I Introduction

1 About
2 Contact
3 License
4 What ESMValTool can do for you

II Getting started

5 Installation
6 Configuration
7 Running
8 Output

III Gallery

IV Recipes

9 Atmosphere
10 Climate metrics
11 Future projections
12 IPCC
13 Land
14 Ocean
15 Other
X Frequently Asked Questions 561
38 Is there a mailing list? 563
39 What is YAML? 565
40 Re-running diagnostics 567
41 Enter interactive mode with iPython 569
42 Use multiple config-user.yml files 571
43 Create a symbolic link to the latest output directory 573

XI Changelog 575
44 v2.1.1 577
45 v2.1.0 579
46 v2.0.0 581
47 v2.0.0b4 585

XII Indices and tables 587
Python Module Index 591
Index 593
Part I

Introduction
The Earth System Model Evaluation Tool (ESMValTool) is a community-development that aims at improving diagnosing and understanding of the causes and effects of model biases and inter-model spread. The ESMValTool is open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting the activities within CMIP and at individual modelling centers. We envisage running the ESMValTool routinely on the CMIP model output utilizing observations available through the Earth System Grid Federation (ESGF) in standard formats (obs4MIPs) or made available at ESGF nodes.

The goal is to develop a benchmarking and evaluation tool that produces well-established analyses as soon as model output from CMIP simulations becomes available, e.g., at one of the central repositories of the ESGF. This is realized through standard recipes that reproduce a certain set of diagnostics and performance metrics that have demonstrated its importance in benchmarking Earth System Models (ESMs) in a paper or assessment report, such as Chapter 9 of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) (Flato et al., 2013). The expectation is that in this way a routine and systematic evaluation of model results can be made more efficient, thereby enabling scientists to focus on developing more innovative methods of analysis rather than constantly having to “reinvent the wheel”.

In parallel to standardization of model output, the ESGF also hosts observations for Model Intercomparison Projects (obs4MIPs) and reanalyses data (ana4MIPs). obs4MIPs provides open access data sets of satellite data that are comparable in terms of variables, temporal and spatial frequency, and periods to CMIP model output (Taylor et al., 2012). The ESMValTool utilizes these observations and reanalyses from ana4MIPs plus additionally available observations in order to evaluate the models performance. In many diagnostics and metrics, more than one observational data set or meteorological reanalysis is used to assess uncertainties in observations.

The main idea of the ESMValTool is to provide a broad suite of diagnostics which can be performed easily when new model simulations are run. The suite of diagnostics needs to be broad enough to reflect the diversity and complexity of Earth System Models, but must also be robust enough to be run routinely or semi-operationally. In order to address these challenging objectives the ESMValTool is conceived as a framework which allows community contributions to be bound into a coherent framework.
2.1 User mailing list

Subscribe to the ESMValTool announcements mailing list esmvaltool@listserv.dfn.de to stay up to date about new releases, monthly online meetings, upcoming workshops, and trainings.

To subscribe, send an email to sympa@listserv.dfn.de with the following subject line:

- `subscribe esmvaltool`

or

- `subscribe esmvaltool YOUR_FIRSTNAME YOUR_LASTNAME`

The mailing list also has a public archive online.

2.2 Discussions page

The ESMValTool Discussions page is open for all general and technical questions on the ESMValTool: installation, application, development, or any other question or comment you may have.

2.3 Monthly meetings

We have monthly online meetings using zoom, anyone with an interest in the ESMValTool is welcome to join these meetings to connect with the community. These meetings are always announced in an issue on the ESMValTool repository and on the mailing-list.
2.4 Core development team

- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germany (PI)
 - ESMValTool Core PI and Developer: contact for requests to use the ESMValTool and for collaboration with the development team, access to the PRIVATE GitHub repository.
- Alfred Wegener institute (AWI) Bremerhaven, Germany
- Barcelona Supercomputing Center (BSC), Spain
- Netherlands eScience Center (NLeSC), The Netherlands
- Ludwig Maximilian University of Munich, Germany
- Plymouth Marine Laboratory (PML), United Kingdom
- Swedish Meteorological and Hydrological Institute (SMHI), Sweden
- University of Reading, United Kingdom

2.5 Recipes and diagnostics

Contacts for specific diagnostic sets are the respective authors, as listed in the corresponding recipe and diagnostic documentation and in the source code.
The ESMValTool is released under the Apache License, version 2.0. Citation of the ESMValTool paper (“Software Documentation Paper”) is kindly requested upon use, alongside with the software DOI for ESMValTool (doi:10.5281/zenodo.3401363) and ESMValCore (doi:10.5281/zenodo.3387139) and version number:

Besides the above citation, users are kindly asked to register any journal articles (or other scientific documents) that use the software at the ESMValTool webpage (http://www.esmvaltool.org/). Citing the Software Documentation Paper and registering your paper(s) will serve to document the scientific impact of the Software, which is of vital importance for securing future funding. You should consider this an obligation if you have taken advantage of the ESMValTool, which represents the end product of considerable effort by the development team.
WHAT ESMVALTOOL CAN DO FOR YOU

The ESMValTool applies a great variety of standard diagnostics and metrics, and produces a collection of netCDF and graphical files (plots). Thus, the tool needs a certain amount of input from the user so that it can:

- establish the correct input and output parameters and the structured workflow;
- acquire the correct data;
- execute the workflow; and
- output the desired collective data and media.

To facilitate these four steps, the user has control over the tool via two main input files: the user configuration file and the recipe. The configuration file sets user and site-specific parameters (like input and output paths, desired output graphical formats, logging level, etc.), whereas the recipe file sets data, preprocessing and diagnostic-specific parameters (data parameters grouped in the datasets sections, preprocessing steps for various preprocessors sections, variables’ parameters and diagnostic-specific instructions grouped in the diagnostics sections). The configuration file may be used for a very large number of runs with very minimal changes since most of the parameters it sets are recyclable; the recipe file can be used for a large number of applications, since it may include as many datasets, preprocessors and diagnostics sections as the user deems useful.

Once the user configuration files and the recipe are at hand, the user can start the tool. A schematic overview of the ESMValTool workflow is depicted in the figure below.

For a generalized run scenario, the tool will perform the following ordered procedures.

4.1 Data finding

- read the data requirements from the datasets section of the recipe and assemble the data request to locate the data;
- find the data using the specified root paths and DRS types in the configuration file (note the flexibility allowed by the data finder);
4.2 Data selection

- data selection is performed using the parameters specified in the datasets section (including e.g. type of experiment, type of ensemble, time boundaries etc); data will be retrieved and selected for each variable that is specified in the diagnostics section of the recipe;

4.3 Data fixing

- the ESMValTool requires data to be in CMOR format; since errors in the data formatting are not uncommon, the ESMValTool performs checks against the CMOR library and fixes small irregularities (note that the degree of leniency is not very high).

4.4 Variable derivation

- variable derivation (in the case of non CMOR-standard variables, most likely associated with observational datasets) is performed automatically before running the preprocessor;

- if the variable definitions are already in the database then the user will just have to specify the variableto be derived in the diagnostics section (as any other standard variable, just setting derive: true).
4.5 Run the preprocessor

- if any **preprocessor section** is specified in the recipe file, then data will be loaded in memory as iris cubes and passed through the preprocessing steps required by the user and specified in the preprocessor section, using the specific preprocessing step parameters provided by the user as keys (for the parameter name) and values (for the parameter value); the preprocessing order is very important since a number of steps depend on prior execution of other steps (e.g. **multimodel statistics** cannot be computed unless all models are on a common grid, hence a prior **regridding** on a common grid is necessary); the preprocessor steps order can be set by the user as custom or the default order can be used;

- once preprocessing has finished, the tool writes the data output to disk as netCDF files so that the diagnostics can pick it up and use it; the user will also be provided with a metadata file containing a summary of the preprocessing and pointers to its output. Note that writing data to disk between the preprocessing and the diagnostic phase is required to ensure multi-language support for the latter.

4.6 Run the diagnostics

- the last and most important phase can now be run: using output files from the preprocessor, the diagnostic scripts are executed using the provided diagnostics parameters.
Part II

Getting started
ESMValTool 2.0 requires a Unix(-like) operating system and Python 3.6+.

The ESMValTool supports five different installation methods:

- Installation through Conda package manager (see https://www.continuum.io);
- Installation with Pip and Conda package manager (see https://pypi.org);
- Deployment through a Docker container (see https://www.docker.com);
- Deployment through a Singularity container (see https://sylabs.io/guides/latest/user-guide/);
- From the source code available at https://github.com/ESMValGroup/ESMValTool.

The next sections will detail the procedure to install ESMValTool for each of this methods.

5.1 Conda installation

In order to install the Conda package, you will need both Conda and Julia pre-installed, this is because Julia cannot be installed from Conda. For a minimal conda installation (recommended) go to https://conda.io/miniconda.html. It is recommended that you always use the latest version of Conda, as problems have been reported when trying to use older versions. Installation instructions for Julia can be found on the Julia installation instructions page.

Once you have installed the above prerequisites, you can install ESMValTool by running:

```
conda install esmvaltool -c esmvalgroup -c conda-forge
```

Here `conda` is the executable calling the Conda package manager to install `esmvaltool` and the `-c` flag specifies the Conda software channels in which the `esmvaltool` package and its dependencies can be found.

It is also possible to create a new Conda environment and install ESMValTool into it with a single command:

```
conda create --name esmvaltool -c esmvalgroup -c conda-forge esmvaltool
```

Don’t forget to activate the newly created environment after the installation:

```
conda activate esmvaltool
```

Of course it is also possible to choose a different name than `esmvaltool` for the environment.

Note: Creating a new Conda environment is often much faster and more reliable than trying to update an existing Conda environment.
5.1.1 Installation of subpackages

The diagnostics bundled in ESMValTool are scripts in four different programming languages: Python, NCL, R, and Julia.

There are four language specific packages available:

- esmvaltool-julia
- esmvaltool-ncl
- esmvaltool-python
- esmvaltool-r

The main esmvaltool package contains all four subpackages listed above.

If you only need to run a recipe with diagnostics in some of these languages, it is possible to install only the dependencies needed to do just that.

- The diagnostic script(s) used in each recipe, are documented in Recipes. The extension of the diagnostic script can be used to see in which language a diagnostic script is written.
- Some of the CMORization scripts are written in Python, while others are written in NCL. Therefore, both esmvaltool-python and esmvaltool-ncl need to be installed in order to be able to run all CMORization scripts.

For example, to only install support for diagnostics written in Python and NCL, run

```
conda install esmvaltool-python esmvaltool-ncl -c esmvalgroup -c conda-forge
```

Note that it is only necessary to install Julia prior to the conda installation if you are going to install the esmvaltool-julia package.

Note that the ESMValTool source code is contained in the esmvaltool-python package, so this package will always be installed as a dependency if you install one or more of the packages for other languages.

There is also a lesson available in the ESMValTool tutorial that describes the installation of the ESMValTool in more detail. It can be found here.

5.2 Pip installation

It is also possible to install ESMValTool from PyPI. However, this requires first installing dependencies that are not available on PyPI in some other way. By far the easiest way to install these dependencies is to use conda. For a minimal conda installation (recommended) go to https://conda.io/miniconda.html.

After installing Conda, download the file with the list of dependencies:

```
wget https://raw.githubusercontent.com/ESMValGroup/ESMValTool/master/environment.yml
```

and install these dependencies into a new conda environment with the command

```
conda env create --name esmvaltool --file environment.yml
```

Finally, activate the newly created environment

```
conda activate esmvaltool
```

and install ESMValTool as well as any remaining Python dependencies with the command:
If you would like to run Julia diagnostic scripts, you will also need to install Julia and the Julia dependencies:
```
esvaltool install Julia
```

If you would like to run R diagnostic scripts, you will also need to install the R dependencies:
```
esvaltool install R
```

5.3 Docker installation

ESMValTool is also provided through DockerHub in the form of docker containers. See https://docs.docker.com for more information about docker containers and how to run them.

You can get the latest release with
```
docker pull esmvalgroup/esmvaltool:stable
```

If you want to use the current master branch, use
```
docker pull esmvalgroup/esmvaltool:latest
```

To run a container using those images, use:
```
docker run esmvalgroup/esmvaltool:stable --help
```

Note that the container does not see the data or environmental variables available in the host by default. You can make data available with `-v /path:/path/in/container` and environmental variables with `-e VARNAME`.

For example, the following command would run a recipe
```
docker run -e HOME -v "$HOME":$HOME -v /data:/data esmvalgroup/esmvaltool:stable --run examples/recipe_python.yml
```

with the environmental variable `HOME` available inside the container and the data in the directories `HOME` and `/data`, so these can be used to find the configuration file, recipe, and data.

It might be useful to define a `bash alias` or script to abbreviate the above command, for example
```
alias esmvaltool="docker run -e HOME -v "$HOME":"$HOME" -v /data:/data esmvalgroup/esmvaltool:stable"
```

would allow using the `esmvaltool` command without even noticing that the tool is running inside a Docker container.
5.4 Singularity installation

Docker is usually forbidden in clusters due to security reasons. However, there is a more secure alternative to run containers that is usually available on them: Singularity.

Singularity can use docker containers directly from DockerHub with the following command:

```
singularity run docker://esmvalgroup/esmvaltool:stable run examples/recipe_python.yml
```

Note that the container does not see the data available in the host by default. You can make host data available with `-B /path:/path/in/container`.

It might be useful to define a bash alias or script to abbreviate the above command, for example:

```
alias esmvaltool="singularity run -B $HOME:$HOME -B /data:/data docker://esmvalgroup/esmvaltool:stable"
```

would allow using the `esmvaltool` command without even noticing that the tool is running inside a Singularity container.

Some clusters may not allow to connect to external services, in those cases you can first create a singularity image locally:

```
singularity build esmvaltool.sif docker://esmvalgroup/esmvaltool:stable
```

and then upload the image file `esmvaltool.sif` to the cluster. To run the container using the image file `esmvaltool.sif` use:

```
singularity run esmvaltool.sif run examples/recipe_python.yml
```

5.5 Install from source

5.5.1 Obtaining the source code

The ESMValTool source code is available on a public GitHub repository: https://github.com/ESMValGroup/ESMValTool

The easiest way to obtain it is to clone the repository using git (see https://git-scm.com/). To clone the public repository:

```
git clone https://github.com/ESMValGroup/ESMValTool.git
```

It is also possible to work in one of the ESMValTool private repositories, e.g.:

```
git clone https://github.com/ESMValGroup/ESMValTool-private.git
```

By default, this command will create a folder called ESMValTool containing the source code of the tool.

GitHub also allows one to download the source code in as a tar.gz or zip file. If you choose to use this option, download the compressed file and extract its contents at the desired location.
5.5.2 Prerequisites

It is recommended to use conda to manage ESMValTool dependencies. For a minimal conda installation go to https://conda.io/miniconda.html. To simplify the installation process, an environment definition file is provided in the repository (environment.yml in the root folder).

Attention: Some systems provide a preinstalled version of conda (e.g., via the module environment). However, several users reported problems when installing NCL with such versions. It is therefore preferable to use a local, fully user-controlled conda installation. Using an older version of conda can also be a source of problems, so if you have conda installed already, make sure it is up to date by running conda update -n base conda.

To enable the conda command, please source the appropriate configuration file from your ~/.bashrc file:

```
source <prefix>/etc/profile.d/conda.sh
```

or ~/.cshrc/~.tcshrc file:

```
source <prefix>/etc/profile.d/conda.csh
```

where <prefix> is the install location of your anaconda or miniconda (e.g. /home/$USER/anaconda3 or /home/$USER/miniconda3).

Note: Note that during the installation, conda will ask you if you want the installation to be automatically sourced from your .bashrc or .bash-profile files; if you answered yes, then conda will write bash directives to those files and every time you get to your shell, you will automatically be inside conda’s (base) environment. To deactivate this feature, look for the # >>> conda initialize >>> code block in your .bashrc or .bash-profile and comment the whole block out.

The ESMValTool conda environment file can also be used as a requirements list for those cases in which a conda installation is not possible or advisable. From now on, we will assume that the installation is going to be done through conda.

Ideally, you should create a conda environment for ESMValTool, so it is independent from any other Python tools present in the system.

Note that it is advisable to update conda to the latest version before installing ESMValTool, using the command (as mentioned above)

```
conda update --name base conda
```

To create an environment, go to the directory containing the ESMValTool source code (called ESMValTool if you did not choose a different name) and run

```
conda env create --name esmvaltool --file environment.yml
```

This installs the ESMValCore package from conda as a dependency.

The environment is called esmvaltool by default, but it is possible to use the option --name SOME_ENVIRONMENT_NAME to define a custom name. You should then activate the environment using the command:

```
conda activate esmvaltool
```

It is also possible to update an existing environment from the environment file. This may be useful when updating an older installation of ESMValTool:
conda env update --name esmvaltool --file environment.yml

but if you run into trouble, please try creating a new environment.

Attention: From now on, we assume that the conda environment for ESMValTool is activated.

5.5.3 Software installation

Once all prerequisites are fulfilled, ESMValTool can be installed by running the following commands in the directory containing the ESMValTool source code (called ESMValTool if you did not choose a different name):

```
pip install -e '.[develop]'
```

If you would like to run Julia diagnostic scripts, you will also need to install Julia and the Julia dependencies:

```
esmvaltool install Julia
```

If you would like to run R diagnostic scripts, you will also need to install the R dependencies. Install the R dependency packages:

```
esmvaltool install R
```

The next step is to check that the installation works properly. To do this, run the tool with:

```
esmvaltool --help
```

If everything was installed properly, ESMValTool should have printed a help message to the console.
The *esmvaltool* command is provided by the ESMValCore package, the documentation on configuring ESMValCore can be found here. In particular, it is recommended to read the section on the User configuration file and the section on Finding data.

To install the default configuration file in the default location, run

```
esmvaltool config get_config_user
```

Note that this file needs to be customized using the instructions above, so the *esmvaltool* command can find the data on your system, before it can run a recipe.

There is a lesson available in the ESMValTool tutorial that describes how to personalize the configuration file. It can be found at this site.
ESMValTool is mostly used as a command line tool. Whenever your conda environment for ESMValTool is active, you can just run the command `esmvaltool`. See running `esmvaltool` in the ESMValCore documentation for a short introduction.

7.1 Running a recipe

An example recipe is available in the ESMValTool installation folder as `examples/recipe_python.yml`. This recipe finds data from CanESM2 and MPI-ESM-LR for 2000 - 2002, extracts a single level (850 hPa), regrids it to a 1x1 degree mesh and runs a diagnostic script that creates some plots of Air temperature and precipitation flux. You can download the recipe from github and save it in your project directory as (e.g.) `recipe_python.yml` and then run ESMValTool with

```
$ esmvaltool run recipe_python.yml --synda-download
```

The `--synda-download` option tells ESMValTool to use Synda to search for and download the necessary datasets. ESMValTool will also find recipes that are stored in its installation directory. A copy of the example recipe is shipped with ESMValTool as: `/path/to/installation/esmvaltool/recipes/examples/recipe_python.yml`. Thus, the following also works:

```
$ esmvaltool run examples/recipe_python.yml
```

Note that this command does not call Synda. The required data should thus be located in the directories specified in your user configuration file. Recall that the chapter *Configuring ESMValTool* provides an explanation of how to create your own config-user.yml file.

To get help on additional commands, please use

```
$ esmvaltool --help
```

It is also possible to get help on specific commands, e.g.

```
$ esmvaltool run --help
```

will display the help message with all options for the `run` command.

There is a step-by-step description available in the ESMValTool tutorial on how to run your first recipe. It can be found here.
7.2 Available diagnostics and metrics

See Section Recipes for a description of all available recipes.

To see a list of installed recipes run

```
esmvaltool recipes list
```

7.3 Running multiple recipes

It is possible to run more than one recipe in one go; currently this relies on the user having access to a HPC that has
rose and cylc installed since the procedure involves installing and submitting a Rose suite. The utility that allows
you to do this is esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py.

7.3.1 Base suite:

The base suite to run esmvaltool via rose-cylc is u-bd684; you can find this suite in the Met Office Rose repository at:

When rose will be working with python3.x, this location will become default and the pipeline will access it indepen-
dently of user, unless, of course the user will specify -s $SUITE_LOCATION; until then the user needs to grab a
copy of it in $HOME or specify the default location via -s option.

7.3.2 Environment:

We will move to a unified and centrally-installed esmvaltool environment; until then, the user will have to alter the
env_setup script:

```
u-bd684/app/esmvaltool/env_setup
```

with the correct pointers to esmvaltool installation, if desired.

To be able to submit to cylc, you need to have the /metomi/ suite in path AND use a python2.7 environment. Use the
Jasmin-example below for guidance.

7.3.3 Jasmin-example:

This shows how to interact with rose-cylc and run esmvaltool under cylc using this script:

```
export PATH=/apps/contrib/metomi/bin:$PATH
export PATH=/home/users/valeriu/miniconda2/bin:$PATH
mkdir esmvaltool_rose
cd esmvaltool_rose
cp ESMValTool/esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py .
[enter Met Office password]
[configure ~/u-bd684/rose_suite.conf]
[configure ~/u-bd684/app/esmvaltool/env_setup]
python esmvt_rose_wrapper.py -c config-user.yml
-r recipe_autoassess_stratosphere.yml recipe_OceanPhysics.yml
-d $HOME/esmvaltool_rose
rose suite-run u-bd684
```
Note that you need to pass FULL PATHS to cylc, no . or .. because all operations are done remotely on different nodes.

A practical actual example of running the tool can be found on JASMIN: /home/users/valeriu/esmvaltool_rose. There you will find the run shell: run_example, as well as an example how to set the configuration file. If you don’t have Met Office credentials, a copy of u-bd684 is always located in /home/users/valeriu/roses/u-bd684 on Jasmin.
ESMValTool automatically generates a new output directory with every run. The location is determined by the output_dir option in the config-user.yml file, the recipe name, and the date and time, using the the format: YYYYM-MDD_HHMMSS.

For instance, a typical output location would be: output_directory/recipe_ocean_amoc_20190118_1027/

This is effectively produced by the combination: output_dir/recipe_name_YYYYMMDD_HHMMSS/

This directory will contain 4 further subdirectories:

1. **Diagnostic output** (work): A place for any diagnostic script results that are not plots, e.g. files in NetCDF format (depends on the diagnostics).

2. **Plots**: The location for all the plots, split by individual diagnostics and fields.

3. **Run**: This directory includes all log files, a copy of the recipe, a summary of the resource usage, and the settings.yml interface files and temporary files created by the diagnostic scripts.

4. **Preprocessed datasets** (preproc): This directory contains all the preprocessed netcdfs data and the metadata.yml interface files. Note that by default this directory will be deleted after each run, because most users will only need the results from the diagnostic scripts.

8.1 Preprocessed datasets

The preprocessed datasets will be stored to the preproc/ directory. Each variable in each diagnostic will have its own the metadata.yml interface files saved in the preproc directory.

If the option save_intermediary_cubes is set to true in the config-user.yml file, then the intermediary cubes will also be saved here. This option is set to false in the default config-user.yml file.

If the option remove_preproc_dir is set to true in the config-user.yml file, then the preproc directory will be deleted after the run completes. This option is set to true in the default config-user.yml file.

8.2 Run

The log files in the run directory are automatically generated by ESMValTool and create a record of the output messages produced by ESMValTool and they are saved in the run directory. They can be helpful for debugging or monitoring the job, but also allow a record of the job output to screen after the job has been completed.

The run directory will also contain a copy of the recipe and the settings.yml file, described below. The run directory is also where the diagnostics are executed, and may also contain several temporary files while diagnostics are running.
8.3 Diagnostic output

The work/ directory will contain all files that are output at the diagnostic stage. I.e, the model data is preprocessed by ESMValTool and stored in the preproc/ directory. These files are opened by the diagnostic script, then some processing is applied. Once the diagnostic level processing has been applied, the results should be saved to the work directory.

8.4 Plots

The plots directory is where diagnostics save their output figures. These plots are saved in the format requested by the option `output_file_type` in the config-user.yml file.

8.5 Settings.yml

The settings.yml file is automatically generated by ESMValCore. For each diagnostic, a unique settings.yml file will be produced.

The settings.yml file passes several global level keys to diagnostic scripts. This includes several flags from the config-user.yml file (such as ‘write_netcdf’, ‘write_plots’, etc...), several paths which are specific to the diagnostic being run (such as ‘plot_dir’ and ‘run_dir’) and the location on disk of the metadata.yml file (described below).

```
input_files: [[...]|recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/
    mfo/metadata.yml]
log_level: debug
output_file_type: png
plot_dir: [[...]|recipe_ocean_bgc_20190118_134855/plots/diag_timeseries_scalars/Scalar_
    timeseries]
profile_diagnostic: false
recipe: recipe_ocean_bgc.yml
run_dir: [[...]|recipe_ocean_bgc_20190118_134855/run/diag_timeseries_scalars/Scalar_
    timeseries]
script: Scalar_timeseries
version: 2.0a1
work_dir: [[...]|recipe_ocean_bgc_20190118_134855/work/diag_timeseries_scalars/Scalar_
    timeseries]
write_netcdf: true
write_plots: true
```

The first item in the settings file will be a list of Metadata.yml files. There is a metadata.yml file generated for each field in each diagnostic.

8.6 Metadata.yml

The metadata.yml files is automatically generated by ESMValTool. Along with the settings.yml file, it passes all the paths, boolean flags, and additional arguments that your diagnostic needs to know in order to run.

The metadata is loaded from cfg as a dictionary object in python diagnostics.

Here is an example metadata.yml file:
As you can see, this is effectively a dictionary with several items including data paths, metadata and other information. There are several tools available in python which are built to read and parse these files. The tools are available in the shared directory in the diagnostics directory.
Part III

Gallery
This section shows example plots produced by ESMValTool. For more information, click on the footnote below the image.
1 Landcover - Albedo
2 Land and ocean components of the global carbon cycle
3 Recipe for evaluating Arctic Ocean
4 Stratosphere - Autoassess diagnostics
5 Capacity factor of wind power: Ratio of average estimated power to theoretical maximum power
6 Turnover time of carbon over land ecosystems
7 ClimWIP: independence & performance weighting
8 Clouds
9 IPCC AR5 Chapter 12 (selected figures)
10 Combined Climate Extreme Index
11 Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI)
12 Consecutive dry days
13 Emergent constraint on equilibrium climate sensitivity from global temperature variability
14 Cloud Regime Error Metric (CREM)
15 Climate Variability Diagnostics Package (CVDP)
16 Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations.
17 Diurnal temperature range
18 Equilibrium climate sensitivity
19 Emergent constraints for equilibrium climate sensitivity
20 Ensemble Clustering - a cluster analysis tool for climate model simulations (EnsClus)
21 Example recipes
22 Extreme Events Indices (ETCCDI)
23 Diagnostics of stratospheric dynamics and chemistry
24 Ozone and associated climate impacts
25 IPCC AR5 Chapter 9 (selected figures)
26 Heat wave and cold wave duration
27 Hydroclimatic intensity and extremes (HyInt)
28 KNMI Climate Scenarios 2014
29 Landcover diagnostics
30 Constraining future Indian Summer Monsoon projections with the present-day precipitation over the tropical western Pacific
31 Drought characteristics following Martin (2018)
32 Blocking metrics and indices, teleconnections and weather regimes (MiLES)
33 Modes of variability
34 Multi-model products
35 Ocean diagnostics
36 Performance metrics for essential climate parameters
37 Precipitation quantile bias
38 RainFARM stochastic downscaling
39 Runoff, Precipitation, Evapotranspiration
40 Ocean metrics
41 Constraining uncertainty in projected gross primary production (GPP) with machine learning
42 Sea Ice
43 Sealice drift
44 Sealice feedback
45 Shapeselect
46 Single Model Performance Index (SMPI)
47 Emergent constraint on snow-albedo effect
48 Standardized Precipitation-Evapotranspiration Index (SPEI)
49 Transient Climate Response
50 Thermodynamics of the Climate System - The Diagnostic Tool TheDiaTo v1.0
51 Toymodel
52 Zonal and Meridional Means
53 Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position
54 Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2
55 Stratosphere-troposphere coupling and annular modes indices (ZMNAM)
Part IV

Recipes
9.1 Blocking metrics and indices, teleconnections and weather regimes (MiLES)

9.1.1 Overview

Atmospheric blocking is a recurrent mid-latitude weather pattern identified by a large-amplitude, quasi-stationary, long-lasting, high-pressure anomaly that “blocks” the westerly flow forcing the jet stream to split or meander (Rex, 1950).

It is typically initiated by the breaking of a Rossby wave in a diffluence region at the exit of the storm track, where it amplifies the underlying stationary ridge (Tibaldi and Molteni, 1990). Blocking occurs more frequently in the Northern Hemisphere cold season, with larger frequencies observed over the Euro-Atlantic and North Pacific sectors. Its lifetime oscillates from a few days up to several weeks (Davini et al., 2012) sometimes leading to winter cold spells or summer heat waves.

To this end, the MId-Latitude Evaluation System (MiLES) was developed as stand-alone package (https://github.com/oloapinivad/MiLES) to support analysis of mid-latitude weather patterns in terms of atmospheric blocking, teleconnections and weather regimes. The package was then implemented as recipe for ESMValTool.

The tool works on daily 500hPa geopotential height data (with data interpolated on a common 2.5x2.5 grid) and calculates the following diagnostics:

1D Atmospheric Blocking

Tibaldi and Molteni (1990) index for Northern Hemisphere. Computed at fixed latitude of 60N, with delta of -5,-2.5,0,2.5,5 deg, fN=80N and fS=40N. Full timeseries and climatologies are provided in NetCDF4 Zip format.

2D Atmospheric blocking

Following the index by Davini et al. (2012). It is a 2D version of Tibaldi and Molteni (1990) for Northern Hemisphere atmospheric blocking evaluating meridional gradient reversal at 500hPa. It computes both Instantaneous Blocking and Blocking Events frequency, where the latter allows the estimation of the each blocking duration. It includes also two blocking intensity indices, i.e. the Meridional Gradient Index and the Blocking Intensity index. In addition the orientation (i.e. cyclonic or anticyclonic) of the Rossby wave breaking is computed. A supplementary Instantaneous Blocking index with the GHGS2 condition (see Davini et al., 2012) is also evaluated. Full timeseries and climatologies are provided in NetCDF4 Zip format.
Z500 Empirical Orthogonal Functions

Based on SVD. The first 4 EOFs for North Atlantic (over the 90W-40E 20N-85N box) and Northern Hemisphere (20N-85N) or a custom region are computed. North Atlantic Oscillation, East Atlantic Pattern, and Arctic Oscillation can be evaluated. Figures showing linear regression of PCs on monthly Z500 are provided. PCs and eigenvectors, as well as the variances explained are provided in NetCDF4 Zip format.

North Atlantic Weather Regimes

Following k-means clustering of 500hPa geopotential height. 4 weather regimes over North Atlantic (80W-40E 30N-87.5N) are evaluated using anomalies from daily seasonal cycle. This is done retaining the first North Atlantic EOFs which explains the 80% of the variance to reduce the phase-space dimensions and then applying k-means clustering using Hartigan-Wong algorithm with k=4. Figures report patterns and frequencies of occurrence. NetCDF4 Zip data are saved. Only 4 regimes and DJF supported so far.

9.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_miles_block.yml
- recipe_miles_eof.yml
- recipe_miles_regimes.yml

Diagnostics are stored in diag_scripts/miles/

- miles_block.R
- miles_eof.R
- miles_regimes.R

and subroutines

- basis_functions.R
- block_figures.R
- eof_figures.R
- regimes_figures.R
- block_fast.R
- eof_fast.R
- miles_parameters.R
- regimes_fast.R

miles_parameters.R contains additional internal parameters which affect plot sizes, colortables etc.
9.1.3 User settings

1. miles_block.R

 Required settings for variables
 - reference_dataset: reference dataset for comparison
 - reference_exp: optional reference experiment for comparison (to use when comparing two experiments of the same dataset)

 Required settings for script
 - seasons: Selected season('DJF', 'MAM', 'JJA', 'SON', 'ALL') or your period as e.g. 'Jan_Feb_Mar'

2. miles_eof.R

 Required settings for variables
 - reference_dataset: reference dataset for comparison
 - reference_exp: optional reference experiment for comparison (to use when comparing two experiments of the same dataset)

 Required settings for script
 - seasons: Selected season('DJF', 'MAM', 'JJA', 'SON', 'ALL') or your period as e.g. 'Jan_Feb_Mar'
 - teles: Select EOFs ('NAO', 'AO', 'PNA') or specify custom area as "lon1_lon2_lat1_lat2"

3. miles_regimes.R

 Required settings for variables
 - reference_dataset: reference dataset
 - reference_exp: optional reference experiment for comparison (to use when comparing two experiments of the same dataset)

 Required or optional settings for script
 - None (the two parameters seasons and nclusters in the recipe should not be changed)

9.1.4 Variables

- zg (atmos, daily mean, longitude latitude time)

9.1.5 Observations and reformat scripts

- ERA-INTERIM
9.1.6 References

9.1.7 Example plots

Fig. 1: Blocking Events frequency for a CMIP5 EC-Earth historical run (DJF 1980-1989), compared to ERA-Interim. Units are percentage of blocked days per season.

Fig. 2: North Atlantic Oscillation for a CMIP5 EC-Earth historical run (DJF 1980-1989) compared to ERA-Interim, shown as the linear regression of the monthly Z500 against the first Principal Component (PC1) of the North Atlantic region.
9.2 ClimWIP: independence & performance weighting

9.2.1 Overview

This recipe calculates weights based on combined performance and independence metrics. These weights can be used in subsequent diagnostics. Reference implementation based on https://github.com/lukasbrunner/ClimWIP

9.2.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

- recipe_climwip.yml

Diagnostics are stored in esmvaltool/diag_scripts/weighting/

- climwip.py: Compute weights for each input dataset
- weighted_temperature_graph.py: Show the difference between weighted and non-weighted temperature anomalies.

9.2.3 User settings in recipe

1. Script climwip.py

 Required settings for script

 - performance_sigma: shape parameter weights calculation (determined offline). Can be skipped or not set if performance_contributions is skipped or not set.
 - independence_sigma: shape parameter for weights calculation (determined offline). Can be skipped or not set if independence_contributions is skipped or not set.
 - performance_contributions: dictionary where the keys represent the variable groups to be included in the performance calculation. The values give the relative contribution of each group, with 0 being equivalent to not including the group. Can be skipped or not set then weights will be based purely on model independence (this is mutually exclusive with independence_contributions being skipped or not set).
 - independence_contributions: dictionary where the keys represent the variable groups to be included in the independence calculation. The values give the relative contribution of each group, with 0 being equivalent to not including the group. Can be skipped or not set then weights will be based purely on model performance (this is mutually exclusive with performance_contributions being skipped or not set).
 - combine_ensemble_members: set to true if ensemble members of the same model should be combined during the processing (leads to identical weights for all ensemble members of the same model). Recommended if running with many (>10) ensemble members per model.
 - obs_data: list of project names to specify which are the observational data. The rest is assumed to be model data.

 Required settings for variables

 - This script takes multiple variables as input as long as they’re available for all models
 - start_year: provide the period for which to compute performance and independence.
 - end_year: provide the period for which to compute performance and independence.
• **mip**: typically Amon
• **preprocessor**: e.g. climwip_summer_mean
• **additional_datasets**: provide a list of model data for performance calculation.

Required settings for preprocessor

• Different combinations of preprocessor functions can be used, but the end result should always be aggregated over the time dimension, i.e. the input for the diagnostic script should be 2d (lat/lon).

Optional settings for preprocessor

• `extract_region` or `extract_shape` can be used to crop the input data.
• `extract_season` can be used to focus on a single season.
• different climate statistics can be used to calculate mean or (detrended) std_dev.

2. Script `weighted_temperature_graph.py`

Required settings for script

• **ancestors**: must include weights from previous diagnostic
• **weights**: the filename of the weights: ‘weights.nc’

Required settings for variables

• This script only takes temperature (tas) as input
• **start_year**: provide the period for which to plot a temperature change graph.
• **end_year**: provide the period for which to plot a temperature change graph.
• **mip**: typically Amon
• **preprocessor**: temperature_anomalies

Required settings for preprocessor

• Different combinations of preprocessor functions can be used, but the end result should always be aggregated over the latitude and longitude dimensions, i.e. the input for the diagnostic script should be 1d (time).

Optional settings for preprocessor

• Can be a global mean or focus on a point, region or shape
• Anomalies can be calculated with respect to a custom reference period
• Monthly, annual or seasonal average/extraction can be used

3. Script `weighted_temperature_map.py`

Required settings for script

• **ancestors**: must include weights from previous diagnostic
• **weights**: the filename of the weights: ‘weights_combined.nc’

Optional settings for script

• **model_aggregation**: how to aggregate the models: mean (default), median, integer between 0 and 100 given a percentile
• **xticks**: positions to draw xticks at
• **yticks**: positions to draw yticks at
Required settings for variables

- This script takes temperature (tas) as input
- **start_year**: provide the period for which to plot a temperature change graph.
- **end_year**: provide the period for which to plot a temperature change graph.
- **mip**: typically Amon
- **preprocessor**: temperature_anomalies

Optional settings for variables

- A second variable is optional: temperature reference (tas_reference). If given, maps of temperature change to the reference are drawn, otherwise absolute temperature are drawn.
- **tas_reference** takes the same fields as tas

9.2.4 Variables

- pr (atmos, monthly mean, longitude latitude time)
- tas (atmos, monthly mean, longitude latitude time)
- psl (atmos, monthly mean, longitude latitude time)
- more variables can be added if available for all datasets.

9.2.5 Observations and reformat scripts

Observation data is defined in a separate section in the recipe and may include multiple datasets.

9.2.6 References

- Brunner et al. 2020 (accepted), Earth Syst. Dynam.,
- Merrifield et al. 2020, Earth Syst. Dynam., 11, 807-834,
- Brunner et al. 2019, Environ. Res. Lett., 14, 124010,

9.2.7 Example plots

9.3 Clouds

9.3.1 Overview

The recipe recipe_lauer13jclim.yml computes the climatology and interannual variability of climate relevant cloud variables such as cloud radiative forcing (CRE), liquid water path (lwp), cloud amount (clt), and total precipitation (pr) reproducing some of the evaluation results of Lauer and Hamilton (2013). The recipe includes a comparison of the geographical distribution of multi-year average cloud parameters from individual models and the multi-model mean with satellite observations. Taylor diagrams are generated that show the multi-year annual or seasonal average performance of individual models and the multi-model mean in reproducing satellite observations. The diagnostic also facilitates the assessment of the bias of the multi-model mean and zonal averages of individual models compared.
Fig. 3: Distance matrix for temperature, providing the independence metric.
Fig. 4: Distance of precipitation relative to observations, providing the performance metric.
Fig. 5: Weights determined by combining independence and performance metrics for tas.
Fig. 6: Interquartile range of temperature anomalies relative to 1981-2010, weighted versus non-weighted.

Fig. 7: Map of weighted mean temperature change 2081-2100 relative to 1995-2014
with satellite observations. Interannual variability is estimated as the relative temporal standard deviation from multi-year timeseries of data with the temporal standard deviations calculated from monthly anomalies after subtracting the climatological mean seasonal cycle.

