmadd
https://github.com/ESMValGroup/ESMValTool/pull/2223
https://github.com/Emmadd
https://github.com/ESMValGroup/ESMValTool/pull/2184
https://github.com/jvegreg
https://github.com/ESMValGroup/ESMValTool/pull/2573
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

67.7 Observational and re-analysis dataset support

• Ensure dummy data for cmorize_obs_woa test are written to the correct directory (Pull request #2451) @ehogan

• Add ESA CCI LST cmorizer and diagnostic (see previous section Diagnostics)

67.8 Automatic testing

• Run a nightly Github Actions workflow to monitor tests memory per test (configurable for other metrics too) and
lists the slowest 100 tests (Pull request #2449) @valeriupredoi

• Fix individual pytest runs broken due to missing explicit imports from iris and adding a couple missing package
markers (Pull request #2455) @valeriupredoi

• Add Python=3.10 to Github Actions and switch to Python=3.10 for the Github Action that builds the PyPi package
(Pull request #2488) @valeriupredoi

• Switch all github actions from miniconda to mambaforge (Pull request #2498) @zklaus

• Pin flake8<4 to have actual FLAKE8 error printed if tests fail and not garbage (Pull request #2492) @valeriupre-
doi

• Implementing conda lock (Pull request #2193) @valeriupredoi

• [Docker] Update Docker container builds with correct installations of Julia (Pull request #2530) @valeriupredoi

• Update Linux condalock file (various pull requests) github-actions[bot]

67.9 Installation

• Comment out release candidate channel in environment.yml (Pull request #2417) @zklaus

• Comment out rc channel in osx environment file (Pull request #2421) @valeriupredoi

• Add python-cdo as conda-forge dependency in environment files to ensure cdo gets used from conda-forge and
not pip (Pull request #2469) @valeriupredoi

• Install rasterio from conda-forge and avoid issues from python=3.10 (Pull request #2479) @valeriupredoi

• Updated dependencies with new ESMValCore version (Pull request #2599) @schlunma

67.10 Improvements

• Remove use of OBS and use CMIP instead in examples/recipe_ncl.yml (Pull request #2494) @valeriupredoi

• Expanded recipe_preprocessor_test.yml to account for new multi_model_statistics features (Pull request #2519)
@schlunma

• Updated piControl periods for recipes that use KACE-1-0-G (Pull request #2537) @schlunma

• Reduced time range in recipe_globwat.yml (Pull request #2548) @schlunma

• Removed models with missing data from recipe_williams09climdyn.yml (Pull request #2566) @axel-lauer

• Restored original versions of recipe_schlund20esd.yml and recipe_meehl20sciadv.yml (Pull request #2583)
@schlunma

914 Chapter 67. v2.5.0

https://github.com/ESMValGroup/ESMValTool/pull/2451
https://github.com/ehogan
https://github.com/ESMValGroup/ESMValTool/pull/2449
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2455
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2488
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2498
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2492
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2193
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2530
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2417
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2421
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2469
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2479
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2599
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2494
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2519
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2537
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2548
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2566
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2583
https://github.com/schlunma

CHAPTER

SIXTYEIGHT

V2.4.0

68.1 Highlights

• ESMValTool is moving from Conda to Mamba as the preferred installation method. This will speed up the
installation and comes with some improvements behind the scenes. Read more about it at Move to Mamba and
in the installation guide.

Please also note the highlights from the corresponding ESMValCore release here. Thanks to that ESMValTool has
gained the following features:

• Download any missing data that is available on the ESGF automatically.

• Resume previous runs, reusing expensive pre-processing results.

This release includes

68.2 Bug fixes

• Fixed recipe_meehl20sciadv.yml for ESMValCore 2.3 (Pull request #2253) @schlunma

• Fix provenance of NCL figures created using the log_provenance function (Pull request #2279) @bouweandela

• Fix bug in ClimWIP brunner19 recipe when plotting (Pull request #2226) @lukasbrunner

• Pin docutils <0.17 to fix sphinx build with rtd theme (Pull request #2312) @zklaus

• Fix example recipes (Pull request #2338) @valeriupredoi

• Do not add bounds to plev (plev19) in era interim cmorizer (Pull request #2328) @valeriupredoi

• Fix problem with pip 21.3 that prevents installation from source (Pull request #2344) @zklaus

• Add title to recipe embedded in test_diagnostic_run.py (Pull request #2353) @zklaus

• Fix capitalization of obs4MIPs (Pull request #2368) @bouweandela

• Specify that areacella is needed for area statistics in the Python example recipe (Pull request #2371) @bouwe-
andela

• Enabling variable obs550lt1aer in recipes (Pull request #2388) @remi-kazeroni

• Update a diagnostic to new Iris version (Pull request #2390) @katjaweigel

• Fixed bug in provenance tracking of ecs_scatter.ncl (Pull request #2391) @schlunma

• Fix provenance issue in pv_capacity_factor.R (Pull request #2392) @katjaweigel

• Remove obsolete write_plots option from R diagnostics (Pull request #2395) @zklaus

915

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/changelog.html#changelog-v2-4-0
https://github.com/ESMValGroup/ESMValTool/pull/2253
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2279
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2226
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/2312
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2338
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2328
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2344
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2353
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2368
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2371
https://github.com/bouweandela
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2388
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2390
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2391
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2392
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2395
https://github.com/zklaus

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Fix arctic ocean diagnostic (Pull request #2397) @zklaus

• Fix sea ice drift recipe and script (Pull request #2404) @sloosvel

• Adapt diagnostic script to new version of iris (Pull request #2403) @zklaus

• Fix ocean multimap (Pull request #2406) @zklaus

• Fix diagnostic that uses xarray: dtype correctly set and harmonize xarray and matplotlib (Pull request #2409)
@zklaus

• Deactivate provenance logging for plots in thermodyn toolbox (Pull request #2414) @zklaus

68.3 Deprecations

• Removed write_plots and write_netcdf from some NCL diagnostics (Pull request #2293) @schlunma

• Fixed provenance logging of all python diagnostics by removing ‘plot_file’ entry (Pull request #2296) @schlunma

• Do not deprecate classes Variable, Variables and Datasets on a specific version (Pull request #2286) @schlunma

• Remove obsolete write_netcdf option from ncl diagnostic scripts (Pull request #2387) @zklaus

• Remove write plots from ocean diagnostics (Pull request #2393) @valeriupredoi

• More removals of instances of write_plots from Python diagnostics (appears to be the final removal from Py
diags) (Pull request #2394) @valeriupredoi

68.4 Documentation

• List Manuel Schlund as release manager for v2.5 (Pull request #2268) @bouweandela

• GlobWat fix download links and gdal command (Pull request #2334) @babdollahi

• Add titles to recipes authored by predoi_valeriu (Pull request #2333) @valeriupredoi

• Added titles to recipes maintained by lauer_axel (Pull request #2332) @axel-lauer

• Update the documentation of the GRACE CMORizer (Pull request #2349) @remi-kazeroni

• Add titles in BSC recipes (Pull request #2351) @sloosvel

• Update esmvalcore dependency to 2.4.0rc1 (Pull request #2348) @zklaus

• Add titles to recipes maintained by Peter Kalverla (Pull request #2356) @Peter9192

• Adding titles to the recipes with maintainer hb326 (Pull request #2358) @hb326

• Add title for zmnam as for #2354 (Pull request #2363) @fserva

• Added recipe titles the the ocean recipes. (Pull request #2364) @ledm

• Update recipe_thermodyn_diagtool.yml - add title (Pull request #2365) @ValerioLembo

• Fix provenance of figures of several R diagnostics (Pull request #2300) @bouweandela

• Adding titles to Mattia’s recipes (Pull request #2367) @remi-kazeroni

• Adding titles to wenzel recipes (Pull request #2366) @hb326

• Fix formatting of some recipe titles merged from PR 2364 (Pull request #2372) @zklaus

• Adding titles to Bjoern’s recipes (Pull request #2369) @remi-kazeroni

916 Chapter 68. v2.4.0

https://github.com/ESMValGroup/ESMValTool/pull/2397
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2404
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2403
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2406
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2409
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2414
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2293
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2296
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2286
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2387
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2393
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2394
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2268
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2334
https://github.com/babdollahi
https://github.com/ESMValGroup/ESMValTool/pull/2333
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2332
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2349
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2351
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2348
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2356
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/2358
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/2363
https://github.com/fserva
https://github.com/ESMValGroup/ESMValTool/pull/2364
https://github.com/ledm
https://github.com/ESMValGroup/ESMValTool/pull/2365
https://github.com/ValerioLembo
https://github.com/ESMValGroup/ESMValTool/pull/2300
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2367
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2366
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/2372
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2369
https://github.com/remi-kazeroni

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Add titles to ocean recipes (maintainer Lovato) (Pull request #2375) @tomaslovato

• Add titles for three c3s-magic recipes (Pull request #2378) @zklaus

• Add title for recipe maintained by Ruth Lorenz (Pull request #2379) @zklaus

• Fix toymodel recipe (Pull request #2381) Javier Vegas-Regidor

• Added titles for recipes of maintainer schlund_manuel (Pull request #2377) @schlunma

• Write_plots and titles for deangelis15nat, li17natcc, martin18grl, pv_capacity_factor (Pull request #2382) @kat-
jaweigel

• Add titles for some recipes (Pull request #2383) @zklaus

• Adding titles for recipes by von Hardenberg and Arnone (Pull request #2384) @zklaus

• Last two missing titles (Pull request #2386) @valeriupredoi

• Update documentation on downloading data (Pull request #2370) @bouweandela

• Fix installation instructions for Julia (Pull request #2335) @zklaus

• Fix provenance of Julia example diagnostic (Pull request #2289) @bouweandela

• Added notes on use of mamba in the installation documentation chapter (Pull request #2236) @valeriupredoi

• Update version number for 2.4.0 release (Pull request #2410) @zklaus

• Update release schedule for 2.4.0 (Pull request #2412) @zklaus

• Update changelog for 2.4.0 release (Pull request #2411) @zklaus

68.5 Diagnostics

• Add all available CMIP5 and CMIP6 models to recipe_impact.yml (Pull request #2251) @bouweandela

• Add Fig. 6, 7 and 9 of Bock20jgr (Pull request #2252) @LisaBock

• Generalize recipe_validation* diagnostic to work with identical control and experiment dataset names (Pull
request #2284) @valeriupredoi

• Add missing preprocessor to recipe_gier2020bg and adapt to available data (Pull request #2399) @bettina-gier

• Removed custom version of AtmosphereSigmaFactory in diagnostics (Pull request #2405) @schlunma

68.6 Observational and re-analysis dataset support

• Replace recipe_era5.yml with recipe_daily_era5.yml (Pull request #2182) @SarahAlidoost

• Update WOA cmorizer for WOA18 and WOA13v2 (Pull request #1812) @LisaBock

• GLODAP v2.2016 ocean data cmorizer (Pull request #2185) @tomaslovato

• Updated GCP CMORizer (Pull request #2295) @schlunma

68.5. Diagnostics 917

https://github.com/ESMValGroup/ESMValTool/pull/2375
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValTool/pull/2378
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2379
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2381
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/2377
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2382
https://github.com/katjaweigel
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2383
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2384
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2386
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2370
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2335
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2289
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2236
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2410
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2412
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2411
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2251
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2252
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2284
https://github.com/ESMValGroup/ESMValTool/pull/2284
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2399
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/2405
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2182
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/1812
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/2185
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValTool/pull/2295
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

68.7 Automatic testing

• Add a cylc suite to run all recipes (Pull request #2219) @bouweandela

• Retire test with Python 3.6 from full development Github Actions test (Pull request #2229) @valeriupredoi

• Remove Python 3.6 tests from GitHub Actions (Pull request #2264) @valeriupredoi

• Unpin upper bound for iris (previously was at <3.0.4) (Pull request #2266) @valeriupredoi

• Pin latest esmvalcore to allow use of the bugfix release 2.3.1 always (Pull request #2269) @valeriupredoi

• Add apt update so Julia gets found and installed by Docker (Pull request #2290) @valeriupredoi

• Use mamba for environment update and creation in the Docker container build on DockerHub (Pull request
#2297) @valeriupredoi

• Docker container experimental - run a full env solve with mamba instead of a conda update (Pull request #2306)
@valeriupredoi

• Full use of mamba in Github Actions source install test and use generic Python 3.7 (removing the very specific
3.7.10) (Pull request #2287) @valeriupredoi

• Replace use of conda with mamba for conda_install test on Circle CI (Pull request #2237) @valeriupredoi

• Update circleci configuration (Pull request #2357) @zklaus

68.8 Installation

• Remove mpich from conda dependencies list (Pull request #2343) @valeriupredoi

68.9 Improvements

• Add script for extracting a list of input files from the provenance (Pull request #2278) @bouweandela

• Update github actions (Pull request #2360) @zklaus

• Removed ‘write_plots’ from all NCL diagnostics (Pull request #2331) @axel-lauer

• Update and modernize config-user-example.yml (Pull request #2374) @valeriupredoi

918 Chapter 68. v2.4.0

https://github.com/ESMValGroup/ESMValTool/pull/2219
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2229
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2264
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2266
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2269
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2290
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2297
https://github.com/ESMValGroup/ESMValTool/pull/2297
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2306
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2287
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2237
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2357
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2343
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2278
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2360
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2331
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2374
https://github.com/valeriupredoi

CHAPTER

SIXTYNINE

V2.3.0

This release includes

69.1 Bug fixes

• Indent block to pick up and raise exception if cmorizer data not found (TierX dir is not there) (Pull request #1877)
@valeriupredoi