9.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_lauer13jclim.yml

Diagnostics are stored in diag_scripts/clouds/

- clouds.ncl: global maps of (multi-year) annual means including multi-model mean
- clouds_bias.ncl: global maps of the multi-model mean and the multi-model mean bias
- clouds_interannual: global maps of the interannual variability
- clouds_isccp: global maps of multi-model mean minus observations + zonal averages of individual models, multi-model mean and observations
- clouds_taylor.ncl: taylor diagrams

9.3.3 User settings in recipe

1. Script clouds.ncl

 Required settings (scripts)
 none

 Optional settings (scripts)
 - embracesetup: true = 2 plots per line, false = 4 plots per line (default)
 - explicit_cn_levels: explicit contour levels (array)
 - extralegend: plot legend(s) to extra file(s)
 - filename_add: optionally add this string to plot filenames
 - panel_labels: label individual panels (true, false)
 - PanelTop: manual override for “@gnsPanelTop” used by panel plot(s)
 - projection: map projection for plotting (default = “CylindricalEquidistant”)
 - showdiff: calculate and plot differences model - reference (default = false)
 - rel_diff: if showdiff = true, then plot relative differences (%) (default = False)
 - ref_diff_min: lower cutoff value in case of calculating relative differences (in units of input variable)
 - region: show only selected geographic region given as latmin, latmax, lonmin, lonmax
 - timemean: time averaging - “seasonal” = DJF, MAM, JJA, SON), “annual” = annual mean
 - treat_var_as_error: treat variable as error when averaging (true, false); true: avg = sqrt(mean(var*var)), false: avg = mean(var)

 Required settings (variables)
 none

 Optional settings (variables)
• long_name: variable description
• reference_dataset: reference dataset; REQUIRED when calculating differences (showdiff = True)
• units: variable units (for labeling plot only)

Color tables
• variable “lwp”: diag_scripts/shared/plot/rbg/qcm3.rgb

2. Script clouds_bias.ncl

Required settings (scripts)
none

Optional settings (scripts)
• plot_abs_diff: additionally also plot absolute differences (true, false)
• plot_rel_diff: additionally also plot relative differences (true, false)
• projection: map projection, e.g., Mollweide, Mercator
• timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)

Required settings (variables)*
• reference_dataset: name of reference dataset

Optional settings (variables)
• long_name: description of variable

Color tables
• variable “tas”: diag_scripts/shared/plot/rbg/ipcc-tas.rgb, diag_scripts/shared/plot/rbg/ipcc-tas-delta.rgb
• variable “pr-mmday”: diag_scripts/shared/plots/rgb/ipcc-precip.rgb, diag_scripts/shared/plot/rbg/ipcc-precip-delta.rgb

3. Script clouds_interannual.ncl

Required settings (scripts)
none

Optional settings (scripts)
• colormap: e.g., WhiteBlueGreenYellowRed, rainbow
• explicit_cn_levels: use these contour levels for plotting
• extrafiles: write plots for individual models to separate files (true, false)
• projection: map projection, e.g., Mollweide, Mercator

Required settings (variables)
none

Optional settings (variables)
• long_name: description of variable
• reference_dataset: name of reference dataset

Color tables
• variable “lwp”: diag_scripts/shared/plots/rbg/qcm3.rgb
4. Script clouds_ipcc.ncl

 Required settings (scripts)

 none

 Optional settings (scripts)

 - explicit_cn_levels: contour levels
 - mask_ts_sea_ice: true = mask T < 272 K as sea ice (only for variable “ts”); false = no additional grid cells masked for variable “ts”
 - projection: map projection, e.g., Mollweide, Mercator
 - styleset: style set for zonal mean plot (“CMIP5”, “DEFAULT”)
 - timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)
 - valid_fraction: used for creating sea ice mask (mask_ts_sea_ice = true): fraction of valid time steps required to mask grid cell as valid data

 Required settings (variables)

 - reference_dataset: name of reference data set

 Optional settings (variables)

 - long_name: description of variable
 - units: variable units

 Color tables

 - variables “pr”, “pr-mmday”: diag_scripts/shared/plot/rgb/ipcc-precip-delta.rgb

5. Script clouds_taylor.ncl

 Required settings (scripts)

 none

 Optional settings (scripts)

 - embracelegend: false (default) = include legend in plot, max. 2 columns with dataset names in legend; true = write extra file with legend, max. 7 dataset names per column in legend, alternative observational dataset(s) will be plotted as a red star and labeled “altern. ref. dataset” in legend (only if dataset is of class “OBS”)
 - estimate_obs_uncertainty: true = estimate observational uncertainties from mean values (assuming fractions of obs. RMSE from documentation of the obs data); only available for “CERES-EBAF”, “MODIS”, “MODIS-L3”; false = do not estimate obs. uncertainties from mean values
 - filename_add: legacy feature: arbitrary string to be added to all filenames of plots and netcdf output produced (default = “")
 - mask_ts_sea_ice: true = mask T < 272 K as sea ice (only for variable “ts”); false = no additional grid cells masked for variable “ts”
 - styleset: “CMIP5”, “DEFAULT” (if not set, clouds_taylor.ncl will create a color table and symbols for plotting)
 - timemean: time averaging; annualclim (default) = 1 plot annual mean; seasonalclim = 4 plots (DJF, MAM, JJA, SON)
 - valid_fraction: used for creating sea ice mask (mask_ts_sea_ice = true): fraction of valid time steps required to mask grid cell as valid data
Required settings (variables)

- reference_dataset: name of reference data set

Optional settings (variables)

none

9.3.4 Variables

- clwvi (atmos, monthly mean, longitude latitude time)
- clivi (atmos, monthly mean, longitude latitude time)
- clt (atmos, monthly mean, longitude latitude time)
- pr (atmos, monthly mean, longitude latitude time)
- rlut, rlutcs (atmos, monthly mean, longitude latitude time)
- rsut, rsutcs (atmos, monthly mean, longitude latitude time)

9.3.5 Observations and reformat scripts

Note: (1) obs4mips data can be used directly without any preprocessing; (2) see headers of reformat scripts for non-obs4mips data for download instructions.

- CERES-EBAF (obs4mips) - CERES TOA radiation fluxes (used for calculation of cloud forcing)
- GPCP-SG (obs4mips) - Global Precipitation Climatology Project total precipitation
- MODIS (obs4mips) - MODIS total cloud fraction

Reformat script: reformat_scripts/obs/reformat_obs_UWisc.ncl

9.3.6 References

9.3. Clouds

53
9.3.7 Example plots

Fig. 8: The 20-yr average LWP (1986-2005) from the CMIP5 historical model runs and the multi-model mean in comparison with the UWisc satellite climatology (1988-2007) based on SSM/I, TMI, and AMSR-E (O’Dell et al. 2008).

9.4 Cloud Regime Error Metric (CREM)

9.4.1 Overview

The radiative feedback from clouds remains the largest source of uncertainty in determining the climate sensitivity. Traditionally, cloud has been evaluated in terms of its impact on the mean top of atmosphere fluxes. However it is quite possible to achieve good performance on these criteria through compensating errors, with boundary layer clouds being too reflective but having insufficient horizontal coverage being a common example (e.g., Nam et al., 2012). Williams and Webb (2009) (WW09) propose a Cloud Regime Error Metric (CREM) which critically tests the ability of a model to simulate both the relative frequency of occurrence and the radiative properties correctly for a set of cloud regimes determined by the daily mean cloud top pressure, cloud albedo and fractional coverage at each grid-box. WW09 describe in detail how to calculate their metrics and we have included the CREMp metric from their paper in ESMValTool, with clear references in the lodged code to tables in their paper. This has been applied to those CMIP5
Fig. 9: Taylor diagram showing the 20-yr annual average performance of CMIP5 models for total cloud fraction as compared to MODIS satellite observations.

Fig. 10: 20-year average (1986-2005) annual mean cloud radiative effects of CMIP5 models against the CERES EBAF (2001–2012). Top row shows the shortwave effect; middle row the longwave effect, and bottom row the net effect. Multi-model mean biases against CERES EBAF are shown on the left, whereas the right panels show zonal averages from CERES EBAF (thick black), the individual CMIP5 models (thin gray lines) and the multi-model mean (thick red line). Similar to Figure 9.5 of Flato et al. (2013).
Fig. 11: Interannual variability of modeled and observed (GPCP) precipitation rates estimated as relative temporal standard deviation from 20 years (1986-2005) of data. The temporal standard deviations are calculated from monthly anomalies after subtracting the climatological mean seasonal cycle.
models who have submitted the required diagnostics for their AMIP simulation (see Figure 8 below). As documented by WW09, a perfect score with respect to ISCCP would be zero. WW09 also compared MODIS/ERBE to ISCCP in order to provide an estimate of observational uncertainty. This was found to be 0.96 and this is marked on Figure 8, hence a model with a CREM similar to this value could be considered to have an error comparable with observational uncertainty, although it should be noted that this does not necessarily mean that the model lies within the observations for each regime. A limitation of the metric is that it requires a model to be good enough to simulate each regime. If a model is that poor that the simulated frequency of occurrence of a particular regime is zero, then a NaN will be returned from the code and a bar not plotted on the figure for that model.

9.4.2 Available recipes and diagnostics

Recipes are stored in recipes/
• recipe_williams09climdyn_CREM.yml

Diagnostics are stored in diag_scripts/crem/
• ww09_esmvaltool.py

9.4.3 User settings

None.

9.4.4 Variables

• albisccp (atmos, daily mean, longitude latitude time)
• cltisccp (atmos, daily mean, longitude latitude time)
• pctisccp (atmos, daily mean, longitude latitude time)
• rlut (atmos, daily mean, longitude latitude time)
• rlutcs (atmos, daily mean, longitude latitude time)
• rsut (atmos, daily mean, longitude latitude time)
• rsutcs (atmos, daily mean, longitude latitude time)
• sic/siconc (seaice, daily mean, longitude latitude time)
• snc (atmos, daily mean, longitude latitude time)

If snc is not available then snw can be used instead. For AMIP simulations, sic/siconc is often not submitted as it a boundary condition and effectively the same for every model. In this case the same daily sic data set can be used for each model.

Note: in case of using sic/siconc data from a different model (AMIP), it has to be checked by the user that the calendar definitions of all data sets are compatible, in particular whether leap days are included or not.

9.4. Cloud Regime Error Metric (CREM)
9.4.5 Observations and reformat scripts

All observational data have been pre-processed and included within the routine. These are ISCCP, ISCCP-FD, MODIS, ERBE. No additional observational data are required at runtime.

9.4.6 References

9.4.7 Example plots

![Cloud Regime Error Metrics (CREMpd) from William and Webb (2009) applied to those CMIP5 AMIP simulations with the required data in the archive. A perfect score with respect to ISCCP is zero; the dashed red line is an indication of observational uncertainty.]

Fig. 12: Cloud Regime Error Metrics (CREMpd) from William and Webb (2009) applied to those CMIP5 AMIP simulations with the required data in the archive. A perfect score with respect to ISCCP is zero; the dashed red line is an indication of observational uncertainty.

9.5 Combined Climate Extreme Index

9.5.1 Overview

The goal of this diagnostic is to compute time series of a number of extreme events: heatwave, coldwave, heavy precipitation, drought and high wind. Then, the user can combine these different components (with or without weights). The result is an index similar to the Climate Extremes Index (CEI; Karl et al., 1996), the modified CEI (mCEI; Gleason et al., 2008) or the Actuaries Climate Index (ACI; American Academy of Actuaries, 2018). The output consists of a netcdf file containing the area-weighted and multi-model multi-metric index. This recipe can be applied to data with any temporal resolution, and the running average is computed based on the user-defined window length (e.g. a window length of 5 would compute the 5-day running mean when applied to data, or 5-month running mean when applied to monthly data).
In recipe_extreme_index.yml, after defining the area and reference and projection period, the weigths for each metric selected. The options are

- weight_t90p: the weight of the number of days when the maximum temperature exceeds the 90th percentile,
- weight_t10p: the weight of the number of days when the minimum temperature falls below the 10th percentile,
- weight_Wx: the weight of the number of days when wind power (third power of wind speed) exceeds the 90th percentile,
- weight_cdd: the weight of the maximum length of a dry spell, defined as the maximum number of consecutive days when the daily precipitation is lower than 1 mm, and
- weight_rx5day: the weight of the maximum precipitation accumulated during 5 consecutive days.

9.5.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_extreme_index.yml

Diagnostics are stored in diag_scripts/magic_bsc/
- extreme_index.R

9.5.3 User settings

User setting files are stored in recipes/

1. recipe_extreme_index.yml

 Required settings for script

 - weight_t90p: 0.2 (from 0 to 1, the total sum of the weight should be 1)
 - weight_t10p: 0.2 (from 0 to 1, the total sum of the weight should be 1)
 - weight_Wx: 0.2 (from 0 to 1, the total sum of the weight should be 1)
 - weight_rx5day: 0.2 (from 0 to 1, the total sum of the weight should be 1)
 - weight_cdd: 0.2 (from 0 to 1, the total sum of the weight should be 1)
 - running_mean: 5 (depends on the length of the future projection period selected, but recommended not greater than 11)

9.5.4 Variables

- tasmax (atmos, daily, longitude, latitude, time)
- tasmin (atmos, daily, longitude, latitude, time)
- sfcWind (atmos, daily, longitude, latitude, time)
- pr (atmos, daily, longitude, latitude, time)
9.5.5 Observations and reformat scripts

None

9.5.6 References

9.5.7 Example plots

Average change in the heat component (90p metric) of the Combined Climate Extreme Index for the 2020-2040 compared to the 1971-2000 reference period for the RCP 8.5 scenario simulated by MPI-ESM-MR.

9.6 Consecutive dry days

9.6.1 Overview

Meteorological drought can in its simplest form be described by a lack of precipitation. First, a wet day threshold is set, which can be either a limit related to measurement accuracy, or more directly process related to an amount that would break the drought. The diagnostic calculates the longest period of consecutive dry days, which is an indicator of the worst drought in the time series. Further, the diagnostic calculates the frequency of dry periods longer than a user defined number of days.
9.6.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_consecdrydays.yml

Diagnostics are stored in diag_scripts/droughtindex/

- diag_cdd.py: calculates the longest period of consecutive dry days, and the frequency of dry day periods longer than a user defined length

9.6.3 User settings in recipe

1. Script diag_cdd.py

 Required settings (script)

 - plim: limit for a day to be considered dry [mm/day]
 - frlim: the shortest number of consecutive dry days for entering statistic on frequency of dry periods.

9.6.4 Variables

- pr (atmos, daily mean, time latitude longitude)
9.6.5 Example plots

Fig. 13: Example of the number of occurrences with consecutive dry days of more than five days in the period 2001 to 2002 for the CMIP5 model bcc-csm1-1-m.

9.7 Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations.

9.7.1 Overview

The recipe reproduces figures from DeAngelis et al. (2015): Figure 1b to 4 from the main part as well as extended data figure 1 and 2. This paper compares models with different schemes for water vapor short wave radiance absorption with the observations. Schemes using pseudo-k-distributions with more than 20 exponential terms show the best results.

9.7.2 Available recipes and diagnostics

Recipes are stored in recipes/
 • recipe_deangelis15nat.yml

Diagnostics are stored in diag_scripts/
 • deangelis15nat/deangelisf1b.py
 • deangelis15nat/deangelisf2ext.py
 • deangelis15nat/deangelisf3f4.py
9.7.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models. `deangelisf1b.py`: Several flux variables (W m\(^{-2}\)) and up to 6 different model experiments can be handled. Each variable needs to be given for each model experiment. The same experiments must be given for all models. In DeAngelis et al. (2015) 150 year means are used but the recipe can handle any duration.

`deangelisf2ext.py`: For each model, two experiments must be given: a pre industrial control run, and a scenario with 4 times CO\(_2\). Possibly, 150 years should be given, but shorter time series work as well.

9.7.4 Variables

`deangelisf1b.py`: Tested for:

- `rsnst` (atmos, monthly, longitude, latitude, time)
- `rlnst` (atmos, monthly, longitude, latitude, time)
- `lvp` (atmos, monthly, longitude, latitude, time)
- `hfss` (atmos, monthly, longitude, latitude, time)

Any flux variable (W m\(^{-2}\)) should be possible.

`deangelisf2ext.py`:

- `rsnst` (atmos, monthly, longitude, latitude, time)
- `rlnst` (atmos, monthly, longitude, latitude, time)
- `rsnstcs` (atmos, monthly, longitude, latitude, time)
- `rlnstcs` (atmos, monthly, longitude, latitude, time)
- `lvp` (atmos, monthly, longitude, latitude, time)
- `hfss` (atmos, monthly, longitude, latitude, time)
- `tas` (atmos, monthly, longitude, latitude, time)

`deangelisf3f4.py`:

* `rsnstcs` (atmos, monthly, longitude, latitude, time) * `rsnstcsnorm` (atmos, monthly, longitude, latitude, time) * `prw` (atmos, monthly, longitude, latitude, time) * `tas` (atmos, monthly, longitude, latitude, time)

9.7.5 Observations and reformat scripts

`deangelisf1b.py`: None

`deangelisf2ext.py`: None

`deangelisf3f4.py`:

- `rsnstcs` CERES-EBAF
- `prw` ERA-Interim, SSMI
9.7.6 References

9.7.7 Example plots

Fig. 14: Global average multi-model mean comparing different model experiments for the sum of upward long wave flux at TOA and net downward long wave flux at the surface (rlnst), heating from short wave absorption (rsnst), latent heat release from precipitation (lvp), and sensible heat flux (hfss). The panel shows three model experiments, namely the pre-industrial control simulation averaged over 150 years (blue), the RCP8.5 scenario averaged over 2091-2100 (orange) and the abrupt quadrupled CO\textsubscript{2} scenario averaged over the years 141-150 after CO\textsubscript{2} quadrupling in all models except CNRM-CM5-2 and IPSL-CM5A-MR, where the average is calculated over the years 131-140 (gray). The figure shows that energy sources and sinks readjust in reply to an increase in greenhouse gases, leading to a decrease in the sensible heat flux and an increase in the other fluxes.

9.8 Diurnal temperature range

9.8.1 Overview

The goal of this diagnostic is to compute a vulnerability indicator for the diurnal temperature range (DTR); the maximum variation in temperature within a period of 24 hours at a given location. This indicator was first proposed by the energy sector, to identify locations which may experience increased diurnal temperature variation in the future, which would put additional stress on the operational management of district heating systems. This indicator was defined as the DTR exceeding 5 degrees celsius at a given location and day of the year (Deandreis et al., N.D.). Projections of this indicator currently present high uncertainties, uncertainties associated to both Tmax and Tmin in future climate projections.

As well as being of use to the energy sector, the global-average DTR has been evaluated using both observations and climate model simulations (Braganza et. al., 2004) and changes in the mean and variability of the DTR have been shown to have a wide range of impacts on society, such as on the transmission of diseases (Lambrechts et al., 2011; Paaijmans et al., 2010).

The recipe recipe_diurnal_temperature_index.yml computes first a mean DTR for a reference period using historical simulations and then, the number of days when the DTR from the future climate projections exceeds that of the reference period by 5 degrees or more. The user can define both the reference and projection periods, and the region...
Fig. 15: The temperature-mediated response of each atmospheric energy budget term for each model as blue circles and the model mean as a red cross. The numbers above the abscissa are the cross-model correlations between dlvp/dtas and each other temperature-mediated response.

Fig. 16: Scatter plot and regression line the between the ratio of the change of net short wave radiation (rsnst) and the change of the Water Vapor Path (prw) against the ratio of the change of netshort wave radiation for clear sky (rsnstcs) and the the change of surface temperature (tas). The width of horizontal shading for models and the vertical dashed lines for observations (Obs.) represent statistical uncertainties of the ratio, as the 95% confidence interval (CI) of the regression slope to the rsnst versus prw curve. For the observations the minimum of the lower bounds of all CIs to the maximum of the upper bounds of all CIs is shown.

9.8. Diurnal temperature range
to be considered. The output produced by this recipe consists of a four panel plot showing the maps of the projected mean DTR indicator for each season and a netcdf file containing the corresponding data.

9.8.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_diurnal_temperature_index.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• diurnal_temp_index.R: calculates the diurnal temperature vulnerability index.

9.8.3 User settings

User setting files are stored in recipes/

1. recipe_diurnal_temperature_index.yml

 Required settings for script

 • None

9.8.4 Variables

• tasmin and tasmax (atmos, daily, longitude, latitude, time)

9.8.5 Observations and reformat scripts

None

9.8.6 References

9.8.7 Example plots

Mean number of days exceeding the Diurnal Temperature Range (DTR) simulated during the historical period (1961-1990) by 5 degrees during the period 2030-2080. The result is derived from one RCP 8.5 scenario simulated by MPI-ESM-MR.

9.9 Extreme Events Indices (ETCCDI)

9.9.1 Overview

This diagnostic uses the standard climdxx.pcie.ncdf R library to compute the 27 climate change indices specified by the joint CCI/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices http://etccdi.pacificclimate.org/. The needed input fields are daily average precipitation flux and minimum, maximum and average daily surface temperatures. The recipe reproduces panels of figure 9.37 of the IPCC AR5 report, producing both a Gleckler plot, with relative error metrics for the CMIP5 temperature and precipitation extreme indices, and timeseries plots comparing the ensemble spread with observations. For plotting 1 to 4 observational reference datasets are supported. If no observational reference datasets are given, the plotting routines do not work, however, index generation without plotting is still possible. All datasets are regridded to a common grid and considered only over land.
9.9.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_extreme_events.yml

Diagnostics are stored in diag_scripts/extreme_events/

- ExtremeEvents.r

and subroutines

- common_climdex_preprocessing_for_plots.r
- make_Gleckler_plot2.r
- make_timeseries_plot.r
- cfg_climdex.r
- cfg_extreme.r

9.9.3 User settings

Required settings for script

- reference_datasets: list containing the reference datasets to compare with
- timeseries_idx: list of indices to compute for timeseries plot. The syntax is “XXXETCCDI_TT”, where “TT” can be either “yr” or “mon” (yearly or monthly indices are computed) and “XXX” can be one of the following: “altcdd”, “altcsdi”, “altcwd”, “altwsdi”, “cdd”, “csdi”, “cwd”, “dtr”, “fd”, “gsl”, “id”, “prcptot”, “r10mm”, “r1mm”, “r20mm”, “r95p”, “r99p”, “r1day”, “r5day”, “sdii”, “su”, “tn10p”, “tn90p”, “tnn”, “tx”, “tr”, “tx10p”, “tx90p”, “txn”, “txx”, “wsdi”. The option ”mon” for “TT” can be only used in combination with one of: “txx”, “txn”, “tnn”, “tn10p”, “tn90p”, “dtr”, “rx1day”, “rx5day”.
- gleckler_idx: list of indices to compute for Gleckler plot. Same syntax as above. The diagnostic computes all unique indices specified in either gleckler_idx or timeseries_idx. If at least one “mon” index is selected, the indices are computed but no plots are produced.
- base_range: a list of two years to specify the range to be used as “base range” for climdex (the period in which for example reference percentiles are computed)

Optional settings for script

- regrid_dataset: name of dataset to be used as common target for regridding. If missing the first reference dataset is used
- mip_name: string containing the name of the model ensemble, used for titles and labels in the plots (default: “CMIP”)
- analysis_range: a list of two years to specify the range to be used for the analysis in the plots. The input data will need to cover both analysis_range and base_range. If missing the full period covered by the input datasets will be used.
- ts_plt: (logical) if to produce the timeseries or not (default: true)
- glc_plt: (logical) if to produce the Gleckler or not (default: true)
- climdex_parallel: number of parallel threads to be used for climdex calculation (default: 4). Also the logical false can be passed to switch off parallel computation.
- normalize: (logical) if to detrend and normalize with the standard deviation for the datasets for use in the time-series plot. When this option is used the data for the following indices are detrended and normalized in the time-series plots: “altcdd”, “altcsdi”, “altcwd”, “altwsdi”, “cdd”, “cwd”, ”dtr”, “fd”, “gsl”, “id”, “prcptot”, “r10mm”, “r1mm”, “r20mm”, “r95p”, “r99p”, “rx1day”, “rx5day”, “sdii”, “su”, “tnn”, “tnx”, “tr”, “txn", “txx” (default: false)

Additional optional setting controlling the plots:

- Timeseries plots:
 - ts_png_width: width for png figures (default: 640)
 - ts_png_height: height for png figures (default: 480)
 - ts_png_units: units for figure size (default: “px”)
 - ts_png_pointsize: fontsize (default: 12)
 - ts_png_bg: background color (default: “white”)
 - ts_col_list: list of colors for lines (default: [“dodgerblue2”, “darkgreen”, “firebrick2”, “darkorchid”, “aquamarine3”])
 - ts_lty_list: list of linetypes (default: [1, 4, 2, 3, 5])
 - ts_lwd_list: list of linewidths (default: [2, 2, 2, 2])

- Gleckler plot:
 - gl_png_res: height for png figures (default: 480). The width of the figure is computed automatically.
 - gl_png_units: units for figure size (default: “px”)
 - gl_png_pointsize: fontsize (default: 12)
 - gl_png_bg: background color (default: “white”)
 - gl_mar_par: page margins vector (default: [10, 4, 3, 14])
 - gl_rmsesparc: spacing of RMSE column (default: 0.01)
 - gl_scaling_factor: scaling factor for colorscale height (default: 0.9)
 - gl_text_scaling_factor: scaling factor for text size (default: 1.0)
 - gl_xscale_spacer_rmse: horizontal posizion of coloured colorbar (default: 0.05)
 - gl_xscale_spacer_rmsestd: horizontal posizion of gray colorbar (default: 0.05)
 - gl_symb_scaling_factor: scaling factor for white “symbol” square explaining the partition (default: 1.0)
 - gl_symb_xshift: horizontal position of the symbol box (default: 0.2)
 - gl_symb_yshift: vertical position of the symbol box (default: 0.275)
 - gl_text_symb_scaling_factor: scaling factor for text to be used for symbol box (default: 0.5)
9.9.4 Variables

- tas (atmos, daily mean, longitude latitude time)
- tasmin (atmos, daily minimum, longitude latitude time)
- tasmax (atmos, daily maximum, longitude latitude time)
- pr (atmos, daily mean, longitude latitude time)

9.9.5 Observations and reformat scripts

None.

9.9.6 References

9.9.7 Example plots

Fig. 17: Portrait plot of relative error metrics for the CMIP5 temperature and precipitation extreme indices evaluated over 1981-2000. Reproduces Fig. 9.37 of the IPCC AR5 report, Chapter 9.
9.10 Diagnostics of stratospheric dynamics and chemistry

9.10.1 Overview

This recipe reproduces the figures of Ey-ring et al. (2006) The following plots are reproduced:

- Vertical profile climatological mean bias of climatological mean for selected seasons and latitudinal region.
- Vertical and latitudinal profile of climatological mean for selected seasons this figure and setting is valid for figure 5 (CH4) figure 6 (H2O) figure 11 (HCL) figure 13 (tro3).
- Total ozone anomalies at different latitudinal band and seasons.

9.10.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

- recipe_eyring06jgr.yml

Diagnostics are stored in esmvaltool/diag_scripts/eyring06jgr/

- eyring06jgr_fig01.ncl
- eyring06jgr_fig05a.ncl
- eyring06jgr_fig05b.ncl
- eyring06jgr_fig15.ncl
9.10.3 User settings in recipe

1. Preprocessor

 - **regrid_interp_lev_zonal**: Regridding and interpolation reference_dataset levels used by eyring06jgr_fig01 and eyring06jgr_fig05

 - **zonal**: Regridding and zonal mean used by eyring06jgr_fig15

2. Script `<eyring06jgr_fig01.ncl>`

 Required settings for script

 - **latmin**: array of float, min lat where variable is averaged, i.e. [60., 60., -90., -90.]

 - **latmax**: array of float, max lat where variable is averaged, i.e. [90., 90., -60., -60.]

 - **season**: array of string, season when variable is averaged, i.e. [“DJF”, “MAM”, “JJA”, “SON”]

 - **XMin**: array of float, min limit X axis [-30., -30., -30., -30.]

 - **XMax**: array of float, max limit X axis [20., 20., 20., 20.]

 - **levmin**: array of float, min limit Y axis [1., 1., 1., 1.]

 - **levmax**: array of float, max limit Y axis [350., 350., 350., 350.]

 Optional settings for script

 - **start_year**: int, year when start the climatology calculation [1980] (default max among the models start year).

 - **end_year**: int, year when end the climatology calculation [1999] (default min among the models end year).

 - **multimean**: bool, calculate multi-model mean, (i.e. False/True) (default False).

 Required settings for variables

 - **preprocessor**: regrid_interp_lev.

 - **reference_dataset**: name of the reference model or observation for regridding and bias calculation (e.g. ERA-Interim”).

 - **mip**: Amon.

9.10.4 Variables

 - **ta** (atmos, monthly mean, longitude latitude level time)

9.10.5 Example plots

9.11 Ozone and associated climate impacts

9.11.1 Overview

This recipe is implemented into the ESMValTool to evaluate atmospheric chemistry and the climate impact of stratospheric ozone changes. It reproduces selected plots from Eyring et al. (2013).

The following plots are reproduced:
Fig. 19: Climatological mean temperature biases for (top) 60–90N and (bottom) 60–90S for the (left) winter and (right) spring seasons. The climatological means for the CCMs and ERA-Interim data from 1980 to 1999 are included. Biases are calculated relative to ERA-Interim reanalyses. The grey area shows ERA-Interim plus and minus 1 standard deviation (σ) about the climatological mean. The turquoise area shows plus and minus 1 standard deviation about the multi-model mean.
• Zonal mean of long-term zonal wind with linear trend

9.11.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/
• recipe_eyring13jgr_12.yml

Diagnostics are stored in esmvaltool/diag_scripts/eyring13jgr/
• eyring13jgr_fig12.ncl

9.11.3 User settings in recipe

1. Preprocessor
 • zonal: Regridding and zonal mean used by eyring13jgr_fig12

2. Script <eyring13jgr_fig12.ncl>
 Required settings for script
 • e13fig12_exp_MMM: name of the experiments for the MMM

 Optional settings for script
 • e13fig12_start_year: year when to start the climatology calculation
 • e13fig12_end_year: year when to end the climatology calculation
 • e13fig12_multimean: calculate multimodel mean (default: False)
 • e13fig12_season: season (default: ANN (annual))

 Required settings for variables
 • preprocessor: zonal
 • reference_dataset: name of the reference model or observation for regridding and bias calculation (e.g. ERA5).
 • mip: Amon.

9.11.4 Variables

• ua (atmos, monthly mean, longitude latitude level time)

9.11.5 Observations and reformat scripts

• ERA5 Reformatting with: recipes/cmorizers/recipe_era5.yml
9.11.6 Example plots

Fig. 20: Long-term mean (thin black contour) and linear trend (colour) of zonal mean DJF zonal winds for the multi-model mean CMIP6 over 1995-2014
9.12 Heat wave and cold wave duration

9.12.1 Overview

The goal of this diagnostic is to estimate the relative change in heat/cold wave characteristics in future climates compared to a reference period using daily maximum or minimum temperatures.

The user can select whether to compute the frequency of exceedances or non-exceedances, which corresponds to extreme high or extreme low temperature events, respectively. The user can also select the minimum duration for an event to be classified as a heat/cold wave and the season of interest.

The diagnostic calculates the number of days in which the temperature exceeds or does not exceed the necessary threshold for a consecutive number of days in future climate projections. The result is an annual time series of the total number of heat/cold wave days for the selected season at each grid point. The final output is the average number of heat/cold wave days for the selected season in the future climate projections.

9.12.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_heatwaves_coldwaves.yml

Diagnostics are stored in diag_scripts/magic_bsc/

- extreme_spells.R: calculates the heatwave or coldwave duration.

9.12.3 User settings

User setting files are stored in recipes/

1. recipe_heatwaves_coldwaves.yml

 Required settings for script

 - quantile: quantile defining the exceedance/non-exceedance threshold
 - min_duration: Min duration in days of a heatwave/coldwave event
 - Operator: either ‘>’ for exceedances or ‘<’ for non-exceedances
 - season: ‘summer’ or ‘winter

9.12.4 Variables

- tasmax or tasmin (atmos, daily, longitude, latitude, time)
9.12.5 Observations and reformat scripts

None

9.12.6 References

9.12.7 Example plots

Mean number of summer days during the period 2060-2080 when the daily maximum near-surface air temperature exceeds the 80th quantile of the 1971-2000 reference period. The results are based on one RCP 8.5 scenario simulated by BCC-CSM1-1.
9.13 Hydroclimatic intensity and extremes (HyInt)

9.13.1 Overview

The HyInt tool calculates a suite of hydroclimatic and climate extremes indices to perform a multi-index evaluation of climate models. The tool firstly computes a set of 6 indices that allow to evaluate the response of the hydrological cycle to global warming with a joint view of both wet and dry extremes. The indices were selected following Giorgi et al. (2014) and include the simple precipitation intensity index (SDII) and extreme precipitation index (R95), the maximum dry spell length (DSL) and wet spell length (WSL), the hydroclimatic intensity index (HY-INT), which is a measure of the overall behaviour of the hydroclimatic cycle (Giorgi et al., 2011), and the precipitation area (PA), i.e. the area over which at any given day precipitation occurs, (Giorgi et al., 2014). Secondly, a selection of the 27 temperature and precipitation-based indices of extremes from the Expert Team on Climate Change Detection and Indices (ETCCDI) produced by the climdex (https://www.climdex.org) library can be ingested to produce a multi-index analysis. The tool allows then to perform a subsequent analysis of the selected indices calculating timeseries and trends over predefined continental areas, normalized to a reference period. Trends are calculated using the R \texttt{lm} function and significance testing performed with a Student T test on non-null coefficients hypothesis. Trend coefficients are stored together with their statistics which include standard error, t value and Pr(>|t|). The tool can then produce a variety of types of plots including global and regional maps, maps of comparison between models and a reference dataset, timeseries with their spread, trend lines and summary plots of trend coefficients.

The hydroclimatic indices calculated by the recipe_hyint.yml and included in the output are defined as follows:

- \textbf{PRY} = mean annual precipitation
- \textbf{INT} = mean annual precipitation intensity (intensity during wet days, or simple precipitation intensity index SDII)
- \textbf{WSL} = mean annual wet spell length (number of consecutive days during each wet spell)
- \textbf{DSL} = mean annual dry spell length (number of consecutive days during each dry spell)
- \textbf{PA} = precipitation area (area over which of any given day precipitation occurs)
- \textbf{R95} = heavy precipitation index (percent of total precipitation above the 95% percentile of the reference distribution)
- \textbf{HY-INT} = hydroclimatic intensity. \texttt{HY-INT} = normalized\texttt{INT} x normalized\texttt{DSL}.

The recipe_hyint_extreme_events.yml includes an additional call to the \textit{Extreme Events Indices (ETCCDI)} diagnostics, which allows to calculate the ETCCDI indices and include them in the subsequent analysis together with the hydroclimatic indices. All of the selected indices are then stored in output files and figures.

9.13.2 Available recipes and diagnostics

Recipes are stored in recipes/

- \texttt{recipe_hyint.yml} (evaluating the 6 hydroclimatic indices, performing trend analysis and plotting)
- \texttt{recipe_hyint_extreme_events.yml} (similar to the \texttt{recipe_hyint.yml} but with an additional call to the \textit{Extreme Events Indices (ETCCDI)} diagnostic for calculation of ETCCDI indices and inclusion of them in the trend analysis and plotting)

Diagnostics are stored in diag_scripts/hyint/

- hyint.R

and subroutines

- hyint_diagnostic.R
9.13.3 Known issues

recipe_hyint_extreme_events.yml

Call to the Extreme Events Indices (ETCCDI) diagnostic requires the ncdf4.helpers library, which is currently unavailable on CRAN. Users need therefore to install the library manually, e.g. through the following commands to download the package tarball from CRAN archive, install it and remove the package tarball:

```r
url <- "https://cran.r-project.org/src/contrib/Archive/ncdf4.helpers/ncdf4.helpers_0.3-3.tar.gz"
pkgFile <- "ncdf4.helpers_0.3-3.tar.gz"
download.file(url = url, destfile = pkgFile)
install.packages(pkgs=pkgFile, type="source", repos=NULL)
unlink(pkgFile)
```

9.13.4 User settings

Required settings for script

- `norm_years`: first and last year of reference normalization period to be used for normalized indices
- `select_indices`: indices to be analysed and plotted. Select one or more fields from the following list (order-sensitive): "pa_norm", "hyint", "int_norm", "r95_norm", "wsl_norm", "dsl_norm", "int", "dsl", "wsl"
- `select_regions`: Select regions for timeseries and maps from the following list: GL=Globe, GL60=Global 60S/60N, TR=Tropics (30S/30N), SA=South America, AF=Africa, NA=North America, IN=India, EU=Europe, EA=East-Asia, AU=Australia
- `plot_type`: type of figures to be plotted. Select one or more from: 1=lon/lat maps per individual field/exp/multi-year mean, 2=lon/lat maps per individual field exp-ref-diff/multi-year mean, 3=lon/lat maps multi-field/exp-ref-diff/multi-year mean, 11=timeseries over required individual region/exp, 12=timeseries over multiple regions/exp, 13=timeseries with multiple models, 14=summary trend coefficients multiple regions, 15=summary trend coefficients multiple models

Additional settings for recipe_hyint_extreme_events.yml

- `call to the extreme_events diagnostics`: see details in recipe_extreme_events.yml. Make sure that the base_range for extreme_events coincides with the norm_range of hyint and that all ETCCDI indices that are required to be imported in hyint are calculated by the extreme_events diagnostics.
- `etccdi_preproc`: set to true to pre-process and include ETCCDI indices in hyint
• etccdi_list_import: specify the list of ETCCDI indices to be imported, e.g.: “tn10pETCCDI”, “tn90pETCCDI”, “tx10pETCCDI”, “tx90pETCCDI”

• select_indices: this required settings should here be revised to include the imported indices, e.g.: “pa_norm”, “hyint”, “tn10pETCCDI”, “tn90pETCCDI”, “tx10pETCCDI”, “tx90pETCCDI”

Optional settings for script (with default setting)

1. Data
 • rgrid (false): Define whether model data should be regridded. (a) false to keep original resolution; (b) set desired regridding resolution in cdo format e.g., “r320x160”; (c) “REF” to use resolution of reference model

2. Plotting
 • npancol (2): number of columns in timeseries/trends multipanel figures
 • npanrow (3): number of rows in timeseries/trends multipanel figures
 • autolevels (true): select automated (true) or pre-set (false) range of values in plots
 • autolevels_scale (1): factor multiplying automated range for maps and timeseries
 • autolevels_scale_t (1.5): factor multiplying automated range for trend coefficients

3. Maps
 • oplot_grid (false): plot grid points over maps
 • boxregion (false): !=0 plot region boxes over global maps with thickness = abs(boxregion); white (>0) or grey (<0).
 • removedesert (false) remove (flag as NA) grid points with mean annual pr < 0.5 mm/day (deserts, Giorgi2014). This affects timeseries and trends calculations too.

4. Timeseries and trends
 • weight_tseries (true): adopt area weights in timeseries
 • trend_years (false): (a) false = apply trend to all years in dataset; (b) [year1, year2] to apply trend calculation and plotting only to a limited time interval
 • add_trend (true): add linear trend to plot
 • add_trend_sd (false): add dashed lines of stdev range to timeseries
 • add_trend_sd_shade (false): add shade of stdev range to timeseries
 • add_tseries_lines (true): plot lines connecting timeseries points
 • add_zeroline (true): plot a dashed line at y=0
 • trend_years_only (false): limit timeseries plotting to the time interval adopted for trend calculation (excluding the normalization period)
 • scale100years (true): plot trends scaled as 1/100 years
 • scalepercent (false): plot trends as percent change
9.13.5 Variables

- pr (atmos, daily mean, longitude latitude time)

Additional variables for recipe_hyint_extreme_events.yml

- tas (atmos, daily mean, longitude latitude time)
- tasmin (atmos, daily mean, longitude latitude time)
- tasmax (atmos, daily mean, longitude latitude time)

9.13.6 Observations and reformat scripts

None.

9.13.7 References

- Giorgi et al., 2011, J. Climate 24, 5309-5324, doi:10.1175/2011JCLI3979.1

9.13.8 Example plots

Fig. 21: Mean hydroclimatic intensity for the EC-EARTH model, for the historical + RCP8.5 projection in the period 1976-2099

Fig. 21: Mean hydroclimatic intensity for the EC-EARTH model, for the historical + RCP8.5 projection in the period 1976-2099

9.13. Hydroclimatic intensity and extremes (HyInt)
Fig. 22: Timeseries for multiple indices and regions for the ACCESS1-0 model, for the historical + RCP8.5 projection in the period 1976-2099, normalized to the 1976-2005 historical period.

Fig. 23: Multi-model trend coefficients over selected indices for CMIP5 models in the RCP8.5 2006-2099 projection, normalized to the 1976-2005 historical period.
9.14 Modes of variability

9.14.1 Overview

The goal of this recipe is to compute modes of variability from a reference or observational dataset and from a set of climate projections and calculate the root-mean-square error between the mean anomalies obtained for the clusters from the reference and projection data sets. This is done through K-means or hierarchical clustering applied either directly to the spatial data or after computing the EOFs.

The user can specify the number of clusters to be computed.

The recipe’s output consist of three netcdf files for both the observed and projected weather regimes and the RMSE between them.

9.14.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_modes_of_variability.yml

Diagnostics are stored in diag_scripts/magic_bsc/

- WeatherRegime.R - function for computing the EOFs and k-means and hierarchical clusters.
- weather_regime.R - applies the above weather regimes function to the datasets

9.14.3 User settings

User setting files are stored in recipes/

1. recipe_modes_of_variability.yml

Required settings for script

- plot type: rectangular or polar
- ncenters: number of centers to be computed by the clustering algorithm (maximum 4)
- cluster_method: kmeans (only psl variable) or hierarchical clustering (for psl or sic variables)
- detrend_order: the order of the polynomial detrending to be applied (0, 1 or 2)
- EOFs: logical indicating wether the k-means clustering algorithm is applied directly to the spatial data ("false") or to the EOFs ("true")
- frequency: select the month (format: JAN, FEB, ...) or season (format: JJA, SON, MAM, DJF) for the diagnostic to be computed for (does not work yet for MAM with daily data).
9.14.4 Variables

- psl (atmos, monthly/daily, longitude, latitude, time)

9.14.5 Observations and reformat scripts

None

9.14.6 References

9.14.7 Example plots

Four modes of variability for autumn (September-October-November) in the North Atlantic European Sector for the RCP 8.5 scenario using BCC-CSM1-1 future projection during the period 2020-2075. The frequency of occurrence of each variability mode is indicated in the title of each map.

9.15 Precipitation quantile bias

9.15.1 Overview

Precipitation is a dominant component of the hydrological cycle, and as such a main driver of the climate system and human development. The reliability of climate projections and water resources strategies therefore depends on how well precipitation can be reproduced by the models used for simulations. While global circulation models from the CMIP5 project observations can reproduce the main patterns of mean precipitation, they often show shortages and biases in the ability to reproduce the strong precipitation tails of the distribution. Most models underestimate precipitation over arid regions and overestimate it over regions of complex topography, and these shortages are amplified at
The quantilebias recipe implements calculation of the quantile bias to allow evaluation of the precipitation bias based on a user defined quantile in models as compared to a reference dataset following Mehran et al. (2014). The quantile bias (QB) is defined as the ratio of monthly precipitation amounts in each simulation to that of the reference dataset (GPCP observations in the example) above a specified threshold \(t \) (e.g., the 75th percentile of all the local monthly values). A quantile bias equal to 1 indicates no bias in the simulations, whereas a value above (below) 1 corresponds to a climate model’s overestimation (underestimation) of the precipitation amount above the specified threshold \(t \), with respect to that of the reference dataset.

9.15.2 Available recipes and diagnostics

Recipes are stored in `recipes/`

- `recipe_quantilebias.yml`

Diagnostics are stored in `diag_scripts/quantilebias/`

- `quantilebias.R`

9.15.3 User settings

Required settings for script

- `perc_lev`: quantile (in %), e.g. 50
9.15.4 Variables

- pr (atmos, monthly, longitude latitude time)

9.15.5 Observations and reformat scripts

- GPCP-SG observations (accessible via the obs4mips project)

9.15.6 References

9.15.7 Example plots

Fig. 24: Quantile bias, as defined in Mehran et al. 2014, with threshold $t=75$th percentile, evaluated for the CanESM2 model over the 1979-2005 period, adopting GPCP-SG v 2.3 gridded precipitation as a reference dataset. The optimal reference value is 1. Both datasets have been regridded onto a 2° regular grid.

9.16 Standardized Precipitation-Evapotranspiration Index (SPEI)

9.16.1 Overview

Droughts can be separated into three main types: meteorological, hydrological, and agricultural drought.

Common for all types is that a drought needs to be put in context of local and seasonal characteristics, i.e. a drought should not be defined with an absolute threshold, but as an anomalous condition.

Meteorological droughts are often described using the standardized precipitation index (SPI; McKee et al, 1993), which in a standardized way describes local precipitation anomalies. It is calculated on monthly mean precipitation, and is therefore not accounting for the intensity of precipitation and the runoff process. Because SPI does not account for evaporation from the ground, it lacks one component of the water fluxes at the surface and is therefore not compatible with the concept of hydrological drought.
A hydrological drought occurs when low water supply becomes evident, especially in streams, reservoirs, and groundwater levels, usually after extended periods of meteorological drought. GCMs normally do not simulate hydrological processes in sufficient detail to give deeper insights into hydrological drought processes. Neither do they properly describe agricultural droughts, when crops become affected by the hydrological drought. However, hydrological drought can be estimated by accounting for evapotranspiration, and thereby estimate the surface retention of water. The standardized precipitation-evapotranspiration index (SPEI; Vicente-Serrano et al., 2010) has been developed to also account for temperature effects on the surface water fluxes. Evapotranspiration is not normally calculated in GCMs, so SPEI often takes other inputs to estimate the evapotranspiration. Here, the Thornthwaite (Thornthwaite, 1948) method based on temperature is applied.

9.16.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_spei.yml

Diagnostics are stored in diag_scripts/droughtindex/
- diag_spi.R: calculate the SPI index
- diag_spei.R: calculate the SPEI index

9.16.3 User settings

1. Script diag_spi.py
 Required settings (script)
 - reference_dataset: dataset_name The reference data set acts as a baseline for calculating model bias.

2. Script diag_spei.py
 Required settings (script)
 - reference_dataset: dataset_name The reference data set acts as a baseline for calculating model bias.

9.16.4 Variables

- pr (atmos, monthly mean, time latitude longitude)
- tas (atmos, monthly mean, time latitude longitude)

9.16.5 References

9.16.6 Example plots

Fig. 25: (top) Probability distribution of the standardized precipitation-evapotranspiration index of a sub-set of the CMIP5 models, and (bottom) bias relative to the CRU reference data set.

Fig. 26: (top) Probability distribution of the standardized precipitation index of a sub-set of the CMIP5 models, and (bottom) bias relative to the CRU reference data set.
9.17 Drought characteristics following Martin (2018)

9.17.1 Overview

Following Martin (2018) drought characteristics are calculated based on the standard precipitation index (SPI), see McKee et al. (1993). These characteristics are frequency, average duration, SPI index and severity index of drought events.

9.17.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_martin18grl.yml

Diagnostics are stored in diag_scripts/

- droughtindex/diag_save_spi.R
- droughtindex/collect_drought_obs_multi.py
- droughtindex/collect_drought_model.py
- droughtindex/collect_drought_func.py

9.17.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models and one observational or reanalysis data set.

The droughtindex/diag_save_spi.R script calculates the SPI index for any given time series. It is based on droughtindex/diag_spi.R but saves the SPI index and does not plot the histogram. The distribution and the representative time scale (smooth_month) can be set by the user, the values used in Martin (2018) are smooth_month: 6 and distribution: ‘Gamma’ for SPI.

There are two python diagnostics, which can use the SPI data to calculate the drought characteristics (frequency, average duration, SPI index and severity index of drought events) based on Martin (2018):

- To compare these characteristics between model data and observations or reanalysis data use droughtindex/collect_drought_obs_multi.py Here, the user can set: * indexname: Necessary to identify data produced by droughtindex/diag_save_spi.R as well as write captions and filenames. At the moment only indexname: ‘SPI’ is supported. * threshold: Threshold for this index below which an event is considered to be a drought, the setting for SPI should be usually threshold: -2.0 but any other value will be accepted. Values should not be < -3.0 or > 3.0 for SPI (else it will identify none/always drought conditions).

- To compare these characteristics between different time periods in model data use droughtindex/collect_drought_model.py Here, the user can set: * indexname: Necessary to identify data produced by droughtindex/diag_save_spi.R as well as write captions and filenames. At the moment only indexname: ‘SPI’ is supported. * threshold: Threshold for this index below which an event is considered to be a drought, the setting for SPI should be usually threshold: -2.0 but any other value will be accepted. Values should not be < -3.0 or > 3.0 for SPI (else it will identify none/always drought conditions). * start_year: Needs to be equal or larger than the start_year for droughtindex/diag_save_spi.R. * end_year: Needs to be equal or smaller than the end_year for droughtindex/diag_save_spi.R. * comparison_period: should be < (end_year - start_year)/2 to have non overlapping time series in the comparison.

The third diagnostic droughtindex/collect_drought_func.py contains functions both ones above use.
9.17.4 Variables

- \(pr \) (atmos, monthly, longitude, latitude, time)

9.17.5 Observations and reformat scripts

None

9.17.6 References

9.17.7 Example plots

Fig. 27: Global map of the percentage difference between multi-model mean of 15 CMIP models and the CRU data for the number of drought events [%] based on SPI.

Fig. 28: Global map of the percentage difference between multi-model mean for RCP8.5 scenarios (2050-2100) runs and historical data (1950-2000) for 15 CMIP models for the number of drought events [%] based on SPI.
9.18 Stratosphere - Autoassess diagnostics

9.18.1 Overview

Polar night jet / easterly jet strengths are defined as the maximum / minimum wind speed of the climatological zonal mean jet, and measure how realistic the zonal wind climatology is in the stratosphere.

Extratropical temperature at 50hPa (area averaged poleward of 60 degrees) is important for polar stratospheric cloud formation (in winter/spring), determining the amount of heterogeneous ozone depletion simulated by models with interactive chemistry schemes.

The Quasi-Biennial Oscillation (QBO) is a good measure of tropical variability in the stratosphere. Zonal mean zonal wind at 30hPa is used to define the period and amplitude of the QBO.

The tropical tropopause cold point (100hPa, 10S-10N) temperature is an important factor in determining the stratospheric water vapour concentrations at entry point (70hPa, 10S-10N), and this in turn is important for the accurate simulation of stratospheric chemistry and radiative balance.

9.18.2 Prior and current contributors

Met Office:
• Prior to May 2008: Neal Butchart
• May 2008 - May 2016: Steven C Hardiman
• Since May 2016: Alistair Sellar and Paul Earnshaw

ESMValTool:
• Since April 2018: Porting into ESMValTool by Valeriu Predoi

9.18.3 Developers

Met Office:
• Prior to May 2008: Neal Butchart
• May 2008 - May 2016: Steven C Hardiman

ESMValTool:
• Since April 2018: Valeriu Predoi

9.18.4 Review of current port in ESMValTool

The code and results review of the port from native Autoassess to ESMValTool was conducted by Alistair Sellar (mailto:alistair.sellar@metoffice.gov.uk) and Valeriu Predoi (mailto:valeriu.predoi@ncas.ac.uk) in July 2019. Review consisted in comparing results from runs using ESMValTool’s port and native Autoassess using the same models and data stretches.
9.18.5 Metrics and Diagnostics

Performance metrics:

- Polar night jet: northern hem (January) vs. ERA Interim
- Polar night jet: southern hem (July) vs. ERA Interim
- Easterly jet: southern hem (January) vs. ERA Interim
- Easterly jet: northern hem (July) vs. ERA Interim
- 50 hPa temperature: 60N-90N (DJF) vs. ERA Interim
- 50 hPa temperature: 60N-90N (MAM) vs. ERA Interim
- 50 hPa temperature: 90S-60S (JJA) vs. ERA Interim
- 50 hPa temperature: 90S-60S (SON) vs. ERA Interim
- QBO period at 30 hPa vs. ERA Interim
- QBO amplitude at 30 hPa (westward) vs. ERA Interim
- QBO amplitude at 30 hPa (eastward) vs. ERA Interim
- 100 hPa equatorial temp (annual mean) vs. ERA Interim
- 100 hPa equatorial temp (annual cycle strength) vs. ERA Interim
- 70 hPa 10S-10N water vapour (annual mean) vs. ERA-Interim

Diagnostics:

- Age of stratospheric air vs. observations from Andrews et al. (2001) and Engel et al. (2009)

9.18.6 Model Data

<table>
<thead>
<tr>
<th>Variable/Field name</th>
<th>realm</th>
<th>frequency</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastward wind (ua)</td>
<td>Atmosphere</td>
<td>monthly mean</td>
<td>original stash: x-wind, no stash</td>
</tr>
<tr>
<td>Air temperature (ta)</td>
<td>Atmosphere</td>
<td>monthly mean</td>
<td>original stash: m01s30i204</td>
</tr>
<tr>
<td>Specific humidity (hus)</td>
<td>Atmosphere</td>
<td>monthly mean</td>
<td>original stash: m01s30i205</td>
</tr>
</tbody>
</table>

The recipe takes as input a control model and experimental model, comparisons being made with these two CMIP models; additionally it can take observational data as input, in the current implementation ERA-Interim.

9.18.7 Inputs and usage

The stratosphere area metric is part of the esmvaltool/diag_scripts/autoassess diagnostics, and, as any other autoassess metric, it uses the autoassess_area_base.py as general purpose wrapper. This wrapper accepts a number of input arguments that are read through from the recipe.

This recipe is part of the larger group of Autoassess metrics ported to ESMValTool from the native Autoassess package from the UK’s Met Office. The diagnostics settings are almost the same as for the other Autoassess metrics.

Note: Time gating for autoassess metrics.

To preserve the native Autoassess functionalities, data loading and selection on time is done somewhat differently for ESMValTool’s autoassess metrics: the time selection is done in the preprocessor as per usual but a further time selection is performed as part of the diagnostic. For this purpose the user will specify a start: and end: pair of
arguments of scripts: autoassess_script (see below for example). These are formatted as YYYY/MM/DD; this is necessary since the Autoassess metrics are computed from 1-Dec through 1-Dec rather than 1-Jan through 1-Jan. This is a temporary implementation to fully replicate the native Autoassess functionality and a minor user inconvenience since they need to set an extra set of start and end arguments in the diagnostic; this will be phased when all the native Autoassess metrics have been ported to ESMValTool review has completed.

Note: Polar Night/Easterly Jets Metrics

Polar Night Jets (PNJ) metrics require data available at very low air pressures i.e. very high altitudes; both Polar Night Jet and Easterly Jets computations should be performed using ta and ua data at \(\leq 100 \) Pa; the lowest air pressure found in atmospheric CMOR mip tables corresponds to plev39 air pressure table, and is used in the AERmonZ mip. If the user requires correct calculations of these jets, it is highly advisable to use data from AERmonZ. Note that standard QBO calculation is exact for plev17 or plev19 tables.

An example of standard inputs as read by autoassess_area_base.py and passed over to the diagnostic/metric is listed below.

```
scripts:
  autoassess_strato_test_1: %autoassess_strato_test_1_settings
    script: autoassess/autoassess_area_base.py # the base wrapper
    title: "Autoassess Stratosphere Diagnostic Metric" # title
    area: stratosphere # assessment area
    control_model: UKESM1-0-LL-hist # control dataset name
    exp_model: UKESM1-0-LL-piCont # experiment dataset name
    obs_models: [ERA-Interim] # list to hold models that are NOT for metrics but for obs operations
    additional_metrics: [ERA-Interim] # list to hold additional datasets for metrics
    start: 2004/12/01 # start date in native Autoassess format
    end: 2014/12/01 # end date in native Autoassess format
```

9.18.8 References

9.18.9 Observations Data sets

ERA-Interim data (Dee et al., 2011) data can be obtained online from ECMWF and NASA respectively. Monthly mean zonal mean U and T data are required. CMORized that exists on CEDA-Jasmin or DKRZ (contact Valeriu Predoi (mailto:valeriu.predoi@ncas.ac.uk) for Jasmin or Mattia Righi (mailto:mattia.righi@dlr.de) for DKRZ).
9.18.10 Sample Plots and metrics

Below is a set of metrics for UKESM1-0-LL (historical data); the table shows a comparison made between running ESMValTool on CMIP6 CMORized netCDF data freely available on ESGF nodes and the run made using native Autoassess performed at the Met Office using the pp output of the model.

<table>
<thead>
<tr>
<th>Metric name</th>
<th>UKESM1-0-LL; CMIP6: AERmonZ; historical, ESGF</th>
<th>UKESM1-0-LL; pp files; historical, u-bc179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar night jet: northern hem (January)</td>
<td>44.86</td>
<td>44.91</td>
</tr>
<tr>
<td>Polar night jet: southern hem (July)</td>
<td>112.09</td>
<td>112.05</td>
</tr>
<tr>
<td>Easterly jet: southern hem (January)</td>
<td>76.12</td>
<td>75.85</td>
</tr>
<tr>
<td>Easterly jet: northern hem (July)</td>
<td>55.68</td>
<td>55.74</td>
</tr>
<tr>
<td>QBO period at 30 hPa</td>
<td>41.50</td>
<td>41.00</td>
</tr>
<tr>
<td>QBO amplitude at 30 hPa (westward)</td>
<td>27.39</td>
<td>27.39</td>
</tr>
<tr>
<td>QBO amplitude at 30 hPa (eastward)</td>
<td>17.36</td>
<td>17.36</td>
</tr>
<tr>
<td>50 hPa temperature: 60N-90N (DJF)</td>
<td>27.11</td>
<td>26.85</td>
</tr>
<tr>
<td>50 hPa temperature: 60N-90N (MAM)</td>
<td>40.94</td>
<td>40.92</td>
</tr>
<tr>
<td>50 hPa temperature: 90S-60S (JJA)</td>
<td>11.75</td>
<td>11.30</td>
</tr>
<tr>
<td>50 hPa temperature: 90S-60S (SON)</td>
<td>23.88</td>
<td>23.63</td>
</tr>
<tr>
<td>100 hPa equatorial temp (annual mean)</td>
<td>15.29</td>
<td>15.30</td>
</tr>
<tr>
<td>100 hPa equatorial temp (annual cycle strength)</td>
<td>1.67</td>
<td>1.67</td>
</tr>
<tr>
<td>100 hPa 10Sto10N temp (annual mean)</td>
<td>15.48</td>
<td>15.46</td>
</tr>
<tr>
<td>100 hPa 10Sto10N temp (annual cycle strength)</td>
<td>1.62</td>
<td>1.62</td>
</tr>
<tr>
<td>70 hPa 10Sto10N wv (annual mean)</td>
<td>5.75</td>
<td>5.75</td>
</tr>
</tbody>
</table>

Results from u-bc179 have been obtained by running the native Autoassess/stratosphere on pp data from UKESM1 u-bc179 suite and are listed here to confirm the compliance between the ported Autoassess metric in ESMValTool and the original native metric.

Another reference run comparing UKESM1-0-LL to the physical model HadGEM3-GC31-LL can be found here.
Fig. 29: Standard metrics plot comparing standard metrics from UKESM1-0-LL and HadGEM3-GC31.

Fig. 30: Zonal mean zonal wind in January for UKESM1-0-LL.

Fig. 31: Zonal mean zonal wind in January for HadGEM3-GC31-LL.
Fig. 32: QBO for UKESM1-0-LL.

Fig. 33: QBO for HadGEM3-GC31-LL.
Fig. 34: QBO at 30hPa comparison between UKESM1-0-LL and HadGEM3-GC31-LL.

Fig. 35: Equatorial temperature at 100hPa, multi annual means.
9.19 Stratosphere-troposphere coupling and annular modes indices (ZMNNAM)

9.19.1 Overview

The current generation of climate models include the representation of stratospheric processes, as the vertical coupling with the troposphere is important for the weather and climate at the surface (e.g., Baldwin and Dunkerton, 2001).

The recipe recipe_zmnam.yml can be used to evaluate the representation of the Northern Annular Mode (NAM, e.g., Wallace, 2000) in climate simulations, using reanalysis datasets as reference.

The calculation is based on the “zonal mean algorithm” of Baldwin and Thompson (2009), and is alternative to pressure based or height-dependent methods.

This approach provides a robust description of the stratosphere-troposphere coupling on daily timescales, requiring less subjective choices and a reduced amount of input data. Starting from daily mean geopotential height on pressure levels, the leading empirical orthogonal function/principal component are computed from zonal mean daily anomalies, with the leading principal component representing the zonal mean NAM index. The regression of the monthly mean geopotential height onto this monthly averaged index represents the NAM pattern for each selected pressure level.

The outputs of the procedure are the monthly time series and the histogram of the daily zonal-mean NAM index, and the monthly regression maps for selected pressure levels. The users can select the specific datasets (climate model simulation and/or reanalysis) to be evaluated, and a subset of pressure levels of interest.

9.19.2 Available recipes and diagnostics

Recipes are stored in recipes/
 • recipe_zmnam.yml

Diagnostics are stored in diag_scripts/zmnam/
 • zmnam.py

and subroutines
 • zmnam_calc.py
 • zmnam_plot.py
 • zmnam_preproc.py

9.19.3 User settings

None.
9.19.4 Variables

- zg (atmos, daily mean, longitude latitude time)

9.19.5 Observations and reformat scripts

None.

9.19.6 References

9.19.7 Example plots

Fig. 36: Regression map of the zonal-mean NAM index onto geopotential height, for a selected pressure level (250 hPa) for the MPI-ESM-MR model (CMIP5 AMIP experiment, period 1979–2008). Negative values are shaded in grey.
9.20 Thermodynamics of the Climate System - The Diagnostic Tool TheDiaTo v1.0

9.20.1 Overview

The tool allows to compute TOA, atmospheric and surface energy budgets, latent energy and water mass budgets, meridional heat transports, the Lorenz Energy Cycle (LEC), the material entropy production with the direct and indirect method.

The energy budgets are computed from monthly mean radiative and heat fluxes at the TOA and at the surface (cfr. Wild et al., 2013). The meridional heat transports are obtained from the latitudinal integration of the zonal mean energy budgets. When a land-sea mask is provided, results are also available for land and oceans, separately.

The water mass budget is obtained from monthly mean latent heat fluxes (for evaporation), total and snowfall precipitation (cfr. Liepert et al., 2012). The latent energy budget is obtained multiplying each component of the water mass budget by the respective latent heat constant. When a land-sea mask is provided, results are also available for land and oceans, separately.

The LEC is computed from 3D fields of daily mean velocity and temperature fields in the troposphere over pressure levels. The analysis is carried on in spectral fields, converting lonlat grids in Fourier coefficients. The components of the LEC are computed as in Ulbrich and Speth, 1991. In order to account for possible gaps in pressure levels, the daily fields of 2D near-surface temperature and horizontal velocities.

The material entropy production is computed by using the indirect or the direct method (or both). The former method relies on the convergence of radiative heat in the atmosphere (cfr. Lucarini et al., 2011; Pascale et al., 2011), the latter on all viscous and non-viscous dissipative processes occurring in the atmosphere (namely the sensible heat fluxes, the hydrological cycle with its components and the kinetic energy dissipation).

For a comprehensive report on the methods used and some descriptive results, please refer to Lembo et al., 2019.
9.20.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_thermodyn_diagtool.yml

Diagnostics are stored in diag_scripts/thermodyn_diagtool/

- thermodyn_diagnostics.py: the main script, handling input files, calling computation and plotting scripts;
- computations.py: a module containing all the main computations that are carried out by the program;
- fluxogram.py: a module for the retrieval of the block diagrams displaying the reservoirs and conversion terms of the LEC
- fourier_coefficients.py: a module for the computation of the Fourier coefficients from the lonlat input grid
- lorenz_cycle.py: a module for the computation of the LEC components in Fourier coefficients
- mkthe.py: a module for the computation of indirect variables obtained from the input fields, such as LCL height, boundary layer top height and temperature, potential temperature
- plot_script.py: a module for the computation of maps, scatter plots, time series and meridional sections of some derived quantities for each model in the ensemble. The meridional heat and water mass transports are also computed here, as well as the peak magnitudes and locations;
- provenance_meta.py: a module for collecting metadata and writing them to produced outputs;

9.20.3 User settings

Besides the datasets, to be set according to usual ESMValTool convention, the user can set the following optional variables in the recipe_Thermodyn_diagtool.yml:

- wat: if set to ‘true’, computations are performed of the water mass and latent energy budgets and transports
- lsm: if set to true, the computations of the energy budgets, meridional energy transports, water mass and latent energy budgets and transports are performed separately over land and oceans
- lec: if set to ‘true’, computation of the LEC are performed
- entr: if set to ‘true’, computations of the material entropy production are performed
- met (1, 2 or 3): the computation of the material entropy production must be performed with the indirect method (1), the direct method (2), or both methods. If 2 or 3 options are chosen, the intensity of the LEC is needed for the entropy production related to the kinetic energy dissipation. If lec is set to ‘false’, a default value is provided.

These options apply to all models provided for the multi-model ensemble computations

9.20.4 Variables

- hfls (atmos, monthly mean, time latitude longitude)
- hfss (atmos, monthly mean, time latitude longitude)
- hus (atmos, monthly mean, time plev latitude longitude)
- pr (atmos, monthly mean, time latitude longitude)
- prsn (atmos, monthly mean, time latitude longitude)
- ps (atmos, monthly mean, time latitude longitude)
• rlds (atmos, monthly mean, time latitude longitude)
• rlus (atmos, monthly mean, time latitude longitude)
• rlut (atmos, monthly mean, time latitude longitude)
• rsds (atmos, monthly mean, time latitude longitude)
• rsdt (atmos, monthly mean, time latitude longitude)
• rsus (atmos, monthly mean, time latitude longitude)
• rsut (atmos, monthly mean, time latitude longitude)
• ta (atmos, daily mean, time plev latitude longitude)
• tas (atmos, daily mean, time latitude longitude)
• ts (atmos, monthly mean, time latitude longitude)
• ua (atmos, daily mean, time plev latitude longitude)
• uas (atmos, daily mean, time latitude longitude)
• va (atmos, daily mean, time plev latitude longitude)
• vas (atmos, daily mean, time latitude longitude)
• wap (atmos, daily mean, time plev latitude longitude)

9.20.5 References

9.20.6 Example plots

(a) total heat transports

(a) atmos heat transports

(a) ocean heat transports
takes two models designated by CONTROL and EXPERIMENT and compares them via a number of analyses. Optionally a number of observational datasets can be added for processing. There are three types of standard analysis: lat_lon, meridional_mean and zonal_mean. Each of these diagnostics can be run on a separate basis (each an entry to diagnostics/scripts). The lat_lon analysis produces the following plots: a simple global plot for each variable for each dataset, a global plot for the difference between CONTROL and EXPERIMENT, a global plot for the difference between CONTROL and each of the observational datasets. The meridional_mean and zonal_mean produce variable vs coordinate (latitude or longitude) with both CONTROL and EXPERIMENT curves in each plot, for the entire duration of time specified and also, if the user wishes, for each season (seasonal means): winter DJF, spring MAM, summer JJA, autumn SON (by setting seasonal_analysis: true in the recipe).

At least re-gridding on a common grid for all model and observational datasets should be performed in preprocessing (if datasets are on different grids). Also note that currently it is not allowed to use the same dataset (with varying parameters like experiment or ensemble) for both CONTROL and EXPERIMENT (the use case for comparison between different experiments or ensembles for the same model will be implemented in a future release).
9.21.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_validation.yml (CMIP5)

- recipe_validation_CMIP6.yml (CMIP6)

Diagnostics are stored in diag_scripts/

- validation.py

- shared/_validation.py

9.21.3 User settings

1. validation.py

 Required settings for script

 - title: title of the analysis, user defined;

 - control_model: control dataset name e.g. UKESM1-0-LL;

 - exper_model: experiment dataset name e.g. IPSL-CM6A-LR;

 - observational_datasets: list of at least one element; if no OBS
wanted comment out; e.g. ['ERA-Interim'];

- analysis_type:
 use any of: lat_lon, meridional_mean, zonal_mean;

- seasonal_analysis:
 boolean, if seasonal means are needed e.g. true;

- save_cubes:
 boolean, save each of the plotted cubes in /work;

9.21.4 Variables

- any variable

9.21.5 Observations and reformat scripts

Note: (1) obs4mips or OBS or ana4mips can be used.

- any observations

- it is important to note that all observational data should go through the same pre-processing as model data
9.21.6 References

- none, basic technical analysis

9.21.7 Example plots

Fig. 38: Meridional seasonal mean for winter (DJF) comparison between CMIP6 UKESM1 and IPSL models.
Fig. 39: Zonal seasonal mean for winter (DJF) comparison between CMIP6 UKESM1 and IPSL models.
10.1 Performance metrics for essential climate parameters

10.1.1 Overview

The goal is to create a standard recipe for the calculation of performance metrics to quantify the ability of the models to reproduce the climatological mean annual cycle for selected “Essential Climate Variables” (ECVs) plus some additional corresponding diagnostics and plots to better understand and interpret the results.

The recipe can be used to calculate performance metrics at different vertical levels (e.g., 5, 30, 200, 850 hPa as in Gleckler et al. (2008) and in different regions. As an additional reference, we consider Righi et al. (2015).

10.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_perfmetrics_CMIP5.yml
- recipe_perfmetrics_CMIP5_cds.yml
- recipe_perfmetrics_land_CMIP5.yml

Diagnostics are stored in diag_scripts/perfmetrics/

- main.ncl: calculates and (optionally) plots annual/seasonal cycles, zonal means, lat-lon fields and time-lat-lon fields. The calculated fields can also be plotted as difference w.r.t. a given reference dataset. main.ncl also calculates RMSD, bias and taylor metrics. Input data have to be regridded to a common grid in the preprocessor. Each plot type is created by a separated routine, as detailed below.
- cycle.ncl: creates an annual/seasonal cycle plot.
- zonal.ncl: creates a zonal (lat-pressure) plot.
- latlon.ncl: creates a lat-lon plot.
- cycle_latlon.ncl: precalculates the metrics for a time-lat-lon field, with different options for normalization.
- collect.ncl: collects and plots the metrics previously calculated by cycle_latlon.ncl.
10.1.3 User settings in recipe

1. Script main.ncl

 Required settings (scripts)
 - plot_type: cycle (time), zonal (plev, lat), latlon (lat, lon), cycle_lalton (time, lat, lon), cycle_zonal (time, plev, lat)
 - time_avg: type of time average (monthlyclim, seasonalclim, annualclim)
 - region: selected region (global, trop, nhtrop, shtrop, nh, sh, nhmidlat, shmidlat, nhpolar, shpolar, eq)

 Optional settings (scripts)
 - styleset: for plot_type cycle only (cmip5, righi15gmd, cmip6, default)
 - plot_stddev: for plot_type cycle only, plots standard deviation as shading
 - legend_outside: for plot_type cycle only, plots the legend in a separate file
 - t_test: for plot_type zonal or latlon, calculates t-test in difference plots (default: False)
 - conf_level: for plot_type zonal or latlon, adds the confidence level for the t-test to the plot (default: False)
 - projection: map projection for plot_type latlon (default: CylindricalEquidistant)
 - plot_diff: draws difference plots (default: False)
 - calc_grading: calculates grading metrics (default: False)
 - stippling: uses stippling to mark statistically significant differences (default: False = mask out non-significant differences in gray)
 - show_global_avg: displays the global average of the input field as string at the top-right of lat-lon plots (default: False)
 - metric: chosen grading metric(s) (if calc_grading is True)
 - normalization: metric normalization (for RMSD and BIAS metrics only)
 - abs_levs: list of contour levels for absolute plot
 - diff_levs: list of contour levels for difference plot
 - zonal_cmap: for plot_type zonal only, chosen color table (default: “amwg_blueyellowred”)
 - zonal_ymin: for plot_type zonal only, minimum pressure level on the y-axis (default: 5 hPa)
 - latlon_cmap: for plot_type latlon only, chosen color table (default: “amwg_blueyellowred”)
 - plot_units: plotting units (if different from standard CMOR units)

 Required settings (variables)
 - reference_dataset: reference dataset to compare with (usually the observations).

 Optional settings (variables)
 - alternative_dataset: a second dataset to compare with.

 These settings are passed to the other scripts by main.ncl, depending on the selected plot_type.

2. Script collect.ncl

 Required settings (scripts)
 - metric: selected metric (RMSD, BIAS or taylor)
• label_bounds: for RMSD and BIAS metrics, min and max of the labelbar
• label_scale: for RMSD and BIAS metrics, bin width of the labelbar
• colormap: for RMSD and BIAS metrics, color table of the labelbar

Optional settings (scripts)
• label_lo: adds lower triangle for values outside range
• label_hi: adds upper triangle for values outside range
• cm_interval: min and max color of the color table
• cm_reverse: reverses the color table
• sort: sorts datasets in alphabetic order (excluding MMM)
• diag_order: sort diagnostics in a specific order (name = ‘diagnostic’-’region’)
• title: plots title
• scale_font: scaling factor applied to the default font size
• disp_values: switches on/off the grading values on the plot
• disp_rankings: switches on/off the rankings on the plot
• rank_order: displays rankings in increasing (1) or decreasing (-1) order

10.1.4 Variables

1. recipe_perfmetrics_CMIP5.yml
 • clt (atmos, monthly mean, longitude latitude time)
 • hus (atmos, monthly mean, longitude latitude lev time)
 • od550aer, od870aer, od550abs, od550lt1aer (aero, monthly mean, longitude latitude time)
 • pr (atmos, monthly mean, longitude latitude time)
 • rlut, rlutcs, rsut, rsutcs (atmos, monthly mean, longitude latitude time)
 • sm (land, monthly mean, longitude latitude time)
 • ta (atmos, monthly mean, longitude latitude lev time)
 • tas (atmos, monthly mean, longitude latitude time)
 • toz (atmos, monthly mean, longitude latitude time)
 • ts (atmos, monthly mean, longitude latitude time)
 • ua (atmos, monthly mean, longitude latitude lev time)
 • va (atmos, monthly mean, longitude latitude lev time)
 • zg (atmos, monthly mean, longitude latitude lev time)

2. recipe_perfmetrics_land_CMIP5.yml
 • sm (land, monthly mean, longitude latitude time)
 • npb (land, monthly mean, longitude latitude time)
 • gpp (land, monthly mean, longitude latitude time)
 • lai (land, monthly mean, longitude latitude time)
• fgco2 (ocean, monthly mean, longitude latitude time)
• et (land, monthly mean, longitude latitude time)
• rlus, rlds, rsus, rdscd (atmos, monthly mean, longitude latitude time)

10.1.5 Observations and reformat scripts

The following list shows the currently used observational data sets for this recipe with their variable names and the reference to their respective reformat scripts in parentheses. Please note that obs4mips data can be used directly without any reformatting. For non-obs4mips data see headers of cmorization scripts (in `esmvaltool/cmorizers/obs/`) for downloading and processing instructions. #. recipe_perfmetrics_CMIP5.yml

- AIRS (hus - obs4mips)
- CERES-EBAF (rlut, rlutcs, rsut, rsutcs - obs4mips)
- ERA-Interim (tas, ta, ua, va, zg, hus - esmvaltool/cmorizers/obs/cmorize_obs_EA-Interim.ncl)
- ESACCI-AEROSOL (od550aer, od870aer, od550abs, od550ltl1aer - esmvaltool/cmorizers/obs/cmorize_obs_ESACCI-AEROSOL.ncl)
- ESACCI-CLOUD (clt - esmvaltool/cmorizers/obs/cmorize_obs_ESACCI-CLOUD.ncl)
- ESACCI-OZONE (toz - esmvaltool/cmorizers/obs/cmorize_obs_ESACCI-OZONE.ncl)
- ESACCI-SOILMOISTURE (sm - esmvaltool/cmorizers/obs/cmorize_obs_ESACCI-SOILMOISTURE.ncl)
- ESACCI-SST (ts - esmvaltool/ucmorizers/obs/cmorize_obs_ESACCI-SST.ncl)
- GPCP-SG (pr - obs4mips)
- HadISST (ts - esmvaltool/cmorizers/obs/cmorize_obs_HadISST.ncl)
- MODIS (od550aer - esmvaltool/cmorizers/obs/cmorize_obs_MODIS.ncl)
- NCEP (tas, ta, ua, va, zg - esmvaltool/cmorizers/obs/cmorize_obs_NCEP.ncl)
- NIWA-BS (toz - esmvaltool/cmorizers/obs/cmorize_obs_NIWA-BS.ncl)
- PATMOS-x (clt - esmvaltool/cmorizers/obs/cmorize_obs_PATMOS-x.ncl)

1. recipe_perfmetrics_land_CMIP5.yml

- CERES-EBAF (rlus, rlds, rsus, rdscd - obs4mips)
- ESACCI-SOILMOISTURE (sm - esmvaltool/cmorizers/obs/cmorize_obs_ESACCI-SOILMOISTURE.ncl)
- FLUXCOM (gpp - esmvaltool/cmorizers/obs/cmorize_obs_fluxcom.py)
- JMA-TRANSCOM (nbp, fgco2 - esmvaltool/cmorizers/obs/cmorize_obs_jma_transcom.py)
- LAI3d (lai - esmvaltool/cmorizers/obs/cmorize_obs_lai3g.py)
- LandFlux-EVAL (et - esmvaltool/cmorizers/obs/cmorize_obs_landflux_eval.py)
- Landschuetzer2016 (fgco2 - esmvaltool/cmorizers/obs/cmorize_obs_landschuetzer2016.py)
- MTE (gpp - esmvaltool/cmorizers/obs/cmorize_obs_mte.py)
10.1.6 References

10.1.7 Example plots

![Air Temperature - Global](image)

Fig. 1: Annual cycle of globally averaged temperature at 850 hPa (time period 1980-2005) for different CMIP5 models (historical simulation) (thin colored lines) in comparison to ERA-Interim (thick yellow line) and NCEP (thick black dashed line) reanalysis data.

10.2 Single Model Performance Index (SMPI)

10.2.1 Overview

This diagnostic calculates the Single Model Performance Index (SMPI) following Reichler and Kim (2008). The SMPI (called “I^2”) is based on the comparison of several different climate variables (atmospheric, surface and oceanic) between climate model simulations and observations or reanalyses, and it focuses on the validation of the time-mean state of climate. For I^2 to be determined, the differences between the climatological mean of each model variable and observations at each of the available data grid points are calculated, and scaled to the interannual variance from the validating observations. This interannual variability is determined by performing a bootstrapping method (random selection with replacement) for the creation of a large synthetic ensemble of observational climatologies. The results are then scaled to the average error from a reference ensemble of models, and in a final step the mean over all climate variables and one model is calculated. The plot shows the I^2 values for each model (orange circles) and the multi-model mean (black circle), with the diameter of each circle representing the range of I^2 values encompassed by the 5th and 95th percentiles of the bootstrap ensemble. The I^2 values vary around one, with values greater than one for underperforming models, and values less than one for more accurate models.
Fig. 2: Taylor diagram of globally averaged temperature at 850 hPa (ta) and longwave cloud radiative effect (lwcre) for different CMIP5 models (historical simulation, 1980-2005). Reference data (REF) are ERA-Interim for temperature (1980-2005) and CERES-EBAF (2001-2012) for longwave cloud radiative effect.
Fig. 3: Difference in annual mean of zonally averaged temperature (time period 1980-2005) between the CMIP5 model MPI-ESM-MR (historical simulation) and ERA-Interim. Stippled areas indicate differences that are statistically significant at a 95% confidence level.
Fig. 4: Annual mean (2001-2012) of the shortwave cloud radiative effect from CERES-EBAF.

Note: The SMPI diagnostic needs all indicated variables from all added models for exactly the same time period to be calculated correctly. If one model does not provide a specific variable, either that model cannot be added to the SMPI calculations, or the missing variable has to be removed from the diagnostics all together.

10.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_smpi.yml
- recipe_smpi_4cds.yml

Diagnostics are stored in diag_scripts/perfmetrics/

- main.ncl: calculates and (optionally) plots annual/seasional cycles, zonal means, lat-lon fields and time-lat-lon fields. The calculated fields can also be plotted as difference w.r.t. a given reference dataset. main.ncl also calculates RMSD, bias and taylor metrics. Input data have to be regridded to a common grid in the preprocessor. Each plot type is created by a separated routine, as detailed below.