• Skip recipe filler tests until we have a new release since GA tests are failing (Pull request #2089) @valeriupredoi

• Fixed broken link to contributions in README (Pull request #2102) @schlunma

• Fix recipe filler for the case the variable doesn’t contain short_name (Pull request #2104) @valeriupredoi

• Add fix for iris longitude bug to ClimWIP (Pull request #2107) @lukasbrunner

• Update for outdated link to reference Déandreis et al. (2014). (Pull request #2076) @katjaweigel

• Fixed recipes for ESMValCore 2.3.0 (Pull request #2203) @schlunma

• Fix the WFDE5 cmorizer (Pull request #2211) @remi-kazeroni

• Fix broken CMORizer log message if no Tier directory exists (Pull request #2207) @jmrgonza

• Fix bug in ClimWIP basic test recipe when plotting (Pull request #2225) @lukasbrunner

• Fix bug in ClimWIP advanced test recipe when plotting (Pull request #2227) @lukasbrunner

• Adjust time range for the WDFE5 dataset in the recipe_check_obs.yml (Pull request #2232) @remi-kazeroni

• Fix plot and provenance of recipe_consecdrydays (Pull request #2244) @bouweandela

69.2 Documentation

• Improving the README.md file with a more appealing look and bit more info (Pull request #2065) @valeri-
upredoi

• Update plot title martin18grl (Pull request #2080) @katjaweigel

• Update contribution guidelines (Pull request #2031) @bouweandela

• Update links in pull request template to point to latest documentation (Pull request #2083) @bouweandela

• Update release schedule (Pull request #2081) @bouweandela

• Updates to contribution guidelines (Pull request #2092) @bouweandela

• Update documentation for ERA5 with new variables (Pull request #2111) @lukasbrunner

919

https://github.com/ESMValGroup/ESMValTool/pull/1877
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2089
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2102
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2104
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2107
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/2076
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2203
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2211
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2207
https://github.com/jmrgonza
https://github.com/ESMValGroup/ESMValTool/pull/2225
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/2227
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/2232
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2244
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2065
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2080
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2031
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2083
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2081
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2092
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2111
https://github.com/lukasbrunner

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Add OSX installation instructions to docs (Pull request #2115) @bvreede

• Instructions to use pre-installed versions on HPC clusters (Pull request #2197) @remi-kazeroni

• Add functional Autoassess diagnostics: land surface metrics: permafrost, soil moisture, surface radiation (Pull
request #2170) @valeriupredoi

• Add citation info in recipe_eady_growth_rate.yml (Pull request #2188) @sloosvel

• Update version number to 2.3.0 (Pull request #2213) @zklaus

• Update release schedule for 2.3.0 (Pull request #2247) @zklaus

• Changelog update to v2.3.0 (Pull request #2214) @zklaus

69.3 Diagnostics

• Added figures 8 and 10 to recipe_bock20jgr.yml (Pull request #2074) @schlunma

• Add hydrological forcing comparison recipe (Pull request #2013) @stefsmeets

• Added recipe for Meehl et al., Sci. Adv. (2020) (Pull request #2094) @schlunma

• Add GlobWat recipe and diagnostic (Pull request #1808) @babdollahi

• Add ClimWIP recipe to reproduce Brunner et al. 2019 (Pull request #2109) @lukasbrunner

• Update Climwip recipe to reproduce brunner2020esd (Pull request #1859) @ruthlorenz

• Update recipe_thermodyn_diagtool.yml: code improvements and more user options (Pull request #1391) @Va-
lerioLembo

• Remove model AWI-CM-1-1-MR from recipe_impact.yml (Pull request #2238) @bouweandela

• PV capacity factor for ESMValTool GMD paper (Pull request #2153) @katjaweigel

69.4 Observational and re-analysis dataset support

• Cmorize wfde5 (Pull request #1991) @mwjury

• Make cmorizer utils funcs public in utilities.py and add some numpy style docstrings (Pull request #2206) @va-
leriupredoi

• CMORizer for CLARA-AVHRR cloud data (Pull request #2101) @axel-lauer

• Update of ESACCI-CLOUD CMORizer (Pull request #2144) @axel-lauer

69.5 Automatic testing

• Force latest Python in empty environment in conda install CI test (Pull request #2069) @valeriupredoi

• Removed imports from private sklearn modules and improved test coverage of custom_sklearn.py (Pull request
#2078) @schlunma

• Move private _(global)_stock_cube from esmvacore.preprocessor._regrid to cmorizer (Pull request #2087) @va-
leriupredoi

• Try mamba install esmvaltool (Pull request #2125) @valeriupredoi

920 Chapter 69. v2.3.0

https://github.com/ESMValGroup/ESMValTool/pull/2115
https://github.com/bvreede
https://github.com/ESMValGroup/ESMValTool/pull/2197
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/2170
https://github.com/ESMValGroup/ESMValTool/pull/2170
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2188
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2213
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2247
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2214
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2074
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2013
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/2094
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1808
https://github.com/babdollahi
https://github.com/ESMValGroup/ESMValTool/pull/2109
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/1859
https://github.com/ruthlorenz
https://github.com/ESMValGroup/ESMValTool/pull/1391
https://github.com/ValerioLembo
https://github.com/ValerioLembo
https://github.com/ESMValGroup/ESMValTool/pull/2238
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2153
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1991
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/2206
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2101
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2144
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2069
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2078
https://github.com/ESMValGroup/ESMValTool/pull/2078
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/2087
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2125
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Reinstate OSX Github Action tests (Pull request #2110) @valeriupredoi

• Pin mpich to avoid default install of 3.4.1 and 3.4.2 with external_0 builds (Pull request #2220) @valeriupredoi

• Include test sources in distribution (Pull request #2234) @zklaus

• Pin iris<3.0.4 to ensure we still (sort of) support Python 3.6 (Pull request #2246) @valeriupredoi

69.6 Installation

• Fix conda build by skipping documentation test (Pull request #2058) Javier Vegas-Regidor

• Update pin on esmvalcore pick up esmvalcore=2.3.0 (Pull request #2200) @valeriupredoi

• Pin Python to 3.9 for development installation (Pull request #2208) @bouweandela

69.7 Improvements

• Add EUCP and IS-ENES3 projects to config-references (Pull request #2066) @Peter9192

• Fix flake8 tests on CircleCI (Pull request #2070) @bouweandela

• Added recipe filler. (Pull request #1707) @ledm

• Update use of fx vars to new syntax (Pull request #2145) @sloosvel

• Add recipe for climate impact research (Pull request #2072) @Peter9192

• Update references “master” to “main” (Pull request #2172) @axel-lauer

• Force git to ignore VSCode workspace files (Pull request #2186) Javier Vegas-Regidor

• Update to new ESMValTool logo (Pull request #2168) @axel-lauer

• Python cmorizers for CDR1 and CDR2 ESACCI H2O (TCWV=prw) data. (Pull request #2152) @katjaweigel

• Remove obsolete conda package (closes #2100) (Pull request #2103) @zklaus

69.6. Installation 921

https://github.com/ESMValGroup/ESMValTool/pull/2110
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2220
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2234
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/2246
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2058
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/2200
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2208
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2066
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/2070
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1707
https://github.com/ledm
https://github.com/ESMValGroup/ESMValTool/pull/2145
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/2072
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/2172
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2186
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/2168
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/2152
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2103
https://github.com/zklaus

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

922 Chapter 69. v2.3.0

CHAPTER

SEVENTY

V2.2.0

70.1 Highlights

ESMValTool is now using the recently released Iris 3. We acknowledge that this change may impact your work, as Iris
3 introduces several changes that are not backward-compatible, but we think that moving forward is the best decision
for the tool in the long term.

This release includes

70.2 Bug fixes

• Bugfix: time weights in time_operations (Pull request #1956) @axel-lauer

• Fix issues with bibtex references (Pull request #1955) @stefsmeets

• Fix ImportError for configure_logging (Pull request #1976) @stefsmeets

• Add required functional parameters for extract time in recipe_er5.yml (Pull request #1978) @valeriupredoi

• Revert “Fix ImportError for configure_logging” (Pull request #1992) @bouweandela

• Fix import of esmvalcore _logging module in cmorize_obs.py (Pull request #2020) @valeriupredoi

• Fix logging import in cmorize_obs again since last merge was nulled by pre-commit hooks (Pull request #2022)
@valeriupredoi

• Refactor the functions in derive_evspsblpot due to new iris (Pull request #2023) @SarahAlidoost

• Avoid importing private ESMValCore functions in CMORizer (Pull request #2027) @bouweandela

• Fix extract_seasons in validation recipe (Pull request #2054) Javier Vegas-Regidor

70.3 Deprecations

• Deprecate classes Variable, Variables and Datasets (Pull request #1944) @schlunma

• Python 3.9: remove pynio as dependency and replace with rasterio and pin Matplotlib>3.3.1 and pin car-
topy>=0.18 (Pull request #1997) @valeriupredoi

• Removed write_plots and write_netcdf in some python diagnostics (Pull request #2036) @schlunma

923

https://scitools-iris.readthedocs.io/en/latest/whatsnew/3.0.html
https://github.com/ESMValGroup/ESMValTool/pull/1956
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/1955
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1976
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1978
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1992
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2020
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2022
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2023
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/2027
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2054
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1944
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1997
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2036
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

70.4 Documentation

• Update instructions on making a release (Pull request #1867) @bouweandela

• Update review.rst (Pull request #1917) @axel-lauer

• Add guidance on how to review a pull request (Pull request #1872) @bouweandela

• Adding tutorial links to documentation (Pull request #1927) @hb326

• Added bibtex file for schlund20jgr (Pull request #1928) @schlunma

• Documentation contact added the actual email for the mailing list (Pull request #1938) @valeriupredoi

• Make CircleCI badge specific to main branch (Pull request #1831) @bouweandela

• Documentation on how to move code from a private repository to a public repository (Pull request #1920)
@hb326

• Refine pull request review guidelines (Pull request #1924) @stefsmeets

• Update release schedule (Pull request #1948) @zklaus

• Improve contact info and move to more prominent location (Pull request #1950) @bouweandela

• Add some maintainers to some recipes that are missing them (Pull request #1970) @valeriupredoi

• Update core team info (Pull request #1973) @axel-lauer

• Combine installation from source instructions and add common issues (Pull request #1971) @bouweandela

• Update iris documentation URL for sphinx (Pull request #2003) @bouweandela

• Fix iris documentation link(s) with new iris3 location on readthedocs (Pull request #2012) @valeriupredoi

• Document how to run tests for installation verification (Pull request #1847) @valeriupredoi

• List Remi Kazeroni as a code owner and sole merger of CMORizers (Pull request #2017) @bouweandela

• Install documentation: mention that we build conda package with python>=3.7 (Pull request #2030) @valeri-
upredoi

• Recipe and documentation update for ERA5-Land. (Pull request #1906) @katjaweigel

• Update changelog and changelog tool for v2.2.0 (Pull request #2043) Javier Vegas-Regidor

• Final update to the changelog for v2.2.0 (Pull request #2056) Javier Vegas-Regidor

70.5 Diagnostics

• Add mapplot diagnostic to ClimWIP (Pull request #1864) @lukasbrunner

• Add the option to weight variable groups in ClimWIP (Pull request #1856) @lukasbrunner

• Implementation of ensemble member recognition to the ClimWIP diagnostic (Pull request #1852) @lukasbrun-
ner

• Restructure ClimWIP (Pull request #1919) @lukasbrunner

• Diagnostic for recipe_eyring13jgr.yml Fig. 12 (Pull request #1922) @LisaBock

• Added changes in shared functions necessary for schlund20esd (Pull request #1967) @schlunma

• Adding recipe and diagnostics for Gier et al 2020 (Pull request #1914) @bettina-gier

• Added recipe, diagnostics and documentation for Schlund et al., ESD (2020) (Pull request #2015) @schlunma

924 Chapter 70. v2.2.0

https://github.com/ESMValGroup/ESMValTool/pull/1867
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1917
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/1872
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1927
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/1928
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1938
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1831
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1920
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/1924
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1948
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/1950
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1970
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1973
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/1971
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2003
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2012
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1847
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2017
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2030
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1906
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/2043
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/2056
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1864
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/1856
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/1852
https://github.com/lukasbrunner
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/1919
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/1922
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValTool/pull/1967
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1914
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/2015
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Add PRIMAVERA Eady Growth Rate diagnostic (Pull request #1285) @sloosvel

• Implement shape parameter calibration for ClimWIP (Pull request #1905) @lukasbrunner

70.6 Observational and re-analysis dataset support

• Extended ESRL cmorizer (Pull request #1937) @bettina-gier

• Cmorizer for GRACE data (Pull request #1694) @bascrezee

• Cmorizer for latest ESACCI-SST data (Pull request #1895) @valeriupredoi

• Fix longitude in ESRL cmorizer (Pull request #1988) @bettina-gier

• Selectively turn off fixing bounds for coordinates during cmorization with utilities.py (Pull request #2014) @va-
leriupredoi

• Cmorize hadcrut5 (Pull request #1977) @mwjury

• Cmorize gpcc masking (Pull request #1995) @mwjury

• Cmorize_utils_save_1mon_Amon (Pull request #1990) @mwjury

• Cmorize gpcc fix (Pull request #1982) @mwjury

• Fix flake8 raised by develop test in cmorize_obs_gpcc.py (Pull request #2038) @valeriupredoi

70.7 Automatic testing

• Switched miniconda conda setup hooks for Github Actions workflows (Pull request #1913) @valeriupredoi

• Fix style issue (Pull request #1929) @bouweandela

• Fix mlr test with solution that works for CentOS too (Pull request #1936) @valeriupredoi