- collect.ncl: collects the metrics previously calculated by cycle_latlon.ncl and passes them to the plotting functions.
Fig. 5: Relative space-time root-mean-square deviation (RMSD) calculated from the climatological seasonal cycle of CMIP5 simulations. A relative performance is displayed, with blue shading indicating better and red shading indicating worse performance than the median of all model results. A diagonal split of a grid square shows the relative error with respect to the reference data set (lower right triangle) and the alternative data set (upper left triangle). White boxes are used when data are not available for a given model and variable.
10.2.3 User settings

1. perfmetrics/main.ncl

 Required settings for script

 • plot_type: only “cycle_latlon (time, lat, lon)” and “cycle_zonal (time, plev, lat)” available for SMPI; usage is defined in the recipe and is dependent on the used variable (2D variable: cycle_latlon, 3D variable: cycle_zonal)

 • time_avg: type of time average (only “yearly” allowed for SMPI, any other settings are not supported for this diagnostic)

 • region: selected region (only “global” allowed for SMPI, any other settings are not supported for this diagnostic)

 • normalization: metric normalization (“CMIP5” for analysis of CMIP5 simulations; to be adjusted accordingly for a different CMIP phase)

 • calc_grading: calculates grading metrics (has to be set to “true” in the recipe)

 • metric: chosen grading metric(s) (if calc_grading is True; has to be set to “SMPI”)

 • smpi_n_bootstrap: number of bootstrapping members used to determine uncertainties on model-reference differences (typical number of bootstrapping members: 100)

 Required settings for variables

 • reference_dataset: reference dataset to compare with (usually the observations).

 These settings are passed to the other scripts by main.ncl, depending on the selected plot_type.

1. collect.ncl

 Required settings for script

 • metric: selected metric (has to be “SMPI”)

10.2.4 Variables

• hdfs (ocean, monthly mean, longitude latitude time)
• hus (atmos, monthly mean, longitude latitude lev time)
• pr (atmos, monthly mean, longitude latitude time)
• psl (atmos, monthly mean, longitude latitude time)
• sic (ocean-ice, monthly mean, longitude latitude time)
• ta (atmos, monthly mean, longitude latitude lev time)
• tas (atmos, monthly mean, longitude latitude levl time)
• tauu (atmos, monthly mean, longitude latitude time)
• tauv (atmos, monthly mean, longitude latitude time)
• tos (ocean, monthly mean, longitude latitude time)
• ua (atmos, monthly mean, longitude latitude lev time)
• va (atmos, monthly mean, longitude latitude lev time)
10.2.5 Observations and reformat scripts

The following list shows the currently used observational data sets for this recipe with their variable names and the reference to their respective reformat scripts in parentheses. Please note that obs4mips data can be used directly without any reformating. For non-obs4mips data see headers of cmorization scripts (in /esmvaltool/cmorizers/obs/) for downloading and processing instructions.

- ERA-Interim (hfds, hus, psl, ta, tas, tauu, tauv, ua, va - esmvaltool/utils/cmorizers/obs/cmorize_obs_ERA-Interim.ncl)
- HadISST (sic, tos - reformat_scripts/obs/reformat_obs_HadISST.ncl)
- GPCP-SG (pr - obs4mips)

10.2.6 References

10.2.7 Example plots

![Performance index I^2 for individual models (circles). Circle sizes indicate the length of the 95% confidence intervals. The black circle indicates the I^2 of the multi-model mean (similar to Reichler and Kim (2008), Figure 1).](image-url)
11.1 Constraining future Indian Summer Monsoon projections with the present-day precipitation over the tropical western Pacific

11.1.1 Overview

Following Li et al. (2017) the change between present-day and future Indian Summer Monsoon (ISM) precipitation is constrained using the precipitation over the tropical western Pacific compared to a fixed, observed amount of 6 mm d\(^{-1}\) from Global Precipitation Climatology Project (GPCP) (Adler et al., 2003) for 1980-2009. For CMIP6, historical data for 1980-2009 should be used. For CMIP5 historical data from 1980-2005 should be used, due to the length of the data sets. At the moment it is not possible to use a combined ["historical", "rcp"] data set, because the diagnostic requires that a historical data set is given.

11.1.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_li17natcc.yml

Diagnostics are stored in diag_scripts/
- emergent_constraints/lif1f2.py

11.1.3 User settings in recipe

The recipe can be run with different CMIP5 and CMIP6 models. For each model, two experiments must be given: one historical run, possibly between 1980-2009 and one other model experiment. The user can choose the other model experiment, but it needs to be the same for all given models. The start and end year for the second data set can be choosen by the user, but should be consistent for all models (the same for future scenarios, the same length for other experiments). Different ensemble members are not possible, yet.
11.1.4 Variables

- \(pr \) (atmos, monthly, longitude, latitude, time)
- \(ua \) (atmos, monthly, longitude, latitude, plev, time)
- \(va \) (atmos, monthly, longitude, latitude, plev, time)
- \(ts \) (atmos, monthly, longitude, latitude, time)

11.1.5 Observations and reformat scripts

None

11.1.6 References

- Li, G., Xie, S. P., He, C., and Chen, Z. S.: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall, Nat Clim Change, 7, 708-+, 2017

11.1.7 Example plots

Fig. 1: Scatter plot of the simulated tropical western Pacific precipitation (mm d\(^{-1}\)) versus projected average ISM (Indian Summer Monsoon) rainfall changes under the ssp585 scenario. The red line denotes the observed present-day western Pacific precipitation and the inter-model correlation \(r \) is shown. (CMIP6).
Fig. 2: Scatter plot of the uncorrected versus corrected average ISM (Indian Summer Monsoon) rainfall change ratios (% per degree Celsius of global SST warming). The error bars for the Multi-model mean indicate the standard deviation spread among models and the 2:1 line ($y = 0.5x$) is used to illustrate the Multi-model mean reduction in projected rainfall increase. (CMIP6).

Fig. 3: Multi-model mean rainfall change due to model error. Box displays the area used to define the average ISM (Indian Summer Monsoon) rainfall. Precipitation changes are normalized by the corresponding global mean SST increase for each model. (CMIP6).

11.1. Constraining future Indian Summer Monsoon projections with the present-day precipitation over the tropical western Pacific
11.2 Constraining uncertainty in projected gross primary production (GPP) with machine learning

11.2.1 Overview

These recipes reproduce the analysis of Schlund et al. (2020). In this paper, a machine learning regression (MLR) approach (using the MLR algorithm Gradient Boosted Regression Trees, GBRT) is proposed to constrain uncertainties in projected gross primary production (GPP) in the RCP 8.5 scenario using observations of process-based diagnostics.

11.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

- schlund20jgr/recipe_schlund20jgr_gpp_abs_rcp85.yml
- schlund20jgr/recipe_schlund20jgr_gpp_change_1pct.yml
- schlund20jgr/recipe_schlund20jgr_gpp_change_rcp85.yml

Diagnostics are stored in diag_scripts/

- mlr/evaluate_residuals.py
- mlr/main.py
- mlr/mmm.py
- mlr/plot.py
- mlr/postprocess.py
- mlr/preprocess.py
- mlr/rescale_with_emergent_constraint.py

General information (including an example and more details) on machine learning regression (MLR) diagnostics is given here. The API documentation is available here.
11.2.3 Variables

- $co2s$ (atmos, monthly, longitude, latitude, time)
- gpp (land, monthly, longitude, latitude, time)
- $gppStderr$ (land, monthly, longitude, latitude, time)
- lai (land, monthly, longitude, latitude, time)
- pr (atmos, monthly, longitude, latitude, time)
- $rsds$ (atmos, monthly, longitude, latitude, time)
- tas (atmos, monthly, longitude, latitude, time)

11.2.4 Observations and reformat scripts

- CRU (pr, tas)
- ERA-Interim ($rsds$)
- LAI3g (lai)
- MTE ($gpp, gppStderr$)
- Scripps-CO2-KUM ($co2s$)

11.2.5 References

- Schlund et al., JGR: Biogeosciences, accepted (2020). TBA

11.2.6 Example plots

Fig. 5: GBRT-based prediction of the fractional GPP change over the 21st century (= GPP(2091-2100) / GPP(1991-2000)).
Fig. 6: Corresponding error of the GBRT-based prediction of the fractional GPP change over the 21st century (considering errors in the MLR model and errors in the predictors).

Fig. 7: GBRT-based prediction of the absolute GPP at the end of the 21st century (2091-2100).
Fig. 8: Corresponding error of the GBRT-based prediction of the absolute GPP at the end of the 21st century (considering errors in the MLR model and errors in the predictors).

Fig. 9: Boxplot of the root mean square error of prediction (RMSEP) distributions for six different statistical models used to predict future absolute GPP (2091-2100) using a leave-one-model-out cross-validation approach. The distribution for each statistical model contains seven points (black dots, one for each climate model used as truth) and is represented in the following way: the lower and upper limit of the blue boxes correspond to the 25% and 75% quantiles, respectively. The central line in the box shows the median, the black “x” the mean of the distribution. The whiskers outside the box represent the range of the distribution.
Fig. 10: Global feature importance of the GBRT model for prediction of the absolute GPP at the end of the 21st century (2091-2100).

Fig. 11: Distribution of the residuals of the GBRT model for the prediction of absolute GPP at the end of the 21st century (2091-2100) for the training data (blue) and test data excluded from training (green).
11.3 Emergent constraints for equilibrium climate sensitivity

11.3.1 Overview

Calculates equilibrium climate sensitivity (ECS) versus
1) S index, D index and lower tropospheric mixing index (LTMI); similar to fig. 5 from Sherwood et al. (2014)
2) southern ITCZ index and tropical mid-tropospheric humidity asymmetry index; similar to fig. 2 and 4 from Tian (2015)
3) covariance of shortwave cloud reflection (Brient and Schneider, 2016)
4) climatological Hadley cell extent (Lipat et al., 2017)
5) temperature variability metric; similar to fig. 2 from Cox et al. (2018)
6) total cloud fraction difference between tropics and mid-latitudes; similar to fig. 3 from Volodin (2008)
7) response of marine boundary layer cloud (MBLC) fraction changes to sea surface temperature (SST); similar to fig. 3 of Zhai et al. (2015)
8) Cloud shallowness index (Brient et al., 2016)
9) Error in vertically-resolved tropospheric zonal average relative humidity (Su et al., 2014)

The results are displayed as scatterplots.

Note: The recipe `recipe_ecs_scatter.yml` requires pre-calculation of the equilibrium climate sensitivities (ECS) for all models. The ECS values are calculated with recipe_ecs.yml. The netcdf file containing the ECS values (path and filename) is specified by `diag_script_info@ecs_file`. Alternatively, the netcdf file containing the ECS values can be generated with the cdl-script `$diag_scripts/emergent_constraints/ecs_cmip.cdl` (recommended method):

1) save script given at the end of this recipe as `ecs_cmip.cdl`
2) run command: `negen -o ecs_cmip.nc ecs_cmip.cdl`
3) copy ecs_cmip.nc to directory given by diag_script_info@ecs_file (e.g. $diag_scripts/emergent_constraints/ecs_cmip.nc)

11.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_ecs_scatter.yml
- recipe_ecs_constraints.yml

Diagnostics are stored in diag_scripts

- emergent_constraints/ecs_scatter.ncl: calculate emergent constraints for ECS
- emergent_constraints/ecs_scatter.py: calculate further emergent constraints for ECS
- emergent_constraints/univariate_constraint.py: create scatterplots for emergent constraints
- climate_metrics/psi.py: calculate temperature variability metric (Cox et al., 2018)

11.3.3 User settings in recipe

1. Script emergent_constraints/ecs_scatter.ncl

 Required settings (scripts)
 - diag: emergent constraint to calculate ("itczidx", "humidx", "ltmi", "covrefl", "shhc", "sherwood_d", "sherwood_s")
 - ecs_file: path and filename of netCDF containing precalculated ECS values (see note above)

 Optional settings (scripts)
 - calcmm: calculate multi-model mean (True, False)
 - legend_outside: plot legend outside of scatterplots (True, False)
 - output_diag_only: Only write netcdf files for X axis (True) or write all plots (False)
 - output_models_only: Only write models (no reference datasets) to netcdf files (True, False)
 - output_attributes: Additional attributes for all output netcdf files
 - predef_minmax: use predefined internal min/max values for axes (True, False)
 - styleset: “CMIP5” (if not set, diagnostic will create a color table and symbols for plotting)
 - suffix: string to add to output filenames (e.g."cmip3")

 Required settings (variables)
 - reference_dataset: name of reference data set

 Optional settings (variables)
 - none

 Color tables
 - none

2. Script emergent_constraints/ecs_scatter.py

 Required settings (scripts)
• diag: emergent constraint to calculate ("brient_shal", "su", "volodin", "zhai")

Optional settings (scripts)

• metric: Metric to measure model error, only relevant for Su et al. (2014) constraint ("regression_slope", "correlation_coefficient")

• output_attributes: Additional attributes for all output netcdf files

• pattern: Only accept ancestor files that match that pattern

• savefig_kwargs: Keyword arguments for matplotlib.pyplot's `savefig()` function, see https://matplotlib.org/3.2.0/api/_as_gen/matplotlib.pyplot.savefig.html

• seaborn_settings: Options for seaborn's `set()` methods (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html

Required settings (variables)

• reference_dataset: name of reference data set

Optional settings (variables)

none

3. Script `emergent_constraints/univariate_constraint.py`

All input data for this diagnostic must be marked with a `var_type` (either `feature`, `label`, `prediction_input` or `prediction_input_error`) and a `tag`, which describes the data. This diagnostic supports only a single `tag` for `label` and `feature`. For every `tag`, a `reference_dataset` can be specified, which will be automatically considered as `prediction_input`. If `reference_dataset` contains `'|'` (e.g. 'OBS1|OBS2'), multiple datasets are considered as `prediction_input` (in this case 'OBS1' and 'OBS2').

Required settings (scripts)

none

Optional settings (scripts)

• all_data_label: Label used in plots when all input data is considered. Only relevant if `group_by` is not used

• confidence_level: Confidence level for estimation of constrained target variable.

• group_by: Group input data by an attribute (e.g. produces separate plots for the individual groups, etc.)

• ignore_patterns: Ignore ancestor files that match that patterns

• merge_identical_pred_input: Use identical prediction_input values as single value

• numbers_as_markers: Use numbers as markers in scatterplots

• patterns: Only accept ancestor files that match that patterns

• read_external_file: Read input datasets from external file given as absolute path or relative path. In the latter case, 'auxiliary_data_dir' from the user configuration file is used as base directory

• savefig_kwargs: Keyword arguments for matplotlib.pyplot's `savefig()` function, see https://matplotlib.org/3.2.0/api/_as_gen/matplotlib.pyplot.savefig.html

• seaborn_settings: Options for seaborn's `set()` methods (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html

Required settings (variables)

• reference_dataset: name of reference data set

11.3. Emergent constraints for equilibrium climate sensitivity
Optional settings (variables)

none

4. Script climate_metrics/psi.py
 See Emergent constraint on equilibrium climate sensitivity from global temperature variability.

11.3.4 Variables

- cl (atmos, monthly mean, longitude latitude level time)
- clt (atmos, monthly mean, longitude latitude time)
- pr (atmos, monthly mean, longitude latitude time)
- hur (atmos, monthly mean, longitude latitude level time)
- hus (atmos, monthly mean, longitude latitude level time)
- rsdt (atmos, monthly mean, longitude latitude time)
- rsut (atmos, monthly mean, longitude latitude time)
- rsutcs (atmos, monthly mean, longitude latitude time)
- rntt or rtnt (atmos, monthly mean, longitude latitude time)
- ta (atmos, monthly mean, longitude latitude level time)
- tas (atmos, monthly mean, longitude latitude time)
- tasa (atmos, monthly mean, longitude latitude time)
- tos (atmos, monthly mean, longitude latitude time)
- ts (atmos, monthly mean, longitude latitude time)
- va (atmos, monthly mean, longitude latitude level time)
- wap (atmos, monthly mean, longitude latitude level time)
- zg (atmos, monthly mean, longitude latitude time)

11.3.5 Observations and reformat scripts

Note:
(1) Obs4mips data can be used directly without any preprocessing.
(2) See headers of reformat scripts for non-obs4mips data for download instructions.

- AIRS (obs4mips): hus, husStderr
- AIRS-2-0 (obs4mips): hur
- CERES-EBAF (obs4mips): rsdt, rsut, rsutcs
- ERA-Interim (OBS6): hur, ta, va, wap
- GPCP-SG (obs4mips): pr
- HadCRUT4 (OBS): tasa
• HadISST (OBS): ts
• MLS-AURA (OBS6): hur
• TRMM-L3 (obs4mips): pr, prStderr

11.3.6 References

• Sherwood et al., nature, 505, 37-42, doi:10.1038/nature12829, 2014.

11.3.7 Example plots

11.4 Emergent constraints on carbon cycle feedbacks

11.4.1 Overview

Figures from Wenzel et al. (2014) are reproduced with recipe_wenzel14jgr.yml. Variables relevant for the carbon cycle - climate feedback such as near surface air temperature (tas), net biosphere productivity (nbp) and carbon flux into the ocean (fgco2) are analyzed for coupled (1pctCO2, here the carbon cycle is fully coupled to the climate response) and uncoupled (esmFixCLim1, here the carbon cycle is uncoupled to the climate response) simulations. The standard namelist includes a comparison of cumulated nbp from coupled and uncoupled simulations and includes a set of routines to diagnose the long-term carbon cycle - climate feedback parameter (GammaLT) from an ensemble of CMIP5 models. Also included in the recipe is a comparison of the interannual variability of nbp and fgco2 for historical simulations used to diagnose the observable sensitivity of CO2 to tropical temperature changes (GammaIA V). As a key figure of this recipe, the diagnosed values from the models GammaLT vs. GammaIAV are compared in a scatter plot constituting an emergent constraint.

11.4.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_wenzel14jgr.yml

Diagnostics are stored in diag_scripts/

• carbon_tsline.ncl: time line plots of annual means for spatial averages
• carbon_gammaHist.ncl: scatter plot of annual mean anomalies of two different variables; diagnosing and saving GammaIAV

11.4. Emergent constraints on carbon cycle feedbacks 135
Fig. 13: Lower tropospheric mixing index (LTMI; Sherwood et al., 2014) vs. equilibrium climate sensitivity from CMIP5 models.
Fig. 14: Climatological Hadley cell extent (Lipat et al., 2017) vs. equilibrium climate sensitivity from CMIP5 models.
Fig. 15: Tropical mid-tropospheric humidity asymmetry index (Tian, 2015) vs. equilibrium climate sensitivity from CMIP5 models.
Fig. 16: Southern ITCZ index (Tian, 2015) vs. equilibrium climate sensitivity from CMIP5 models.
Fig. 17: Covariance of shortwave cloud reflection (Brient and Schneider, 2016) vs. equilibrium climate sensitivity from CMIP5 models.
Fig. 18: Difference in total cloud fraction between tropics (28°S - 28°N) and Southern midlatitudes (56°S - 36°S) (Volodin, 2008) vs. equilibrium climate sensitivity from CMIP5 models.

- carbon_constraint.ncl: scatter plot of GammaLT vs. GammaIAV + line plot of probability density functions, diagnosing GammaLT

11.4.3 User settings

User setting files (cfg files) are stored in nml/cfg_carbon/

1. carbon_tline

Required Settings (scripts)

- ts_minlat: minimum latitude for area averaging
- ts_maxlat: maximum latitude for area averaging
- ts_minlon: minimum longitude for area averaging
- ts_maxlon: maximum longitude for area averaging
- ts_maxyear: last year (time range)
- ts_minyear: first year (time range)
- plot_units: units to appear on Figure
- time_avg: currently, only yearly is available
- area_opper: type of area operation (sum)
- styleset: Plot style

Optional settings (scripts)
• multi_model_mean: True for multi-model mean calculation
• volcanoes: True for marking years with large volcanic eruptions
• align: True for aligning models to have the same start year (needed for idealized 2x CO2 simulations)
• ts_anomaly: calculates anomalies with respect to a defined time range average (anom)
• ridx_start: if ts_anomaly is True, define start time index for reference period
• ridx_end: if ts_anomaly is True, define end time index for reference period
• ref_start: if ts_anomaly is True, define start year for reference period
• ref_end: if ts_anomaly is True, define end year for reference period

Required settings (variables)
• reference_dataset: name of reference data set

2. carbon_gammaHist.ncl

Required Settings (scripts)
• start_year: first year (time range)
• end_year: last year (time range)
• plot_units: units to appear on Figure
• ec_anom: calculates anomalies with respect to the first 10-year average (anom)
• scatter_log: set logarithmic axes in scatterplot.ncl
• styleset: Plot style

Optional settings (scripts)
• ec_volc: exclude 2 years after volcanic eruptions (True/False)

3. carbon_constraint.ncl

Required Settings (scripts)
• gIAV_diascript: “gammaHist_Fig3and4”
• gIAV_start: start year of GammIAV calculation period
• gIAV_end: end year of GammIAV calculation period
• ec_anom: True
• con_units: label string for units, e.g. (GtC/K)
• nc_infile: specify path to historical gamma values derived by carbon_gammaHist.ncl
• styleset: Plot style

Optional settings (scripts)
• reg_models: Explicit naming of individual models to be excluded from the regression
11.4.4 Variables

- tas (atmos, monthly mean, longitude latitude time)
- nbp (land, monthly mean, longitude latitude time)
- fgco2 (ocean, monthly mean, longitude latitude time)

11.4.5 Observations and reformat scripts

- GCP: Global Carbon Budget including land (nbp) and ocean (fgco2) carbon fluxes
- NCEP: National Centers for Environmental Prediction reanalysis data for near surface temperature

11.4.6 References

11.4.7 Example plots

![Example plot](image)

Fig. 19: Time series of tropical (30S to 30N) mean near surface temperature (tas) change between year 30 and year 110 for the CMIP5 models simulated with prescribed CO2 (1%/yr CO2 increase) coupled simulation (1pctCO2).

11.5 Emergent constraint on equilibrium climate sensitivity from global temperature variability

11.5.1 Overview

This recipe reproduces the emergent constraint proposed by Cox et al. (2018) for the equilibrium climate sensitivity (ECS) using global temperature variability. The latter is defined by a metric which can be calculated from the global
Fig. 20: Correlations between the interannual variability of global co2flux (nbp+fgco2) and tropical temperature for the individual CMIP5 models using esmHistorical simulations, and for observations.

Fig. 21: Carbon cycle-climate feedback of tropical land carbon vs. the sensitivity of co2flux to interannual temperature variability in the tropics (30S to 30N). The red line shows the linear best fit of the regression together with the prediction error (orange shading) and the gray shading shows the observed range.
temperature variance (in time) σ_T and the one-year-lag autocorrelation of the global temperature α_{1T} by

$$\psi = \frac{\sigma_T}{\sqrt{-\ln(\alpha_{1T})}}$$

Using the simple Hasselmann model they show that this quantity is linearly correlated with the ECS. Since it only depends on the temporal evolution of the global surface temperature, there is lots of observational data available which allows the construction of an emergent relationship. This method predicts an ECS range of 2.2K to 3.4K (66% confidence limit).

11.5.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_cox18nature.yml

Diagnostics are stored in diag_scripts/
- emergent_constraints/cox18nature.py
- climate_metrics/ecs.py
- climate_metrics/psi.py

11.5.3 User settings in recipe

1. Preprocessor
 - area_statistics (operation: mean): Calculate global mean.
2. Script emergent_constraints/cox18nature.py
 - confidence_level, float, optional (default: 0.66): Confidence level for ECS error estimation.
3. Script climate_metrics/ecs.py
 - read_external_file, str, optional: Read ECS and net climate feedback parameter from external file. All other input data is ignored.
4. Script climate_metrics/psi.py

11.5. Emergent constraint on equilibrium climate sensitivity from global temperature variability
• **output_attributes**, `dict`, optional: Write additional attributes to all output netcdf files.
• **lag**, `int`, optional (default: 1): Lag (in years) for the autocorrelation function.
• **window_length**, `int`, optional (default: 55): Number of years used for the moving window average.

11.5.4 Variables

• **tas** (atmos, monthly, longitude, latitude, time)
• **tasa** (atmos, monthly, longitude, latitude, time)

11.5.5 Observations and reformat scripts

• **HadCRUT4** (**tasa**)

11.5.6 References

11.5.7 Example plots

![Simulation of global warming record](image)

Fig. 23: Simulated change in global temperature from CMIP5 models (coloured lines), compared to the global temperature anomaly from the HadCRUT4 dataset (black dots). The anomalies are relative to a baseline period of 1961–1990. The model lines are colour-coded, with lower-sensitivity models ($> 1 \text{ Wm}^{-2}\text{K}^{-1}$) shown by green lines and higher-sensitivity models ($< 1 \text{ Wm}^{-2}\text{K}^{-1}$) shown by magenta lines.
Fig. 24: Emergent relationship between ECS and the metric. The black dot-dashed line shows the best-fit linear regression across the model ensemble, with the prediction error for the fit given by the black dashed lines. The vertical blue lines show the observational constraint from the HadCRUT4 observations: the mean (dot-dashed line) and the mean plus and minus one standard deviation (dashed lines).

Fig. 25: The PDF for ECS. The orange histograms (both panels) show the prior distributions that arise from equal weighting of the CMIP5 models in 0.5 K bins.

11.5. Emergent constraint on equilibrium climate sensitivity from global temperature variability
11.6 Emergent constraint on snow-albedo effect

11.6.1 Overview

The recipe `recipe_snowalbedo.yml` computes the springtime snow-albedo feedback values in climate change versus springtime values in the seasonal cycle in transient climate change experiments following Hall and Qu (2006). The strength of the snow-albedo effect is quantified by the variation in net incoming shortwave radiation (Q) with surface air temperature (T_s) due to changes in surface albedo (α_s):

$$\left(\frac{\partial Q}{\partial T_s} \right) = -I_t \cdot \frac{\partial \alpha_p}{\partial \alpha_s} \cdot \frac{\Delta \alpha_s}{\Delta T_s}$$

The diagnostic produces scatterplots of simulated springtime $\Delta \alpha_s/\Delta T_s$ values in climate change (ordinate) vs. simulated springtime $\Delta \alpha_s/\Delta T_s$ values in the seasonal cycle (abscissa).

Ordinate values: the change in April α_s (future projection - historical) averaged over NH land masses poleward of 30°N is divided by the change in April T_s (future projection - historical) averaged over the same region. The change in α_s (or T_s) is defined as the difference between 22nd-century-mean α_s: (T_s) and 20th-century-mean α_s. Values of α_s are weighted by April incoming insolation (I_t) prior to averaging.

Abscissa values: the seasonal cycle $\Delta \alpha_s/\Delta T_s$ values, based on 20th century climatological means, are calculated by dividing the difference between April and May α_s: averaged over NH continents poleward of 30°N by the difference between April and May T_s averaged over the same area. Values of α_s: are weighted by April incoming insolation prior to averaging.

11.6.2 Available recipes and diagnostics

Recipes are stored in recipes/

- `recipe_snowalbedo.yml`

Diagnostics are stored in diag_scripts/emergent_constraints/

- `snowalbedo.ncl`: springtime snow-albedo feedback values vs. seasonal cycle

11.6.3 User settings in recipe

1. Script `snowalbedo.ncl`

 Required settings for script

 - `exp_presentday`: name of present-day experiment (e.g. “historical”)
 - `exp_future`: name of climate change experiment (e.g. “rcp45”)

 Optional settings for script

 - `diagminmax`: observational uncertainty (min and max)
 - `legend_outside`: create extra file with legend (true, false)
 - `styleset`: e.g. “CMIP5” (if not set, this diagnostic will create its own color table and symbols for plotting)
 - `suffix`: string to be added to output filenames
 - `xmax`: upper limit of x-axis (default = automatic)
 - `xmin`: lower limit of x-axis (default = automatic)
 - `ymax`: upper limit of y-axis (default = automatic)
• ymin: lower limit of y-axis (default = automatic)

Required settings for variables

• ref_model: name of reference data set

Optional settings for variables

none

Required settings (scripts)

none

Optional settings (scripts)

11.6.4 Variables

• tas (atmos, monthly mean, longitude latitude time)
• rsdt (atmos, monthly mean, longitude latitude time)
• rsuscs, rsdscs (atmos, monthly mean, longitude latitude time)

11.6.5 Observations and reformat scripts

• ERA-Interim (tas - esmvaltool/utils/cmorizers/obs/cmorize_obs_ERA-Interim.ncl)
• ISCCP-FH (rsuscs, rsdscs, rsdt - esmvaltool/utils/cmorizers/obs/cmorize_obs_isccp_fh.ncl)

11.6.6 References

11.6.7 Example plots

11.7 Equilibrium climate sensitivity

11.7.1 Overview

Equilibrium climate sensitivity is defined as the change in global mean temperature as a result of a doubling of the atmospheric CO₂ concentration compared to pre-industrial times after the climate system has reached a new equilibrium. This recipe uses a regression method based on Gregory et al. (2004) to calculate it for several CMIP models.
Fig. 26: Scatterplot of springtime snow-albedo effect values in climate change vs. springtime $\Delta \alpha_s / \Delta T_s$ values in the seasonal cycle in transient climate change experiments (CMIP5 historical experiments: 1901-2000, RCP4.5 experiments: 2101-2200). Similar to IPCC AR5 Chapter 9 (Flato et al., 2013), Figure 9.45a.
11.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_ecs.yml

Diagnostics are stored in diag_scripts/

- climate_metrics/ecs.py
- climate_metrics/create_barplot.py
- climate_metrics/create_scatterplot.py

11.7.3 User settings in recipe

1. Preprocessor

- area_statistics (operation: mean): Calculate global mean.

2. Script climate_metrics/ecs.py

- calculate_mmm, bool, optional (default: True): Calculate multi-model mean ECS.
- output_attributes, dict, optional: Write additional attributes to all output netcdf files.
- read_external_file, str, optional: Read ECS and net climate feedback parameter from external file. Can be given relative to the diagnostic script or as absolute path.
- seaborn_settings, dict, optional: Options for seaborn’s set() method (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.

3. Script climate_metrics/create_barplot.py

- label_attribute, str, optional: Attribute of the cube which is used as label for the different input files in the barplot.
- patterns, list of str, optional: Patterns to filter list of input files.
- seaborn_settings, dict, optional: Options for seaborn’s set() method (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.
- value_labels, bool, optional (default: False): Label bars with value of that bar.
- y_range, list of float, optional: Range for the Y axis of the plot.

4. Script climate_metrics/create_scatterplot.py

- dataset_style, str, optional: Name of the style file (located in esmvaltool.diag_scripts.shared.plot.styles_python).
- pattern, str, optional: Pattern to filter list of input files.
- seaborn_settings, dict, optional: Options for seaborn’s set() method (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.
- y_range, list of float, optional: Range for the Y axis of the plot.
11.7.4 Variables

- $rlut$ (atmos, monthly, longitude, latitude, time)
- $rsdt$ (atmos, monthly, longitude, latitude, time)
- $rsut$ (atmos, monthly, longitude, latitude, time)
- tas (atmos, monthly, longitude, latitude, time)

11.7.5 Observations and reformat scripts

None

11.7.6 References

11.7.7 Example plots

Fig. 27: Scatterplot between TOA radiance and global mean surface temperature anomaly for 150 years of the abrupt 4x CO2 experiment including linear regression to calculate ECS for CanESM2 (CMIP5).

11.8 KNMI Climate Scenarios 2014

11.8.1 Overview

This recipe implements the method described in Lenderink et al., 2014, to prepare the 2014 KNMI Climate Scenarios (KCS) for the Netherlands. A set of 8 global climate projections from EC-Earth were downscaled with the RACMO regional climate model. Since the EC-Earth ensemble is not readily representative for the spread in the full CMIP ensemble, this method recombines 5-year segments from the EC-Earth ensemble to obtain a large suite of “resamples”. Subsequently, 8 new resamples are selected that cover the spread in CMIP much better than the original set.
The original method created 8 resampled datasets:

- 2 main scenarios: Moderate (M) and Warm (W) (Lenderink 2014 uses “G” instead of “M”).
- 2 ‘sub’scenarios: Relatively high (H) or low (L) changes in seasonal temperature and precipitation
- 2 time horizons: Mid-century (MOC; 2050) and end-of-century (EOC; 2085)
- Each scenario consists of changes calculated between 2 periods: Control (1981-2010) and future (variable).

The configuration settings for these resamples can be found in table 1 of Lenderink 2014’s supplementary data.

11.8.2 Implementation

The implementation is such that application to other datasets, regions, etc. is relatively straightforward. The description below focuses on the reference use case of Lenderink et al., 2014, where the target model was EC-Earth. An external set of EC-Earth data (all RCP85) was used, for which 3D fields for downscaling were available as well. In the recipe shipped with ESMValTool, however, the target model is CCSM4, so that it works out of the box with ESGF data only.

In the first diagnostic, the spread of the full CMIP ensemble is used to obtain 4 values of a global ΔT_{CMIP}, corresponding to the 10th and 90th percentiles for the M and W scenarios, respectively, for both MOC and EOC. Subsequently, for each of these 4 steering parameters, 30-year periods are selected from the target model ensemble, where $\Delta T_{target} \approx \Delta T_{CMIP}$.

In the second diagnostic, for both the control and future periods, the N target model ensemble members are split into 6 segments of 5 years each. Out of all N^6 possible re-combinations of these 5-year segments, eventually M new ‘resamples’ are selected based on local changes in seasonal temperature and precipitation. This is done in the following steps:

1. Select 1000 samples for the control period, and 2 x 1000 samples for the future period (one for each subscenario). Step 1 poses a constraint on winter precipitation. For the control period, winter precipitation must still closely represent the average of the original ensemble. For the two future periods, the change in winter precipitation with respect to the control period must approximately equal 4% per degree ΔT (subscenario L) or 8% per degree ΔT (subscenario H).

2. Further constrain the selection by picking samples that represent either high or low changes in summer precipitation and summer and winter temperature, by limiting the remaining samples to certain percentile ranges: relatively wet/cold in the control and dry/warm in the future, or vice versa. The percentile ranges are listed in table 1 of Lenderink 2014’s supplement. This should result is approximately 50 remaining samples for each scenario, for both control and future.

3. Use a Monte-Carlo method to make a final selection of 8 resamples with minimal reuse of the same ensemble member/segment.

Datasets have been split in two parts: the CMIP datasets and the target model datasets. An example use case for this recipe is to compare between CMIP5 and CMIP6, for example. The recipe can work with a target model that is not part of CMIP, provided that the data are CMOR compatible, and using the same data reference syntax as the CMIP data. Note that you can specify multiple data paths in the user configuration file.
11.8.3 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_kcs.yml

Diagnostics are stored in diag_scripts/kcs/

- global_matching.py
- local_resampling.py

Note: We highly recommend using the options described in *Re-running diagnostics*. The speed bottleneck for the first diagnostic is the preprocessor. In the second diagnostic, step 1 is most time consuming, whereas steps 2 and 3 are likely to be repeated several times. Therefore, intermediate files are saved after step 1, and the diagnostic will automatically detect and use them if the \(-i\) flag is used.

11.8.4 User settings

1. Script <global_matching.py>

 Required settings for script

 - scenario_years: a list of time horizons. Default: [2050, 2085]
 - scenario_percentiles: a list of percentiles for the steering table. Default: [p10, p90]

 Required settings for preprocessor

 This diagnostic needs global mean temperature anomalies for each dataset, both CMIP and the target model. Additionally, the multimodel statistics preprocessor must be used to produce the percentiles specified in the setting for the script above.

2. Script <local_resampling.py>

 Required settings for script

 - control_period: the control period shared between all scenarios. Default: [1981, 2010]
 - n_samples: the final number of recombinations to be selected. Default: 8
 - scenarios: a scenario name and list of options. The default setting is a single scenario:

   ```
   scenarios:
   ML_MOC:  # scenario name; can be chosen by the user
       description: "Moderate / low changes in seasonal temperature & precipitation"
       global_dT: 1.0
       scenario_year: 2050
       resampling_period: [2021, 2050]
       dpr_winter: 4
       pr_summer_control: [25, 55]
       pr_summer_future: [45, 75]
       tas_winter_control: [50, 80]
       tas_winter_future: [20, 50]
       tas_summer_control: [0, 100]
       tas_summer_future: [0, 50]
   ```

 These values are taken from table 1 in the Lenderink 2014’s supplementary material. Multiple scenarios can be processed at once by appending more configurations below the default...
one. For new applications, global_dT, resampling_period and dpr_winter are informed by the output of the first diagnostic. The percentile bounds in the scenario settings (e.g. tas_winter_control and tas_winter_future) are to be tuned until a satisfactory scenario spread over the full CMIP ensemble is achieved.

Required settings for preprocessor

This diagnostic requires data on a single point. However, the extract_point preprocessor can be changed to extract_shape or extract_region, in conjunction with an area mean. And of course, the coordinates can be changed to analyze a different region.

11.8.5 Variables

Variables are precipitation and temperature, specified separately for the target model and the CMIP ensemble:

- pr_target (atmos, monthly mean, longitude latitude time)
- tas_target (atmos, monthly mean, longitude latitude time)
- pr_cmip (atmos, monthly mean, longitude latitude time)
- tas_cmip (atmos, monthly mean, longitude latitude time)

11.8.6 References

11.8.7 Example output

The diagnostic global_matching produces a scenarios table like the one below:

<table>
<thead>
<tr>
<th>year</th>
<th>percentile</th>
<th>cmip_dt</th>
<th>period_bounds</th>
<th>target_dt</th>
<th>pattern_scaling_factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2050</td>
<td>P10</td>
<td>[2019, 2048]</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>2050</td>
<td>P90</td>
<td>[2045, 2074]</td>
<td>2.02</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>2085</td>
<td>P10</td>
<td>[2030, 2059]</td>
<td>1.38</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>2085</td>
<td>P90</td>
<td>[2071, 2100]</td>
<td>3.28</td>
<td>1.18</td>
</tr>
</tbody>
</table>

which is printed to the log file and also saved as a csv-file scenarios.csv. Additionally, a figure is created showing the CMIP spread in global temperature change, AND highlighting the selected steering parameters and resampling periods:

The diagnostic local_resampling produces a number of output files:

- season_means_<scenario>.nc: intermediate results, containing the season means for each segment of the original target model ensemble.
- top1000_<scenario>.csv: intermediate results, containing the 1000 combinations that have been selected based on winter mean precipitation.
- indices_<scenario>.csv: showing the final set of resamples as a table:
• Provenance information: bibtex, xml, and/or text files containing citation information are stored alongside the final result and the final figure. The final combinations only derive from the target model data, whereas the figure also uses CMIP data.

• A figure used to validate the final result, reproducing figures 5 and 6 from Lenderink et al.:
11.8. KNMI Climate Scenarios 2014
11.9 Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position

11.9.1 Overview

Wenzel et al. (2016) use multiple ensemble diagnostic regression (MDER) to constrain the CMIP5 future projection of the summer austral jet position with several historical process-oriented diagnostics and respective observations.

The following plots are reproduced:

- Absolute correlation between the target variable and the diagnostics.
- Scatterplot between the target variable and the MDER-calculated linear combination of diagnostics.
- Boxplot of RMSE for the unweighted multi-model mean and the (MDER) weighted multi-model mean of the target variable in a pseudo-reality setup.
- Time series of the target variable for all models, observations and MDER predictions.
- Errorbar plots for all diagnostics.
- Scatterplots between the target variable and all diagnostics.

11.9.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_wenzel16jclim.yml

Diagnostics are stored in diag_scripts/
- austral_jet/asr.ncl
- austral_jet/main.ncl
- mder/absolute_correlation.ncl
- mder/regression_stepwise.ncl
- mder/select_for_mder.ncl

11.9.3 User settings in recipe

1. Preprocessor
 - extract_region: Region extraction.
 - extract_levels: Pressure level extraction.
 - area_statistics: Spatial average calculations.

2. Script austral_jet/asr.ncl
 - season, str: Season.
 - average_ens, bool, optional (default: False): Average over all given ensemble members of a climate model.
 - wdiag, array of str, optional: Names of the diagnostic for MDER output. Necessary when MDER output is desired.
 - wdiag_title, array of str, optional: Names of the diagnostic in plots.
3. Script austral_jet/main.ncl
 - **styleset, str**: Style set used for plotting the multi-model plots.
 - **season, str**: Season.
 - **average_ens, bool**, optional (default: False): Average over all given ensemble members of a climate model.
 - **rsondes, array of str**, optional: Additional observations used in the plot but not for MDER output.
 - **rsondes_file, array of str**, optional: Paths to the additional observations Necessary when `rsondes` is given.
 - **rsondes_yr_min, int**, optional: Minimum year for additional observations. Necessary when `rsondes` is given.
 - **rsondes_yr_max, int**, optional: Maximum year for additional observations. Necessary when `rsondes` is given.
 - **wdiag, array of str**, optional: Names of the diagnostic for MDER output. Necessary when MDER output is desired.
 - **wdiag_title, array of str**, optional: Names of the diagnostic in plots.
 - **derive_var, str**, optional: Derive variables using NCL functions. Must be one of "tpp", "mmstf".
 - **derive_latrange, array of float**, optional: Latitude range for variable derivation. Necessary if `derive_var` is given.
 - **derive_lev, float**, optional: Pressure level (given in Pa) for variable derivation. Necessary if `derive_var` is given.

4. Script mder/absolute_correlation.ncl
 - **p_time, array of int**: Start years for future projections.
 - **p_step, int**: Time range for future projections (in years).
 - **scal_time, array of int**: Time range for base period (in years) for anomaly calculations used when `calc_type = "trend"`.
 - **time_oper, str**: Operation used in NCL `time_operation` function.
 - **time_opt, str**: Option used in NCL `time_operation` function.
 - **calc_type, str**: Calculation type for the target variable. Must be one of "trend", "pos", "int".
 - **domain, str**: Domain tag for provenance tracking.
 - **average_ens, bool**, optional (default: False): Average over all given ensemble members of a climate model.
 - **region, str**, optional: Region used for area aggregation. Necessary if input of target variable is multidimensional.
 - **area_oper, str**, optional: Operation used in NCL `area_operation` function. Necessary if multidimensional is given.
 - **plot_units, str**, optional (attribute for `variable_info`): Units for the target variable used in the plots.

5. Script mder/regression_stepwise.ncl
 - **p_time, array of int**: Start years for future projections.
 - **p_step, int**: Time range for future projections (in years).
• **scal_time**, *array of int*: Time range for base period (in years) for anomaly calculations used when `calc_type = "trend"`.

• **time_oper**, *str*: Operation used in NCL `time_operation` function.

• **time_opt**, *str*: Option used in NCL `time_operation` function.

• **calc_type**, *str*: Calculation type for the target variable. Must be one of "trend", "pos", "int".

• **domain**, *str*: Domain tag for provenance tracking.

• **average_ens**, *bool*, optional (default: False): Average over all given ensemble members of a climate model.

• **smooth**, *bool*, optional (default: False): Smooth time period with 1-2-1 filter.

• **iter**, *int*, optional: Number of iterations for smoothing. Necessary when `smooth` is given.

• **region**, *str*, optional: Region used for area aggregation. Necessary if input of target variable is multidimensional.

• **area_oper**, *str*, optional: Operation used in NCL `area_operation` function. Necessary if multidimensional is given.

• **plot_units**, *str*, optional (attribute for `variable_info`): Units for the target variable used in the plots.

6. Script `mder/select_for_mder.ncl`

• **wdiag**, *array of str*: Names of the diagnostic for MDER output. Necessary when MDER output is desired.

• **domain**, *str*: Domain tag for provenance tracking.

• **ref_dataset**, *str*: Style set used for plotting the multi-model plots.

• **average_ens**, *bool*, optional (default: False): Average over all given ensemble members of a climate model.

• **derive_var**, *str*, optional: Derive variables using NCL functions. Must be one of "tpp", "mmstf".

11.9.4 Variables

- **ta** *(atmos, monthly, longitude, latitude, pressure level, time)*
- **uajet** *(atmos, monthly, time)*
- **va** *(atmos, monthly, longitude, latitude, pressure level, time)*
- **ps** *(atmos, monthly, longitude, latitude, time)*
- **asr** *(atmos, monthly, longitude, latitude, time)*
11.9.5 Observations and reformat scripts

- ERA-Interim (ta, uajet, va, ps)
- CERES-EBAF (asr)

11.9.6 References

11.9.7 Example plots

![Time series plot](image)

Fig. 28: Time series of the the target variable (future austral jet position in the RCP 4.5 scenario) for the CMIP5 ensemble, observations, unweighted multi-model mean projections and (MDER) weighted multi-model mean projections.
Fig. 29: Scatterplot of the target variable (future austral jet position in the RCP 4.5 scenario) vs. the MDER-determined linear combination of diagnostics for the CMIP5 ensemble.
Fig. 30: Boxplot for the RMSE of the target variable for the unweighted and (MDER) weighted multi-model mean projections in a pseudo-reality setup.

11.9. Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position
Fig. 31: Trends in tropical DJF temperature at 250hPa for different CMIP5 models and observations.
Correlation between H-SH_c and uajet (rcp45)

Fig. 32: Scatterplot of the target variable (future austral jet position in the RCP 4.5 scenario) vs. a single diagnostic, the historical location of the Southern hemisphere Hadley cell boundary for the CMIP5 ensemble.
11.10 Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO₂

11.10.1 Overview

Selected figures from Wenzel et al. (2016) are reproduced with recipe_wenzel16nat.yml. Gross primary productivity (gpp) and atmospheric CO₂ concentrations at the surface (co2s) are analyzed for the carbon cycle - concentration feedback in the historical (esmHistorical) and uncoupled (esmFixCLim1, here the carbon cycle is uncoupled to the climate response) simulations. The recipe includes a set of routines to diagnose the long-term carbon cycle - concentration feedback parameter (beta) from an ensemble of CMIP5 models and the observable change in the CO₂ seasonal cycle amplitude due to rising atmospheric CO₂ levels. As a key figure of this recipe, the diagnosed values from the models beta vs. the change in CO₂ amplitude are compared in a scatter plot constituting an emergent constraint.

11.10.2 Available recipe and diagnostics

Recipes are stored in recipes/

- recipe_wenzel16nat.yml

Diagnostics are stored in diag_scripts/carbon_ec/

- carbon_beta: (1) scatter plot of annual gpp vs. annual CO₂ and (2) barchart of gpp(2xCO₂)/gpp(1xCO₂); calculates beta for emergent constraint (carbon_co2_cycle.ncl)
- carbon_co2_cycle.ncl: (1) scatter plot of CO₂ amplitude vs. annual CO₂, (2) barchart of sensitivity of CO₂ amplitude to CO₂, (3) emergent constraint: gpp(2xCO₂)/gpp(1xCO₂) vs. sensitivity of CO₂ amplitude to CO₂, (4) probability density function of constrained and unconstrained sensitivity of CO₂ amplitude to CO₂

11.10.3 User settings

1. Script carbon_beta.ncl

 Required Settings (scripts)
 - styleset: project style for lines, colors and symbols

 Optional Settings (scripts)
 - bc_xmax_year: end year to calculate beta (default: use last available year of all models)
 - bc_xmin_year: start year to calculate beta (default: use first available year of all models)

 Required settings (variables)
 - none

2. Script carbon_co2_cycle.ncl

 Required Settings (scripts)
 - nc_infile: path of netCDF file containing beta (output from carbon_beta.ncl)
 - styleset: project style for lines, colors and symbols

 Optional Settings (scripts)
 - none
• `bc xmax_year`: end year (default = last year of all model datasets available)
• `bc xmin_year`: start year (default = first year of all model datasets available)

 Required settings (variables)
• `reference_dataset`: name of reference dataset (observations)

 Optional settings (variables)
 none

11.10.4 Variables

• `co2s (atmos, monthly mean, plev longitude latitude time)`
• `gpp (land, monthly mean, longitude latitude time)`

11.10.5 Observations and reformat scripts

• ESRL: Earth System Research Laboratory, ground-based CO₂ measurements

11.10.6 References

• Wenzel, S., Cox, P., Eyring, V. et al., 2016, Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO₂. Nature 538, 499501, doi: doi.org/10.1038/nature19772

11.10.7 Example plots

11.11 Transient Climate Response

11.11.1 Overview

The transient climate response (TCR) is defined as the global and annual mean surface air temperature anomaly in the `1pctCO2` scenario (1% CO₂ increase per year) for a 20 year period centered at the time of CO₂ doubling, i.e. using the years 61 to 80 after the start of the simulation. We calculate the temperature anomaly by subtracting a linear fit of the `piControl` run for all 140 years of the `1pctCO2` experiment prior to the TCR calculation (see Gregory and Forster, 2008).

11.11.2 Available recipes and diagnostics

Recipes are stored in recipes/
 • `recipe_tcr.yml`

Diagnostics are stored in diag_scripts/
 • `climate_metrics/tcr.py`
 • `climate_metrics/create_barplot.py`
 • `climate_metrics/create_scatterplot.py`
Fig. 33: Comparison of CO$_2$ seasonal amplitudes for CMIP5 historical simulations and observations showing annual mean atmospheric CO$_2$ versus the amplitudes of the CO$_2$ seasonal cycle at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1a from Wenzel et al. (2016)).
Fig. 34: Barchart showing the gradient of the linear correlations for the comparison of CO$_2$ seasonal amplitudes for CMIP5 historical for at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1b from Wenzel et al. (2016)).
Fig. 35: Emergent constraint on the relative increase of large-scale GPP for a doubling of CO₂, showing the correlations between the sensitivity of the CO₂ amplitude to annual mean CO₂ increases at Pt. Barrow (x-axis) and the high-latitude (60N - 90N) CO₂ fertilization on GPP at 2xCO₂. The red line shows the linear best fit of the regression together with the prediction error (orange shading), the gray shading shows the observed range (produced with carbon_co2_cycle.ncl, similar to Fig. 3a from Wenzel et al. (2016)).
11.11.3 User settings in recipe

1. Preprocessor
 • area_statistics (operation: mean): Calculate global mean.

2. Script climate_metrics/tcr.py
 • plot, bool, optional (default: True): Plot temperature anomaly vs. time.
 • read_external_file, str, optional: Read TCR from external file. Can be given relative to the diagnostic script or as absolute path.
 • seaborn_settings, dict, optional: Options for seaborn’s set() method (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.

3. Script climate_metrics/create_barplot.py
 See Equilibrium climate sensitivity.

4. Script climate_metrics/create_scatterplot.py
 See Equilibrium climate sensitivity.

11.11.4 Variables

• tas (atmos, monthly, longitude, latitude, time)

11.11.5 Observations and reformat scripts

None

11.11.6 References

11.11.7 Example plots
Fig. 36: Time series of the global mean surface air temperature anomaly (relative to the linear fit of the pre-industrial control run) of CanESM2 (CMIP5) for the 1% CO\textsubscript{2} increase per year experiment. The horizontal dashed line indicates the transient climate response (TCR) defined as the 20 year average temperature anomaly centered at the time of CO\textsubscript{2} doubling (vertical dashed lines).
12.1 IPCC AR5 Chapter 9 (selected figures)

12.1.1 Overview

The goal of this recipe is to collect diagnostics to reproduce Chapter 9 of AR5, so that the plots can be readily reproduced and compared to previous CMIP versions. In this way we can next time start with what was available in the previous round and can focus on developing more innovative methods of analysis rather than constantly having to “re-invent the wheel”.

The plots are produced collecting the diagnostics from individual recipes. The following figures from Flato et al. (2013) can currently be reproduced:

- Figure 9.2 a,b,c: Annual-mean surface air temperature for the period 1980-2005. a) multi-model mean, b) bias as the difference between the CMIP5 multi-model mean and the climatology from ERA-Interim (Dee et al., 2011), c) mean absolute model error with respect to the climatology from ERA-Interim.

- Figure 9.3: Seasonality (December-January-February minus June-July-August) of surface (2 m) air temperature (°C) for the period 1980-2005. (a) Multi-model mean for the historical experiment. (b) Multi-model mean of absolute seasonality. (c) Difference between the multi-model mean and the ERA-Interim reanalysis seasonality. (d) Difference between the multi-model mean and the ERA-Interim absolute seasonality.

- Figure 9.4: Annual-mean precipitation rate (mm day-1) for the period 1980-2005. a) multi-model mean, b) bias as the difference between the CMIP5 multi-model mean and the climatology from the Global Precipitation Climatology Project (Adler et al., 2003), c) multi-model mean absolute error with respect to observations, and d) multi-model mean error relative to the multi-model mean precipitation itself.

- Figure 9.5: Climatological (1985-2005) annual-mean cloud radiative effects in Wm-2 for the CMIP5 models against CERES EBAF (2001-2011) in Wm-2. Top row shows the shortwave effect; middle row the longwave effect, and bottom row the net effect. Multi-model-mean biases against CERES EBAF 2.6 are shown on the left, whereas the right panels show zonal averages from CERES EBAF 2.6 (black), the individual CMIP5 models (thin gray lines), and the multi-model mean (thick red line).

- Figure 9.6: Centred pattern correlations between models and observations for the annual mean climatology over the period 1980–1999. Results are shown for individual CMIP3 (black) and CMIP5 (blue) models as thin dashes, along with the corresponding ensemble average (thick dash) and median (open circle). The four variables shown are surface air temperature (TAS), top of the atmosphere (TOA) outgoing longwave radiation (RLUT), precipitation (PR) and TOA shortwave cloud radiative effect (SW CRE). The correlations between the reference and alternate observations are also shown (solid green circles).

- Figure 9.8: Observed and simulated time series of the anomalies in annual and global mean surface temperature. All anomalies are differences from the 1961-1990 time-mean of each individual time series. The reference period 1961-1990 is indicated by yellow shading; vertical dashed grey lines represent times of major volcanic
eruptions. Single simulations for CMIP5 models (thin lines); multi-model mean (thick red line); different observations (thick black lines). Dataset pre-processing like described in Jones et al., 2013.

- Figure 9.14: Sea surface temperature plots for zonal mean error, equatorial (5 deg north to 5 deg south) mean error, and multi model mean for zonal error and equatorial mean.
- Figure 9.24: Time series of (a) Arctic and (b) Antarctic sea ice extent; trend distributions of (c) September Arctic and (d) February Antarctic sea ice extent.
- Figure 9.26: Ensemble-mean global ocean carbon uptake (a) and global land carbon uptake (b) in the CMIP5 ESMs for the historical period 1900–2005. For comparison, the observation-based estimates provided by the Global Carbon Project (GCP) are also shown (thick black line). The confidence limits on the ensemble mean are derived by assuming that the CMIP5 models are drawn from a t-distribution. The grey areas show the range of annual mean fluxes simulated across the model ensemble. This figure includes results from all CMIP5 models that reported land CO2 fluxes, ocean CO2 fluxes, or both (Anav et al., 2013).
- Figure 9.27: Simulation of global mean (a) atmosphere–ocean CO2 fluxes (“fgCO2”) and (b) net atmosphere–land CO2 fluxes (“NBP”), by ESMs for the period 1986–2005. For comparison, the observation-based estimates provided by Global Carbon Project (GCP) and the Japanese Meteorological Agency (JMA) atmospheric inversion are also shown. The error bars for the ESMs and observations represent interannual variability in the fluxes, calculated as the standard deviation of the annual means over the period 1986–2005.
- Figure 9.42a: Equilibrium climate sensitivity (ECS) against the global mean surface air temperature, both for the period 1961–1990 and for the pre-industrial control runs.
- Figure 9.42b: Transient climate response (TCR) against equilibrium climate sensitivity (ECS).
- Figure 9.45a: Scatterplot of springtime snow-albedo effect values in climate change vs. springtime \(d(\alpha_s)/d(T_s) \) values in the seasonal cycle in transient climate change experiments (Hall and Qu, 2006).

12.1.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

- recipe_flato13ipcc.yml

Diagnostics are stored in esmvaltool/diag_scripts/

- carbon_cycle/main.ncl: See *Land and ocean components of the global carbon cycle*.
- climate_metrics/ecs.py: See *Equilibrium climate sensitivity*.
- clouds/clouds_bias.ncl: global maps of the multi-model mean and the multi-model mean bias (Fig. 9.2, 9.4)
- clouds/clouds_isccp: global maps of multi-model mean minus observations + zonal averages of individual models, multi-model mean and observations (Fig. 9.5)
- ipcc_ar5/ch09_fig09_3.ncl: multi-model mean seasonality of near-surface temperature (Fig. 9.3)
- ipcc_ar5/ch09_fig09_6.ncl: calculating pattern correlations of annual mean climatologies for one variable (Fig 9.6 preprocessing)
- ipcc_ar5/ch09_fig09_6_collect.ncl: collecting pattern correlation for each variable and plotting correlation plot (Fig 9.6)
- ipcc_ar5/tsline.ncl: time series of the global mean (anomaly) (Fig. 9.8)
- ipcc_ar5/ch09_fig09_14.py: Zonally averaged and equatorial SST (Fig. 9.14)
- seaice/seaice_tsline.ncl: Time series of sea ice extent (Fig. 9.24a/b)
- seaice/seaice_trends.ncl: Trend distributions of sea ice extent (Fig 9.24c/d)
- ipcc_ar5/ch09_fig09_42a.py: ECS vs. surface air temperature (Fig. 9.42a)
• ipcc_ar5/ch09_fig09_42b.py: TCR vs. ECS (Fig. 9.42b)
• emergent_constraints/snowalbedo.ncl: snow-albedo effect (Fig. 9.45a)

12.1.3 User settings in recipe

1. Script carbon_cycle/main.ncl
 See Land and ocean components of the global carbon cycle.
2. Script climate_metrics/ecs.py
 See Equilibrium climate sensitivity.
3. Script clouds/clouds_bias.ncl
4. Script clouds_bias.ncl
 Required settings (scripts)
 none
 Optional settings (scripts)
 • plot_abs_diff: additionally also plot absolute differences (true, false)
 • plot_rel_diff: additionally also plot relative differences (true, false)
 • projection: map projection, e.g., Mollweide, Mercator
 • timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)
 Required settings (variables)*
 • reference_dataset: name of reference dataset
 Optional settings (variables)
 • long_name: description of variable

Color tables
• variable “tas”: diag_scripts/shared/plot/rgb/ipcc-tas.rgb, diag_scripts/shared/plot/rgb/ipcc-tas-delta.rgb
• variable “pr-mmday”: diag_scripts/shared/plots/rgb/ipcc-precip.rgb, diag_scripts/shared/plot/rgb/ipcc-precip-delta.rgb

5. Script clouds/clouds_ipcc.ncl
 Required settings (scripts)
 none
 Optional settings (scripts)
 • explicit_cn_levels: contour levels
 • mask_ts_sea_ice: true = mask T < 272 K as sea ice (only for variable “ts”); false = no additional grid cells
 • projection: map projection, e.g., Mollweide, Mercator
 • styleset: style set for zonal mean plot (“CMIP5”, “DEFAULT”)
 • timemean: time averaging, i.e. “seasonalclim” (DJF, MAM, JJA, SON), “annualclim” (annual mean)
 • valid_fraction: used for creating sea ice mask (mask_ts_sea_ice = true): fraction of valid time steps re-
 quired to mask grid cell as valid data

12.1. IPCC AR5 Chapter 9 (selected figures)
Required settings (variables)

• reference_dataset: name of reference data set

Optional settings (variables)

• long_name: description of variable
• units: variable units

Color tables

• variables “pr”, “pr-mmday”: diag_scripts/shared/plot/rgb/ipcc-precip-delta.rgb

6. Script ipcc_ar5/tcline.ncl

Required settings for script

• styleset: as in diag_scripts/shared/plot/style.ncl functions

Optional settings for script

• time_avg: type of time average (currently only “yearly” and “monthly” are available).
• ts_anomaly: calculates anomalies with respect to the defined period; for each grid point by removing the mean for the given calendar month (requiring at least 50% of the data to be non-missing)
• ref_start: start year of reference period for anomalies
• ref_end: end year of reference period for anomalies
• ref_value: if true, right panel with mean values is attached
• ref_mask: if true, model fields will be masked by reference fields
• region: name of domain
• plot_units: variable unit for plotting
• y-min: set min of y-axis
• y-max: set max of y-axis
• mean_nh_sh: if true, calculate first NH and SH mean
• volcanoes: if true, lines of main volcanic eruptions will be added
• run_ave: if not equal 0 than calculate running mean over this number of years
• header: if true, region name as header

Required settings for variables

none

Optional settings for variables

• reference_dataset: reference dataset; REQUIRED when calculating anomalies

Color tables

• e.g. diag_scripts/shared/plot/styles/cmip5.style

7. Script ipcc_ar5/ch09_fig09_3.ncl

Required settings for script

none

Optional settings for script
• projection: map projection, e.g., Mollweide, Mercator (default = Robinson)

Required settings for variables
- reference_dataset: name of reference observation

Optional settings for variables
- map_diff_levels: explicit contour levels for plotting

8. Script ipcc_ar5/ch09_fig09_6.ncl

Required settings for variables
- reference_dataset: name of reference observation

Optional settings for variables
- alternative_dataset: name of alternative observations

9. Script ipcc_ar5/ch09_fig09_6_collect.ncl

Required settings for script
- none

Optional settings for script
- diag_order: List of diagnostic names in the order variables should appear on x-axis

10. Script seaice/seaice_trends.ncl

Required settings (scripts)
- month: selected month (1, 2, . . . , 12) or annual mean (“A”)
- region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)
- fill_pole_hole: fill observational hole at North pole, Default: False

Optional settings (variables)
- ref_model: array of references plotted as vertical lines

11. Script seaice/seaice_tsline.ncl

Required settings (scripts)
- region: Arctic, Antarctic
- month: annual mean (A), or month number (3 = March, for Antarctic; 9 = September for Arctic)

Optional settings (scripts)
- styleset: for plot_type cycle only (cmip5, cmip6, default)
- multi_model_mean: plot multi-model mean and standard deviation (default: False)
- EMs_in_lg: create a legend label for individual ensemble members (default: False)
- fill_pole_hole: fill polar hole (typically in satellite data) with sic = 1 (default: False)

12. Script ipcc_ar5/ch09_fig09_42a.py

Required settings for script
- none

Optional settings for script
• **axes_functions**: `dict` containing methods executed for the plot’s `matplotlib.axes.Axes` object.

• **dataset_style**: name of the style file (located in `esmvaltool.diag_scripts.shared.plot.styles_python`).

• **matplotlib_style**: name of the matplotlib style file (located in `esmvaltool.diag_scripts.shared.plot.styles_python.matplotlib`).

• **save**: `dict` containing keyword arguments for the function `matplotlib.pyplot.savefig()`.

• **seaborn_settings**: Options for seaborn’s `set()` method (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.

13. Script `ipcc_ar5/ch09_fig09_42b.py`

 Required settings for script

 none

 Optional settings for script

 • **dataset_style**: name of the style file (located in `esmvaltool.diag_scripts.shared.plot.styles_python`).

 • **log_x**: Apply logarithm to X axis (ECS).

 • **log_y**: Apply logarithm to Y axis (TCR).

 • **seaborn_settings**: Options for seaborn’s `set()` method (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.

14. Script `emergent_constraints/snowalbedo.ncl`

 Required settings for script

 • **exp_presentday**: name of present-day experiment (e.g. “historical”)

 • **exp_future**: name of climate change experiment (e.g. “rcp45”)

 Optional settings for script

 • **diagminmax**: observational uncertainty (min and max)

 • **legend_outside**: create extra file with legend (true, false)

 • **styleset**: e.g. “CMIP5” (if not set, this diagnostic will create its own color table and symbols for plotting)

 • **suffix**: string to be added to output filenames

 • **xmax**: upper limit of x-axis (default = automatic)

 • **xmin**: lower limit of x-axis (default = automatic)

 • **ymax**: upper limit of y-axis (default = automatic)

 • **ymin**: lower limit of y-axis (default = automatic)

 Required settings for variables

 • **ref_model**: name of reference data set

 Optional settings for variables

 none
12.1.4 Variables

- areacello (fx, longitude latitude)
- fgco2 (ocean, monthly mean, longitude latitude time)
- nbp (ocean, monthly mean, longitude latitude time)
- pr (atmos, monthly mean, longitude latitude time)
- rlut, rlutcs (atmos, monthly mean, longitude latitude time)
- rsdt (atmos, monthly mean, longitude latitude time)
- rsuscs, rsdscs (atmos, monthly mean, longitude latitude time)
- rsut, rsutcs (atmos, monthly mean, longitude latitude time)
- sic (ocean-ice, monthly mean, longitude latitude time)
- tas (atmos, monthly mean, longitude latitude time)
- tos (ocean, monthly mean, longitude, latitude, time)

12.1.5 Observations and reformat scripts

Note: (1) obs4mips data can be used directly without any preprocessing; (2) see headers of reformat scripts for non-obs4mips data for download instructions.

- CERES-EBAF (rlut, rlutcs, rsut, rsutcs - obs4mips)
- ERA-Interim (tas, ta, ua, va, zg, hus - esmvaltool/cmorizers/obs/cmorize_obsERA-Interim.ncl)
- GCP (fgco2, nbp - esmvaltool/cmorizers/obs/cmorize_obs_gcp.py)
- GPCP-SG (pr - obs4mips)
- JMA-TRANSCOM (fgco2, nbp - esmvaltool/cmorizers/obs/cmorize_obsjma_transcom.py)
- HadCRUT4 (tas - esmvaltool/cmorizers/obs/cmorize_observhadcrut4.ncl)
- HadISST (sic, tos - esmvaltool/cmorizers/obs/cmorize_obs_hadisst.ncl)
- ISCCP-FH (rsuscs, rsdscs, rsdt - esmvaltool/cmorizers/obs/cmorize_observisccpfh.ncl)

12.1.6 References

12.1.7 Example plots

Fig. 1: Figure 9.2 a,b,c: Annual-mean surface air temperature for the period 1980-2005. a) multi-model mean, b) bias as the difference between the CMIP5 multi-model mean and the climatology from ERA-Interim (Dee et al., 2011), c) mean absolute model error with respect to the climatology from ERA-Interim.

12.2 IPCC AR5 Chapter 12 (selected figures)

12.2.1 Overview

The goal is to create a standard recipe for creating selected Figures from IPCC AR5 Chapter 12 on “Long-term Climate Change: Projections, Commitments and Irreversibility”. These include figures showing the change in a variable between historical and future periods, e.g. maps (2D variables), zonal means (3D variables), timeseries showing the change in certain variables from historical to future periods for multiple scenarios, and maps visualizing change in variables normalized by global mean temperature change (pattern scaling) as in Collins et al., 2013.
Fig. 2: Figure 9.3: Multi model values for seasonality of near-surface temperature, from top left to bottom right: mean, mean of absolute seasonality, mean bias in seasonality, mean bias in absolute seasonality. Reference dataset: ERA-Interim.
Fig. 3: Figure 9.4: Annual-mean precipitation rate (mm day\(^{-1}\)) for the period 1980-2005. a) multi-model mean, b) bias as the difference between the CMIP5 multi-model mean and the climatology from the Global Precipitation Climatology Project (Adler et al., 2003), c) multi-model mean absolute error with respect to observations, and d) multi-model mean error relative to the multi-model mean precipitation itself.
12.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_collins13ipcc.yml

Diagnostics are stored in diag_scripts/

- ipcc_ar5/ch12_map_diff_each_model_fig12-9.ncl: calculates the difference between future and historical runs for one scenario for each given model individually on their native grid and plots all of them in one Figure. As in Figure 12.9 in AR5.

- ipcc_ar5/ch12_ts_line_mean_spread.ncl: calculates time series for one variable, change in future relative to base period in historical, multi-model mean as well as spread around it (as standard deviation).

- ipcc_ar5/ch12_plot_ts_line_mean_spread.ncl: plots the timeseries multi-model mean and spread calculated above. As in Figure 12.5 in AR5.

- ipcc_ar5/ch12_calc_IAV_for_stippandhatch.ncl: calculates the interannual variability over piControl runs, either over the whole time period or in chunks over some years.

- ipcc_ar5/ch12_calc_map_diff_mmm_stippandhatch.ncl: calculates the difference between future and historical periods for each given model and then calculates multi-model mean as well as significance. Significant is where the multi-model mean change is greater than two standard deviations of the internal variability and where at least 90% of the models agree on the sign of change. Not significant is where the multi-model mean change is less than one standard deviation of internal variability.

- ipcc_ar5/ch12_plot_map_diff_mmm_stipp.ncl: plots multi-model mean maps calculated above including stippling where significant and hatching where not significant. As in Figure 12.11 in AR5.

- ipcc_ar5/ch12_calc_zonal_cont_diff_mmm_stippandhatch.ncl: calculates zonal means and the difference between future and historical periods for each given model and then calculates multi-model mean as well as significance as above.

- ipcc_ar5/ch12_plot_zonal_diff_mmm_stipp.ncl: plots the multi-model mean zonal plots calculated above including stippling where significant and hatching where not significant. As in Figure 12.12 in AR5.
Fig. 5: Figure 9.6: Centred pattern correlations between models and observations for the annual mean climatology over the period 1980–1999. Results are shown for individual CMIP3 (black) and CMIP5 (blue) models as thin dashes, along with the corresponding ensemble average (thick dash) and median (open circle). The four variables shown are surface air temperature (TAS), top of the atmosphere (TOA) outgoing longwave radiation (RLUT), precipitation (PR) and TOA shortwave cloud radiative effect (SW CRE). The correlations between the reference and alternate observations are also shown (solid green circles).
Fig. 6: Figure 9.8: Observed and simulated time series of the anomalies in annual and global mean surface temperature. All anomalies are differences from the 1961-1990 time-mean of each individual time series. The reference period 1961-1990 is indicated by yellow shading; vertical dashed grey lines represent times of major volcanic eruptions. Single simulations for CMIP5 models (thin lines); multi-model mean (thick red line); different observations (thick black lines). Dataset pre-processing like described in Jones et al., 2013.
Fig. 7: Figure 9.14: (a) Zonally averaged sea surface temperature (SST) error in CMIP5 models. (b) Equatorial SST error in CMIP5 models. (c) Zonally averaged multi-model mean SST error for CMIP5 together with inter-model standard deviation (shading). (d) Equatorial multi-model mean SST in CMIP5 together with inter-model standard deviation (shading) and observations (black). Model climatologies are derived from the 1979-1999 mean of the historical simulations. The Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) (Rayner et al., 2003) observational climatology for 1979-1999 is used as a reference for the error calculation (a), (b), and (c); and for observations in (d).
Fig. 8: Figure 9.24c: Sea ice extent trend distribution for the Arctic in September.

Fig. 9: Figure 9.24a: Time series of total sea ice area and extent (accumulated) for the Arctic in September including multi-model mean and standard deviation.
Fig. 10: Figure 9.26 (bottom): Ensemble-mean global land carbon uptake in the CMIP5 ESMs for the historical period 1900–2005. For comparison, the observation-based estimates provided by the Global Carbon Project (GCP) are also shown (black line). The confidence limits on the ensemble mean are derived by assuming that the CMIP5 models come from a t-distribution. The grey areas show the range of annual mean fluxes simulated across the model ensemble.
Fig. 11: Figure 9.27 (top): Simulation of global mean atmosphere–ocean CO2 fluxes ("fgCO2") by ESMs for the period 1986–2005. For comparison, the observation-based estimates provided by Global Carbon Project (GCP) are also shown. The error bars for the ESMs and observations represent interannual variability in the fluxes, calculated as the standard deviation of the annual means over the period 1986–2005.
Fig. 12: Figure 9.42a: Equilibrium climate sensitivity (ECS) against the global mean surface air temperature of CMIP5 models, both for the period 1961-1990 (larger symbols) and for the pre-industrial control runs (smaller symbols).

Fig. 13: Figure 9.42b: Transient climate response (TCR) against equilibrium climate sensitivity (ECS) for CMIP5 models.
Fig. 14: Figure 9.45a: Scatterplot of springtime snow-albedo effect values in climate change vs. springtime $\Delta \alpha / \Delta T_s$ values in the seasonal cycle in transient climate change experiments (CMIP5 historical experiments: 1901-2000, RCP4.5 experiments: 2101-2200).
• ipcc_ar5/ch12_calc_map_diff_scaleT_mmm_stipp.ncl: calculates the change in variable between future and historical period normalized by global mean temperature change of each given model and scenario. Then averages over all realizations and calculates significance. Significant is where the mean change averaged over all realizations is larger than the 95% percentile of the distribution of models (assumed to be gaussian). Can be plotted using ipcc_ar5/ch12_plot_map_diff_mmm_stipp.ncl.

• seaice/seaice_ecs.ncl: scatter plot of historical trend in September Arctic sea ice extent (SSIE) vs historical long-term mean SSIE (similar to Fig. 12.31a in AR5) and historical SSIE trend vs YOD RCP8.5 (similar to Fig. 12.31d in AR5).

• seaice/seaice_yod.ncl: calculation of year of near disappearance of Arctic sea ice (similar to Fig 12.31e in AR5)

• ipcc_ar5/ch12_snw_area_change_fig12-32.ncl: calculate snow area extent in a region (e.g Northern Hemisphere) and season (e.g. Northern Hemisphere spring March & April) relative to a reference period (e.g 1986-2005) and spread over models as in Fig. 12.32 of IPCC AR5. Can be plotted using ipcc_ar5/ch12_plot_ts_line_mean_spread.ncl.

12.2.3 User settings

1. Script ipcc_ar5/ch12_map_diff_each_model_fig12-9.ncl

Required settings (script)

• time_avg: time averaging (“annualclim”, “seasonalclim”)
• experiment: IPCC Scenario, used to pair historical and rcp runs from same model

Optional settings (script)

• projection: map projection, any valid ncl projection, default = Robinson
• max_vert: maximum number of plots in vertical
• max_hori: maximum number of plots in horizontal
• title: plot title
• colormap: alternative colormap, path to rgb file or ncl name
• diff_levs: list with contour levels for plots
• span: span whole colormap? (True, False, default = False)

Required settings (variables)

• project: CMIP5 (or CMIP6)
• mip: variable mip, generally Amon or Omon

2. Script ipcc_ar5/ch12_ts_line_mean_spread.ncl

Required settings (script)

• scenarios: list with scenarios included in figure
• syears: list with start years in time periods (e.g. start of historical period and rcp)
• eyears: list with end years in time periods (end year of historical runs and rcp)
• begin_ref_year: start year of reference period (e.g. 1986)
• end_ref_year: end year of reference period (e.g 2005)
• label: list with labels to use in legend depending on scenarios

Optional settings (script)
• spread: how many standard deviations to calculate the spread with? default is 1., IPCC tas used 1.64
• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False, default = False)
• ts_minlat: minimum latitude if not global
• ts_maxlat: maximum latitude if not global
• ts_minlon: minimum longitude if not global
• ts_maxlon: maximum longitude if not global

Required settings (variables)
• project: CMIP5 (or CMIP6)
• mip: variable mip, generally Amon or Omon

3. Script ipcc_ar5/ch12_plot_ts_line_mean_spread.ncl:

Required settings (script)
• ancestors: variable and diagnostics that calculated data to be plotted

Optional settings (script)
• title: specify plot title
• yaxis: specify y-axis title
• ymin: minimum value on y-axis, default calculated from data
• ymax: maximum value on y-axis
• colormap: alternative colormap, path to rgb file or ncl name

4. Script ipcc_ar5/ch12_calc_IAV_for_trickandhatch.ncl:

Required settings (script)
• time_avg: time averaging (“annualclim”, “seasonalclim”), needs to be consistent with calculation in ch12_calc_map_diff_mmm_trickandhatch.ncl

Optional settings (script)
• periodlength: length of period in years to calculate variability over, default is total time period
• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models, “mmm”: multi-model mean, default), needs to be consistent with ch12_calc_map_diff_mmm_trickandhatch.ncl

Required settings (variables)
• project: CMIP5 (or CMIP6)
• mip: variable mip, generally Amon or Omon
• exp: piControl
• preprocessor: which preprocessor to use, depends on dimension of variable, for 2D preprocessor only needs to regrid, for 3D we need to extract levels either based on reference_dataset or specify levels.

Optional settings (variables)
• reference_dataset: the reference dataset for level extraction in case of 3D variables.

5. Script ipcc_ar5/ch12_calc_map_diff_mmm_trickandhatch.ncl:

Required settings (script)
• ancestors: variable and diagnostics that calculated interannual variability for stippling and hatching
• time_avg: time averaging (“annualclim”, “seasonalclim”)
• scenarios: list with scenarios to be included
• periods: list with start years of periods to be included
• label: list with labels to use in legend depending on scenarios

Optional settings (script)
• seasons: list with seasons index if time_avg “seasonalclim” (then required), DJF:0, MAM:1, JJA:2, SON:3
• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models, “mmm”: multi-model mean, default), needs to be consistent with ch12_calc_IAV_for_stippandhatch.ncl
• percent: determines if difference expressed in percent (0, 1, default = 0)

Required settings (variables)
• project: CMIP5 (or CMIP6)
• mip: variable mip, generally Amon or Omon
• preprocessor: which preprocessor to use, preprocessor only needs to regrid

6. Script ipcc_ar5/ch12_plot_map_diff_mmm_stipp.ncl:

Required settings (script)
• ancestors: variable and diagnostics that calculated field to be plotted

Optional settings (script)
• projection: map projection, any valid ncl projection, default = Robinson
• diff_levs: list with explicit levels for all contour plots
• max_vert: maximum number of plots in vertical
• max_hori: maximum number of plots in horizontal
• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False, default = False)
• colormap: alternative colormap, path to rgb file or ncl name
• span: span whole colormap? (True, False, default = True)
• sig: plot stippling for significance? (True, False)
• not_sig: plot hatching for uncertainty? (True, False)
• pltname: alternative name for output plot, default is diagnostic + varname + time_avg
• units: units written next to colorbar, e.g (~F35~J~F~C)

7. Script ipcc_ar5/ch12_calc_zonal_cont_diff_mmm_stippandhatch.ncl:

Required settings (script)
• ancestors: variable and diagnostics that calculated interannual variability for stippling and hatching
• time_avg: time averaging (“annualclim”, “seasonalclim”)
• scenarios: list with scenarios to be included
• periods: list with start years of periods to be included
• label: list with labels to use in legend depending on scenarios

Optional settings (script)
• base_cn: if want contours of base period as contour lines, need to save base period field (True, False)
• seasons: list with seasons index if time_avg “seasonalclim” (then required), DJF:0, MAM:1, JJA:2, SON:3
• iavmode: calculate IAV from multi-model mean or save individual models (“each”: save individual models, “mmm”: multi-model mean, default), needs to be consistent with ch12_calc_IAV_for_stippandhatch.ncl
• percent: determines if difference expressed in percent (0, 1, default = 0)

Required settings (variables)
• project: CMIP5 (or CMIP6)
• mip: variable mip, generally Amon or Omon
• preprocessor: which preprocessor to use, preprocessor needs to regrid, extract leaves and calculate the zonal mean.