• Temporary deactivation Github Actions on OSX (Pull request #1939) @valeriupredoi

• Fix conda installation test on CircleCI (Pull request #1952) @bouweandela

• Github Actions: change time for cron job that installs from conda (Pull request #1969) @valeriupredoi

• CI upload relevant artifacts for test job (Pull request #1999) @valeriupredoi

• Github Actions test that runs with the latest ESMValCore main (Pull request #1989) @valeriupredoi

• Introduce python 39 in Github Actions tests (Pull request #2029) @valeriupredoi

• Remove test for conda package installation on Python 3.6 (Pull request #2033) @valeriupredoi

• Update codacy coverage reporter to fix coverage (Pull request #2039) @bouweandela

70.6. Observational and re-analysis dataset support 925

https://github.com/ESMValGroup/ESMValTool/pull/1285
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValTool/pull/1905
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValTool/pull/1937
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/1694
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValTool/pull/1895
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1988
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/2014
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1977
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/1995
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/1990
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/1982
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/2038
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1913
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1929
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1936
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1939
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1952
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1969
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1999
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1989
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2029
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2033
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/2039
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

70.8 Installation

• Simplify installation of R development dependencies (Pull request #1930) @bouweandela

• Fix docker build (Pull request #1934) @bouweandela

• Use new conda environment for installing ESMValTool in Docker containers (Pull request #1993) @bouweandela

• Fix conda build (Pull request #2026) @bouweandela

70.9 Improvements

• Allow multiple references for a cmorizer script (Pull request #1953) @SarahAlidoost

• Add GRACE to the recipe check_obs (Pull request #1963) @remi-kazeroni

• Align ESMValTool to ESMValCore=2.2.0 (adopt iris3, fix environment for new Core release) (Pull request
#1874) @stefsmeets

• Make it possible to use write_plots and write_netcdf from recipe instead of config-user.yml (Pull request #2018)
@bouweandela

• Revise lisflood and hype recipes (Pull request #2035) @SarahAlidoost

• Set version to 2.2.0 (Pull request #2042) Javier Vegas-Regidor

926 Chapter 70. v2.2.0

https://github.com/ESMValGroup/ESMValTool/pull/1930
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1934
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1993
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2026
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1953
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/1963
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValTool/pull/1874
https://github.com/ESMValGroup/ESMValTool/pull/1874
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/2018
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/2035
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/2042
https://github.com/jvegasbsc

CHAPTER

SEVENTYONE

V2.1.1

This release includes

71.1 Improvements

• Fix the conda build on CircleCI (Pull request #1883) @bouweandela

• Pin matplotlib to <3.3 and add compilers (Pull request #1898) @bouweandela

• Pin esmvaltool subpackages to the same version and build as the esmvaltool conda package (Pull request #1899)
@bouweandela

71.2 Documentation

• Release notes v2.1.1 (Pull request #1932) @valeriupredoi

927

https://github.com/ESMValGroup/ESMValTool/pull/1883
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1898
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1899
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1932
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

928 Chapter 71. v2.1.1

CHAPTER

SEVENTYTWO

V2.1.0

This release includes

72.1 Diagnostics

• Add extra steps to diagnostic to make output of hydrology/recipe_lisflood.yml usable by the LISFLOOD model
(Pull request #1737) @JaroCamphuijsen

• Recipe to reproduce the 2014 KNMI Climate Scenarios (kcs). (Pull request #1667) @Peter9192

• Implement the climwip weighting scheme in a recipe and diagnostic (Pull request #1648) @JaroCamphuijsen

• Remove unreviewed autoassess recipes (Pull request #1840) @valeriupredoi

• Changes in shared scripts for Schlund et al., JGR: Biogeosciences, 2020 (Pull request #1845) @schlunma

• Updated derivation test recipe (Pull request #1790) @schlunma

• Support for multiple model occurrence in perf main (Pull request #1649) @bettina-gier

• Add recipe and diagnostics for Schlund et al., JGR: Biogeosciences, 2020 (Pull request #1860) @schlunma

• Adjust recipe_extract_shape.yml to recent changes in the example diagnostic.py (Pull request #1880) @bouwe-
andela

72.2 Documentation

• Add pip installation instructions (Pull request #1783) @bouweandela

• Add installation instruction for R and Julia dependencies tot pip install (Pull request #1787) @bouweandela

• Avoid autodocsumm 0.2.0 and update documentation build dependencies (Pull request #1794) @bouweandela

• Add more information on working on cluster attached to ESGF node (Pull request #1821) @bouweandela

• Add release strategy to community documentation (Pull request #1809) @zklaus

• Update esmvaltool run command everywhere in documentation (Pull request #1820) @bouweandela

• Add more info on documenting a recipe (Pull request #1795) @bouweandela

• Improve the Python example diagnostic and documentation (Pull request #1827) @bouweandela

• Improve description of how to use draft_release_notes.py (Pull request #1848) @bouweandela

• Update changelog for release 2.1 (Pull request #1886) @valeriupredoi

929

https://github.com/ESMValGroup/ESMValTool/pull/1737
https://github.com/JaroCamphuijsen
https://github.com/ESMValGroup/ESMValTool/pull/1667
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/1648
https://github.com/JaroCamphuijsen
https://github.com/ESMValGroup/ESMValTool/pull/1840
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1845
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1790
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1649
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/1860
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1880
https://github.com/bouweandela
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1783
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1787
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1794
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1821
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1809
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool/pull/1820
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1795
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1827
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1848
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1886
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

72.3 Improvements

• Fix R installation in WSL (Pull request #1789) Javier Vegas-Regidor

• Add pre-commit for linting/formatting (Pull request #1796) @stefsmeets

• Speed up tests on CircleCI and use pytest to run them (Pull request #1804) @bouweandela

• Move pre-commit excludes to top-level and correct order of lintr and styler (Pull request #1805) @stefsmeets

• Remove isort setup to fix formatting conflict with yapf (Pull request #1815) @stefsmeets

• GitHub Actions (Pull request #1806) @valeriupredoi

• Fix yapf-isort import formatting conflict (Pull request #1822) @stefsmeets

• Replace vmprof with vprof as the default profiler (Pull request #1829) @bouweandela

• Update ESMValCore v2.1.0 requirement (Pull request #1839) Javier Vegas-Regidor

• Pin iris to version 2 (Pull request #1881) @bouweandela

• Pin eccodes to not use eccodes=2.19.0 for cdo to work fine (Pull request #1869) @valeriupredoi

• Increase version to 2.1.0 and add release notes (Pull request #1868) @valeriupredoi

• Github Actions Build Packages and Deploy tests (conda and PyPi) (Pull request #1858) @valeriupredoi

72.4 Observational and re-analysis dataset support

• Added CMORizer for Scripps-CO2-KUM (Pull request #1857) @schlunma

930 Chapter 72. v2.1.0

https://github.com/ESMValGroup/ESMValTool/pull/1789
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1796
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1804
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1805
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1815
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1806
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1822
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValTool/pull/1829
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1839
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1881
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1869
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1868
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1858
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1857
https://github.com/schlunma

CHAPTER

SEVENTYTHREE

V2.0.0

This release includes

73.1 Bug fixes

• Fix pep8-naming errors and fix zmnam diagnostic (Pull request #1702) @bouweandela

• Fix keyword argument in cmorize_obs (Pull request #1721) @mattiarighi

• Fixed JMA-TRANSCOM CMORizer (Pull request #1735) @schlunma

• Fix bug in extract_doi_value (Pull request #1734) @bascrezee

• Fix small errors in the arctic_ocean diagnostic (Pull request #1722) @koldunovn

• Flatten ancestor lists for diag_spei.R and diag_spi.R. (Pull request #1745) @katjaweigel

• Fix for recipe_ocean_ice_extent.yml (Pull request #1744) @mattiarighi

• Fix recipe_combined_indices.yml provenance (Pull request #1746) Javier Vegas-Regidor

• Fix provenance in recipe_multimodel_products (Pull request #1747) Javier Vegas-Regidor

• Exclude FGOALS-g2 due to ESMValCore issue #728 (Pull request #1749) @mattiarighi

• Fix recipe_modes_of_variability (Pull request #1753) Javier Vegas-Regidor

• Flatten lists for ancestors for hyint to prevent nested lists. (Pull request #1752) @katjaweigel

• Fix bug in cmorize_obs_eppley_vgpm_modis.py (#1729) (Pull request #1759) @tomaslovato

• Correct mip for clltkisccp in example derive preprocessor recipe (Pull request #1768) @bouweandela

• Update date conversion in recipe_hype.yml (Pull request #1769) @bouweandela

• Fix recipe_correlation.yml (Pull request #1767) @bouweandela

• Add attribute positive: down to plev coordinate in ERA-Interim CMORizer (Pull request #1771) @bouweandela

• Fix sispeed in recipe_preprocessor_derive_test (Pull request #1772) Javier Vegas-Regidor

• Fix extreme events and extreme index ancestors (Pull request #1774) @katjaweigel

• Correct date in output filenames of ERA5 CMORizer recipe (Pull request #1773) @bouweandela

• Exclude WOA from multi-model stats in recipe_ocean_bgc (Pull request #1778) @mattiarighi

931

https://github.com/ESMValGroup/ESMValTool/pull/1702
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1721
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1735
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1734
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValTool/pull/1722
https://github.com/koldunovn
https://github.com/ESMValGroup/ESMValTool/pull/1745
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1744
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1746
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1747
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1749
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1753
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1752
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1759
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValTool/pull/1768
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1769
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1767
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1771
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1772
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1774
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1773
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1778
https://github.com/mattiarighi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

73.2 Diagnostics

• Enhancement of the hyint recipe to include etccdi indices (Pull request #1133) @earnone

• Add lazy regridding for wflow diagnostic (Pull request #1630) @bouweandela

• Miles default domains to include lat=0 (Pull request #1626) @jhardenberg

• Miles: selection of reference dataset based on experiment (Pull request #1632) @jhardenberg

• New recipe/diagnostic: recipe_li17natcc.yml for Axels GMD Paper (Pull request #1567) @katjaweigel

• New recipe/diagnostics: recipe_deangelis_for_gmdpart4.yml for Axels GMD Paper (Pull request #1576) @kat-
jaweigel

• EWaterCycle: Add recipe to prepare input for LISFLOOD (Pull request #1298) @sverhoeven

• Use area weighted regridding in wflow diagnostic (Pull request #1643) @bouweandela

• Workaround for permetrics recipe until Iris3 (Pull request #1674) @mattiarighi

• C3S_511_MPQB_bas-features (Pull request #1465) @bascrezee

• Additional Land perfmetrics (Pull request #1641) @bettina-gier

• Necessary diagnostic from eyring06jgr for the release of version2 (Pull request #1686) @hb326

• Drought characteristics based on Martin2018 and SPI for gmd paper (Pull request #1689) @katjaweigel

• Additional features and bugfixes for recipe anav13clim (Pull request #1723) @bettina-gier

• Gmd laueretal2020 revisions (Pull request #1725) @axel-lauer

• Wenzel16nature (Pull request #1692) @zechlau

• Add mask albedolandcover (Pull request #1673) @bascrezee

• IPCC AR5 fig. 9.3 (seasonality) (Pull request #1726) @axel-lauer

• Added additional emergent constraints on ECS (Pull request #1585) @schlunma

• A diagnostic to evaluate the turnover times of land ecosystem carbon (Pull request #1395) koir-su

• Removed multi_model_statistics step in recipe_oceans_example.yml as a workaround (Pull request #1779) @va-
leriupredoi

73.3 Documentation

• Extend getting started instructions to obtain config-user.yml (Pull request #1642) @Peter9192

• Extend information about native6 support on RTD (Pull request #1652) @Peter9192

• Update citation of ESMValTool paper in the doc (Pull request #1664) @mattiarighi

• Updated references to documentation (now docs.esmvaltool.org) (Pull request #1679) @axel-lauer

• Replace dead link with ESGF link. (Pull request #1681) @mattiarighi

• Add all European grants to Zenodo (Pull request #1682) @bouweandela

• Update Sphinx to v3 or later (Pull request #1685) @bouweandela

• Small fix to number of models in ensclus documentation (Pull request #1691) @jhardenberg

• Move draft_release_notes.py from ESMValCore to here and update (Pull request #1701) @bouweandela

932 Chapter 73. v2.0.0

https://github.com/ESMValGroup/ESMValTool/pull/1133
https://github.com/earnone
https://github.com/ESMValGroup/ESMValTool/pull/1630
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1626
https://github.com/jhardenberg
https://github.com/ESMValGroup/ESMValTool/pull/1632
https://github.com/jhardenberg
https://github.com/ESMValGroup/ESMValTool/pull/1567
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1576
https://github.com/katjaweigel
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1298
https://github.com/sverhoeven
https://github.com/ESMValGroup/ESMValTool/pull/1643
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1674
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1465
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValTool/pull/1641
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/1686
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/1689
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValTool/pull/1723
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/1725
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/1692
https://github.com/zechlau
https://github.com/ESMValGroup/ESMValTool/pull/1673
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValTool/pull/1726
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/1585
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/pull/1395
https://github.com/koir-su
https://github.com/ESMValGroup/ESMValTool/pull/1779
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1642
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/1652
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/1664
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1679
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValTool/pull/1681
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1682
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1685
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1691
https://github.com/jhardenberg
https://github.com/ESMValGroup/ESMValTool/pull/1701
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• Improve the installation instructions (Pull request #1634) @valeriupredoi

• Improve description of how to implement provenance in diagnostic (Pull request #1750) @SarahAlidoost

• Update command line interface documentation and add links to ESMValCore configuration documentation (Pull
request #1776) @bouweandela