Optional settings (variables)
• reference_dataset: the reference dataset for level extraction

8. Script ipcc_ar5/ch12_plot_zonal_diff_mmm_stipp.ncl:

Required settings (script)
• ancestry: variable and diagnostics that calculated field to be plotted

Optional settings (script)
• diff_levs: list with explicit levels for all contour plots
• max_vert: maximum number of plots in vertical
• max_hori: maximum number of plots in horizontal
• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False, default = False)
• colormap: alternative colormap, path to rgb file or ncl name
• span: span whole colormap? (True, False, default = True)
• sig: plot stippling for significance? (True, False)
• not_sig: plot hatching for uncertainty? (True, False)
• pltname: alternative name for output plot, default is diagnostic + varname + time_avg
• units: units written next to colorbar in ncl strings, e.g (m s^-1 N^-1)
• if base_cn: True in ch12_calc_zonal_cont_diff_mmm_stippandhatch.ncl further settings to control contour lines:
 – base_cnLevelSpacing: spacing between contour levels
 – base_cnMinLevel: minimum contour line
 – base_cnMaxLevel: maximum contour line

9. Script ipcc_ar5/ch12_calc_map_diff_scaleT_mmm_stipp.ncl:

Required settings (script)
• time_avg: time averaging (“annualclim”, “seasonalclim”)
• scenarios: list with scenarios to be included
• periods: list with start years of periods to be included
• label: list with labels to use in legend depending on scenarios

Optional settings (script)
• seasons: list with seasons index if time_avg “seasonalclim” (then required), DJF:0, MAM:1, JJA:2, SON:3
• percent: determines if difference expressed in percent (0, 1, default = 0)

Required settings (variables)
• project: CMIP5 (or CMIP6)
• mip: variable mip, generally Amon or Omon
• preprocessor: which preprocessor to use, preprocessor only needs to regrid

10. Script ipcc_ar5/ch12_snw_area_change_fig12-32.ncl:

Required settings (script)
• scenarios: list with scenarios included in figure
• syears: list with start years in time periods (e.g. start of historical period and rcps)
• eyears: list with end years in time periods (end year of historical runs and rcps)
• begin_ref_year: start year of reference period (e.g. 1986)
• end_ref_year: end year of reference period (e.g. 2005)
• months: first letters of months included in analysis? e.g. for MA (March + April) for Northern Hemisphere
• label: list with labels to use in legend depending on scenarios

Optional settings (script)
• spread: how many standard deviations to calculate the spread with? default is 1., ipcc tas used 1.64
• model_nr: save number of model runs per period and scenario in netcdf to print in plot? (True, False, default = False)
• colormap: alternative colormap, path to rgb file or ncl name
• ts_minlat: minimum latitude if not global
• ts_maxlat: maximum latitude if not global
• ts_minlon: minimum longitude if not global
• ts_maxlon: maximum longitude if not global

Required settings (variables)
• project: CMIP5 (or CMIP6)
• mip: variable mip, LImon
• fx_files: [sftlf, sftgif]

11. Script seaice/seaice_ecs.ncl

Required settings (scripts)
• hist_exp: name of historical experiment (string)
• month: selected month (1, 2, . . . , 12) or annual mean (“A”)
• rcp_exp: name of RCP experiment (string)
• region: region to be analyzed ("Arctic" or "Antarctic")

Optional settings (scripts)
• fill_pole_hole: fill observational hole at North pole (default: False)
• styleset: color style (e.g. "CMIP5")

Optional settings (variables)
• reference_dataset: reference dataset

12. Script seaice/seaice_yod.ncl

Required settings (scripts)
• month: selected month (1, 2, ..., 12) or annual mean ("A")
• region: region to be analyzed ("Arctic" or "Antarctic")

Optional settings (scripts)
• fill_pole_hole: fill observational hole at North pole, Default: False
• wgt_file: netCDF containing pre-determined model weights

Optional settings (variables)
• ref_model: array of references plotted as vertical lines

12.2.4 Variables

Note: These are the variables tested and used in IPCC AR5. However, the code is flexible and in theory other variables of the same kind can be used.
• areacello (fx, longitude latitude)
• clt (atmos, monthly mean, longitude latitude time)
• evspsbl (atmos, monthly mean, longitude latitude time)
• hurs (atmos, monthly mean, longitude latitude time)
• mrro (land, monthly mean, longitude latitude time)
• mrsos (land, monthly mean, longitude latitude time)
• pr (atmos, monthly mean, longitude latitude time)
• psl (atmos, monthly mean, longitude latitude time)
• rlut, rsut, rtmt (atmos, monthly mean, longitude latitude time)
• sic (ocean-ice, monthly mean, longitude latitude time)
• snw (land, monthly mean, longitude latitude time)
• sos (ocean, monthly mean, longitude latitude time)
• ta (atmos, monthly mean, longitude latitude lev time)
• tas (atmos, monthly mean, longitude latitude time)
• thetao (ocean, monthly mean, longitude latitude lev time)
• ua (atmos, monthly mean, longitude latitude lev time)
12.2.5 Observations and reformat scripts

- HadISST (sic - esmvaltool/utils/cmorizers/obs/cmorize_obs_HadISST.ncl)

12.2.6 Reference

12.2.7 Example plots

Fig. 15: Surface air temperature change in 2081–2100 displayed as anomalies with respect to 1986–2005 for RCP4.5 from individual CMIP5 models.

Fig. 16: Time series of global annual mean surface air temperature anomaly (relative to 1986–2005) from CMIP5 concentration-driven experiments.
Fig. 17: Multi-model CMIP5 average percentage change in seasonal mean precipitation relative to the reference period 1986–2005 averaged over the periods 2081–2100 and 2181–2200 under the RCP8.5 forcing scenario. Hatching indicates regions where the multi-model mean change is less than one standard deviation of internal variability. Stippling indicates regions where the multi-model mean change is greater than two standard deviations of internal variability and where at least 90% of models agree on the sign of change.

Fig. 18: Temperature change patterns scaled to 1°C of global mean surface temperature change.
Fig. 19: Scatter plot of mean historical September Arctic sea ice extent vs 1st year of disappearance (RCP8.5) (similar to IPCC AR5 Chapter 12, Fig. 12.31a).

Fig. 20: Time series of September Arctic sea ice extent for individual CMIP5 models, multi-model mean and multi-model standard deviation, year of disappearance (similar to IPCC AR5 Chapter 12, Fig. 12.31e).
CHAPTER
THIRTEEN

LAND

13.1 Landcover - Albedo

13.1.1 Overview

The diagnostic determines the coefficients of multiple linear regressions fitted between the albedo values and the tree, shrub, short vegetation (crops and grasses) fractions of each grid cell within spatially moving windows encompassing 5x5 model grid cells. Solving these regressions provides the albedo values for trees, shrubs and short vegetation (crops and grasses) from which the albedo changes associated with transitions between these three landcover types are derived. The diagnostic distinguishes between snow-free and snow-covered grid cells.

13.1.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_albedolandcover.yml

Diagnostics are stored in diag_scripts/landcover/

- albedolandcover.py

13.1.3 User settings

Several parameters can be set in the recipe

13.1.4 Variables

- rsus (atmos, monthly mean, time latitude longitude)
- rsds (atmos, monthly mean, time latitude longitude)
- snc (landice, monthly mean, time latitude longitude)
- grassFrac (land, monthly mean, time latitude longitude)
- treeFrac (land, monthly mean, time latitude longitude)
- shrubFrac (land, monthly mean, time latitude longitude)
- cropFrac (land, monthly mean, time latitude longitude)
- pastureFrac (land, monthly mean, time latitude longitude)
13.1.5 Observations and reformat scripts

A reformatting script for observational data is available here:

- cmorize_obs_duveiller2018.py

13.1.6 References

13.1.7 Example plots

![Fig. 1: Example of albedo change from tree to crop and grass for the CMIP5 model MPI-ESM-LR derived for the month of July and averaged over the years 2000 to 2004.](image-url)
13.2 Turnover time of carbon over land ecosystems

13.2.1 Overview

This recipe evaluates the turnover time of carbon over land ecosystems (tau_ctotal) based on the analysis of Carvalhais et al. (2014). In summary, it provides an overview on:

- Comparisons of global distributions of tau_ctotal from all models against observation and other models
- Variation of tau_ctotal across latitude (zonal distributions)
- Variation of association of tau_ctotal and climate across latitude (zonal correlations)
- metrics of global tau_ctotal and correlations

13.2.2 Calculation of turnover time

First, the total carbon content of land ecosystems is calculated as,

\[c_{\text{total}} = c_{\text{Soil}} + c_{\text{Veg}} \]

where \(c_{\text{Soil}} \) and \(c_{\text{Veg}} \) are the carbon contents in soil and vegetation. Note that this is not fully consistent with Carvalhais et al. (2014), in which \(c_{\text{total}} \) includes all carbon storages that respire to the atmosphere. Due to inconsistency across models, it resulted in having different carbon storage components in calculation of \(c_{\text{total}} \) for different models.

The turnover time of carbon is then calculated as,

\[\tau_{\text{total}} = \frac{c_{\text{total}}}{g_{\text{pp}}} \]

where \(c_{\text{total}} \) and \(g_{\text{pp}} \) are temporal means of total carbon content and gross primary productivity, respectively. The equation is valid for steady state, and is only applicable when both \(c_{\text{total}} \) and \(g_{\text{pp}} \) are long-term averages. Therefore, the recipe should always include the mean operator of climate_statistics in preprocessor.

13.2.3 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_carvalhais14nat.yml

Diagnostics are stored in diag_scripts/

- land_carbon_cycle/diag_global_turnover.py
- land_carbon_cycle/diag_zonal_turnover.py
- land_carbon_cycle/diag_zonal_correlation.py
13.2.4 User settings in recipe

Observation-related details

The settings needed for loading the observational dataset in all diagnostics are provided in the recipe through `obs_info` within `obs_details` section.

- `obs_data_subdir`: subdirectory of `auxiliary_data_dir` (set in config-user file) where observation data are stored [e.g., `data_ESMValTool_Carvalhais2014`].
- `source_label`: source data label `{Carvalhais2014}`.
- `variant_label`: variant of the observation `{BE}` for best estimate.
- `grid_label`: label denoting the spatial grid specification `{gn}`.
- `frequency`: temporal frequency of the observation data `{fx}`

The observation data file used in the recipe should be changed through the fields above, as these are used to generate observation file name and locations. For details, see Observations section.

Preprocessor

- `climate_statistics`: `{mean}` - calculate the mean over full time period.
- `regrid`: `{nearest}` - nearest neighbor regridding to the selected observation resolution.
- `mask_landsea`: `{sea}` - mask out all the data points from sea.
- `multi_model_statistics`: `{median}` - calculate and include the multimodel median.

Script land_carbon_cycle/diag_global_turnover.py

- Required settings:
 - `obs_variable`: `{str}` list of the variable(s) to be read from the observation files

- Optional settings:
 - `ax_fs`: `{float, 7.1}` - fontsize in the figure.
 - `fill_value`: `{float, nan}` - fill value to be used in analysis and plotting.
 - `x0`: `{float, 0.02}` - X - coordinate of the left edge of the figure.
 - `y0`: `{float, 1.0}` - Y - coordinate of the upper edge of the figure.
 - `wp`: `{float, 1 / number of models}` - width of each map.
 - `hp`: `{float, = wp}` - height of each map.
 - `xsp`: `{float, 0}` - spacing between maps in X - direction.
 - `ysp`: `{float, -0.03}` - spacing between maps in Y - direction. Negative to reduce the spacing below default.
 - `aspect_map`: `{float, 0.5}` - aspect of the maps.
 - `xsp_sca`: `{float, wp / 1.5}` - spacing between the scatter plots in X - direction.
 - `ysp_sca`: `{float, hp / 1.5}` - spacing between the scatter plots in Y - direction.
 - `hcolo`: `{float, 0.0123}` - height (thickness for horizontal orientation) of the colorbar.
- **wcolo**: `float, 0.25` - width (length) of the colorbar.
- **cb_off_y**: `float, 0.06158` - distance of colorbar from top of the maps.
- **x_colo_d**: `float, 0.02` - X-coordinate of the colorbar for maps along the diagonal (left).
- **x_colo_r**: `float, 0.76` - Y-coordinate of the colorbar for ratio maps above the diagonal (right).
- **y_colo_single**: `float, 0.1086` - Y-coordinate of the colorbar in the maps per model (separate figures).
- **correlation_method**: `str, spearman | pearson` - correlation method to be used while calculating the correlation displayed in the scatter plots.
- **tx_y_corr**: `float, 1.075` - Y-coordinate of the inset text of correlation.
- **valrange_sc**: `tuple, (2, 256)` - range of turnover times in X- and Y-axes of scatter plots.
- **obs_global**: `float, 23` - global turnover time, provided as additional info for map of the observation. For models, they are calculated within the diagnostic.
- **gpp_threshold**: `float, 0.01` - The threshold of gpp in \(\text{kg m}^{-2} \text{yr}^{-1} \) below which the grid cells are masked.

Script land_carbon_cycle/diag_zonal_turnover.py

- **Required settings:**
 - **obs_variable**: `str` list of the variable(s) to be read from the observation files
- **Optional settings:**
 - **ax_fs**: `float, 7.1` - fontsize in the figure.
 - **fill_value**: `float, nan` - fill value to be used in analysis and plotting.
 - **valrange_x**: `tuple, (2, 1000)` - range of turnover values in the X-axis.
 - **valrange_y**: `tuple, (-70, 90)` - range of latitudes in the Y-axis.
 - **bandsize**: `float, 9.5` - size of the latitudinal rolling window in degrees. One latitude row if set to None.
 - **gpp_threshold**: `float, 0.01` - The threshold of gpp in \(\text{kg m}^{-2} \text{yr}^{-1} \) below which the grid cells are masked.

Script land_carbon_cycle/diag_zonal_correlation.py

- **Required settings:**
 - **obs_variable**: `str` list of the variable(s) to be read from the observation files
- **Optional settings:**
 - **ax_fs**: `float, 7.1` - fontsize in the figure.
 - **fill_value**: `float, nan` - fill value to be used in analysis and plotting.
 - **correlation_method**: `str, pearson | spearman` - correlation method to be used while calculating the zonal correlation.
 - **min_points_frac**: `float, 0.125` - minimum fraction of valid points within the latitudinal band for calculation of correlation.
 - **valrange_x**: `tuple, (-1, 1)` - range of correlation values in the X-axis.

13.2. Turnover time of carbon over land ecosystems
– valrange_y: \{tuple, (-70, 90)\} - range of latitudes in the Y-axis.
– bandsize: \{float, 9.5\} - size of the latitudinal rolling window in degrees. One latitude row if set to None.
– gpp_threshold: \{float, 0.01\} - The threshold of gpp in kg m^{-2} yr^{-1} below which the grid cells are masked.

13.2.5 Required Variables

- \textit{tas} (atmos, monthly, longitude, latitude, time)
- \textit{pr} (atmos, monthly, longitude, latitude, time)
- \textit{gpp} (land, monthly, longitude, latitude, time)
- \textit{cVeg} (land, monthly, longitude, latitude, time)
- \textit{cSoil} (land, monthly, longitude, latitude, time)

13.2.6 Observations

The observations needed in the diagnostics are publicly available for download from the Data Portal of the Max Planck Institute for Biogeochemistry after registration.

Due to inherent dependence of the diagnostic on uncertainty estimates in observation, the data needed for each diagnostic script are processed at different spatial resolutions (as in Carvalhais et al., 2014), and provided in 11 different resolutions (see Table 1). Note that the uncertainties were estimated at the resolution of the selected models, and, thus, only the pre-processed observed data can be used with the recipe. It is not possible to use regridding functionalities of ESMValTool to regrid the observational data to other spatial resolutions, as the uncertainty estimates cannot be regridded.

Table 1. A summary of the observation datasets at different resolutions.

<table>
<thead>
<tr>
<th>Reference</th>
<th>target_grid</th>
<th>grid_label*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>0.5x0.5</td>
<td>gn</td>
</tr>
<tr>
<td>NorESM1-M</td>
<td>2.5x1.875</td>
<td>gr</td>
</tr>
<tr>
<td>bcc-csm1-1</td>
<td>2.812x2.813</td>
<td>gr1</td>
</tr>
<tr>
<td>CCSM4</td>
<td>1.25x0.937</td>
<td>gr2</td>
</tr>
<tr>
<td>CanESM2</td>
<td>2.812x2.813</td>
<td>gr3</td>
</tr>
<tr>
<td>GFDL-ESM2G</td>
<td>2.5x2.0</td>
<td>gr4</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>1.875x1.241</td>
<td>gr5</td>
</tr>
<tr>
<td>inmcm4</td>
<td>2.0x1.5</td>
<td>gr6</td>
</tr>
<tr>
<td>IPSL-CM5A-MR</td>
<td>2.5x1.259</td>
<td>gr7</td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td>2.812x2.813</td>
<td>gr8</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>1.875x1.875</td>
<td>gr9</td>
</tr>
</tbody>
</table>

* The grid_label is suffixed with \textit{z} for data in zonal/latitude coordinates: the zonal turnover and zonal correlation.

To change the spatial resolution of the evaluation, change \{grid_label\} in obs_details and the corresponding \{target_grid\} in regrid preprocessor of the recipe.

At each spatial resolution, four data files are provided:

- \textit{tau_cctotal_fx_Carvalhais2014_BE_gn.nc} - global data of tau_cctotal
- \textit{tau_cctotal_fx_Carvalhais2014_BE_gnz.nc} - zonal data of tau_cctotal
• `r_tau_ctotal_tas_fx_Carvalhais2014_BE_gnz.nc` - zonal correlation of tau.ctotal and tas, controlled for pr
• `r_tau_ctotal_pr_fx_Carvalhais2014_BE_gnz.nc` - zonal correlation of tau.ctotal and pr, controlled for tas.

The data is produced in obs4MIPs standards, and provided in netCDF4 format. The filenames use the convention:

(variable)_(frequency)_(source_label)_(variant_label)_(grid_label).nc

• {variable}: variable name, set in every diagnostic script as obs_variable
• {frequency}: temporal frequency of data, set from obs_details
• {source_label}: observational source, set from obs_details
• {variant_label}: observation variant, set from obs_details
• {grid_label}: temporal frequency of data, set from obs_details

Refer to the Obs4MIPs Data Specifications for details of the definitions above.

All data variables have additional variables ({variable}_5 and {variable}_95) in the same file. These variables are necessary for a successful execution of the diagnostics.

13.2.7 References

13.2.8 Example plots

Fig. 2: Comparison of latitudinal (zonal) variations of pearson correlation between turnover time and climate: turnover time and precipitation, controlled for temperature (left) and vice-versa (right). Reproduces figures 2c and 2d in Carvalhais et al. (2014).
Fig. 3: Comparison of observation-based and modelled ecosystem carbon turnover time. Along the diagonal, \(\tau_{ctotal} \) are plotted, above the bias, and below density plots. The inset text in density plots indicate the correlation.

Fig. 4: Global distributions of multimodel bias and model agreement. Multimodel bias is calculated as the ratio of multimodel median turnover time and that from observation. Stippling indicates the regions where only less than one quarter of the models fall within the range of observational uncertainties (5\(^{th}\) and 95\(^{th}\) percentiles). Reproduces figure 3 in Carvalhais et al. (2014).
Fig. 5: Comparison of latitudinal (zonal) variations of observation-based and modelled ecosystem carbon turnover time. The zonal turnover time is calculated as the ratio of zonal c_{total} and gpp. Reproduces figures 2a and 2b in Carvalhais et al. (2014).
13.3 Hydrological models - data pre-processing

13.3.1 Overview

We provide a collection of scripts that pre-processes environmental data for use in several hydrological models:

PCR-GLOBWB

PCR-GLOBWB (PCRaster Global Water Balance) is a large-scale hydrological model intended for global to regional studies and developed at the Department of Physical Geography, Utrecht University (Netherlands). The recipe pre-processes ERA-Interim reanalyses data for use in the PCR-GLOBWB.

MARRMoT

MARRMoT (Modular Assessment of Rainfall-Runoff Models Toolbox) is a rainfall-runoff model comparison framework that allows objective comparison between different conceptual hydrological model structures https://github.com/wknoben/MARRMoT. The recipe pre-processes ERA-Interim and ERA5 reanalyses data for use in the MARRMoT.

MARRMoT requires potential evapotranspiration (evspsblpot). The variable evspsblpot is not available in ERA-Interim. Thus, we use the debruin function (De Bruin et al. 2016) to obtain evspsblpot using both ERA-Interim and ERA5. This function needs the variables tas, psl, rsds, and rsdt as input.

wflow_sbm and wflow_topoflex

Forcing data for the wflow_sbm and wflow_topoflex hydrological models can be prepared using recipe_wflow.yml. If PET is not available from the source data (e.g. ERA-Interim), then it can be derived from psl, rsds and rsdt using De Bruin’s 2016 formula (De Bruin et al. 2016). For daily ERA5 data, the time points of these variables are shifted 30 minutes with respect to one another. This is because in ERA5, accumulated variables are recorded over the past hour, and in the process of cmorization, we shift the time coordinates to the middle of the interval over which is accumulated. However, computing daily statistics then averages the times, which results in 12:00 UTC for accumulated variables and 11:30 UTC for instantaneous variables. Therefore, in this diagnostic, the time coordinates of the daily instantaneous variables are shifted 30 minutes forward in time.

LISFLOOD

LISFLOOD is a spatially distributed water resources model, developed by the Joint Research Centre (JRC) of the European Commission since 1997. We provide a recipe to produce meteorological forcing data for the Python 3 version of LISFLOOD.

LISFLOOD has a separate preprocessor LISVAP that derives some additional variables. We don’t replace LISVAP. Rather, we provide input files that can readily be passed to LISVAP and then to LISFLOOD.
HYPE

The hydrological catchment model HYPE simulates water flow and substances on their way from precipitation through soil, river and lakes to the river outlet. HYPE is developed at the Swedish Meteorological and Hydrological Institute. The recipe pre-processes ERA-Interim and ERA5 data for use in HYPE.

13.3.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/hydrology

- recipe_pcrglobwb.yml
- recipe_marrmot.yml
- recipe_wflow.yml
- recipe_lisflood.yml
- recipe_hype.yml

Diagnostics are stored in esmvaltool/diag_scripts/hydrology

- pcrglobwb.py
- marrmot.py
- wflow.py
- lisflood.py
- hype.py

13.3.3 User settings in recipe

All hydrological recipes require a shapefile as an input to produce forcing data. This shapefile determines the shape of the basin for which the data will be cut out and processed. All recipes are tested with the shapefiles that are used for the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin shapefiles from the HydroSHEDS project.

1. recipe_pcrglobwb.yml

 Required preprocessor settings:

 - start_year: 1979
 - end_year: 1979

2. recipe_marrmot.yml

 There is one diagnostic diagnostic_daily for using daily data.

 Required preprocessor settings:

 - The settings below should not be changed.
 - extract_shape:
 - shapefile: Meuse.shp (MARRMoT is a hydrological Lumped model that needs catchment-aggregated forcing data. The catchment is provided as a shapefile, the path can be relative to auxiliary_data_dir as defined in config-user.yml.).
 - method: contains
 - crop: true
Required diagnostic script settings:

- basin: Name of the catchment

3. recipe_wflow.yml

Optional preprocessor settings:

- extract_region: the region specified here should match the catchment

Required diagnostic script settings:

- basin: name of the catchment
- dem_file: netcdf file containing a digital elevation model with elevation in meters and coordinates latitude and longitude.
- regrid: the regridding scheme for regridding to the digital elevation model. Choose \texttt{area_weighted} (slow) or \texttt{linear}.

4. recipe_lisflood.yml

Required preprocessor settings:

- extract_region: A region bounding box slightly larger than the shapefile. This is run prior to regridding, to save memory.
- extract_shape:*
 - shapefile: A shapefile that specifies the extents of the catchment.

These settings should not be changed
- method: contains
- crop: true
- regrid:*
 - target_grid: Grid of LISFLOOD input files

These settings should not be changed
- lon_offset: true
- lat_offset: true
- scheme: linear

There is one diagnostic \texttt{diagnostic_daily} for using daily data.

Required diagnostic script settings:

- catchment: Name of the catchment, used in output filenames

5. recipe_hype.yml

Required preprocessor settings:

- start_year: 1979
- end_year: 1979
- shapefile: Meuse_HYPE.shp (expects shapefile with subcatchments)

These settings should not be changed
- method: contains
- decomposed: true
13.3.4 Variables

1. recipe_pcrglobwb.yml
 - tas (atmos, daily, longitude, latitude, time)
 - pr (atmos, daily, longitude, latitude, time)

2. recipe_marrmot.yml
 - pr (atmos, daily or hourly mean, longitude, latitude, time)
 - psl (atmos, daily or hourly mean, longitude, latitude, time)
 - rsds (atmos, daily or hourly mean, longitude, latitude, time)
 - rsdt (atmos, daily or hourly mean, longitude, latitude, time)
 - tas (atmos, daily or hourly mean, longitude, latitude, time)

3. recipe_wflow.yml
 - orog (fx, longitude, latitude)
 - pr (atmos, daily or hourly mean, longitude, latitude, time)
 - tas (atmos, daily or hourly mean, longitude, latitude, time)

 Either potential evapotranspiration can be provided:
 - evpsblpot(atmos, daily or hourly mean, longitude, latitude, time)

 or it can be derived from tas, psl, rsds, and rsdt using the De Bruin formula, in that case the following variables
 need to be provided:
 - psl (atmos, daily or hourly mean, longitude, latitude, time)
 - rsds (atmos, daily or hourly mean, longitude, latitude, time)
 - rsdt (atmos, daily or hourly mean, longitude, latitude, time)

4. recipe_lisflood.yml
 - pr (atmos, daily, longitude, latitude, time)
 - tas (atmos, daily, longitude, latitude, time)
 - tasmax (atmos, daily, longitude, latitude, time)
 - tasmin (atmos, daily, longitude, latitude, time)
 - tdps (atmos, daily, longitude, latitude, time)
 - uas (atmos, daily, longitude, latitude, time)
 - vas (atmos, daily, longitude, latitude, time)
 - rsds (atmos, daily, longitude, latitude, time)

5. recipe_hype.yml
 - tas (atmos, daily or hourly, longitude, latitude, time)
 - tasmin (atmos, daily or hourly, longitude, latitude, time)
 - tasmax (atmos, daily or hourly, longitude, latitude, time)
 - pr (atmos, daily or hourly, longitude, latitude, time)
13.3.5 Observations and reformat scripts

Note: see headers of cmorization scripts (in esmvaltool/cmorizers/obs) for download instructions.

- ERA-Interim (esmvaltool/cmorizers/obs/cmorize_obs_era_interim.py)
- ERA5 (esmvaltool/cmorizers/obs/cmorize_obs_era5.py)

13.3.6 Output

1. recipe_pcrglobwb.yml
2. recipe_marrmot.yml
 The forcing data, the start and end times of the forcing data, the latitude and longitude of the catchment are saved in a .mat file as a data structure readable by MATLAB or Octave.
3. recipe_wflow.yml
 The forcing data, stored in a single NetCDF file.
4. recipe_lisflood.yml
 The forcing data, stored in separate files per variable.

13.3.7 References

13.4 Landcover diagnostics

13.4.1 Overview

The diagnostic computes the accumulated and fractional extent of major land cover classes, namely bare soil, crops, grasses, shrubs and trees. The numbers are compiled for the whole land surface as well as separated into Tropics, northern Extratropics and southern Extratropics. The cover fractions are compared to ESA-CCI land cover data.

13.4.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_landcover.yml

Diagnostics are stored in diag_scripts/landcover/

• landcover.py: bar plots showing the accumulated area and mean fractional coverage for five land cover classes for all experiments as well as their bias compared to observations.

13.4.3 User settings

script landcover.py

* Required settings for script

• reference_dataset: land cover extent dataset for comparison. The script was developed using ESACCI-LANDCOVER observations.

* Optional settings for script

• comparison: [variable, model] Choose whether one plot per land cover class is generated comparing the different experiments (default) or one plot per model comparing the different land cover classes.

• colorscheme: Plotstyle used for the bar plots. A list of available style is found at https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html. Seaborn is used as default.

13.4.4 Variables

• baresoilFrac (land, monthly mean, time latitude longitude)

• grassFrac (land, monthly mean, time latitude longitude)

• treeFrac (land, monthly mean, time latitude longitude)

• shrubFrac (land, monthly mean, time latitude longitude)

• cropFrac (land, monthly mean, time latitude longitude)
13.4.5 Observations and reformat scripts

ESA-CCI land cover data (Defourny et al., 2015) needs to be downloaded manually by the user and converted to netCDF files containing the grid cell fractions for the five major land cover types. The data and a conversion tool are available at https://maps.elie.ucl.ac.be/CCI/viewer/ upon registration. After obtaining the data and the user tool, the remapping to 0.5 degree can be done with:

```
./bin/aggregate-map.sh
-PgridName=GEOGRAPHIC_LAT_LON
-PnumRows=360
-PoutputLCCSClasses=true
-PnumMajorityClasses=0
ESACCI-LC-L4-LCCS-Map-300m-P1Y-2015-v2.0.7b.nc
```

Next, the data needs to be aggregated into the five major classes (PFT) similar to the study of Georgievski & Hagemann (2018) and converted from grid cell fraction into percentage.

<table>
<thead>
<tr>
<th>PFT</th>
<th>ESA-CCI Landcover Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>baresoil-</td>
<td>Bare_Soil</td>
</tr>
<tr>
<td>Frac</td>
<td>Managed_Grass</td>
</tr>
<tr>
<td>grassFrac</td>
<td>Natural_Grass</td>
</tr>
<tr>
<td>shrubFrac</td>
<td>Shrub_Broadleaf_Deciduous + Shrub_Broadleaf_Evergreen + Shrub_Needleleaf_Evergreen</td>
</tr>
<tr>
<td>treeFrac</td>
<td>Tree_Broadleaf_Deciduous + Tree_Broadleaf_Evergreen + Tree_Needleleaf_Deciduous + Tree_Needleleaf_Evergreen</td>
</tr>
</tbody>
</table>

Finally, it might be necessary to adapt the grid structure to the experiments files, e.g converting the -180 -> 180 degree grid to 0 -> 360 degree and inverting the order of latitudes. Note, that all experiments will be regridded onto the grid of the land cover observations, thus it is recommended to convert to the coarsest resolution which is sufficient for the planned study. For the script development, ESA-CCI data on 0.5 degree resolution was used with land cover data averaged over the 2008-2012 period.

13.4.6 References

• Defourny et al. (2015): ESA Land Cover Climate Change Initiative (ESA LC_cci) data: ESACCI-LC-L4-LCCS-Map-300m-P5Y-[2000,2005,2010]-v1.6.1 via Centre for Environmental Data Analysis

13.4.7 Example plots

13.5 Land and ocean components of the global carbon cycle

13.5.1 Overview

This recipe reproduces most of the figures of Anav et al. (2013):

• Timeseries plot for different regions

• Seasonal cycle plot for different regions
Fig. 6: Accumulated tree covered area for different regions and experiments.

- Errorbar plot for different regions showing mean and standard deviation
- Scatterplot for different regions showing mean vs. interannual variability
- 3D-scatterplot for different regions showing mean vs. linear trend and the model variability index (MVI) as a third dimension (color coded)
- Scatterplot for different regions comparing two variable against each other (c_{Soil} vs. c_{Veg})

In addition, performance metrics are calculated for all variables using the performance metric diagnostics (see details in *Performance metrics for essential climate parameters*).

13.5.2 MVI calculation

The Model variability index (MVI) on a single grid point (calculated in `carbon_cycle/mvi.ncl`) is defined as

$$MVI = \left(\frac{s^M}{s^O} - \frac{s^O}{s^M} \right)^2$$

where s^M and s^O are the standard deviations of the annual time series on a single grid point of a climate model M and the reference observation O. In order to get a global or regional result, this index is simple averaged over the respective domain.

In its given form, this equation is prone to small standard deviations close to zero. For example, values of $s^M = 10^{-5}\mu$ and $s^O = 10^{-7}\mu$ (where μ is the mean of s^O over all grid cells) results in a MVI of the order of 10^4 for this single grid cell even though the two standard deviations are close to zero and negligible compared to other grid cells. Due to the use of the arithmetic mean, a single high value is able to distort the overall MVI.

13.5. Land and ocean components of the global carbon cycle 217
In the original publication, the maximum MVI is in the order of 10 (for the variable \(gpp \)). However, a naive application of the MVI definition yields values over 10\(^9\) for some models. Unfortunately, Anav et al. (2013) do not provide an explanation on how to deal with this problem. Nevertheless, this script provides two configuration options to avoid high MVI values, but they are not related to the original paper or any other peer-reviewed study and should be used with great caution (see User settings in recipe).

13.5.3 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_anav13jclim.yml

Diagnostics are stored in diag_scripts/

- carbon_cycle/main.ncl
- carbon_cycle/mvi.ncl
- carbon_cycle/two_variables.ncl
- perfmetrics/main.ncl
- perfmetrics/collect.ncl
13.5.4 User settings in recipe

1. Preprocessor
 - mask_fillvalues: Mask common missing values on different datasets.
 - mask_landsea: Mask land/ocean.
 - regrid: Regridding.
 - weighting_landsea_fraction: Land/ocean fraction weighting.

2. Script carbon_cycle/main.ncl
 - region, str: Region to be averaged.
 - legend_outside, bool: Plot legend in a separate file (does not affect errorbar plot and evolution plot).
 - mean_IAV_plot, bool: Draw Mean (x-axis), IAV (y-axis) plot.
 - evolution_plot, bool: Draw time evolution of a variable comparing a reference dataset to multi-dataset mean; requires ref_dataset in recipe.
Evolution plot parameters:

- `evolution_plot_ref_dataset`, `str`, optional: Reference dataset for `evolution_plot`. Required when `evolution_plot` is True.
- `evolution_plot_ignore`, `list`, optional: Datasets to ignore in `evolution_plot`.
- `evolution_plot_volcanoes`, `bool`, optional (default: False): Turns on/off lines of volcano eruptions in `evolution_plot`.
- `evolution_plot_color`, `int`, optional (default: 0): Hue of the contours in the `evolution_plot`.
- `ensemble_name`, `string`, optional: Name of ensemble for use in `evolution_plot` legend.

3. Script `carbon_cycle/mvi.ncl`

- `region`, `str`: Region to be averaged.
- `reference_dataset`, `str`: Reference dataset for the MVI calculation specified for each variable separately.
- `mean_time_range`, `list`, optional: Time period over which the mean is calculated (if not given, use whole time span).
- `trend_time_range`, `list`, optional: Time period over which the trend is calculated (if not given, use whole time span).
- `mvi_time_range`, `list`, optional: Time period over which the MVI is calculated (if not given, use whole time span).
- `stddev_threshold`, `float`, optional (default: 1e-2): Threshold to ignore low standard deviations (relative to the mean) in the MVI calculations. See also MVI calculation.
- `mask_below`, `float`, optional: Threshold to mask low absolute values (relative to the mean) in the input data (not used by default). See also MVI calculation.

4. Script `carbon_cycle/two_variables.ncl`

- `region`, `str`: Region to be averaged.

5. Script `perfmetrics/main.ncl`

See Performance metrics for essential climate parameters.

6. Script `perfmetrics/collect.ncl`

See Performance metrics for essential climate parameters.

13.5.5 Variables

- `tas` (atmos, monthly, longitude, latitude, time)
- `pr` (atmos, monthly, longitude, latitude, time)
- `nbp` (land, monthly, longitude, latitude, time)
- `gpp` (land, monthly, longitude, latitude, time)
- `lai` (land, monthly, longitude, latitude, time)
- `cveg` (land, monthly, longitude, latitude, time)
- `csoil` (land, monthly, longitude, latitude, time)
- `tos` (ocean, monthly, longitude, latitude, time)
- `fgco2` (ocean, monthly, longitude, latitude, time)
13.5.6 Observations and reformat scripts

- CRU (tas, pr)
- JMA-TRANSCOM (nbp, fgco2)
- MTE (gpp)
- LAI3g (lai)
- NDP (cveg)
- HWSD (csoil)
- HadISST (tos)

13.5.7 References

13.5.8 Example plots

13.6 Runoff, Precipitation, Evapotranspiration

13.6.1 Overview

This diagnostic calculates biases of long-term climatological annual means of total runoff R, precipitation P and evapotranspiration E for 12 large-scale catchments on different continents and climates. For total runoff, catchment averaged model values are compared to climatological GRDC station observations of river runoff (Duemenil Gates et al., 2000). Due to the incompleteness of these station data, a year-to-year correspondence of data cannot be achieved in a generalized way, so that only climatological data are considered, such it has been done in Hagemann, et al. (2013). For precipitation, catchment-averaged WFDEI precipitation data (Weedon et al., 2014) from 1979-2010 is used as reference. For evapotranspiration, observations are estimated using the difference of the above mentioned precipitation reference minus the climatological GRDC river runoff.

The catchments are Amazon, Congo, Danube, Ganges-Brahmaputra, Lena, Mackenzie, Mississippi, Murray, Niger, Nile, Parana and Yangtze-Kiang. Variable names are expected to follow CMOR standard, e.g. precipitation as pr, total runoff as mrro and evapotranspiration as evspsbl with all fluxes given in kg m$^{-2}$ s$^{-1}$. Evapotranspiration furthermore has to be defined positive upwards.

The diagnostic produces text files with absolute and relative bias to the observations, as well as the respective absolute values. Furthermore it creates a bar plot for relative and absolute bias, calculates and plots biases in runoff coefficient (R/P) and evapotranspiration coefficient (E/P) and saves everything as one pdf file per model or one png file per model and analysis.

The bias of the runoff coefficient is calculated via: $C_R = \frac{R_{\text{model}} - R_{\text{GRDC}}}{P_{\text{WFDEI}}}$ and similar for the evapotranspiration coefficient. In a very first approximation, evapotranspiration and runoff are determined only by precipitation. In other words $R = P - E$. Hence, the runoff coefficient (and similar the evapotranspiration coefficient) tells you how important runoff (or evapotranspiration) is in this region. By plotting the bias of the runoff coefficient against the evapotranspiration coefficient we can immediately see whether there is a shift from runoff to evapotranspiration. On the other hand, by plotting the bias of the runoff coefficient against the relative bias of precipitation we can see whether an error in runoff is due to an error in precipitation.
Fig. 9: Time series of global net biome productivity (NBP) over the period 1901-2005. Similar to Anav et al. (2013), Figure 5.
Fig. 10: Seasonal cycle plot for northern hemisphere gross primary production (GPP) over the period 1986-2005. Similar to Anav et al. (2013), Figure 9.
Fig. 11: Errorbar plot for tropical gross primary production (GPP) over the period 1986-2005.
Fig. 12: Scatterplot for interannual variability and mean of global sea surface temperature (TOS) over the period 1986-2005.
Fig. 13: Scatterplot for multiyear average of 2m surface temperature (TAS) in x axis, its linear trend in y axis, and MVI. Similar to Anav et al. (2013) Figure 1 (bottom).
Fig. 14: Scatterplot for vegetation carbon content (cVeg) and soil carbon content (cSoil) over the period 1986-2005. Similar to Anav et al. (2013), Figure 12.
Fig. 15: Performance metrics plot for carbon-cycle-relevant diagnostics.
13.6.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_runoff_et.yml

Diagnostics are stored in diag_scripts/runoff_et/

- catchment_analysis.py: bar and scatter plots for catchment averages of runoff, evapotranspiration and precipitation

13.6.3 User settings in recipe

1. Script catchment_analysis.py

Required settings (scripts)

- catchmentmask: netCDF file indicating the grid cell for a specific catchment. Modus of distribution not yet clarified. ESGF?

Optional settings (variables)

- reference_dataset: dataset_name Datasets can be used as reference instead of defaults provided with the diagnostics. Must be identical for all variables.

13.6.4 Variables

- evspsbl (atmos, monthly mean, time latitude longitude)
- pr (atmos, monthly mean, time latitude longitude)
- mrro (land, monthly mean, time latitude longitude)

13.6.5 Observations and reformat scripts

Default reference data based on GRDC and WFDEI are included in the diagnostic script as catchment averages. They can be replaced with any gridded dataset by defining a reference_dataset. The necessary catchment mask is available at

All other datasets are remapped onto the catchment mask grid as part of the diagnostics.

13.6.6 References

13.6.7 Example plots

Fig. 16: Catchment definitions used in the diagnostics.
Fig. 17: Barplot indicating the absolute and relative bias in annual runoff between MPI-ESM-LR (1970-2000) and long term GRDC data for specific catchments.
Fig. 18: Biases in runoff coefficient (runoff/precipitation) and precipitation for major catchments of the globe. The MPI-ESM-LR historical simulation (1970-2000) is used as an example.
14.1 Recipe for evaluating Arctic Ocean

14.1.1 Overview

The Arctic ocean is one of the areas of the Earth where the effects of climate change are especially visible today. Two most prominent processes are Arctic amplification [e.g. Serreze and Barry, 2011] and decrease of the sea ice area and thickness. Both receive good coverage in the literature and are already well-studied. Much less attention is paid to the interior of the Arctic Ocean itself. In order to increase our confidence in projections of the Arctic climate future proper representation of the Arctic Ocean hydrography is necessary.

The main focus of this diagnostics is evaluation of ocean components of climate models in the Arctic Ocean, however most of the diagnostics are implemented in a way that can be easily expanded to other parts of the World Ocean. Most of the diagnostics aim at model comparison to climatological data (PHC3), so we target historical CMIP simulations. However scenario runs also can be analysed to have an impression of how Arctic Ocean hydrography will change in the future.

At present only the subset of CMIP models can be used in particular because our analysis is limited to z coordinate models.

14.1.2 Available recipes

Recipe is stored in recipes/

- recipe_arctic_ocean.yml : contains all setting necessary to run diagnostics and metrics.

Currently the workflow do not allow to easily separate diagnostics from each other, since some of the diagnostics rely on the results of other diagnostics. The recipe currently do not use preprocessor options, so input files are CMORised monthly mean 3D ocean variables on original grid.

The following plots will be produced by the recipe:
Hovmoeller diagrams

The characteristics of vertical TS distribution can change with time, and consequently the vertical TS distribution is an important indicator of the behaviour of the coupled ocean-sea ice-atmosphere system in the North Atlantic and Arctic Oceans. One way to evaluate these changes is by using Hovmoller diagrams. Hovmoller diagrams for two main Arctic Ocean basins – Eurasian and Amerasian with T and S spatially averaged on a monthly basis for every vertical level are available. This diagnostic allows the temporal evolution of vertical ocean potential temperature distribution to be assessed.

Related settings in the recipe:

```python
# Define regions, as a list.
# 'EB' - Eurasian Basin of the Arctic Ocean
# 'AB' - Amerasian Basin of the Arctic Ocean
# 'Barents_sea' - Barrents Sea
# 'North_sea' - North Sea
hofm_regions: ["AB", 'EB']
# Define variables to use, should also be in "variables"
# entry of your diagnostic
hofm_vars: ['thetao', 'so']
# Maximum depth of Hovmoeller and vertical profiles
hofm_depth: 1500
# Define if Hovmoeller diagrams will be plotted.
hofm_plot: True
# Define colormap (as a list, same size as list with variables)
# Only cmaps from matplotlib and cmocean are supported.
# Additional cmap - 'custom_salinity1'.
hofm_cmap: ['Spectral_r', 'custom_salinity1']
# Data limits for plots,
# List of the same size as the list of the variables
# each entry is [vmin, vmax, number of levels, rounding limit]
hofm_limits: [[-2, 2.3, 41, 1], [30.5, 35.1, 47, 2]]
# Number of columns in the plot
hofm_ncol: 3
```

Vertical profiles

The vertical structure of temperature and salinity (T and S) in the ocean model is a key diagnostic that is used for ocean model evaluation. Realistic T and S distributions means that model properly represent dynamic and thermodynamic processes in the ocean. Different ocean basins have different hydrological regimes so it is important to perform analysis of vertical TS distribution for different basins separately. The basic diagnostic in this sense is mean vertical profiles of temperature and salinity over some basin averaged for relatively long period of time. In addition to individual vertical profiles for every model, we also show the mean over all participating models and similar profile from climatological data (PHC3).

Several settings for vertical profiles (region, variables, maximum depths) will be determined by the Hovmoeller diagram settings. The reason is that vertical profiles are calculated from Hovmoeller diagram data. Mean vertical profile is calculated by linearly interpolating data on standard WOA/PHC depths.

Related settings in the recipe:

```python
# Define regions, as a list.
# 'EB' - Eurasian Basin of the Arctic Ocean
# 'AB' - Amerasian Basin of the Arctic Ocean
# 'Barents_sea' - Barrents Sea
# 'North_sea' - North Sea
```
Fig. 1: Hovmoller diagram of monthly spatially averaged potential temperature in the Eurasian Basin of the Arctic Ocean for selected CMIP5 climate models (1970-2005).

```python
hofm_regions: ['AB', 'EB']
# Define variables to use, should also be in "variables" entry of your diagnostic
hofm_vars: ['thetao', 'so']
# Maximum depth of Hovmoeller and vertical profiles
hofm_depth: 1500
```

Spatial distribution maps of variables

The spatial distribution of basic oceanographic variables characterises the properties and spreading of ocean water masses. For the coupled models, capturing the spatial distribution of oceanographic variables is especially important in order to correctly represent the ocean-ice-atmosphere interface. We have implemented plots with spatial maps of temperature and salinity at original model levels.

Plots spatial distribution of variables at selected depths in North Polar projection on original model grid. For plotting the model depths that are closest to provided `plot2d_depths` will be selected. Settings allow to define color maps and limits for each variable individually. Color maps should be either part of standard matplotlib set or one of the cmocean color maps. Additional colormap `custom_salinity1` is provided.

Related settings in the recipe:

```python
# Depths for spatial distribution maps
plot2d_depths: [10, 100]
# Variables to plot spatial distribution maps
plot2d_vars: ['thetao', 'so']
# Define colormap (as a list, same size as list with variables)
# Only cmaps from matplotlib and cmocean are supported.
```

(continues on next page)
Fig. 2: Mean (1970-2005) vertical potential temperature distribution in the Eurasian basin for participating CMIP5 coupled ocean models, PHC3 climatology (dotted red line) and multi-model mean (dotted black line).

Spatial distribution maps of biases

For temperature and salinity, we have implemented spatial maps of model biases from the observed climatology. For the model biases, values from the original model levels are linearly interpolated to the climatology and then spatially interpolated from the model grid to the regular PHC (climatology) grid. Resulting fields show model performance in simulating spatial distribution of temperature and salinity.

Related settings in the recipe:

```python
# Additional cmap - 'custom_salinity1'.
plot2d_cmap: ['Spectral_r', 'custom_salinity1']
# Data limits for plots,
# List of the same size as the list of the variables
# each entry is [vmin, vmax, number of levels, rounding limit]
plot2d_limits: [[-2, 4, 20, 1], [30.5, 35.1, 47, 2]]
# number of columns for plots
plot2d_ncol: 3
```

```python
plot2d_bias_depths: [10, 100]
# Variables to plot spatial distribution of the bias for.
plot2d_bias_vars: ['thetao', 'so']
# Color map names for every variable
plot2d_bias_cmap: ['balance', 'balance']
# Data limits for plots,
# List of the same size as the list of the variables
# each entry is [vmin, vmax, number of levels, rounding limit]
plot2d_bias_limits: [[-3, 3, 20, 1], [-2, 2, 47, 2]]
```
Fig. 3: Mean (1970-2005) salinity distribution at 100 meters.
Fig. 4: Mean (1970-2005) salinity bias at 100m relative to PHC3 climatology

Transects

Vertical transects through arbitrary sections are important for analysis of vertical distribution of ocean water properties and especially useful when exchange between different ocean basins is evaluated. We have implemented diagnostics that allow for the definition of an arbitrary ocean section by providing set of points on the ocean surface. For each point, a vertical profile on the original model levels is interpolated. All profiles are then connected to form a transect. The great-circle distance between the points is calculated and used as along-track distance.

One of the main use cases is to create vertical sections across ocean passages, for example Fram Strait.

Plots transect maps for pre-defined set of transects (defined in *regions.py*, see below). The `transect_depth` defines maximum depth of the transect. Transects are calculated from data averaged over the whole time period.

Related settings in the recipe:

```python
# Select regions (transects) to plot
# Available options are:
# AWpath - transect along the path of the Atlantic Water
# Fram - Fram strait
transects_regions: ['AWpath', 'Fram']
```

(continues on next page)
Variables to plot on transects
transects_vars: ['thetao', 'so']

Color maps for every variable
transects_cmap: ['Spectral_r', 'custom_salinity1']

Data limits for plots,
List of the same size as the list of the variables
each entry is [vmin, vmax, number of levels, rounding limit]
transects_limits: [[-2, 4, 20, 1], [30.5, 35.1, 47, 2]]

Maximum depth to plot the data
transects_depth: 1500

number of columns
transects_ncol: 3

Fig. 5: Mean (1970-2005) potential temperature across the Fram strait.

14.1. Recipe for evaluating Arctic Ocean
Atlantic Water core depth and temperature

Atlantic water is a key water mass of the Arctic Ocean and its proper representation is one of the main challenges in Arctic Ocean modelling. We have created two metrics by which models can be easily compared in terms of Atlantic water simulation. The temperature of the Atlantic Water core is calculated for every model as the maximum potential temperature between 200 and 1000 meters depth in the Eurasian Basin. The depth of the Atlantic Water core is calculated as the model level depth where the maximum temperature is found in Eurasian Basin (Atlantic water core temperature).

The AW core depth and temperature will be calculated from data generated for Hovmoeller diagrams for EB region, so it should be selected in the Hovmoeller diagrams settings as one of the hofm_regions.

In order to evaluate the spatial distribution of Atlantic water in different climate models we also provide diagnostics with maps of the spatial temperature distribution at model’s Atlantic Water depth.

Fig. 6: Mean (1970-2005) Atlantic Water core temperature. PHC33 is an observed climatology.

TS-diagrams

T-S diagrams combine temperature and salinity, which allows the analysis of water masses and their potential for mixing. The lines of constant density for specific ranges of temperature and salinity are shown on the background of the T-S diagram. The dots on the diagram are individual grid points from specified region at all model levels within user specified depth range.

Related settings in the recipe:

```plaintext
tsdig_regions: ['AB', 'EB']
# Maximum depth to consider data for TS diagrams
tsdig_depth: 1500
# Number of columns
tsdig_ncol: 3
```
Fig. 7: Mean (1970-2005) T-S diagrams for Eurasian Basin of the Arctic Ocean.
14.1.3 Available diagnostics

The following python modules are included in the diagnostics package:

- `arctic_ocean.py`: Reads settings from the recipe and call functions to do analysis and plots.
- `getdata.py`: Deals with data preparation.
- `interpolation.py`: Include horizontal and vertical interpolation functions specific for ocean models.
- `plotting.py`: Ocean specific plotting functions
- `regions.py`: Contains code to select specific regions, and definition of the regions themselves.
- `utils.py`: Helpful utilities.

Diagnostics are stored in `diag_scripts/arctic_ocean/`

Variables

- `thetao` (ocean, monthly, longitude, latitude, time)
- `so` (ocean, monthly, longitude, latitude, time)

Observations and reformat scripts

- PHC3 climatology

References

- Ilıcak, M. et al., An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes, Ocean Modelling, Volume 100, April 2016, Pages 141-161, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2016.02.004

14.2 Climate Variability Diagnostics Package (CVDP)

14.2.1 Overview

The Climate Variability Diagnostics Package (CVDP) developed by NCAR’s Climate Analysis Section is an analysis tool that documents the major modes of climate variability in models and observations, including ENSO, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Northern and Southern Annular Modes, North Atlantic Oscillation, Pacific North and South American teleconnection patterns. For details please refer to the [1] and [2].
14.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_cvdp.yml

Diagnostics are stored in diag_scripts/cvdp/

- cvdp_wrapper.py

14.2.3 User settings in recipe

The recipe can be run with several data sets including different model ensembles, multi-model mean statistics are currently not supported.

14.2.4 Variables

- ts (atmos, monthly mean, longitude latitude time)
- tas (atmos, monthly mean, longitude latitude time)
- pr (atmos, monthly mean, longitude latitude time)
- psl (atmos, monthly mean, longitude latitude time)

14.2.5 Observations and reformat scripts

None.

14.2.6 References

[1] http://www.cesm.ucar.edu/working_groups/CVC/cvdp/

14.2.7 Example plots

14.3 Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI)

14.3.1 Overview

The goal of this diagnostic is to compute indices based on area averages.

In recipe_combined_indices.yml, after defining the period (historical or future projection), the variable is selected. The predefined areas are:

- Nino 3
- Nino 3.4
- Nino 4
- North Atlantic Oscillation (NAO)
Fig. 8: Regression of the precipitation anomalies (PR) onto the Northern Annular Mode (NAM) index for the time period 1900-2005 for 30 CMIP5 models and observations (GCPM (pr) / IFS-Cy31r2 (psl); time period 1984-2005).
• Southern Oscillation Index (SOI)

14.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_combined_indices.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• combined_indices.R : calculates the area-weighted means and multi-model means, with or without weights

14.3.3 User settings

User setting files are stored in recipes/

1. recipe_combined_indices.yml

Required settings for script

• region: one of the following strings Nino3, Nino3.4, Nino4, NAO, SOI

• running_mean: an integer specifying the length of the window (in months) to be used for computing the running mean.

• moninf: an integer can be given to determine the first month of the seasonal mean to be computed (from 1 to 12, corresponding to January to December respectively).

• monsup: an integer specifying the last month to be computed (from 1 to 12, corresponding to January to December respectively).

• standardized: ‘true’ or ‘false’ to specify whether to compute the standardization of the variable.

Required settings for preprocessor (only for 3D variables)

• extract_levels:

 • levels: [50000] # e.g. for 500 hPa level

 • scheme: nearest

14.3.4 Variables

• all variables (atmos/ocean, monthly, longitude, latitude, time)

14.3.5 Observations and reformat scripts

None
14.3.6 References

14.3.7 Example plots

Time series of the standardized sea surface temperature (tos) area averaged over the Nino 3.4 region during the boreal winter (December-January-February). The time series correspond to the MPI-ESM-MR (red) and BCC-CSM1-1 (blue) models and their mean (black) during the period 1950-2005 for the ensemble r1p1i1 of the historical simulations.
14.4 Ocean diagnostics

14.4.1 Overview

These recipes are used for evaluating the marine component of models of the earth system. Using these recipes, it should be possible to evaluate both the physical models and biogeochemistry models. All these recipes use the ocean diagnostics package.

The ocean diagnostics package contains several diagnostics which produce figures and statistical information of models of the ocean. The datasets have been pre-processed by ESMValTool, based on recipes in the recipes directory. Most of the diagnostics produce two or less types of figure, and several diagnostics are called by multiple recipes.

Each diagnostic script expects a metadata file, automatically generated by ESMValTool, and one or more pre-processed dataset. These are passed to the diagnostic by ESMValTool in the settings.yml and metadata.yml files.

The ocean diagnostics toolkit can not figure out how to plot data by itself. The current version requires the recipe to produce the correct pre-processed data for each diagnostic script. ie: to produce a time series plot, the preprocessor must produce a time-dimensional dataset.

While these tools were built to evaluate the ocean component models, they also can be used to produce figures for other domains. However, there are some ocean specific elements, such as the z-direction being positive and reversed, and some of the map plots have the continents coloured in by default.

As elsewhere, both the model and observational datasets need to be compliant with the CMOR data.

14.4.2 Available recipes

- recipe_ocean_amoc.yml
- recipe_ocean_example.yml
- recipe_ocean_scalar_fields.yml
- recipe_ocean_bgc.yml
- recipe_ocean_quadmap.yml
- recipe_ocean_ice_extent.yml
- recipe_ocean_multimap.yml

recipe_ocean_amoc.yml

The recipe_ocean_amoc.yml is an recipe that produces figures describing the Atlantic Meridional Overturning Circulation (AMOC) and the drake passage current.

The recipes produces time series of the AMOC at 26 north and the drake passage current.
This figure shows the multi model comparison of the AMOC from several CMIP5 historical simulations, with a 6 year moving average (3 years either side of the central value). A similar figure is produced for each individual model, and for the Drake Passage current.

This recipe also produces a contour transect and a coloured transect plot showing the Atlantic stream function for each individual model, and a multi-model contour is also produced:
recipe_ocean_example.yml

The recipe_ocean_example.yml is an example recipe which shows several examples of how to manipulate marine model data using the ocean diagnostics tools.

While several of the diagnostics here have specific uses in evaluating models, it is meant to be a catch-all recipe demonstrating many different ways to evaluate models.

All example calculations are performed using the ocean temperature in a three dimensional field (thetao), or at the surface (tos). This recipe demonstrates the use of a range of preprocessors in a marine context, and also shows many of the standard model-only diagnostics (no observational component is included.)

This recipe includes examples of how to manipulate both 2D and 3D fields to produce:

- **Time series:**
 - Global surface area weighted mean time series
 - Volume weighted average time series within a specific depth range
 - Area weighted average time series at a specific depth
 - Area weighted average time series at a specific depth in a specific region.
 - Global volume weighted average time series
 - Regional volume weighted average time series

- **Maps:**
 - Global surface map (from 2D ad 3D initial fields)
– Global surface map using re-gridding to a regular grid
– Global map using re-gridding to a regular grid at a specific depth level
– Regional map using re-gridding to a regular grid at a specific depth level
• Transects:
 – Produce various transect figure showing a re-gridded transect plot, and multi model comparisons
• Profile:
 – Produce a Global area-weighted depth profile figure
 – Produce a regional area-weighted depth profile figure

All these fields can be expanded using a

`recipe_ocean_bgc.yml`

The `recipe_ocean_bgc.yml` is an example recipe which shows several simple examples of how to manipulate marine biogeochemical model data.

This recipe includes the following fields:

• Global total volume-weighted average time series:
 – temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *
 – chlorophyll, iron, total alkalinity (no observations)
• Surface area-weighted average time series:
 – temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *
 – fgco2 (global total), integrated primary production, chlorophyll, iron, total alkalinity (no observations)
• Scalar fields time series:
 – mfo (including stuff like drake passage)
• Profiles:
 – temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *
 – chlorophyll, iron, total alkalinity (no observations)
• Maps + contours:
 – temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *
 – chlorophyll, iron, total alkalinity (no observations)
• Transects + contours:
 – temperature, salinity, nitrate, oxygen, silicate (vs WOA data) *
 – chlorophyll, iron, no observations)

*Note that Phosphate is also available as a WOA diagnostic, but I haven’t included it as HadGEM2-ES doesn’t include a phosphate field.

This recipe uses the World Ocean Atlas data, which can be downloaded from: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html (last access 10/25/2018)

Instructions: Select the “All fields data links (1° grid)” netCDF file, which contain all fields.
recipe_ocean_quadmap.yml

The *recipe_ocean_quadmap.yml* is an example recipe showing the *diagnostic_maps_quad.py* diagnostic. This diagnostic produces an image showing four maps. Each of these four maps show latitude vs longitude and the cube value is used as the colour scale. The four plots are:

<table>
<thead>
<tr>
<th>model1</th>
<th>model 1 minus model2</th>
</tr>
</thead>
<tbody>
<tr>
<td>model2 minus obs</td>
<td>model1 minus obs</td>
</tr>
</tbody>
</table>

These figures are also known as Model vs Model vs Obs plots.

The figure produced by this recipe compares two versions of the HadGEM2 model against ATSR sea surface temperature:

![Sea Surface Temperature](image)

This kind of figure can be very useful when developing a model, as it allows model developers to quickly see the impact of recent changes to the model.

recipe_ocean_ice_extent.yml

The *recipe_ocean_ice_extent.yml* recipe produces several metrics describing the behaviour of sea ice in a model, or in multiple models.

This recipe has four preprocessors, a combinatorial combination of:

- Regions: Northern or Southern Hemisphere
- Seasons: December-January-February or June-July-August
Once these seasonal hemispherical fractional ice cover is processed, the resulting cube is passed ‘as is’ to the diagnostic_seaice.py diagnostic.

This diagnostic produces the plots:

- Polar Stereographic projection Extent plots of individual models years.
- Polar Stereographic projection maps of the ice cover and ice extent for individual models.
- A time series of Polar Stereographic projection Extent plots - see below.
- Time series plots of the total ice area and the total ice extent.

The following image shows an example of the sea ice extent plot, showing the Summer Northern hemisphere ice extent for the HadGEM2-CC model, in the historical scenario.

The sea ice diagnostic is unlike the other diagnostics in the ocean diagnostics toolkit. The other tools are build to be generic plotting tools which work with any field (i.e., diagnostic_timeseries.py works fine for Temperature, Chlorophyll, or any other field. On the other hand, the sea ice diagnostic is the only tool that performs a field specific evaluation.

The diagnostic_seaice.py diagnostic is more fully described below.
recipe_ocean_multimap.yml

The `recipe_ocean_multimap.yml` is an example recipe showing the `diagnostic_maps_multimodel.py` diagnostic. This diagnostic produces an image showing Model vs Observations maps or only Model fields when observational data are not provided. Each map shows latitude vs longitude fields and user defined values are used to set the colour scale. Plot layout can be modified by modifying the `layout_rowcol` argument.

The figure produced by this recipe compares the ocean surface CO2 fluxes for 16 different CMIP5 model against Landschuetzer2016 observations.

The `diagnostic_maps_multimodel.py` diagnostic is documented below.

14.4.3 Available diagnostics

Diagnostics are stored in the `diag_scripts` directory: `ocean`.

The following python modules are included in the ocean diagnostics package. Each module is described in more detail both below and inside the module.

- `diagnostic_maps.py`
- `diagnostic_maps_quad.py`
- `diagnostic_model_vs_obs.py`
- `diagnostic_profiles.py`
- `diagnostic_seaice.py`
- `diagnostic_timeseries.py`
- `diagnostic_tools.py`
- `diagnostic_transects.py`
- `diagnostic_maps_multimodel.py`

diagnostic_maps.py

The `diagnostic_maps.py` produces a spatial map from a NetCDF. It requires the input netCDF to have the following dimensions. Either:

- A two dimensional file: latitude, longitude.
- A three dimensional file: depth, latitude, longitude.

In the case of a 3D netCDF file, this diagnostic produces a map for EVERY layer. For this reason, we recommend extracting a small number of specific layers in the preprocessor, using the `extract_layer` preprocessor.

This script can not process NetCDFs with multiple time steps. Please use the `climate_statistics` preprocessor to collapse the time dimension.

This diagnostic also includes the optional arguments, `threshold` and `thresholds`.

- `threshold`: a single float.
- `thresholds`: a list of floats.

Only one of these arguments should be provided at a time. These two arguments produce a second kind of diagnostic map plot: a contour map showing the spatial distribution of the threshold value, for each dataset. Alternatively, if the `thresholds` argument is used instead of `threshold`, the single-dataset contour map shows the contours of all the values in the thresholds list.
If multiple datasets are provided, in addition to the single dataset contour, a multi-dataset contour map is also produced for each value in the thresholds list.

Some appropriate preprocessors for this diagnostic would be:

For a Global 2D field:

```yaml
prep_map_1:
  climate_statistics:
```

For a regional 2D field:

```yaml
prep_map_2:
  extract_region:
    start_longitude: -80.
    end_longitude: 30.
    start_latitude: -80.
    end_latitude: 80.
  climate_statistics:
    operator: mean
```

For a Global 3D field at the surface and 10m depth:

```yaml
prep_map_3:
  custom_order: true
  extract_levels:
    levels: [0., 10.]
    scheme: linear_horizontal_extrapolate_vertical
  climate_statistics:
    operator: mean
```

For a multi-model comparison mean of 2D global fields including contour thresholds.

```yaml
prep_map_4:
  custom_order: true
  climate_statistics:
    operator: mean
    regrid:
      target_grid: 1x1
      scheme: linear
```

And this also requires the threshold key in the diagnostic:

```yaml
diagnostic_map:
  variables:
    tos: # Temperature ocean surface
    preprocessor: prep_map_4
    field: TO2M
  scripts:
    Ocean_regrid_map:
      script: ocean/diagnostic_maps.py
      thresholds: [5, 10, 15, 20]
```
diagnostic_maps_quad.py

The diagnostic_maps_quad.py diagnostic produces an image showing four maps. Each of these four maps show latitude vs longitude and the cube value is used as the colour scale. The four plots are:

<table>
<thead>
<tr>
<th>model1</th>
<th>model 1 minus model2</th>
</tr>
</thead>
<tbody>
<tr>
<td>model2 minus obs</td>
<td>model1 minus obs</td>
</tr>
</tbody>
</table>

These figures are also known as Model vs Model vs Obs plots.

This diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cubes received by this diagnostic (via the settings.yml and metadata.yml files) have no time component, a small number of depth layers, and a latitude and longitude coordinates.

An appropriate preprocessor for a 2D field would be:

```
prep_quad_map:
climate_statistics:
  operator: mean
```

and an example of an appropriate diagnostic section of the recipe would be:

```
diag_map_1:
  variables:
    tos: # Temperature ocean surface
    preprocessor: prep_quad_map
    field: T02Ms
    mip: Omon
  additional_datasets:
    # filename: tos_ATSR_L3_ARC-v1.1.1_199701-201112.nc
    # download from: https://datashare.is.ed.ac.uk/handle/10283/536
    - {dataset: ATSR, project: obs4mips, level: L3, version: ARC-v1.1.1, ...
    start_year: 2001, end_year: 2003, tier: 3}
  scripts:
    Global_Ocean_map:
      script: ocean/diagnostic_maps_quad.py
      control_model: {dataset: HadGEM2-CC, project: CMIP5, mip: Omon, exp: ...
        historical, ensemble: r1i1p1}
      exper_model: {dataset: HadGEM2-ES, project: CMIP5, mip: Omon, exp: ...
        historical, ensemble: r1i1p1}
      observational_dataset: {dataset: ATSR, project: obs4mips,}
```

Note that the details about the control model, the experiment models and the observational dataset are all provided in the script section of the recipe.

diagnostic_model_vs_obs.py

The diagnostic_model_vs_obs.py diagnostic makes model vs observations maps and scatter plots. The map plots shows four latitude vs longitude maps:

<table>
<thead>
<tr>
<th>Model</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model minus Observations</td>
<td>Model over Observations</td>
</tr>
</tbody>
</table>

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a latitude and longitude coordinates.
This diagnostic also includes the optional arguments, `maps_range` and `diff_range` to manually define plot ranges. Both arguments are a list of two floats to set plot range minimum and maximum values respectively for Model and Observations maps (Top panels) and for the Model minus Observations panel (bottom left). Note that if input data have negative values the Model over Observations map (bottom right) is not produced.

The scatter plots plot the matched model coordinate on the x axis, and the observational dataset on the y coordinate, then performs a linear regression of those data and plots the line of best fit on the plot. The parameters of the fit are also shown on the figure.

An appropriate preprocessor for a 3D+time field would be:

```
preprocessors:
  prep_map:
    extract_levels:
      levels: [100., ]
      scheme: linear_extrap
  climate_statistics:
    operator: mean
    regrid:
      target_grid: 1x1
      scheme: linear
```

diagnostic_maps_multimodel.py

The `diagnostic_maps_multimodel.py` diagnostic makes model(s) vs observations maps and if data are not provided it draws only model field.

It is always necessary to define the overall layout through the argument `layout_rowcol`, which is a list of two integers indicating respectively the number of rows and columns to organize the plot. Observations has not been accounted for here as they are automatically added at the top of the figure.

This diagnostic also includes the optional arguments, `maps_range` and `diff_range` to manually define plot ranges. Both arguments are a list of two floats to set plot range minimum and maximum values respectively for variable data and the Model minus Observations range.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a latitude and longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

```
preprocessors:
  prep_map:
    extract_levels:
      levels: [100., ]
      scheme: linear_extrap
  climate_statistics:
    operator: mean
    regrid:
      target_grid: 1x1
      scheme: linear
```
diagnostic_profiles.py

The diagnostic_profiles.py diagnostic produces images of the profile over time from a cube. These plots show cube value (ie temperature) on the x-axis, and depth/height on the y axis. The colour scale is the annual mean of the cube data. Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has a time component, and depth component, but no latitude or longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

```
preprocessors:
    prep_profile:
        extract_volume:
            long1: 0.
            long2: 20.
            lat1: -30.
            lat2: 30.
            z_min: 0.
            z_max: 3000.
        area_statistics:
            operator: mean
```

diagnostic_timeseries.py

The diagnostic_timeseries.py diagnostic produces images of the time development of a metric from a cube. These plots show time on the x-axis and cube value (ie temperature) on the y-axis.

Two types of plots are produced: individual model timeseries plots and multi model time series plots. The individual plots show the results from a single cube, even if this cube is a multi-model mean made by the multimodel preprocessor.

The multi model time series plots show several models on the same axes, where each model is represented by a different line colour. The line colours are determined by the number of models, their alphabetical order and the jet colour scale. Observational datasets and multimodel means are shown as black lines.

This diagnostic assumes that the preprocessors do the bulk of the work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) is time-dimensional cube. This means that the pre-processed netcdf has a time component, no depth component, and no latitude or longitude coordinates.

Some appropriate preprocessors would be:

For a global area-weighted average 2D field:

```
area_statistics:
    operator: mean
```

For a global volume-weighted average 3D field:

```
volume_statistics:
    operator: mean
```

For a global area-weighted surface of a 3D field:

```
extraid_levels:
    levels: [0., ]
    scheme: linear_horizontal_extrapolate_vertical
area_statistics:
    operator: mean
```
An example of the multi-model time series plots can be seen here:

![Atlantic Meridional Overturning Circulation](image)

diagnostic_transects.py

The `diagnostic_transects.py` diagnostic produces images of a transect, typically along a constant latitude or longitude. These plots show 2D plots with either latitude or longitude along the x-axis, depth along the y-axis and the cube value is used as the colour scale.

This diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, and one of the latitude or longitude coordinates has been reduced to a single value.

An appropriate preprocessor for a 3D+time field would be:

```yaml
climate_statistics:
  operator: mean
extract_slice:
  latitude: [-50.,50.]
  longitude: 332.
```
Here is an example of the transect figure:

And here is an example of the multi-model transect contour figure:
The `diagnostic_seaice.py` diagnostic is unique in this module, as it produces several different kinds of images, including time series, maps, and contours. It is a good example of a diagnostic where the preprocessor does very little work, and the diagnostic does a lot of the hard work.

This was done purposely, firstly to demonstrate the flexibility of ESMValTool, and secondly because Sea Ice is a unique field where several Metrics can be calculated from the sea ice cover fraction.

The recipe associated with this diagnostic is the `recipe_SeaIceExtent.yml`. This recipe contains 4 preprocessors which all perform approximately the same calculation. All four preprocessors extract a season: - December, January and February (DJF) - June, July and August (JJA) and they also extract either the North or South hemisphere. The four preprocessors are combinations of DJF or JJA and North or South hemisphere.

One of the four preprocessors is North Hemisphere Winter ice extent:

```
timeseries_NHW_ice_extent: # North Hemisphere Winter ice_extent
custom_order: true
extract_time: &time_anchor # declare time here.
  start_year: 1960
  start_month: 12
  start_day: 1
  end_year: 2005
  end_month: 9
  end_day: 31
extract_season:
  season: DJF
extract_region:
```
start_longitude: -180.
end_longitude: 180.
start_latitude: 0.
end_latitude: 90.

Note that the default settings for ESMValTool assume that the year starts on the first of January. This causes a problem for this preprocessor, as the first DJF season would not include the first Month, December, and the final would not include both January and February. For this reason, we also add the `extract_time` preprocessor.

This preprocessor group produces a 2D field with a time component, allowing the diagnostic to investigate the time development of the sea ice extent.

The diagnostic section of the recipe should look like this:

```
%run timeseries_NH_W_ice_extent
```

Note the the threshold here is 15%, which is the standard cut off for the ice extent. The sea ice diagnostic script produces three kinds of plots, using the methods:

- `make_map_extent_plots`: extent maps plots of individual models using a Polar Stereographic project.
- `make_map_plots`: maps plots of individual models using a Polar Stereographic project.
- `make_ts_plots`: time series plots of individual models

There are no multi model comparisons included here (yet).

diagnostic_tools.py

The `diagnostic_tools.py` is a module that contains several python tools used by the ocean diagnostics tools. These tools are:

- folder: produces a directory at the path provided and returns a string.
- get_input_files: loads a dictionary from the input files in the metadata.yml.
- bgc_units: converts to sensible units where appropriate (ie Celsius, mmol/m3)
- timecoord_to_float: Converts time series to decimal time ie: Midnight on January 1st 1970 is 1970.0
- add_legend_outside_right: a plotting tool, which adds a legend outside the axes.
- get_image_format: loads the image format, as defined in the global user config.yml.
- get_image_path: creates a path for an image output.
- make_cube_layer_dict: makes a dictionary for several layers of a cube.

We just show a simple description here, each individual function is more fully documented in the `diagnostic_tools.py` module.
14.4.4 A note on the auxiliary data directory

Some of these diagnostic scripts may not function on machines with no access to the internet, as cartopy may try to download the shape files. The solution to this issue is the put the relevant cartopy shapefiles in a directory which is visible to esmvaltool, then link that path to ESMValTool via the auxiliary_data_dir variable in your config-user.yml file.

The cartopy masking files can be downloaded from: https://www.naturalearthdata.com/downloads/

In these recipes, cartopy uses the 1:10, physical coastlines and land files:

- 110m_coastline.dbf
- 110m_coastline.shp
- 110m_coastline.shx
- 110m_land.dbf
- 110m_land.shp
- 110m_land.shx

14.4.5 Associated Observational datasets

The following observations datasets are used by these recipes:

World Ocean ATLAS

These data can be downloaded from: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html (last access 10/25/2018) Select the “All fields data links (1° grid)” netCDF file, which contain all fields.

The following WOA datasets are used by the ocean diagnostics:

- Temperature
- Salinity
- Nitrate
- Phosphate
- Silicate
- Dissolved Oxygen

These files need to be reformatted using the cmorize_obs_py script with output name WOA.

Landschuetzer 2016

These data can be downloaded from: ftp://ftp.nodc.noaa.gov/nodc/archive/arc0105/0160558/1.1/data/0-data/spco2_1998-2011_ETH_SOM-FFN_CDIAC_G05.nc (last access 02/28/2019)

The following variables are used by the ocean diagnostics:

- fgco2, Surface Downward Flux of Total CO2
- spco2, Surface Aqueous Partial Pressure of CO2
- dpc02, Delta CO2 Partial Pressure

The file needs to be reformatted using the cmorize_obs_py script with output name Landschuetzer2016.
14.5 Ocean metrics

14.5.1 Overview

The Southern Ocean is central to the global climate and the global carbon cycle, and to the climate’s response to increasing levels of atmospheric greenhouse gases. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic trend. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate and earth system models. New observations and understanding have allowed for progress in the creation of observationally-based data/model metrics for the Southern Ocean.

The metrics presented in this recipe provide a means to assess multiple simulations relative to the best available observations and observational products. Climate models that perform better according to these metrics also better simulate the uptake of heat and carbon by the Southern Ocean. Russell et al. 2018 assessed only a few of the available CMIP5 simulations, but most of the available CMIP5 and CMIP6 climate models can be analyzed with these recipes. The goal is to create a recipe for recreation of metrics in Russell, J.L., et al., 2018, J. Geophys. Res. – Oceans, 123, 3120-3143, doi: 10.1002/2017JC013461.

14.5.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_russell18jgr.yml

Diagnostics are stored in diag_scripts/russell18jgr/
- russell18jgr-polar.ncl (figures 1, 7, 8): calculates and plots annual-mean variables (tauu, sic, fgco2, pH) as polar contour map.
- russell18jgr-fig2.ncl: calculates and plots The zonal and annual means of the zonal wind stress (N/m²).
- russell18jgr-fig4.ncl: calculates and plots the zonal velocity through Drake Passage (at 69W) and total transport through the passage if the volcello file is available.
- russell18jgr-fig5.ncl: calculates and plots the mean extent of sea ice for September(max) in blue and mean extent of sea ice for February(min) in red.
- russell18jgr-fig5g.ncl: calculates and plots the annual cycle of sea ice area in southern ocean.
- russell18jgr-fig6a.ncl: calculates and plots the density layer based volume transport(in Sv) across 30S based on the layer definitions in Talley (2008).
- russell18jgr-fig7h.ncl: calculates and plots the zonal mean flux of fgco2 in gC/(yr * m²).
- russell18jgr-fig7i.ncl: calculates and plots the cumulative integral of the net CO2 flux from 90S to 30S (in PgC/yr).
- russell18jgr-fig9a.ncl: calculates and plots the scatter plot of the width of the Southern Hemisphere westerly wind band against the annual-mean integrated heat uptake south of 30S (in PW), along with the line of best fit.
• `russell18jgr-fig9b.ncl`: calculates and plots the scatter plot of the width of the Southern Hemisphere westerly wind band against the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the line of best fit.

• `russell18jgr-fig9c.ncl`: calculates and plots the scatter plot of the net heat uptake south of 30S (in PW) against the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the line of best fit.

14.5.3 User settings in recipe

1. Script `russell18jgr-polar.ncl`

 Required settings (scripts)
 - `styleset`: CMIP5 (recommended), default, etc.
 - `ncdf`: default (recommended), CMIP5, etc.
 - `max_lat`: -30.0

 Optional settings (scripts)
 - `grid_max`: 0.4 (figure 1), 30 (figure 7), 8.2 (figure 8)
 - `grid_min`: -0.4 (figure 1), -30 (figure 7), 8.0 (figure 8)
 - `grid_step`: 0.1 (figure 1), 2.5 (figure 7), 0.1 (figure 8)
 - `colormap`: BlWhRe (figure 7)
 - `colors`: [[237.6, 237.6, 0.], [255, 255, 66.4], [255, 255, 119.6], [255, 255, 191.8], [223.8, 191.8, 223.8], [192.8, 127.5, 190.8], [161.6, 65.3, 158.6], [129.5, 1.0, 126.5]] (figure 1) [[132, 12, 127], [147, 5, 153], [172, 12, 173], [195, 33, 196], [203, 63, 209], [215, 89, 225], [229, 117, 230], [243, 129, 238], [253, 155, 247], [255, 178, 254], [255, 255, 255]] (figure 7), [134, 234, 138], [95, 219, 89], [57, 201, 54], [39, 182, 57], [33, 161, 36], [16, 139, 22], [0, 123, 10], [6, 96, 6], [12, 77, 9.0]] (figure 8)
 - `max_vert`: 1 - 4 (user preference)
 - `max_hori`: 1 - 4 (user preference)
 - `grid_color`: blue4 (figure 8)
 - `labelBar_end_type`: ExcludeOuterBoxes (figure 1), both_triangle (figure 7, 8)
 - `unitCorrectionalFactor`: -3.154e+10 (figure 7)
 - `new_units`: “gC/ (m~S~2~N~ * yr)” (figure 7)

 Required settings (variables)
 - `additional_dataset`: datasets to plot.

 Optional settings (variables)
 - `none`

2. Script `russell18jgr-fig2.ncl`

 Required settings (scripts)
 - `styleset`: CMIP5 (recommended), default, etc.
 - `ncdf`: default (recommended), CMIP5, etc.

 Optional settings (scripts)
 - `none`
3. Script russell18jgr-fig3b.ncl

 Required settings (scripts)

 • styleset : CMIP5 (recommended), default, etc.
 • ncdf : default (recommended), CMIP5, etc.

 Optional settings (scripts)

 • none

4. Script russell18jgr-fig3b-2.ncl

 Required settings (scripts)

 • styleset : CMIP5 (recommended), default, etc.
 • ncdf : default (recommended), CMIP5, etc.

 Optional settings (scripts)

 • none

5. Script russell18jgr-fig4.ncl

 Required settings (scripts)

 • styleset : CMIP5 (recommended), default, etc.
 • ncdf : default (recommended), CMIP5, etc.

 Optional settings (scripts)

 • max_vert : 1 - 4 (user preference)
 • max_hori : 1 - 4 (user preference)
 • unitCorrectionalFactor : 100 (m/s to cm/s)
 • new_units : “cm/s”

6. Script russell18jgr-fig5.ncl

 Required settings (scripts)

 • styleset : CMIP5 (recommended), default, etc.
 • ncdf : default (recommended), CMIP5, etc.
 • max_lat : -45.0

 Optional settings (scripts)

 • max_vert : 1 - 4 (user preference)
 • max_hori : 1 - 4 (user preference)

7. Script russell18jgr-fig5g.ncl

 Required settings (scripts)

 • styleset : CMIP5 (recommended), default, etc.