• Documentation on how to find shapefiles for hydrology recipes (Pull request #1777) @JaroCamphuijsen

73.4 Improvements

• Pin flake8<3.8.0 (Pull request #1635) @valeriupredoi

• Update conda package path in more places (Pull request #1636) @bouweandela

• Remove curly brackets around issue number in pull request template (Pull request #1637) @bouweandela

• Fix style issue in test (Pull request #1639) @bouweandela

• Update Codacy badges (Pull request #1662) @bouweandela

• Support extra installation methods in R (Pull request #1360) Javier Vegas-Regidor

• Add ncdf4.helpers package as a dependency again (Pull request #1678) @bouweandela

• Speed up conda installation (Pull request #1677) @bouweandela

• Update CMORizers and recipes for ESMValCore v2.0.0 (Pull request #1699) @SarahAlidoost

• Update setup.py for PyPI package (Pull request #1700) @bouweandela

• Cleanup recipe headers before the release (Pull request #1740) @mattiarighi

• Add colortables as esmvaltool subcommand (Pull request #1666) Javier Vegas-Regidor

• Increase version to v2.0.0 (Pull request #1756) @bouweandela

• Update job script (Pull request #1757) @mattiarighi

• Read authors and description from .zenodo.json (Pull request #1758) @bouweandela

• Update docker recipe to install from source (Pull request #1651) Javier Vegas-Regidor

73.5 Observational and re-analysis dataset support

• Cmorize aphro ma (Pull request #1555) @mwjury

• Respectable testing for cmorizers/obs/utilities.py and cmorizers/obs/cmorize_obs.py (Pull request #1517) @va-
leriupredoi

• Fix start year in recipe_check_obs (Pull request #1638) @mattiarighi

• Cmorizer for the PERSIANN-CDR precipitation data (Pull request #1633) @hb326

• Cmorize eobs (Pull request #1554) @mwjury

• Update download cds satellite lai fapar (Pull request #1654) @bascrezee

• Added monthly mean vars (ta, va, zg) to era5 cmorizer via recipe (Pull request #1644) @egalytska

• Make format time check more flexible (Pull request #1661) @mattiarighi

• Exclude od550lt1aer from recipe_check_obs.yml (Pull request #1720) @mattiarighi

73.4. Improvements 933

https://github.com/ESMValGroup/ESMValTool/pull/1634
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1750
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/1776
https://github.com/ESMValGroup/ESMValTool/pull/1776
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1777
https://github.com/JaroCamphuijsen
https://github.com/ESMValGroup/ESMValTool/pull/1635
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1636
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1637
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1639
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1662
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1360
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1678
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1677
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1699
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/1700
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1740
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1666
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1756
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1757
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1758
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1651
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1555
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/1517
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1638
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1633
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/1554
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValTool/pull/1654
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValTool/pull/1644
https://github.com/egalytska
https://github.com/ESMValGroup/ESMValTool/pull/1661
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1720
https://github.com/mattiarighi

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• PERSIANN-CDR cmorizer update: adding the capability to save monthly mean files (Pull request #1728)
@hb326

• Add standard_name attribute to lon and lat in cmorize_obs_esacci_oc.py (Pull request #1760) @tomaslovato

• Allow for incomplete months on daily frequency in cmorizer ncl utilities (Pull request #1754) @mattiarighi

• Fix AURA-TES cmorizer (Pull request #1766) @mattiarighi

934 Chapter 73. v2.0.0

https://github.com/ESMValGroup/ESMValTool/pull/1728
https://github.com/hb326
https://github.com/ESMValGroup/ESMValTool/pull/1760
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValTool/pull/1754
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1766
https://github.com/mattiarighi

CHAPTER

SEVENTYFOUR

V2.0.0B4

This release includes

74.1 Bug fixes

• Fix HALOE plev coordinate (Pull request #1590) @mattiarighi

• Fix tro3 units in HALOE (Pull request #1591) @mattiarighi

74.2 Diagnostics

• Applicate sea ice negative feedback (Pull request #1299) Javier Vegas-Regidor

• Add Russell18jgr ocean diagnostics (Pull request #1592) @bouweandela

• Refactor marrmot recipe and diagnostic to use ERA5 daily data made by new cmorizer (Pull request #1600)
@SarahAlidoost

• In recipe_wflow, use daily ERA5 data from the new cmorizer. (Pull request #1599) @Peter9192

• In wflow diagnostic, calculate PET after(!) interpolation and lapse rate correction (Pull request #1618) @jero-
maerts

• Fixed wenz14jgr (Pull request #1562) @zechlau

• Update portrait_plot.ncl (Pull request #1625) @bettina-gier

74.3 Documentation

• Restructure documentation (Pull request #1587) @bouweandela

• Add more links to documentation (Pull request #1595) @bouweandela

• Update links in readme (Pull request #1598) @bouweandela

• Minor improvements to installation documentation (Pull request #1608) @bouweandela

• Add info for new mailing list to documentation. (Pull request #1607) @bjoernbroetz

• Update making a release documentation (Pull request #1627) @bouweandela

935

https://github.com/ESMValGroup/ESMValTool/pull/1590
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1591
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1299
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValTool/pull/1592
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1600
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/1599
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValTool/pull/1618
https://github.com/jeromaerts
https://github.com/jeromaerts
https://github.com/ESMValGroup/ESMValTool/pull/1562
https://github.com/zechlau
https://github.com/ESMValGroup/ESMValTool/pull/1625
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValTool/pull/1587
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1595
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1598
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1608
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1607
https://github.com/bjoernbroetz
https://github.com/ESMValGroup/ESMValTool/pull/1627
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

74.4 Improvements

• Avoid broken pytest-html plugin (Pull request #1583) @bouweandela

• Remove reference section in config-references.yml (Pull request #1545) @SarahAlidoost

• Various improvements to development infrastructure (Pull request #1570) @bouweandela

• Install scikit-learn from conda, remove libunwind as a direct dependency (Pull request #1611) @valeriupredoi

• Create conda subpackages and enable tests (Pull request #1624) @bouweandela

74.5 Observational and re-analysis dataset support

• Cmorizer for HALOE (Pull request #1581) @mattiarighi

• Add CMORizer for CT2019 (Pull request #1604) @schlunma

For older releases, see the release notes on https://github.com/ESMValGroup/ESMValTool/releases.

936 Chapter 74. v2.0.0b4

https://github.com/ESMValGroup/ESMValTool/pull/1583
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1545
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValTool/pull/1570
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1611
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValTool/pull/1624
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValTool/pull/1581
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValTool/pull/1604
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/releases

Part XIII

Indices and tables

937

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

• genindex

• search

939

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

940

PYTHON MODULE INDEX

e
esmvaltool.diag_scripts.emergent_constraints,

639
esmvaltool.diag_scripts.emergent_constraints.cox18nature,

635
esmvaltool.diag_scripts.emergent_constraints.ecs_scatter,

636
esmvaltool.diag_scripts.emergent_constraints.multiple_constraints,

637
esmvaltool.diag_scripts.emergent_constraints.single_constraint,

638
esmvaltool.diag_scripts.mlr, 658
esmvaltool.diag_scripts.mlr.custom_sklearn,

664
esmvaltool.diag_scripts.mlr.evaluate_residuals,

648
esmvaltool.diag_scripts.mlr.main, 649
esmvaltool.diag_scripts.mlr.mmm, 650
esmvaltool.diag_scripts.mlr.models, 689
esmvaltool.diag_scripts.mlr.models.gbr_base,

703
esmvaltool.diag_scripts.mlr.models.gbr_sklearn,

719
esmvaltool.diag_scripts.mlr.models.gbr_xgboost,

728
esmvaltool.diag_scripts.mlr.models.gpr_sklearn,

736
esmvaltool.diag_scripts.mlr.models.huber, 749
esmvaltool.diag_scripts.mlr.models.krr, 757
esmvaltool.diag_scripts.mlr.models.lasso, 765
esmvaltool.diag_scripts.mlr.models.lasso_cv,

773
esmvaltool.diag_scripts.mlr.models.lasso_lars_cv,

781
esmvaltool.diag_scripts.mlr.models.linear,

790
esmvaltool.diag_scripts.mlr.models.linear_base,

711
esmvaltool.diag_scripts.mlr.models.rfr, 798
esmvaltool.diag_scripts.mlr.models.ridge, 807
esmvaltool.diag_scripts.mlr.models.ridge_cv,

815

esmvaltool.diag_scripts.mlr.models.svr, 823
esmvaltool.diag_scripts.mlr.plot, 651
esmvaltool.diag_scripts.mlr.postprocess, 653
esmvaltool.diag_scripts.mlr.preprocess, 655
esmvaltool.diag_scripts.mlr.rescale_with_emergent_constraint,

657
esmvaltool.diag_scripts.monitor.compute_eofs,

834
esmvaltool.diag_scripts.monitor.monitor, 832
esmvaltool.diag_scripts.monitor.monitor_base,

844
esmvaltool.diag_scripts.monitor.multi_datasets,

835
esmvaltool.diag_scripts.ocean.diagnostic_maps,

846
esmvaltool.diag_scripts.ocean.diagnostic_maps_quad,

847
esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs,

849
esmvaltool.diag_scripts.ocean.diagnostic_profiles,

851
esmvaltool.diag_scripts.ocean.diagnostic_seaice,

858
esmvaltool.diag_scripts.ocean.diagnostic_timeseries,

853
esmvaltool.diag_scripts.ocean.diagnostic_tools,

861
esmvaltool.diag_scripts.ocean.diagnostic_transects,

855
esmvaltool.diag_scripts.psyplot_diag, 867
esmvaltool.diag_scripts.seaborn_diag, 867
esmvaltool.diag_scripts.shared, 615
esmvaltool.diag_scripts.shared.iris_helpers,

628
esmvaltool.diag_scripts.shared.plot, 631

941

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

942 Python Module Index

INDEX

A
add_dataset() (esmval-

tool.diag_scripts.shared.Datasets method),
616

add_legend_outside_right() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools), 862

add_linear_regression() (in module esmval-
tool.diag_scripts.ocean.diagnostic_model_vs_obs),
849

add_map_subplot() (in module esmval-
tool.diag_scripts.ocean.diagnostic_maps_quad),
848

add_map_subplot() (in module esmval-
tool.diag_scripts.ocean.diagnostic_model_vs_obs),
850

add_sea_floor() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
855

add_to_data() (esmval-
tool.diag_scripts.shared.Datasets method),
616

add_vars() (esmvaltool.diag_scripts.shared.Variables
method), 622

AdvancedGaussianProcessRegressor (class in esm-
valtool.diag_scripts.mlr.models.gpr_sklearn),
736

AdvancedPipeline (class in esmval-
tool.diag_scripts.mlr.custom_sklearn), 664

AdvancedRFE (class in esmval-
tool.diag_scripts.mlr.custom_sklearn), 673

AdvancedRFECV (class in esmval-
tool.diag_scripts.mlr.custom_sklearn), 678

AdvancedTransformedTargetRegressor (class in
esmvaltool.diag_scripts.mlr.custom_sklearn),
683

agregate_by_season() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
859

apply_supermeans() (in module esmval-
tool.diag_scripts.shared), 624

B
bgc_units() (in module esmval-

tool.diag_scripts.ocean.diagnostic_tools),
862

C
calculate_area_time_series() (in module esm-

valtool.diag_scripts.ocean.diagnostic_seaice),
859

categorical_features (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 704

categorical_features (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 721

categorical_features (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 729

categorical_features (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 742

categorical_features (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 750

categorical_features (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 758

categorical_features (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 766

categorical_features (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 774

categorical_features (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 783

categorical_features (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 791

categorical_features (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 712

943

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

categorical_features (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 696

categorical_features (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 800

categorical_features (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 808

categorical_features (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 816

categorical_features (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 825

cdf() (in module esmval-
tool.diag_scripts.emergent_constraints),
640

check_coordinate() (in module esmval-
tool.diag_scripts.shared.iris_helpers), 628

check_metadata() (in module esmval-
tool.diag_scripts.emergent_constraints),
640

check_predict_kwargs() (in module esmval-
tool.diag_scripts.mlr), 658

classes_ (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
property), 665

classes_ (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
property), 673

classes_ (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
property), 678

coef_ (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
property), 665

coef_ (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
property), 683

combine_groups() (in module esmval-
tool.diag_scripts.emergent_constraints),
641

constraint_info_array() (in module esmval-
tool.diag_scripts.emergent_constraints), 641

convert_to_iris() (in module esmval-
tool.diag_scripts.shared.iris_helpers), 629

count() (esmvaltool.diag_scripts.shared.Variable
method), 621

create() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel
class method), 704

create() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
class method), 721

create() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
class method), 729

create() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
class method), 742

create() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel
class method), 750

create() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel
class method), 759

create() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel
class method), 766

create() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
class method), 775

create() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
class method), 783

create() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
class method), 792

create() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
class method), 712

create() (esmvaltool.diag_scripts.mlr.models.MLRModel
class method), 696

create() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
class method), 800

create() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
class method), 808

create() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
class method), 817

create() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
class method), 825

create_alias() (in module esmval-
tool.diag_scripts.mlr), 658

create_ice_cmap() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
859

create_simple_scatterplot() (in module esmval-
tool.diag_scripts.emergent_constraints), 641

cross_val_score_weighted() (in module esmval-
tool.diag_scripts.mlr.custom_sklearn), 689

cube_time_to_float() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
863

D
data (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel

property), 704
data (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel

property), 721
data (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel

property), 729
data (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel

property), 742
data (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel

property), 750
data (esmvaltool.diag_scripts.mlr.models.krr.KRRModel

property), 759
data (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel

property), 766
data (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel

property), 775
data (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel

property), 783

944 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

data (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 792

data (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
property), 712

data (esmvaltool.diag_scripts.mlr.models.MLRModel
property), 696

data (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
property), 800

data (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
property), 808

data (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 817

data (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
property), 825

Datasets (class in esmvaltool.diag_scripts.shared), 615
datasets_have_mlr_attributes() (in module esm-

valtool.diag_scripts.mlr), 659
decadal_average() (in module esmval-

tool.diag_scripts.ocean.diagnostic_tools),
863

decision_function() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 665

decision_function() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 673

decision_function() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 678

determine_profiles_str() (in module esmval-
tool.diag_scripts.ocean.diagnostic_profiles),
852

determine_set_y_logscale() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
856

determine_transect_str() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
856

E
efecv() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel

method), 704
efecv() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel

method), 721
efecv() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel

method), 729
efecv() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel

method), 742
efecv() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel

method), 750
efecv() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel

method), 759
efecv() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel

method), 766

efecv() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 775

efecv() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 783

efecv() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 792

efecv() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
method), 712

efecv() (esmvaltool.diag_scripts.mlr.models.MLRModel
method), 696

efecv() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
method), 800

efecv() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
method), 808

efecv() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 817

efecv() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
method), 825

esmvaltool.diag_scripts.emergent_constraints
module, 639

esmvaltool.diag_scripts.emergent_constraints.cox18nature
module, 635

esmvaltool.diag_scripts.emergent_constraints.ecs_scatter
module, 636

esmvaltool.diag_scripts.emergent_constraints.multiple_constraints
module, 637

esmvaltool.diag_scripts.emergent_constraints.single_constraint
module, 638

esmvaltool.diag_scripts.mlr
module, 658

esmvaltool.diag_scripts.mlr.custom_sklearn
module, 664

esmvaltool.diag_scripts.mlr.evaluate_residuals
module, 648

esmvaltool.diag_scripts.mlr.main
module, 649

esmvaltool.diag_scripts.mlr.mmm
module, 650

esmvaltool.diag_scripts.mlr.models
module, 689

esmvaltool.diag_scripts.mlr.models.gbr_base
module, 703

esmvaltool.diag_scripts.mlr.models.gbr_sklearn
module, 719

esmvaltool.diag_scripts.mlr.models.gbr_xgboost
module, 728

esmvaltool.diag_scripts.mlr.models.gpr_sklearn
module, 736

esmvaltool.diag_scripts.mlr.models.huber
module, 749

esmvaltool.diag_scripts.mlr.models.krr
module, 757

esmvaltool.diag_scripts.mlr.models.lasso
module, 765

Index 945

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

esmvaltool.diag_scripts.mlr.models.lasso_cv
module, 773

esmvaltool.diag_scripts.mlr.models.lasso_lars_cv
module, 781

esmvaltool.diag_scripts.mlr.models.linear
module, 790

esmvaltool.diag_scripts.mlr.models.linear_base
module, 711

esmvaltool.diag_scripts.mlr.models.rfr
module, 798

esmvaltool.diag_scripts.mlr.models.ridge
module, 807

esmvaltool.diag_scripts.mlr.models.ridge_cv
module, 815

esmvaltool.diag_scripts.mlr.models.svr
module, 823

esmvaltool.diag_scripts.mlr.plot
module, 651

esmvaltool.diag_scripts.mlr.postprocess
module, 653

esmvaltool.diag_scripts.mlr.preprocess
module, 655

esmvaltool.diag_scripts.mlr.rescale_with_emergent_constraint
module, 657

esmvaltool.diag_scripts.monitor.compute_eofs
module, 834

esmvaltool.diag_scripts.monitor.monitor
module, 832

esmvaltool.diag_scripts.monitor.monitor_base
module, 844

esmvaltool.diag_scripts.monitor.multi_datasets
module, 835

esmvaltool.diag_scripts.ocean.diagnostic_maps
module, 846

esmvaltool.diag_scripts.ocean.diagnostic_maps_quad
module, 847

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs
module, 848

esmvaltool.diag_scripts.ocean.diagnostic_profiles
module, 851

esmvaltool.diag_scripts.ocean.diagnostic_seaice
module, 857

esmvaltool.diag_scripts.ocean.diagnostic_timeseries
module, 853

esmvaltool.diag_scripts.ocean.diagnostic_tools
module, 861

esmvaltool.diag_scripts.ocean.diagnostic_transects
module, 855

esmvaltool.diag_scripts.psyplot_diag
module, 867

esmvaltool.diag_scripts.seaborn_diag
module, 867

esmvaltool.diag_scripts.shared
module, 615

esmvaltool.diag_scripts.shared.iris_helpers
module, 628

esmvaltool.diag_scripts.shared.plot
module, 631

export_csv() (in module esmval-
tool.diag_scripts.emergent_constraints),
642

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 705

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 721

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 730

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 743

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 751

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 759

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 767

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 775

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 784

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 792

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 713

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 696

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 800

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 809

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 817

export_prediction_data() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel

946 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

method), 825
export_training_data() (esmval-

tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 705

export_training_data() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 721

export_training_data() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 730

export_training_data() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 743

export_training_data() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 751

export_training_data() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 759

export_training_data() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 767

export_training_data() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 775

export_training_data() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 784

export_training_data() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 792

export_training_data() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 713

export_training_data() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 697

export_training_data() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 801

export_training_data() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 809

export_training_data() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 817

export_training_data() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 826

extract_variables() (in module esmval-
tool.diag_scripts.shared), 625

F
feature_importances_ (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
property), 665

feature_importances_ (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
property), 683

feature_names_in_ (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
property), 665

features (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 705

features (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 721

features (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 730

features (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 743

features (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 751

features (esmvaltool.diag_scripts.mlr.models.krr.KRRModel
property), 759

features (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel
property), 767

features (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 775

features (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 784

features (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 792

features (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
property), 713

features (esmvaltool.diag_scripts.mlr.models.MLRModel
property), 697

features (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
property), 801

features (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
property), 809

features (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 817

features (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
property), 826

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 705

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 721

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 730

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 743

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel

Index 947

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property), 751
features_after_preprocessing (esmval-

tool.diag_scripts.mlr.models.krr.KRRModel
property), 759

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 767

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 775

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 784

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 792

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 713

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 697

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 801

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 809

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 817

features_after_preprocessing (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 826

features_types (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 705

features_types (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 721

features_types (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 730

features_types (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 743

features_types (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 751

features_types (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 759

features_types (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel

property), 767
features_types (esmval-

tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 775

features_types (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 784

features_types (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 792

features_types (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 713

features_types (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 697

features_types (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 801

features_types (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 809

features_types (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 817

features_types (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 826

features_units (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 705

features_units (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 721

features_units (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 730

features_units (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 743

features_units (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 751

features_units (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 759

features_units (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 767

features_units (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 775

features_units (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel

948 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

property), 784
features_units (esmval-

tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 792

features_units (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 713

features_units (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 697

features_units (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 801

features_units (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 809

features_units (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 817

features_units (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 826

FeatureSelectionTransformer (class in esmval-
tool.diag_scripts.mlr.custom_sklearn), 686

fit() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 665

fit() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 673

fit() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 678

fit() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 683

fit() (esmvaltool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 687

fit() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 705

fit() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 721

fit() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 730

fit() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 737

fit() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 743

fit() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 751

fit() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel
method), 759

fit() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel
method), 767

fit() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 775

fit() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 784

fit() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 792

fit() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
method), 713

fit() (esmvaltool.diag_scripts.mlr.models.MLRModel
method), 697

fit() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
method), 801

fit() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
method), 809

fit() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 817

fit() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
method), 826

fit_kwargs (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 705

fit_kwargs (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 722

fit_kwargs (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 730

fit_kwargs (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 743

fit_kwargs (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 751

fit_kwargs (esmvaltool.diag_scripts.mlr.models.krr.KRRModel
property), 760

fit_kwargs (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel
property), 767

fit_kwargs (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 776

fit_kwargs (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 784

fit_kwargs (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 793

fit_kwargs (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
property), 713

fit_kwargs (esmvaltool.diag_scripts.mlr.models.MLRModel
property), 697

fit_kwargs (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
property), 801

fit_kwargs (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
property), 809

fit_kwargs (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 818

fit_kwargs (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
property), 826

fit_predict() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 666

fit_target_transformer_only() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 666

fit_transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline

Index 949

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

method), 667
fit_transform() (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 673

fit_transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 678

fit_transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 687

fit_transformer_only() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 683

fit_transformers_only() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 667

folder() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
863

G
GBRModel (class in esmval-

tool.diag_scripts.mlr.models.gbr_base), 703
get_1d_cube() (in module esmval-

tool.diag_scripts.mlr), 659
get_absolute_time_units() (in module esmval-

tool.diag_scripts.mlr), 659
get_alias() (in module esmvaltool.diag_scripts.mlr),

660
get_all_weights() (in module esmval-

tool.diag_scripts.mlr), 660
get_ancestors() (esmval-

tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 705

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 722

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 730

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 743

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 751

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 760

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 767

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel

method), 776
get_ancestors() (esmval-

tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 784

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 793

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 713

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 697

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 801

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 809

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 818

get_ancestors() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 826

get_area_weights() (in module esmval-
tool.diag_scripts.mlr), 660

get_array_range() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
863

get_caption() (in module esmval-
tool.diag_scripts.emergent_constraints),
642

get_cfg() (in module esmvaltool.diag_scripts.shared),
625

get_colors() (in module esmval-
tool.diag_scripts.emergent_constraints),
642

get_colour_from_cmap() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
863

get_constraint() (in module esmval-
tool.diag_scripts.emergent_constraints),
643

get_constraint_from_df() (in module esmval-
tool.diag_scripts.emergent_constraints), 643

get_control_exper_obs() (in module esmval-
tool.diag_scripts.shared), 625

get_cube_range() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
864

get_cube_range_diff() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
864

950 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

get_data() (esmvaltool.diag_scripts.shared.Datasets
method), 617

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 706

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 722

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 731

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 744

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 752

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 760

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 768

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 776

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 785

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 793

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 714

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 698

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 802

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 810

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 818

get_data_frame() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 827

get_data_list() (esmval-
tool.diag_scripts.shared.Datasets method),
617

get_dataset_info() (esmval-

tool.diag_scripts.shared.Datasets method),
617

get_dataset_info_list() (esmval-
tool.diag_scripts.shared.Datasets method),
618

get_dataset_style() (in module esmval-
tool.diag_scripts.shared.plot), 631

get_decade() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
864

get_diagnostic_filename() (in module esmval-
tool.diag_scripts.shared), 625

get_feature_names_out() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 667

get_feature_names_out() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 673

get_feature_names_out() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 678

get_feature_names_out() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 687

get_groups() (in module esmval-
tool.diag_scripts.emergent_constraints),
643

get_horizontal_weights() (in module esmval-
tool.diag_scripts.mlr), 661

get_image_format() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
864

get_image_path() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
864

get_info() (esmvaltool.diag_scripts.shared.Datasets
method), 618

get_info_list() (esmval-
tool.diag_scripts.shared.Datasets method),
619

get_input_data() (in module esmval-
tool.diag_scripts.emergent_constraints),
643

get_input_data() (in module esmval-
tool.diag_scripts.mlr), 661

get_input_files() (in module esmval-
tool.diag_scripts.emergent_constraints),
644

get_input_files() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
865

get_landsea_fraction_weights() (in module esm-
valtool.diag_scripts.mlr), 662

get_mean_cube() (in module esmval-

Index 951

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

tool.diag_scripts.shared.iris_helpers), 629
get_metadata_routing() (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 667

get_metadata_routing() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 674

get_metadata_routing() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 679

get_metadata_routing() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 683

get_metadata_routing() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 687

get_metadata_routing() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 737

get_new_path() (in module esmval-
tool.diag_scripts.mlr), 662

get_obs_projects() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
865

get_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 668

get_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 674

get_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 679

get_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 683

get_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 687

get_params() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 738

get_path() (esmvaltool.diag_scripts.shared.Datasets
method), 619

get_path_list() (esmval-
tool.diag_scripts.shared.Datasets method),
619

get_path_to_mpl_style() (in module esmval-
tool.diag_scripts.shared.plot), 631

get_plot_filename() (in module esmval-
tool.diag_scripts.shared), 625

get_plot_folder() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
method), 845

get_plot_name() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
method), 845

get_plot_path() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
method), 845

get_pole() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
860

get_provenance_record() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
static method), 845

get_provenance_record() (in module esmval-
tool.diag_scripts.emergent_constraints), 644

get_rfecv_transformer() (in module esmval-
tool.diag_scripts.mlr.custom_sklearn), 689

get_season() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
860

get_squared_error_cube() (in module esmval-
tool.diag_scripts.mlr), 663

get_support() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 674

get_support() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 679

get_support() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 688

get_time_string() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
860

get_time_weights() (in module esmval-
tool.diag_scripts.mlr), 663

get_x_array() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 706

get_x_array() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 722

get_x_array() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 731

get_x_array() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 744

get_x_array() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 752

get_x_array() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 760

get_x_array() (esmval-

952 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

tool.diag_scripts.mlr.models.lasso.LassoModel
method), 768

get_x_array() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 776

get_x_array() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 785

get_x_array() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 793

get_x_array() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 714

get_x_array() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 698

get_x_array() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 802

get_x_array() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 810

get_x_array() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 818

get_x_array() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 827

get_xy_data_without_nans() (in module esmval-
tool.diag_scripts.emergent_constraints), 644

get_y_array() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 706

get_y_array() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 723

get_y_array() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 731

get_y_array() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 744

get_y_array() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 752

get_y_array() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 761

get_y_array() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 768

get_y_array() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel

method), 777
get_y_array() (esmval-

tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 785

get_y_array() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 794

get_y_array() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 714

get_y_array() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 698

get_y_array() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 802

get_y_array() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 810

get_y_array() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 819

get_y_array() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 827

get_year() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
860

global_contourf() (in module esmval-
tool.diag_scripts.shared.plot), 631

global_pcolormesh() (in module esmval-
tool.diag_scripts.shared.plot), 631

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 707

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 723

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 732

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 745

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 753

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 761

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 769

grid_search_cv() (esmval-

Index 953

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 777

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 786

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 794

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 715

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 699

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 803

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 811

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 819

grid_search_cv() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 828

group_attributes (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 707

group_attributes (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 723

group_attributes (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 732

group_attributes (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 745

group_attributes (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 753

group_attributes (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 761

group_attributes (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 769

group_attributes (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 777

group_attributes (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 786

group_attributes (esmval-

tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 794

group_attributes (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 715

group_attributes (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 699

group_attributes (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 803

group_attributes (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 811

group_attributes (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 819

group_attributes (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 828

group_metadata() (in module esmval-
tool.diag_scripts.shared), 626

guess_calendar_datetime() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
865

H
HuberRegressionModel (class in esmval-

tool.diag_scripts.mlr.models.huber), 749

I
ignore_warnings() (in module esmval-

tool.diag_scripts.mlr), 663
index() (esmvaltool.diag_scripts.shared.Variable

method), 621
intersect_dataset_coordinates() (in module esm-

valtool.diag_scripts.shared.iris_helpers), 629
inverse_transform() (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 668

inverse_transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 674

inverse_transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 679

inverse_transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 688

iris_dict() (esmvaltool.diag_scripts.shared.Variables
method), 623

iris_project_constraint() (in module esmval-
tool.diag_scripts.shared.iris_helpers), 629

954 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

K
KRRModel (class in esmval-

tool.diag_scripts.mlr.models.krr), 757

L
label (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel

property), 707
label (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel

property), 723
label (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel

property), 732
label (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel

property), 745
label (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel

property), 753
label (esmvaltool.diag_scripts.mlr.models.krr.KRRModel

property), 761
label (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel

property), 769
label (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel

property), 777
label (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel

property), 786
label (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel

property), 794
label (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel

property), 715
label (esmvaltool.diag_scripts.mlr.models.MLRModel

property), 699
label (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel

property), 803
label (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel

property), 811
label (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel

property), 819
label (esmvaltool.diag_scripts.mlr.models.svr.SVRModel

property), 828
label_units (esmval-

tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 707

label_units (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 723

label_units (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 732

label_units (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 745

label_units (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 753

label_units (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel

property), 761
label_units (esmval-

tool.diag_scripts.mlr.models.lasso.LassoModel
property), 769

label_units (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 777

label_units (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 786

label_units (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 794

label_units (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 715

label_units (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 699

label_units (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 803

label_units (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 811

label_units (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 819

label_units (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 828

LassoCVModel (class in esmval-
tool.diag_scripts.mlr.models.lasso_cv), 773

LassoLarsCVModel (class in esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv),
781

LassoModel (class in esmval-
tool.diag_scripts.mlr.models.lasso), 765

LinearModel (class in esmval-
tool.diag_scripts.mlr.models.linear_base),
711

LinearRegressionModel (class in esmval-
tool.diag_scripts.mlr.models.linear), 790

load_thresholds() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
865

log() (esmvaltool.diag_scripts.shared.ProvenanceLogger
method), 621

log_marginal_likelihood() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 738

long_name (esmvaltool.diag_scripts.shared.Variable at-
tribute), 622

long_name() (esmvaltool.diag_scripts.shared.Variables

Index 955

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

method), 623

M
main() (in module esmval-

tool.diag_scripts.ocean.diagnostic_maps),
846

main() (in module esmval-
tool.diag_scripts.ocean.diagnostic_maps_quad),
848

main() (in module esmval-
tool.diag_scripts.ocean.diagnostic_model_vs_obs),
850

main() (in module esmval-
tool.diag_scripts.ocean.diagnostic_profiles),
852

main() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
860

main() (in module esmval-
tool.diag_scripts.ocean.diagnostic_timeseries),
853

main() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
856

make_cube_layer_dict() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
866

make_cube_region_dict() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
856

make_depth_safe() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
856

make_map_contour() (in module esmval-
tool.diag_scripts.ocean.diagnostic_maps),
847

make_map_extent_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
860

make_map_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_maps),
847

make_map_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
861

make_model_vs_obs_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_model_vs_obs),
850

make_polar_map() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
861

make_profiles_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_profiles),
852

make_scatter() (in module esmval-
tool.diag_scripts.ocean.diagnostic_model_vs_obs),
851

make_time_series_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_timeseries),
854

make_transect_contours() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
857

make_transects_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
857

make_ts_plots() (in module esmval-
tool.diag_scripts.ocean.diagnostic_seaice),
861

match_model_to_key() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools),
866

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 707

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 724

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 732

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 745

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 753

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 761

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 769

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 777

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 786

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 795

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 715

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 699

956 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 803

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 811

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 819

mlr_model_type (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 828

MLRModel (class in esmvaltool.diag_scripts.mlr.models),
695

modify_var() (esmval-
tool.diag_scripts.shared.Variables method),
623

module
esmvaltool.diag_scripts.emergent_constraints,

639
esmvaltool.diag_scripts.emergent_constraints.cox18nature,

635
esmvaltool.diag_scripts.emergent_constraints.ecs_scatter,

636
esmvaltool.diag_scripts.emergent_constraints.multiple_constraints,

637
esmvaltool.diag_scripts.emergent_constraints.single_constraint,

638
esmvaltool.diag_scripts.mlr, 658
esmvaltool.diag_scripts.mlr.custom_sklearn,

664
esmvaltool.diag_scripts.mlr.evaluate_residuals,

648
esmvaltool.diag_scripts.mlr.main, 649
esmvaltool.diag_scripts.mlr.mmm, 650
esmvaltool.diag_scripts.mlr.models, 689
esmvaltool.diag_scripts.mlr.models.gbr_base,

703
esmvaltool.diag_scripts.mlr.models.gbr_sklearn,

719
esmvaltool.diag_scripts.mlr.models.gbr_xgboost,

728
esmvaltool.diag_scripts.mlr.models.gpr_sklearn,

736
esmvaltool.diag_scripts.mlr.models.huber,

749
esmvaltool.diag_scripts.mlr.models.krr,

757
esmvaltool.diag_scripts.mlr.models.lasso,

765
esmvaltool.diag_scripts.mlr.models.lasso_cv,

773
esmvaltool.diag_scripts.mlr.models.lasso_lars_cv,

781

esmvaltool.diag_scripts.mlr.models.linear,
790

esmvaltool.diag_scripts.mlr.models.linear_base,
711

esmvaltool.diag_scripts.mlr.models.rfr,
798

esmvaltool.diag_scripts.mlr.models.ridge,
807

esmvaltool.diag_scripts.mlr.models.ridge_cv,
815

esmvaltool.diag_scripts.mlr.models.svr,
823

esmvaltool.diag_scripts.mlr.plot, 651
esmvaltool.diag_scripts.mlr.postprocess,

653
esmvaltool.diag_scripts.mlr.preprocess,

655
esmvaltool.diag_scripts.mlr.rescale_with_emergent_constraint,

657
esmvaltool.diag_scripts.monitor.compute_eofs,

834
esmvaltool.diag_scripts.monitor.monitor,

832
esmvaltool.diag_scripts.monitor.monitor_base,

844
esmvaltool.diag_scripts.monitor.multi_datasets,

835
esmvaltool.diag_scripts.ocean.diagnostic_maps,

846
esmvaltool.diag_scripts.ocean.diagnostic_maps_quad,

847
esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs,

848
esmvaltool.diag_scripts.ocean.diagnostic_profiles,

851
esmvaltool.diag_scripts.ocean.diagnostic_seaice,

857
esmvaltool.diag_scripts.ocean.diagnostic_timeseries,

853
esmvaltool.diag_scripts.ocean.diagnostic_tools,

861
esmvaltool.diag_scripts.ocean.diagnostic_transects,

855
esmvaltool.diag_scripts.psyplot_diag, 867
esmvaltool.diag_scripts.seaborn_diag, 867
esmvaltool.diag_scripts.shared, 615
esmvaltool.diag_scripts.shared.iris_helpers,

628
esmvaltool.diag_scripts.shared.plot, 631

MonitorBase (class in esmval-
tool.diag_scripts.monitor.monitor_base),
844

moving_average() (in module esmval-
tool.diag_scripts.ocean.diagnostic_timeseries),

Index 957

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

854
multi_dataset_scatterplot() (in module esmval-

tool.diag_scripts.shared.plot), 632
multi_model_contours() (in module esmval-

tool.diag_scripts.ocean.diagnostic_maps),
847

multi_model_contours() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
857

multi_model_maps() (in module esmval-
tool.diag_scripts.ocean.diagnostic_maps_quad),
848

multi_model_time_series() (in module esmval-
tool.diag_scripts.ocean.diagnostic_timeseries),
854

N
n_features_in_ (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
property), 668

n_features_in_ (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
property), 683

named_steps (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
property), 668

numerical_features (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 707

numerical_features (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 724

numerical_features (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 732

numerical_features (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 745

numerical_features (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 753

numerical_features (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 762

numerical_features (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 769

numerical_features (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 778

numerical_features (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 786

numerical_features (esmval-

tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 795

numerical_features (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 715

numerical_features (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 699

numerical_features (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 803

numerical_features (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 811

numerical_features (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 820

numerical_features (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 828

P
pandas_object_to_cube() (in module esmval-

tool.diag_scripts.emergent_constraints), 645
parameters (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel

property), 707
parameters (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel

property), 724
parameters (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel

property), 732
parameters (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel

property), 745
parameters (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel

property), 753
parameters (esmvaltool.diag_scripts.mlr.models.krr.KRRModel

property), 762
parameters (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel

property), 769
parameters (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel

property), 778
parameters (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel

property), 786
parameters (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel

property), 795
parameters (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel

property), 715
parameters (esmvaltool.diag_scripts.mlr.models.MLRModel

property), 699
parameters (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel

property), 803
parameters (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel

property), 811
parameters (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel

property), 820

958 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

parameters (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
property), 828

perform_efecv() (in module esmval-
tool.diag_scripts.mlr.custom_sklearn), 689

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 707

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 724

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 733

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 745

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 754

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 762

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 770

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 778

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 786

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 795

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 716

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 699

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 803

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 812

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 820

plot_1d_model() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 828

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel

method), 754
plot_coefs() (esmval-

tool.diag_scripts.mlr.models.lasso.LassoModel
method), 770

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 778

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 787

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 795

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 716

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 812

plot_coefs() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 820

plot_cube() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
method), 845

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 708

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 724

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 733

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 754

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 770

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 778

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 787

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 795

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 716

plot_feature_importance() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel

Index 959

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

method), 812
plot_feature_importance() (esmval-

tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 820

plot_individual_scatterplots() (in module es-
mvaltool.diag_scripts.emergent_constraints),
645

plot_merged_scatterplots() (in module esmval-
tool.diag_scripts.emergent_constraints), 645

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 708

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 725

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 733

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 746

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 754

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 762

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 770

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 779

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 787

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 796

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 716

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 700

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 804

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 812

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 821

plot_partial_dependences() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 829

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 708

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 725

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 733

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 746

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 755

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 762

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 771

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 779

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 787

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 796

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 717

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 700

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 804

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 813

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 821

plot_prediction_errors() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 829

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 708

960 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 725

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 734

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 746

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 755

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 762

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 771

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 779

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 788

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 796

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 717

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 700

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 804

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 813

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 821

plot_residuals() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 829

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 709

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 725

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 734

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 746

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 755

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 763

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 771

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 779

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 788

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 796

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 717

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 700

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 804

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 813

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 821

plot_residuals_distribution() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 829

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 709

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 725

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 734

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 746

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 755

Index 961

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 763

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 771

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 779

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 788

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 796

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 717

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 700

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 804

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 813

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 821

plot_residuals_histogram() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 829

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 709

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 725

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 734

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 747

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 755

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 763

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 771

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 779

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 788

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 796

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 717

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 701

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 805

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 813

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 821

plot_scatterplots() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 830

plot_target_distributions() (in module esmval-
tool.diag_scripts.emergent_constraints), 646

plot_timeseries() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
method), 845

plot_training_progress() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 726

plot_training_progress() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 734

predict() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 668

predict() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 675

predict() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 679

predict() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 683

predict() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 709

predict() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 726

predict() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 734

predict() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 738

962 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

predict() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 747

predict() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 755

predict() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel
method), 763

predict() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel
method), 771

predict() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 780

predict() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 788

predict() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 797

predict() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
method), 717

predict() (esmvaltool.diag_scripts.mlr.models.MLRModel
method), 701

predict() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
method), 805

predict() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
method), 813

predict() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 822

predict() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
method), 830

predict_log_proba() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 669

predict_log_proba() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 675

predict_log_proba() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 680

predict_proba() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 670

predict_proba() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 675

predict_proba() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 680

prepare_cube_for_merging() (in module esmval-
tool.diag_scripts.shared.iris_helpers), 630

prepare_provenance_record() (in module esmval-
tool.diag_scripts.ocean.diagnostic_tools), 866

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 710

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 726

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 735

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 747

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 756

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 764

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 772

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 780

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 789

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 797

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 718

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 701

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 805

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 814

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 822

print_correlation_matrices() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 830

print_kernel_info() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 748

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 710

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 726

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 735

Index 963

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 748

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 756

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 764

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 772

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 780

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 789

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 797

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 718

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 702

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 806

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 814

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 822

print_regression_metrics() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 831

ProvenanceLogger (class in esmval-
tool.diag_scripts.shared), 620

Q
quickplot() (in module esmval-

tool.diag_scripts.shared.plot), 633

R
random_state (esmval-

tool.diag_scripts.mlr.models.gbr_base.GBRModel
property), 710

random_state (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
property), 726

random_state (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
property), 735

random_state (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
property), 748

random_state (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
property), 756

random_state (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
property), 764

random_state (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
property), 772

random_state (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
property), 780

random_state (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
property), 789

random_state (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
property), 797

random_state (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
property), 718

random_state (esmval-
tool.diag_scripts.mlr.models.MLRModel
property), 702

random_state (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
property), 806

random_state (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
property), 814

random_state (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
property), 822

random_state (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
property), 831

record_plot_provenance() (esmval-
tool.diag_scripts.monitor.monitor_base.MonitorBase
method), 845

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
class method), 710

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
class method), 727

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
class method), 735

964 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
class method), 748

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
class method), 756

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
class method), 764

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
class method), 772

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
class method), 780

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
class method), 789

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
class method), 798

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
class method), 718

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.MLRModel
class method), 702

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
class method), 806

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
class method), 814

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
class method), 822

register_mlr_model() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
class method), 831

regression_line() (in module esmval-
tool.diag_scripts.emergent_constraints),
646

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 710

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 727

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 735

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 748

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 756

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 764

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 772

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 781

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 789

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 798

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 718

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 702

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 806

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 814

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 823

reset_pipeline() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 831

rfecv() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 710

rfecv() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 727

rfecv() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 735

rfecv() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 748

rfecv() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 756

rfecv() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel
method), 764

rfecv() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel
method), 772

rfecv() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 781

rfecv() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 789

Index 965

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

rfecv() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 798

rfecv() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel
method), 718

rfecv() (esmvaltool.diag_scripts.mlr.models.MLRModel
method), 702

rfecv() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel
method), 806

rfecv() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel
method), 814

rfecv() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 823

rfecv() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel
method), 831

RFRModel (class in esmval-
tool.diag_scripts.mlr.models.rfr), 798

RidgeCVModel (class in esmval-
tool.diag_scripts.mlr.models.ridge_cv), 815

RidgeModel (class in esmval-
tool.diag_scripts.mlr.models.ridge), 807

rounds_sig() (in module esmval-
tool.diag_scripts.ocean.diagnostic_model_vs_obs),
851

run_diagnostic() (in module esmval-
tool.diag_scripts.shared), 626

S
sample_y() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor

method), 738
save_data() (in module esmval-

tool.diag_scripts.shared), 626
save_figure() (in module esmval-

tool.diag_scripts.shared), 627
scatterplot() (in module esmval-

tool.diag_scripts.shared.plot), 633
score() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline

method), 670
score() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFE

method), 675
score() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV

method), 680
score() (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor

method), 683
score() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor

method), 739
score_samples() (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 671

select_metadata() (in module esmval-
tool.diag_scripts.shared), 627

set_data() (esmvaltool.diag_scripts.shared.Datasets
method), 619

set_fit_request() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE

method), 675
set_fit_request() (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 680

set_fit_request() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 684

set_output() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 671

set_output() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 676

set_output() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 681

set_output() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 688

set_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 671

set_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 676

set_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 681

set_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 685

set_params() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 689

set_params() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 739

set_plot_appearance() (in module esmval-
tool.diag_scripts.emergent_constraints),
646

set_predict_request() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 677

set_predict_request() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 682

set_predict_request() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 685

set_predict_request() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 739

set_score_request() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline

966 Index

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

method), 671
set_score_request() (esmval-

tool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor
method), 686

set_score_request() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor
method), 740

short_name (esmvaltool.diag_scripts.shared.Variable
attribute), 622

short_name() (esmval-
tool.diag_scripts.shared.Variables method),
623

short_names() (esmval-
tool.diag_scripts.shared.Variables method),
623

SklearnGBRModel (class in esmval-
tool.diag_scripts.mlr.models.gbr_sklearn),
719

SklearnGPRModel (class in esmval-
tool.diag_scripts.mlr.models.gpr_sklearn),
741

sorted_group_metadata() (in module esmval-
tool.diag_scripts.shared), 627

sorted_metadata() (in module esmval-
tool.diag_scripts.shared), 627

square_root_metadata() (in module esmval-
tool.diag_scripts.mlr), 663

standard_name (esmval-
tool.diag_scripts.shared.Variable attribute),
622

standard_name() (esmval-
tool.diag_scripts.shared.Variables method),
624

standard_names() (esmval-
tool.diag_scripts.shared.Variables method),
624

standard_prediction_error() (in module esmval-
tool.diag_scripts.emergent_constraints), 647

steps (esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
attribute), 672

SVRModel (class in esmval-
tool.diag_scripts.mlr.models.svr), 823

T
target_pdf() (in module esmval-

tool.diag_scripts.emergent_constraints),
647

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 710

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 727

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 736

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 748

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 757

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 764

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 773

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 781

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 790

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 798

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 719

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 702

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 806

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 815

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 823

test_normality_of_residuals() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 831

timeplot() (in module esmval-
tool.diag_scripts.ocean.diagnostic_timeseries),
854

titlify() (in module esmval-
tool.diag_scripts.ocean.diagnostic_transects),
857

transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 672

transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFE
method), 677

Index 967

ESMValTool User’s and Developer’s Guide, Release 2.11.0.dev52+g696097c.d20240424

transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV
method), 682

transform() (esmval-
tool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer
method), 689

transform_only() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 673

transform_target_only() (esmval-
tool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline
method), 673

U
unify_1d_cubes() (in module esmval-

tool.diag_scripts.shared.iris_helpers), 630
unify_time_coord() (in module esmval-

tool.diag_scripts.shared.iris_helpers), 630
units (esmvaltool.diag_scripts.shared.Variable at-

tribute), 622
units() (esmvaltool.diag_scripts.shared.Variables

method), 624
units_power() (in module esmval-

tool.diag_scripts.mlr), 663
update_parameters() (esmval-

tool.diag_scripts.mlr.models.gbr_base.GBRModel
method), 711

update_parameters() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel
method), 727

update_parameters() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel
method), 736

update_parameters() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel
method), 748

update_parameters() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel
method), 757

update_parameters() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel
method), 765

update_parameters() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel
method), 773

update_parameters() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel
method), 781

update_parameters() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel
method), 790

update_parameters() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel
method), 798

update_parameters() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel
method), 719

update_parameters() (esmval-
tool.diag_scripts.mlr.models.MLRModel
method), 702

update_parameters() (esmval-
tool.diag_scripts.mlr.models.rfr.RFRModel
method), 806

update_parameters() (esmval-
tool.diag_scripts.mlr.models.ridge.RidgeModel
method), 815

update_parameters() (esmval-
tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel
method), 823

update_parameters() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel
method), 831

V
var_name() (esmvaltool.diag_scripts.shared.Variables

method), 624
Variable (class in esmvaltool.diag_scripts.shared), 621
Variables (class in esmvaltool.diag_scripts.shared),

622
variables_available() (in module esmval-

tool.diag_scripts.shared), 628
vars_available() (esmval-

tool.diag_scripts.shared.Variables method),
624

X
XGBoostGBRModel (class in esmval-

tool.diag_scripts.mlr.models.gbr_xgboost),
728

968 Index

	I Introduction
	About
	Support
	User mailing list
	Monthly meetings
	Core development team
	Recipes and diagnostics

	License

	II What ESMValTool can do for you
	Data finding
	Data selection
	Data fixing
	Variable derivation
	Run the preprocessor
	Run the diagnostics

	III Getting started
	Installation
	Mamba/Conda installation
	ESMValTool installation on Linux
	Installation of subpackages
	Installation of Julia dependencies
	ESMValTool installation on MacOS

	Install from source
	Using the development version of the ESMValCore package

	Pre-installed versions on HPC clusters / other servers
	Docker installation
	Singularity installation
	Pip installation
	Installation from the conda lock file
	Common installation problems and their solutions
	Mamba fails to solve the environment
	Problems with proxies
	Anaconda servers connection issues
	Installation of R packages fails
	Problems when using ssh
	Problems when updating the conda environment

	Move to Mamba

	Configuration
	Running
	Running your first recipe
	Available diagnostics and metrics
	Running multiple recipes

	Output
	Preprocessed datasets
	Run
	Diagnostic output
	Plots
	Settings.yml
	Metadata.yml

	IV Gallery
	V Recipes
	General-purpose diagnostics
	General model evaluation
	Overview
	Available recipes and diagnostics
	User settings
	Recipe settings

	Variables
	Example plots

	Monitor
	Overview
	Available recipes and diagnostics
	User settings
	Recipe settings
	Monitor configuration file

	Variables
	Example plots

	Psyplot Diagnostics
	Overview
	Available recipes and diagnostics
	Variables
	Observations and reformat scripts
	References
	Example plots

	Seaborn Diagnostics
	Overview
	Available recipes and diagnostics
	Variables
	Observations and reformat scripts
	References
	Example plots

	Atmosphere
	Blocking metrics and indices, teleconnections and weather regimes (MiLES)
	Overview
	1D Atmospheric Blocking
	2D Atmospheric blocking
	Z500 Empirical Orthogonal Functions
	North Atlantic Weather Regimes

	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Clouds
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations/realanyses
	References
	Example plots

	Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations, including ESACCI data.
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Cloud Regime Error Metric (CREM)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Consecutive dry days
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Example plots

	Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations.
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Diurnal temperature range
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Eady growth rate
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	References
	Example plots

	Extreme Events Indices (ETCCDI)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Combined Climate Extreme Index
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Diagnostics of stratospheric dynamics and chemistry
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Example plots

	Ozone and associated climate impacts
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	Example plots

	Spatially resolved evaluation of ESMs with satellite column-averaged CO2
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Heat wave and cold wave duration
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Hydroclimatic intensity and extremes (HyInt)
	Overview
	Available recipes and diagnostics
	Known issues
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Implied heat transport from Top of Atmosphere fluxes
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Quick insights for climate impact researchers
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Modes of variability
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Diagnostics of integrated atmospheric methane (XCH4)
	Overview
	Available recipes and diagnostics
	Observations and reformat scripts
	User settings in recipe
	Variables
	Example plots

	Precipitation quantile bias
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Quantifying progress across different CMIP phases
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Standardized Precipitation-Evapotranspiration Index (SPEI)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	References
	Example plots

	Drought characteristics following Martin (2018)
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Stratosphere - Autoassess diagnostics
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example metrics and plots
	Prior and current contributors
	Developers

	Land-surface Permafrost - Autoassess diagnostics
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots
	Additional notes on usage

	Land-surface Surface Radiation - Autoassess diagnostics
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots
	Inputs and usage

	Land-surface Soil Moisture - Autoassess diagnostics
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Stratosphere-troposphere coupling and annular modes indices (ZMNAM)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Thermodynamics of the Climate System - The Diagnostic Tool TheDiaTo v1.0
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	References
	Example plots

	Zonal and Meridional Means
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Radiation Budget
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	AOD AeroNET Assess
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Climate metrics
	Performance metrics for essential climate parameters
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Single Model Performance Index (SMPI)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Future projections
	Climate model Weighting by Independence and Performance (ClimWIP)
	Overview
	Using shapefiles for cutting scientific regions
	Available recipes and diagnostics
	User settings in recipe
	Updating the Brunner et al. (2019) recipe for new regions
	Brunner et al. (2020) recipe and example independence weighting
	Variables
	Observations and reformat scripts
	References
	Example plots

	Constraining future Indian Summer Monsoon projections with the present-day precipitation over the tropical western Pacific
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Constraining uncertainty in projected gross primary production (GPP) with machine learning
	Overview
	Available recipes and diagnostics
	Variables
	Observations and reformat scripts
	References
	Example plots

	Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	References
	Example plots

	Emergent constraints for equilibrium climate sensitivity
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Emergent constraints on carbon cycle feedbacks
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?
	Overview
	Available recipes and diagnostics
	Variables
	Observations and reformat scripts
	References
	Example plots

	Emergent constraint on equilibrium climate sensitivity from global temperature variability
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Emergent constraint on snow-albedo effect
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Equilibrium climate sensitivity
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	KNMI Climate Scenarios 2014
	Overview
	Implementation
	Available recipes and diagnostics
	User settings
	Variables
	References
	Example output

	Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2
	Overview
	Available recipe and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Transient Climate Response
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Climate model projections from the ScenarioMIP of CMIP6
	Overview
	Available recipe and diagnostics
	User settings in recipe
	Variables
	References
	Example plots

	Climate Change Hotspot
	Overview
	Available recipes and diagnostics
	User settings in the recipe
	Modifying the datasets and scenarios used
	Variables
	References
	Example plots

	IPCC
	IPCC AR6 Chapter 3 (selected figures)
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	IPCC AR5 Chapter 9 (selected figures)
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	IPCC AR5 Chapter 12 (selected figures)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	Reference
	Example plots

	Example recipes
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Example plots

	Land
	Landcover - Albedo
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Turnover time of carbon over land ecosystems
	Overview
	Calculation of turnover time
	Available recipes and diagnostics
	User settings in recipe
	Observation-related details
	Preprocessor
	Script land_carbon_cycle/diag_global_turnover.py
	Script land_carbon_cycle/diag_zonal_turnover.py
	Script land_carbon_cycle/diag_zonal_correlation.py

	Required Variables
	Observations
	References
	Example plots

	Hydrological models - data pre-processing
	Overview
	PCR-GLOBWB
	MARRMoT
	wflow_sbm and wflow_topoflex
	LISFLOOD
	HYPE
	GlobWat

	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	Output
	References

	Hydro forcing comparison
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations
	Example plots

	Landcover diagnostics
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Land and ocean components of the global carbon cycle
	Overview
	MVI calculation
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Runoff, Precipitation, Evapotranspiration
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Ocean
	Recipe for evaluating Arctic Ocean
	Overview
	Available recipes
	Hovmoeller diagrams
	Vertical profiles
	Spatial distribution maps of variables
	Spatial distribution maps of biases
	Transects
	Atlantic Water core depth and temperature
	TS-diagrams

	Available diagnostics
	Variables
	Observations and reformat scripts
	References

	Climate Variability Diagnostics Package (CVDP)
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Ocean chlorophyll in ESMs compared to ESA-CCI observations.
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Ocean diagnostics
	Overview
	Available recipes
	recipe_ocean_amoc.yml
	recipe_ocean_example.yml
	recipe_ocean_bgc.yml
	recipe_ocean_quadmap.yml
	recipe_ocean_ice_extent.yml
	recipe_ocean_multimap.yml

	Available diagnostics
	diagnostic_maps.py
	diagnostic_maps_quad.py
	diagnostic_model_vs_obs.py
	diagnostic_maps_multimodel.py
	diagnostic_profiles.py
	diagnostic_timeseries.py
	diagnostic_transects.py
	diagnostic_seaice.py
	diagnostic_tools.py

	A note on the auxiliary data directory
	Associated Observational datasets
	World Ocean ATLAS
	Landschuetzer 2016

	Sea Surface Salinity Evaluation
	Overview
	Preprocessor requirements:
	Regions available on IHO Sea Areas file:
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Ocean metrics
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Other
	Capacity factor of wind power: Ratio of average estimated power to theoretical maximum power
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	CMORizer recipes
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	References

	Ensemble Clustering - a cluster analysis tool for climate model simulations (EnsClus)
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	ESA CCI LST comparison to Historical Models
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Timeseries for Arctic-Midlatitude Teleconnections
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Multi-model products
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Capacity factor for solar photovoltaic (PV) systems
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	RainFARM stochastic downscaling
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Sea Ice
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Observations and reformat scripts
	References
	Example plots

	Seaice drift
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Example plots

	Seaice feedback
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	References
	Example plots

	Shapeselect
	Overview
	Available recipes and diagnostics
	User settings in recipe
	Variables
	Example plots

	Short test versions of scientific recipes to check for backward compatibility.
	Overview
	Available recipes and diagnostics
	User settings in recipes

	Toymodel
	Overview
	Available recipes and diagnostics
	User settings
	Variables
	Observations and reformat scripts
	References
	Example plots

	Broken recipe list
	Broken recipe list

	VI Obtaining input data
	Models
	Observations
	Using a CMORizer script
	Supported datasets for which a CMORizer script is available

	Datasets in native format

	VII Making a recipe or diagnostic
	Introduction
	Recipe
	Writing a basic recipe

	Diagnostic
	Instructions for personal diagnostic
	Functionality
	Example of config dictionary

	Writing a CMORizer script for an additional dataset
	1. Check if your variable is CMOR standard
	2. Edit your configuration file
	3. Store your dataset in the right place
	3.1 Downloader script (optional)

	4. Create a cmorizer for the dataset
	4.1 Cmorizer script written in python
	4.2 Cmorizer script written in NCL

	5. Run the cmorizing script
	6. Naming convention of the observational data files
	7. Test the cmorized dataset

	VIII Contributing to the community
	Contributing code and documentation
	Getting started
	Checklist for pull requests
	All pull requests
	New or updated recipe and/or diagnostic
	New or updated data reformatting script

	Pull request title
	Code quality
	Python
	NCL
	R
	YAML
	Any text file

	Documentation
	What should be documented
	How to build and view the documentation
	Integration with the ESMValCore documentation

	Tests
	List of authors
	Dependencies
	Pull request checks

	Making a new diagnostic or recipe
	Getting started
	Creating a recipe and diagnostic script(s)
	Re-using existing code
	Recipe and diagnostic documentation
	On readthedocs
	In the recipe
	In the diagnostic scripts

	Diagnostic output
	Recording provenance
	Provenance items provided by the recipe
	Provenance items provided by the diagnostic script
	Recording provenance in a Python diagnostic script
	Recording provenance in an NCL diagnostic script
	Recording provenance in a Julia diagnostic script
	Recording provenance in an R diagnostic script

	Adding references
	Testing recipes
	Detailed checklist for reviews
	Technical reviews
	Documentation
	Recipe
	Diagnostic script
	Run recipe
	Check output of diagnostic
	Check automated tests

	Scientific reviews
	Documentation added to user’s guide
	Recipe
	Diagnostic script
	Run recipe
	Check output of diagnostic

	ESMValTool policy on backward compatibility
	Motivation
	Definitions
	Scope
	Expectations of developers, users & funders
	Helping developers to upgrade
	Guidance on handling backward-incompatible changes
	Guidance on releasing backward-incompatible changes

	Broken recipe policy
	Making a new dataset
	Dataset documentation
	Testing
	Scientific sanity check
	Data availability
	Detailed checklist for reviews
	Dataset description
	BibTeX info file
	recipe_check_obs.yml
	Downloader script
	CMORizer script
	Config file
	Run downloader script
	Run CMORizer
	Check output of CMORizer
	RAW data
	CMORized data

	Support for multiple versions of a dataset
	Policy for dropping support for older dataset versions
	Naming conventions

	Review of pull requests
	1. Technical review
	2. Scientific review
	3. Merge
	Frequently asked questions
	How do I request a review of my pull request?
	How do I optimize for a fast review?
	How do I find a pull request to review?
	How do I actually do a review?
	What if the author and reviewer disagree?

	Maintaining a recipe
	Upgrading a namelist (recipe) or diagnostic to ESMValTool v2
	Create a github issue
	Create your own branch
	Convert xml to yml
	Create a copy of the diag script in v2.0
	Check and apply renamings
	Move preprocessing from the diagnostic script to the backend
	Move diagnostic- and variable-specific settings to the recipe
	Make sure the diagnostic script writes NetCDF output
	Test the recipe/diagnostic in the new version
	Clean the code
	Update the documentation
	Open a pull request

	GitHub Workflow
	Basics
	Access rights
	Workflow
	Getting started
	Working with the ESMValTool GitHub Repositories
	Pull requests
	GitHub issues

	General do-s and don’t-s
	Do-s
	Don’t-s

	Moving work from the private to the public repository
	1. Clone the private repository
	2. Make a branch to develop your recipe and diagnostic
	3. Develop your diagnostic in that branch and push it to the private repository
	4. Write and submit your paper
	5. Push your branch to the public repository
	6. Make a pull request in the public repository
	7. Obtain a DOI for your code and add it to your paper

	Release strategy and procedure
	Release schedule and procedure for ESMValCore and ESMValTool
	Overall Procedure
	Timeline
	Release schedule
	Upcoming releases
	Past releases

	Detailed timeline steps

	Bugfix releases
	Procedure

	Glossary
	Feature freeze
	Milestone
	Release manager
	Release branch

	How to make an ESMValTool release
	1. Check that all tests and builds work
	2. Increase the version number
	3. Add release notes
	4. Create a release branch
	5. Make the release on GitHub
	6. Merge the release branch back into the main branch
	7. Create and upload the PyPI package
	8. Create the Conda package
	9. Check the Docker images

	Changelog

	Release: recipes runs and comparison
	Open an issue on GitHub
	Submit run scripts - test recipe runs
	Analyse the results
	Share the results with the community
	Running the comparison
	Appendix

	IX Utilities
	Pre-commit
	nclcodestyle
	Colormap samples
	Running multiple recipes
	Using cylc
	Using Rose and cylc
	Base suite
	Environment
	Jasmin-example

	Using the scripts in utils/batch-jobs
	Using generate.py
	Using parse_recipes_outputs

	Overview of recipe runs
	Comparing recipe runs
	Testing recipe settings
	draft_release_notes.py
	Converting Version 1 Namelists to Version 2 Recipes
	Howto
	Caveats/Known Limitations

	Recipe filler
	Key features
	Caveats

	Extracting a list of input files from the provenance

	X ESMValTool Code API Documentation
	Shared Diagnostic Code
	Shared diagnostic script code
	Iris helper functions
	Plotting

	Diagnostic Scripts
	Emergent constraints diagnostics
	Examples
	Diagnostic scripts
	Emergent constraint on ECS from global temperature variability
	Description
	Author
	Project
	Configuration options in recipe

	Calculation of emergent constraints on ECS
	Description
	Author
	Project
	Configuration options in recipe

	Evaluate multiple emergent constraints simultaneously
	Description
	Author
	Project
	Configuration options in recipe

	Evaluate single emergent constraint
	Description
	Author
	Project
	Configuration options in recipe

	Auxiliary scripts
	Auxiliary functions for emergent constraints scripts

	Machine Learning Regression (MLR) diagnostics
	Examples
	Diagnostic scripts
	Evaluate residuals
	Description
	Author
	Project
	Configuration options in recipe

	MLR main diagnostic
	Description
	Author
	Project
	Configuration options in recipe

	Multi-model means (MMM)
	Description
	Author
	Project
	Configuration options in recipe

	Plotting functionalities
	Description
	Author
	Project
	Configuration options in recipe

	Postprocessing functionalities
	Description
	Author
	Project
	Configuration options in recipe

	Preprocessing functionalities
	Description
	Author
	Project
	Configuration options in recipe

	Rescale data with emergent constraints
	Description
	Author
	Project
	Configuration options in recipe

	Auxiliary scripts
	Auxiliary functions for MLR scripts
	Custom extensions of sklearn functionalities
	MLRModel base class
	Example recipe
	Training data
	Prediction data
	Available MLR models
	Optional parameters for class initialization

	Base class for Gradient Boosted Regression models
	Base class for Linear models

	Available MLR models
	Gradient Boosted Regression Trees (sklearn implementation)
	Gradient Boosted Regression Trees (xgboost implementation)
	Gaussian Process Regression (sklearn implementation)
	Huber Regression
	Kernel Ridge Regression
	LASSO Regression
	LASSO Regression with built-in CV
	LASSO Regression (using Least-angle Regression algorithm) with built-in CV
	Linear Regression
	Random Forest Regression
	Ridge Regression
	Ridge Regression with built-in CV
	Support Vector Regression

	Monitor Diagnostic
	Examples
	Diagnostic scripts
	Monitoring diagnostic to plot arbitrary preprocessor output
	Description
	Configuration options in recipe
	Configuration options for plot type clim
	Configuration options for plot type seasonclim
	Configuration options for plot type monclim
	Configuration options for plot type timeseries
	Configuration options for plot type annual_cycle

	Monitoring diagnostic to plot EOF maps and associated PC timeseries
	Description
	Configuration options in recipe

	Monitoring diagnostic to show multiple datasets in one plot (incl. biases)
	Description
	Author
	Configuration options in recipe
	Configuration options for plot type timeseries
	Configuration options for plot type annual_cycle
	Configuration options for plot type map
	Configuration options for plot type zonal_mean_profile
	Configuration options for plot type 1d_profile
	Configuration options for plot type variable_vs_lat
	Configuration options for plot type hovmoeller_z_vs_time
	Configuration options for plot type hovmoeller_time_vs_lat_or_lon

	Base class for monitoring diagnostics
	Base class for monitoring diagnostics

	Ocean diagnostics toolkit
	Maps diagnostics
	Model 1 vs Model 2 vs Observations diagnostics.
	Model vs Observations maps Diagnostic.
	Profile diagnostics.
	Time series diagnostics
	Transects diagnostics
	Sea Ice Diagnostics.
	Diagnostic tools

	Psyplot Diagnostic
	Description
	Author
	Configuration options in recipe

	Seaborn Diagnostic
	Description
	Caveats
	Author
	Configuration options in recipe

	XI Frequently Asked Questions
	Is there a mailing list?
	What is YAML?
	Re-running diagnostics
	Enter interactive mode with iPython
	Use multiple config-user.yml files
	Create a symbolic link to the latest output directory
	Can ESMValTool plot arbitrary model output?

	XII Changelog
	v2.10.0
	Bug fixes
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.9.0
	Highlights
	Bug fixes
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.8.0
	Highlights
	Backwards incompatible changes
	Bug fixes
	Community
	Deprecations
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.7.0
	Highlights
	Backwards incompatible changes
	Bug fixes
	Community
	Deprecations
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.6.0
	Highlights
	Bug fixes
	Community
	Deprecations
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.5.0
	Highlights
	Backwards incompatible changes
	Bug fixes
	Deprecations
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.4.0
	Highlights
	Bug fixes
	Deprecations
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.3.0
	Bug fixes
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.2.0
	Highlights
	Bug fixes
	Deprecations
	Documentation
	Diagnostics
	Observational and re-analysis dataset support
	Automatic testing
	Installation
	Improvements

	v2.1.1
	Improvements
	Documentation

	v2.1.0
	Diagnostics
	Documentation
	Improvements
	Observational and re-analysis dataset support

	v2.0.0
	Bug fixes
	Diagnostics
	Documentation
	Improvements
	Observational and re-analysis dataset support

	v2.0.0b4
	Bug fixes
	Diagnostics
	Documentation
	Improvements
	Observational and re-analysis dataset support

	XIII Indices and tables
	Python Module Index
	Index