 Optional settings (scripts)

 • none

8. Script russell18jgr-fig6a.ncl

 Required settings (scripts)
• styleset : CMIP5(recommended), default, etc.
• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
• none

9. Script russell18jgr-fig6b.ncl

Required settings (scripts)
• styleset : CMIP5(recommended), default, etc.
• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
• none

10. Script russell18jgr-fig7h.ncl

Required settings (scripts)
• styleset : CMIP5(recommended), default, etc.
• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
• none

11. Script russell18jgr-fig7i.ncl

Required settings (scripts)
• styleset : CMIP5(recommended), default, etc.
• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
• none

12. Script russell18jgr-fig9a.ncl

Required settings (scripts)
• styleset : CMIP5(recommended), default, etc.
• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
• none

13. Script russell18jgr-fig9b.ncl

Required settings (scripts)
• styleset : CMIP5(recommended), default, etc.
• ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
• none

14. Script russell18jgr-fig9c.ncl

Required settings (scripts)
• none

14.5. Ocean metrics
* styleset : CMIP5(recommended), default, etc.
* ncdf : default(recommended), CMIP5, etc.

Optional settings (scripts)
* none

14.5.4 Variables

* tauu (atmos, monthly mean, longitude latitude time)
* tauuo, hfds, fgco2 (ocean, monthly mean, longitude latitude time)
* thetaro, so, vo (ocean, monthly mean, longitude latitude lev time)
* pH (ocnBgchem, monthly mean, longitude latitude time)
* uo (ocean, monthly mean, longitude latitude lev time)
* sic (seaIce, monthly mean, longitude latitude time)

14.5.5 Observations and reformat scripts

Note: WOA data has not been tested with recipe_russell18jgr.yml and corresponding diagnostic scripts.
* WOA (thetaro, so - esmvaltool/utils/cmorizers/obs/cmorize_obs_woa.py)

14.5.6 References

14.5.7 Example plots
Fig. 9: Figure 1: Annual-mean zonal wind stress ($\tau_{uu} - \text{N/m}^2$) with eastward wind stress as positive plotted as a polar contour map.

Fig. 10: Figure 2: The zonal and annual means of the zonal wind stress (N/m2) plotted in a line plot.
Fig. 11: Figure 3a: The latitudinal position of Subantarctic Front using definitions from Orsi et al (1995).

Fig. 12: Figure 3b: The latitudinal position of Polar Front using definitions from Orsi et al (1995).
Fig. 13: Figure 4: Time averaged zonal velocity through Drake Passage (at 69W, in cm/s, eastward is positive). The total transport by the ACC is calculated if volcello file is available.

CanESM2

Fig. 14: Figure 5: Mean extent of sea ice for September(max) in blue and February(min) in red plotted as polar contour map.
Fig. 15: Figure 5g: Annual cycle of sea ice area in southern ocean as a line plot (monthly climatology).

Fig. 16: Figure 6a: Density layer based volume transport (in Sv) across 30S based on the layer definitions in Talley (2008).
Fig. 17: Figure 6b: Density layer based heat transport (in PW) across 30S based on the layer definitions in Talley (2008).

Fig. 18: Figure 7: Annual mean CO₂ flux (sea to air, gC/(yr * m²)), positive (red) is out of the ocean) as a polar contour map.
Fig. 19: Figure 7h: the time and zonal mean flux of CO₂ in gC/(yr * m²) plotted as a line plot.

Fig. 20: Figure 7i is the cumulative integral of the net CO₂ flux from 90S to 30S (in PgC/yr) plotted as a line plot.
Fig. 21: Figure 8: Annual-mean surface pH plotted as a polar contour map.

Fig. 22: Figure 9a: Scatter plot of the width of the Southern Hemisphere westerly wind band (in degrees of latitude) against the annual-mean integrated heat uptake south of 30S (in PW—negative uptake is heat lost from the ocean) along with the best fit line.
Fig. 23: Figure 9b: Scatter plot of the width of the Southern Hemisphere westerly wind band (in degrees of latitude) against the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the best fit line.

Fig. 24: Figure 9c: Scatter plot of the net heat uptake south of 30S (in PW) against the annual-mean integrated carbon uptake south of 30S (in Pg C/yr), along with the best fit line.
15.1 Example recipes

15.1.1 Overview

These are example recipes calling example diagnostic scripts.

The recipe examples/recipe_python.yml produces time series plots of global mean temperature and for the temperature in Amsterdam. It also produces a map of global temperature in January 2020.

The recipe examples/recipe_extract_shape.yml produces a map of the mean temperature in the Elbe catchment over the years 2000 to 2002. Some example shapefiles for use with this recipe are available here, make sure to download all files with the same name but different extensions.

For detailed instructions on obtaining input data, please refer to Obtaining input data. However, in case you just quickly want to run through the example, you can use the following links to obtain the data from ESGF:

- BCC-ESM1
- CanESM2

Please refer to the terms of use for CMIP5 and CMIP6 data.

15.1.2 Available recipes and diagnostics

Recipes are stored in esmvaltool/recipes/

- examples/recipe_python.yml
- examples/recipe_extract_shape.yml

Diagnostics are stored in esmvaltool/diag_scripts/

- examples/diagnostic.py: visualize results and store provenance information
15.1.3 User settings in recipe

1. Script `examples/diagnostic.py`

 Required settings for script

 • `quickplot`: `plot_type`: which of Iris’ `quickplot` functions to use. Arguments that are accepted by these functions can also be specified here, e.g. `cmap`. Preprocessors need to be configured such that the resulting data matches the plot type, e.g. a timeseries or a map.

15.1.4 Variables

 • `tas` (atmos, monthly, longitude, latitude, time)

15.1.5 Example plots

 ![Air temperature](image)

 Fig. 1: Air temperature in January 2000 (BCC-ESM1 CMIP6).
Fig. 2: Amsterdam air temperature (multimodel mean of CMIP5 CanESM2 and CMIP6 BCC-ESM1).
Fig. 3: Mean air temperature over the Elbe catchment during 2000-2002 according to CMIP5 CanESM2.
15.2 Capacity factor of wind power: Ratio of average estimated power to theoretical maximum power

15.2.1 Overview

The goal of this diagnostic is to compute the wind capacity factor, taking as input the daily instantaneous surface wind speed, which is then extrapolated to obtain the wind speed at a height of 100 m as described in Lledó (2017).

The capacity factor is a normalized indicator of the suitability of wind speed conditions to produce electricity, irrespective of the size and number of installed turbines. This indicator is provided for three different classes of wind turbines (IEC, 2005) that are designed specifically for low, medium and high wind speed conditions.

The user can select the region, temporal range and season of interest.

The output of the recipe is a netcdf file containing the capacity factor for each of the three turbine classes.

15.2.2 Available recipes and diagnostics

Recipes are stored in recipes/

• recipe_capacity_factor.yml

Diagnostics are stored in diag_scripts/magic_bsc/

• capacity_factor.R: calculates the capacity factor for the three turbine classes.
• PC.R: calculates the power curves for the three turbine classes.

15.2.3 User settings

User setting files are stored in recipes/

1. recipe_capacity_factor.yml

 Required settings for script

 • power_curves: (should not be changed)

15.2.4 Variables

• sfcWind (atmos, daily, longitude, latitude, time)

15.2.5 Observations and reformat scripts

Main features of the selected turbines:
<table>
<thead>
<tr>
<th>Turbine name</th>
<th>Rotor diameter (m)</th>
<th>Rated power (MW)</th>
<th>Cut-in speed (m/s)</th>
<th>Rated speed (m/s)</th>
<th>Cut-out speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enercon 2.3MW E70</td>
<td>70</td>
<td>2.3</td>
<td>2.0</td>
<td>16.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Gamesa 2.0MW G80</td>
<td>80</td>
<td>2.0</td>
<td>4.0</td>
<td>17.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Gamesa 2.0MW G87</td>
<td>87</td>
<td>2.0</td>
<td>4.0</td>
<td>16.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Vestas 2.0MW V100</td>
<td>100</td>
<td>2.0</td>
<td>3.0</td>
<td>15.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Vestas 2.0MW V110</td>
<td>110</td>
<td>2.0</td>
<td>3.0</td>
<td>11.5</td>
<td>20.0</td>
</tr>
</tbody>
</table>

15.2.6 References

15.2.7 Example plots

Wind capacity factor for five turbines: Enercon E70 (top-left), Gamesa G80 (middle-top), Gamesa G87 (top-right), Vestas V100 (bottom-left) and Vestas V110 (middle-bottom) using the IPSL-CM5A-MR simulations for the r1p1i1
ensemble for the rcp8.5 scenario during the period 2021-2050.

15.3 Ensemble Clustering - a cluster analysis tool for climate model simulations (EnsClus)

15.3.1 Overview

EnsClus is a cluster analysis tool in Python, based on the k-means algorithm, for ensembles of climate model simulations.

Multi-model studies allow to investigate climate processes beyond the limitations of individual models by means of inter-comparison or averages of several members of an ensemble. With large ensembles, it is often an advantage to be able to group members according to similar characteristics and to select the most representative member for each cluster.

The user chooses which feature of the data is used to group the ensemble members by clustering: time mean, maximum, a certain percentile (e.g., 75% as in the examples below), standard deviation and trend over the time period. For each ensemble member this value is computed at each grid point, obtaining N lat-lon maps, where N is the number of ensemble members. The anomaly is computed subtracting the ensemble mean of these maps to each of the single maps. The anomaly is therefore computed with respect to the ensemble members (and not with respect to the time) and the Empirical Orthogonal Function (EOF) analysis is applied to these anomaly maps.

Regarding the EOF analysis, the user can choose either how many Principal Components (PCs) to retain or the percentage of explained variance to keep. After reducing dimensionality via EOF analysis, k-means analysis is applied using the desired subset of PCs.

The major final outputs are the classification in clusters, i.e. which member belongs to which cluster (in k-means analysis the number k of clusters needs to be defined prior to the analysis) and the most representative member for each cluster, which is the closest member to the cluster centroid.

Other outputs refer to the statistics of clustering: in the PC space, the minimum and the maximum distance between a member in a cluster and the cluster centroid (i.e. the closest and the furthest member), the intra-cluster standard deviation for each cluster (i.e. how much the cluster is compact).

15.3.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_ensclus.yml

Diagnostics are stored in diag_scripts/ensclus/

- ensclus.py

and subroutines

- ens_anom.py
- ens_eof_kmeans.py
- ens_plots.py
- eof_tool.py
- read_netcdf.py
- sel_season_area.py
15.3.3 User settings

Required settings for script

- season: season over which to perform seasonal averaging (DJF, DJFM, NDJFM, JJA)
- area: region of interest (EAT=Euro-Atlantic, PNA=Pacific North American, NH=Northern Hemisphere, EU=Europe)
- extreme: extreme to consider: XXth_percentile (XX can be set arbitrarily, e.g. 75th_percentile), mean (mean value over the period), maximum (maximum value over the period), std (standard deviation), trend (linear trend over the period)
- numclus: number of clusters to be computed
- perc: percentage of variance to be explained by PCs (select either this or numpcs, default=80)
- numpcs: number of PCs to retain (has priority over perc unless it is set to 0 (default))

Optional settings for script

- max_plot_panels: maximum number of panels (datasets) in a plot. When exceeded multiple plots are created. Default: 72

15.3.4 Variables

- chosen by user (e.g., precipitation as in the example)

15.3.5 Observations and reformat scripts

None.

15.3.6 References

15.3.7 Example plots

15.4 Multi-model products

15.4.1 Overview

The goal of this diagnostic is to compute the multi-model ensemble mean for a set of models selected by the user for individual variables and different temporal resolutions (annual, seasonal, monthly).

After selecting the region (defined by the lowermost and uppermost longitudes and latitudes), the mean for the selected reference period is subtracted from the projections in order to obtain the anomalies for the desired period. In addition, the recipe computes the percentage of models agreeing on the sign of this anomaly, thus providing some indication on the robustness of the climate signal.

The output of the recipe consists of a colored map showing the time average of the multi-model mean anomaly and stippling to indicate locations where the percentage of models agreeing on the sign of the anomaly exceeds a threshold selected by the user. Furthermore, a time series of the area-weighted mean anomaly for the projections is plotted.
Fig. 4: Clustering based on the 75th percentile of historical summer (JJA) precipitation rate for CMIP5 models over 1900-2005. 3 clusters are computed, based on the principal components explaining 80% of the variance. The 32 models are grouped in three different clusters. The green cluster is the most populated with 16 ensemble members mostly characterized by a positive anomaly over central-north Europe. The red cluster counts 12 elements that exhibit a negative anomaly centered over southern Europe. The third cluster – labelled in blue- includes only 4 models showing a north-south dipolar precipitation anomaly, with a wetter than average Mediterranean counteracting dryer North-Europe. Ensemble members No.9, No.26 and No.19 are the “specimen” of each cluster, i.e. the model simulations that better represent the main features of that cluster. These ensemble members can eventually be used as representative of the whole possible outcomes of the multi-model ensemble distribution associated to the 32 CMIP5 historical integrations for the summer precipitation rate 75th percentile over Europe when these outcomes are reduced from 32 to 3. The number of ensemble members of each cluster might provide a measure of the probability of occurrence of each cluster.

For the plots, the user can select the length of the running window for temporal smoothing and choose to display the ensemble mean with a light shading to represent the spread of the ensemble or choose to display each individual models.

15.4.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_multimodel_products.yml

Diagnostics are stored in diag_scripts/magic_bsc/
- multimodel_products.R - script for computing multimodel anomalies and their agreement.

15.4.3 User settings

User setting files are stored in recipes/
1. recipe_multimodel_products.yml

Required settings for script
- colorbar_lim: positive number specifying the range (-colorbar_lim … +colorbar_lim) of the colorbar (0 = automatic colorbar scaling)
- moninf: integer specifying the first month of the seasonal mean period to be computed
• monsup: integer specifying the last month of the seasonal mean period to be computed, if it’s null the anomaly of month indicated in moninf will be computed

• agreement_threshold: integer between 0 and 100 indicating the threshold in percent for the minimum agreement between models on the sign of the multi-model mean anomaly for the stipling to be plotted

• running_mean: integer indicating the length of the window for the running mean to be computed

• time_series_plot: Either single or maxmin (plot the individual or the mean with shading between the max and min).

15.4.4 Variables

• any Amon variable (atmos, monthly mean, longitude latitude time)

15.4.5 Observations and reformat scripts

None

15.4.6 References

15.4.7 Example plots

Multi-model mean anomaly of 2-m air temperature during the future projection 2006-2099 in June considering the reference period 1961-1990 (colours). Crosses indicate that the 80% of models agree in the sign of the multi-model mean anomaly. The models selected are BCC-CSM1-1, MPI-ESM-MR and MIROC5 in the r1i1p1 ensembles for the RCP 2.6 scenario.

15.5 RainFARM stochastic downscaling

15.5.1 Overview

Precipitation extremes and small-scale variability are essential drivers in many climate change impact studies. However, the spatial resolution currently achieved by global and regional climate models is still insufficient to correctly identify the fine structure of precipitation intensity fields. In the absence of a proper physically based representation, this scale gap can be at least temporarily bridged by adopting a stochastic rainfall downscaling technique (Rebora et al, 2006). With this aim, the Rainfall Filtered Autoregressive Model (RainFARM) was developed to apply the stochastic precipitation downscaling method to climate models. The RainFARM Julia library and command-line tool version (https://github.com/jhardenberg/RainFARM.jl) was implemented as recipe. The stochastic method allows to predict climate variables at local scale from information simulated by climate models at regional scale: It first evaluates the statistical distribution of precipitation fields at regional scale and then applies the relationship to the boundary conditions of the climate model to produce synthetic fields at the requested higher resolution. RainFARM exploits the
nonlinear transformation of a Gaussian random precipitation field, conserving the information present in the fields at larger scale (Rebora et al., 2006; D’Onofrio et al., 2014).

15.5.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_rainfarm.yml

Diagnostics are stored in diag_scripts/rainfarm/

- rainfarm.jl

15.5.3 User settings

Required settings for script

- slope: spatial spectral slope (set to 0 to compute automatically from large scales)
- nens: number of ensemble members to be calculated
- nf: number of subdivisions for downscaling (e.g. 8 will produce output fields with linear resolution increased by a factor 8)
- conserv_glob: logical, if to conserve precipitation over full domain
- conserv_smooth: logical, if to conserve precipitation using convolution (if neither conserv_glob or conserv_smooth is chosen, box conservation is used)
- weights_climo: set to false or omit if no orographic weights are to be used, else set it to the path to a fine-scale precipitation climatology file. If a relative file path is used, auxiliary_data_dir will be searched for this file. The
file is expected to be in NetCDF format and should contain at least one precipitation field. If several fields at
different times are provided, a climatology is derived by time averaging. Suitable climatology files could be for
example a fine-scale precipitation climatology from a high-resolution regional climate model (see e.g. Terzago et
al. 2018), a local high-resolution gridded climatology from observations, or a reconstruction such as those which
can be downloaded from the WORLDCLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org)
websites. The latter data will need to be converted to NetCDF format before being used (see for example the

15.5.4 Variables

• pr (atmos, daily mean, longitude latitude time)

15.5.5 Observations and reformat scripts

None.

15.5.6 References

• Terzago et al. 2018, Nat. Hazards Earth Syst. Sci., 18, 2825-2840
• D’Onofrio et al. 2014, J of Hydrometeorology 15, 830-843
• Rebora et. al 2006, JHM 7, 724

15.5.7 Example plots

Fig. 5: Example of daily cumulated precipitation from the CMIP5 EC-EARTH model on a specific day, downscaled
using RainFARM from its original resolution (1.125°) (left panel), increasing spatial resolution by a factor of 8 to
0.14°; Two stochastic realizations are shown (central and right panel). A fixed spectral slope of s=1.7 was used.
Notice how the downscaled fields introduce fine scale precipitation structures, while still maintaining on average the
original coarse-resolution precipitation. Different stochastic realizations are shown to demonstrate how an ensemble of
realizations can be used to reproduce unresolved subgrid variability. (N.B.: this plot was not produced by ESMValTool
- the recipe output is netcdf only).
15.6 Seaice feedback

15.6.1 Overview

In this recipe, one process-based diagnostic named the Ice Formation Efficiency (IFE) is computed based on monthly mean sea-ice volume estimated north of 80°N. The choice of this domain is motivated by the desire to minimize the influence of dynamic processes but also by the availability of sea-ice thickness measurements. The diagnostic intends to evaluate the strength of the negative sea-ice thickness/growth feedback, which causes late-summer negative anomalies in sea-ice area and volume to be partially recovered during the next growing season. A chief cause behind the existence of this feedback is the non-linear inverse dependence between heat conduction fluxes and sea-ice thickness, which implies that thin sea ice grows faster than thick sea ice. To estimate the strength of that feedback, anomalies of the annual minimum of sea-ice volume north of 80°N are first estimated. Then, the increase in sea-ice volume until the next annual maximum is computed for each year. The IFE is defined as the regression of this ice volume production onto the baseline summer volume anomaly.

15.6.2 Available recipes and diagnostics

Recipes are stored in recipes/
- recipe_seaice_feedback.yml

Diagnostics are stored in diag_scripts/seaice_feedback/
- negative_seaice_feedback.py: scatterplot showing the feedback between seaice volume and seaice growth

15.6.3 User settings

script negative_seaice_feedback.py

Optional settings for script
- plot: dictionary containing plot options:
 - point_color: color of the plot points. (Default: black)
 - point_size: size of the plot points. (Default: 10)
 - show_values: show numerical values of feedback in plot. (Default: True)

15.6.4 Variables

- sit (seaice, monthly mean, time latitude longitude)

15.6.5 References

15.6.6 Example plots

Fig. 6: Seaice negative feedback values (CMIP5 historical experiment 1979-2004).

15.7 Sea Ice

15.7.1 Overview

The sea ice diagnostics include:

1. time series of Arctic and Antarctic sea ice area and extent (calculated as the total area (km2) of grid cells with sea ice concentrations (sic) of at least 15%).

2. ice extent trend distributions for the Arctic in September and the Antarctic in February.

3. calculation of year of near disappearance of Arctic sea ice

4. scatter plots of (a) historical trend in September Arctic sea ice extent (SSIE) vs historical long-term mean SSIE; (b) historical SSIE mean vs 1st year of disappearance (YOD) RCP8.5; (c) historical SSIE trend vs YOD RCP8.5.
15.7.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_seaice.yml

Diagnostics are stored in diag_scripts/seaice/

- seaice_aux.ncl: contains functions for calculating sea ice area or extent from sea ice concentration and first year of disappearance
- seaice_ecs.ncl: scatter plots of mean/trend of historical September Arctic sea ice extent vs 1st year of disappearance (RCP8.5) (similar to IPCC AR5 Chapter 12, Fig. 12.31a)
- seaice_trends.ncl: calculates ice extent trend distributions (similar to IPCC AR5 Chapter 9, Fig. 9.24c/d)
- seaice_tslinex.ncl: creates a time series line plots of total sea ice area and extent (accumulated) for northern and southern hemispheres with optional multi-model mean and standard deviation. One value is used per model per year, either annual mean or the mean value of a selected month (similar to IPCC AR5 Chapter 9, Fig. 9.24a/b)
- seaice_yod.ncl: calculation of year of near disappearance of Arctic sea ice

15.7.3 User settings in recipe

1. Script seaice_ecs.ncl

 Required settings (scripts)
 - hist_exp: name of historical experiment (string)
 - month: selected month (1, 2, ..., 12) or annual mean (“A”)
 - rcp_exp: name of RCP experiment (string)
 - region: region to be analyzed (“Arctic” or “Antarctic”)

 Optional settings (scripts)
 - fill_pole_hole: fill observational hole at North pole (default: False)
 - styleset: color style (e.g. “CMIP5”)

 Optional settings (variables)
 - reference_dataset: reference dataset

2. Script seaice_trends.ncl

 Required settings (scripts)
 - month: selected month (1, 2, ..., 12) or annual mean (“A”)
 - region: region to be analyzed (“Arctic” or “Antarctic”)

 Optional settings (scripts)
 - fill_pole_hole: fill observational hole at North pole, Default: False

 Optional settings (variables)
 - ref_model: array of references plotted as vertical lines

3. Script seaice_tslinex.ncl

 Required settings (scripts)
 - region: Arctic, Antarctic
• month: annual mean (A), or month number (3 = March, for Antarctic; 9 = September for Arctic)

Optional settings (scripts)

• styleset: for plot_type cycle only (cmip5, cmip6, default)
• multi_model_mean: plot multi-model mean and standard deviation (default: False)
• EMs_in_lg: create a legend label for individual ensemble members (default: False)
• fill_pole_hole: fill polar hole (typically in satellite data) with sic = 1 (default: False)

4. Script seaice_yod.ncl

Required settings (scripts)

• month: selected month (1, 2, ..., 12) or annual mean (“A”)
• region: region to be analyzed (“Arctic” or “Antarctic”)

Optional settings (scripts)

• fill_pole_hole: fill observational hole at North pole, Default: False
• wgt_file: netCDF containing pre-determined model weights

Optional settings (variables)

• ref_model: array of references plotted as vertical lines

15.7.4 Variables

• sic (ocean-ice, monthly mean, longitude latitude time)
• areacello (fx, longitude latitude)

15.7.5 Observations and reformat scripts

Note: (1) obs4mips data can be used directly without any preprocessing; (2) see headers of cmorization scripts (in esmvaltool/utils/cmorizers/obs) for non-obs4mips data for download instructions.

• HadISST (sic - esmvaltool/utils/cmorizers/obs/cmorize_obs_HadISST.ncl)

15.7.6 References

15.7.7 Example plots

15.8 Seaice drift

15.8.1 Overview

This recipe allows to quantify the relationships between Arctic sea-ice drift speed, concentration and thickness (Ducquier et al., 2017). A decrease in concentration or thickness, as observed in recent decades in the Arctic Ocean (Kwok, 2018; Stroeve and Notz, 2018), leads to reduced sea-ice strength and internal stress, and thus larger sea-ice drift speed.
Fig. 7: Sea ice extent trend distribution for the Arctic in September (similar to IPCC AR5 Chapter 9, Fig. 9.24c). [seaice_trends.ncl]

Fig. 8: Time series of total sea ice area and extent (accumulated) for the Arctic in September including multi-model mean and standard deviation (similar to IPCC AR5 Chapter 9, Fig. 9.24a). [seaice_tsline.ncl]

15.8. Seaice drift
Fig. 9: Time series of September Arctic sea ice extent for individual CMIP5 models, multi-model mean and multi-model standard deviation, year of disappearance (similar to IPCC AR5 Chapter 12, Fig. 12.31e). [seaice_yod.ncl]

Fig. 10: Scatter plot of mean historical September Arctic sea ice extent vs 1st year of disappearance (RCP8.5) (similar to IPCC AR5 Chapter 12, Fig. 12.31a). [seaice_ecs.ncl]
(Rampal et al., 2011). This in turn could provide higher export of sea ice out of the Arctic Basin, resulting in lower
sea-ice concentration and further thinning. Olason and Notz (2014) investigate the relationships between Arctic sea-
ice drift speed, concentration and thickness using satellite and buoy observations. They show that both seasonal and
recent long-term changes in sea ice drift are primarily correlated to changes in sea ice concentration and thickness.
This recipe allows to quantify these relationships in climate models.

In this recipe, four process-based metrics are computed based on the multi-year monthly mean sea-ice drift speed,
concentration and thickness, averaged over the Central Arctic.

The first metric is the ratio between the modelled drift-concentration slope and the observed drift-concentration slope.
The second metric is similar to the first one, except that sea-ice thickness is involved instead of sea-ice concentration.
The third metric is the normalised distance between the model and observations in the drift-concentration space. The
fourth metric is similar to the third one, except that sea-ice thickness is involved instead of sea-ice concentration.

15.8.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_seaice_drift.yml

Diagnostics are stored in diag_scripts/seaice_drift/

- seaice_drift.py: Compute metrics and plot results

15.8.3 User settings in recipe

1. Script diag_shapeselect.py

 Required settings (scripts)

 One of the following two combinations is required:

 1. Latitude threshold:

 - latitude_threshold: metric will be computed north of this latitude value

 2. Polygon:

 - polygon: metric will be computed inside the give polygon. Polygon is defined as a list of
 (lon, lat) tuple

 - polygon_name: name of the region defined by the polygon

15.8.4 Variables

- sispeed, sithick, siconc (daily)
15.8.5 Example plots

Scatter plots of modelled (red) and observed (blue) monthly mean sea-ice drift speed against sea-ice concentration (left panel) and sea-ice thickness (right panel) temporally averaged over the period 1979–2005 and spatially averaged over the SCICEX box.

15.9 Shapeselect

15.9.1 Overview

Impact modelers are often interested in data for irregular regions best defined by a shapefile. With the shapefile selector tool, the user can extract time series or CII data for a user defined region. The region is defined by a user provided shapefile that includes one or several polygons. For each polygon, a new timeseries, or CII, is produced with only one time series per polygon. The spatial information is reduced to a representative point for the polygon (‘representative’) or as an average of all grid points within the polygon boundaries (‘mean_inside’). If there are no grid points strictly inside the polygon, the ‘mean_inside’ method defaults to ‘representative’ for that polygon. An option for displaying the grid points together with the shapefile polygon allows the user to assess which method is most optimal. In case interpolation to a high input grid is necessary, this can be provided in a pre-processing stage. Outputs are in the form of a NetCDF file, or as ascii code in csv format.

15.9.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_shapeselect.yml

Diagnostics are stored in diag_scripts/shapeselect/

- diag_shapeselect.py: calculate the average of grid points inside the user provided shapefile and returns the result as a NetCDF or Excel sheet.
15.9.3 User settings in recipe

1. Script diag_shapeselect.py

 Required settings (scripts)
 - shapefile: path to the user provided shapefile. A relative path is relative to the auxiliary_data_dir as configured in config-user.yml.
 - weighting_method: the preferred weighting method ‘mean_inside’ - mean of all grid points inside polygon; ‘representative’ - one point inside or close to the polygon is used to represent the complete area.
 - write_xlsx: true or false to write output as Excel sheet or not.
 - write_netcdf: true or false to write output as NetCDF or not.

15.9.4 Variables

 - pr, tas (daily)

15.9.5 Example plots

![Example of the selection of model grid points falling within (blue pluses) and without (red dots) a provided shapefile (blue contour).](image)

Fig. 11: Example of the selection of model grid points falling within (blue pluses) and without (red dots) a provided shapefile (blue contour).
15.10 Toymodel

15.10.1 Overview

The goal of this diagnostic is to simulate single-model ensembles from an observational dataset to investigate the effect of observational uncertainty. For further discussion of this synthetic value generator, its general application to forecasts and its limitations, see Weigel et al. (2008). The output is a netcdf file containing the synthetic observations. Due to the sampling of the perturbations from a Gaussian distribution, running the recipe multiple times, with the same observation dataset and input parameters, will result in different outputs.

15.10.2 Available recipes and diagnostics

Recipes are stored in recipes/

- recipe_toymodel.yml

Diagnostics are stored in diag_scripts/magic_bsc/

- toymodel.R: generates a single model ensemble of synthetic observations

15.10.3 User settings

User setting files are stored in recipes/

1. recipe_toymodel.yml

 Required settings for preprocessor

 extract_region:

 • start_longitude: minimum longitude
 • end_longitude: maximum longitude
 • start_latitude: minimum latitude
 • end_latitude: maximum latitude

 extract_levels: (for 3D variables)

 • levels: [50000] # e.g. for 500 hPa level

 Required settings for script

 • number_of_members: integer specifying the number of members to be generated
 • beta: the user defined underdispersion (beta >= 0)

15.10.4 Variables

- any variable (atmos/ocean, daily-monthly, longitude, latitude, time)
15.10.5 Observations and reformat scripts

None

15.10.6 References

15.10.7 Example plots

Twenty synthetic single-model ensemble generated by the recipe_toymodel.yml (see Section 3.7.2) for the 2051-2060 monthly data of r1i1p1 RCP 4.5 scenario of BCC_CSM1-1 simulation.
Part V

Obtaining input data
ESMValTool supports input data from climate models participating in CMIP6, CMIP5, CMIP3, and CORDEX as well as observations, reanalysis, and any other data, provided that it adheres to the CF conventions and the data is described in a CMOR table as used in the various Climate Model Intercomparison Projects. This section provides some guidelines for unfamiliar users.

Because the amount of data required by ESMValTool is typically large, it is recommended that you use the tool on a compute cluster where the data is already available, for example because it is connected to an ESGF node. Examples of such compute clusters are Mistral and Jasmin, but many more exist around the world.

If you do not have access to such a facility through your institute or the project you are working on, you can request access by applying for the IS-ENES3 Trans-national Access call.

If the options above are not available to you, ESMValTool also offers features to make it easier to download the data.
ESMValTool will look for existing data in the directories specified in the user configuration file. Alternatively, it can use an external tool called Synda. If you do not have access to a compute cluster with the data already mounted, this is the recommended approach for first-time users to obtain some data for running ESMValTool. It is also possible to manually download the files from ESGF, see the ESGF user guide for a tutorial.

16.1 Installing Synda for use from ESMValTool

Here, we describe the basic steps to configure ESMValTool so it can use Synda to download CMIP6 or CMIP5 model data.

To install Synda, follow the steps listed in the Synda installation documentation. (This description assumes that Synda is installed using Conda.) As the last step, Synda will ask to set your openID credentials. Therefore, you’ll need to create an account on an ESGF node, e.g. the ESGF node at Lawrence Livermore National Laboratory and join a Data Access Control Group, e.g. ‘CMIP5 Research’. For more information, see the ESGF user guide.

Once you have set up Synda, you’ll need to configure ESMValTool to find your Synda installation. Note that it is not possible to combine the two in a single conda environment, because Synda requires python 2 and ESMValTool requires Python 3. Running `which synda` on the command line, while your synda environment is active, will print its location. To make the `synda` program usable from ESMValTool we suggest creating a directory

```
mkdir ~/bin
```

and appending that folder to your PATH environment variable, e.g. by adding the following line to your `~/.bashrc` file:

```
PATH=$PATH:$HOME/bin
```

Finally, in the new bin folder, make a link to synda:

```
ln -s /path/to/conda/envs/synda/bin/synda ~/bin/synda
```

Now, ESMValTool should be able to find your Synda installation. First time users can now continue with Running ESMValTool.
Observational and reanalysis products in the standard CF/CMOR format used in CMIP and required by the ESMValTool are available via the obs4mips and ana4mips projects at the ESGF (e.g., https://esgf-data.dkrz.de/projects/esgf-dkrz/). Their use is strongly recommended, when possible.

Other datasets not available in these archives can be obtained by the user from the respective sources and reformatted to the CF/CMOR standard. ESMValTool currently support two ways to perform this reformating (aka ‘cmorization’). The first is to use a cmorizer script to generate a local pool of reformatted data that can readily be used by the ESMValTool. The second way is to implement specific ‘fixes’ for your dataset. In that case, the reformatting is performed ‘on the fly’ during the execution of an ESMValTool recipe (note that one of the first preprocessor tasks is ‘cmor checks and fixes’). Below, both methods are explained in more detail.

17.1 Using a cmorizer script

ESMValTool comes with a set of cmorizers readily available. The cmorizers are dataset-specific scripts that can be run once to generate a local pool of CMOR-compliant data. The necessary information to download and process the data is provided in the header of each cmorizing script. These scripts also serve as template to create new cmorizers for datasets not yet included. Note that datasets cmorized for ESMValTool v1 may not be working with v2, due to the much stronger constraints on metadata set by the iris library.

To cmorize one or more datasets, run:

```
cmorize_obs -c [CONFIG_FILE] -o [DATASET_LIST]
```

The path to the raw data to be cmorized must be specified in the CONFIG_FILE as RAWOBS. Within this path, the data are expected to be organized in subdirectories corresponding to the data tier: Tier2 for freely-available datasets (other than obs4mips and ana4mips) and Tier3 for restricted datasets (i.e., dataset which requires a registration to be retrieved or provided upon request to the respective contact or PI). The cmorization follows the CMIP5 CMOR tables. The resulting output is saved in the output_dir, again following the Tier structure. The output file names follow the definition given in config-developer.yml for the OBS project: OBS_[dataset]_[type]_[version]_[mip]_[short_name]_YYYYMM/YYYYMM.nc, where type may be sat (satellite data), reanay (reanalysis data), ground (ground observations), clim (derived climatologies), campaign (aircraft campaign).

At the moment, cmorize_obs supports Python and NCL scripts.
17.2 Cmorization as a fix

As of early 2020, ESMValTool also provides (limited) support for data in their native format. In this case, the steps needed to reformat the data are executed as datasets fixes during the execution of an ESMValTool recipe, as one of the first preprocessor steps. Compared to the workflow described above, this has the advantage that the user does not need to store a duplicate (cmorized) copy of the data. Instead, the cmorization is performed ‘on the fly’ when running a recipe. ERA5 is the first dataset for which this ‘cmorization on the fly’ is supported.

To use this functionality, users need to provide a path for the native6 project data in the user configuration file. Then, in the recipe, they can refer to the native6 project, like so:

```yaml
datasets:
- {dataset: ERA5, project: native6, type: reanaly, version: '1', tier: 3, start_year: 1990, end_year: 1990}
```

Currently, the native6 project only supports ERA5 data in the format defined in the config-developer file. The filenames correspond to the default filenames from era5cli. To support other datasets as well, we need to make it possible to have a dataset specific DRS. This is still on the horizon.

While it is not strictly necessary, it may still be useful in some cases to create a local pool of cmorized observations. This can be achieved by using a cmorizer recipe. For an example, see recipe_era5.yml. This recipe reads native, hourly ERA5 data, performs a daily aggregation preprocessor, and then calls a diagnostic that operates on the data. In this example, the diagnostic renames the data to the standard OBS6 format. The output are thus daily, cmorized ERA5 data, that can be used through the OBS6 project. As such, this example recipe does exactly the same as the cmorizer scripts described above: create a local pool of cmorized data. The advantage, in this case, is that the daily aggregation is performed only once, which can save a lot of time and compute if it is used often.

The example cmorizer recipe can be run like any other ESMValTool recipe:

```
esmvaltool run cmorizers/recipe_era5.yml
```

(Note that the recipe_era5.yml adds the next day of the new year to the input data. This is because one of the fixes needed for the ERA5 data is to shift (some of) the data half an hour back in time, resulting in a missing record on the last day of the year.)

To add support for new variables using this method, one needs to add dataset-specific fixes to the ESMValCore. For more information about fixes, see: fixing data.

17.3 Supported datasets

A list of the datasets for which a cmorizers is available is provided in the following table.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Variables (MIP)</th>
<th>Tier</th>
<th>Script language</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHRO-MA</td>
<td>pr, tas (day), pr, tas (Amon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>AURA-TES</td>
<td>tro3 (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>BerkeleyEarth</td>
<td>tas, tasa (Amon), sflf (fx)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>CALIPSO-GOCCP</td>
<td>ccalipso (cfMon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>CDS-SATELLITE-ALBEDO</td>
<td>bdlb (Lmon), bhalb (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>CDS-SATELLITE-LAI-FAPAR</td>
<td>fapar (Lmon), lai (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>CDS-SATELLITE-SOIL-MOISTURE</td>
<td>sm (day), sm (Lmon)</td>
<td>3</td>
<td>NCL</td>
</tr>
</tbody>
</table>

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Variables (MIP)</th>
<th>Tier</th>
<th>Script language</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS-UERRA</td>
<td>sm (E6hr)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>CDS-XCH4</td>
<td>xch4 (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>CDS-XCO2</td>
<td>xco2 (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>CERES-EBAF</td>
<td>rlut, rlutcs, rsut, rsutcs (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>CERES-SYN1deg</td>
<td>rlds, rldcs, rlus, rluces, rlut, rlutcs, rds, rdsces, rsus, rsutcs, rsutcs (3hr) rlds, rldcs, rlus, rluces, rds, rds, rsutcs, rsutcs (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>CowtanWay</td>
<td>tasa (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>CRU</td>
<td>tas, pr (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>CT2019</td>
<td>co2s (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>Duveliller2018</td>
<td>albDiffiTr13</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>E-OBS</td>
<td>tas, tasmin, tasmax, pr, psl (day, Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>Eppley-VGPM-MODIS</td>
<td>intpp (Omon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>ERA5**</td>
<td>clt, evpsbl, evpsblpot, mrro, pr, prsn, ps, psl, ptype, rls, rlds, rsds, rss, uas, vas, tas, tasmx, tasmin, tpds, ts, tsn (E1hr/Amon), orog (fx)</td>
<td>3</td>
<td>n/a</td>
</tr>
<tr>
<td>ERA-Interim</td>
<td>clivi, cl, clwvi, evpsbl, hur, hus, pr, prsn, prw, ps, psl, rlds, rsds, rsdt, ts, ta, tauu, tauv, ts, ua, uas, va, vas, wap, zg (Amon), ps, rsdt (CFday), clt, pr, prsn, psl, rlds, rsds, rss, ta, tas, tasmx, tasmin, uas, va, vas, zg (day), evpsbl, tpds, ts, tsn, rss, tsn (Eday), tsn (Lmon), fhdss, tos (Omon), orog, sflf (fx)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>ERA-Interim-Land</td>
<td>sm (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>ESACCI-AEROSOL</td>
<td>abs550aer, od550aer, od550aerStderr, od550t1aer, od570aer, od870aer, od870aerStderr (aero)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESACCI-CLOUD</td>
<td>clivi, cl, cltStderr, clwvi (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESACCI-FIRE</td>
<td>burntArea (Lmon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESACCI-LANDCOVER</td>
<td>baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESACCI-OC</td>
<td>chl (Omon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>ESACCI-OZONE</td>
<td>toz, tozStderr, tro3prof, tro3profStderr (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESACCI-SOILMOISTURE</td>
<td>dos, dosStderr, sm, smStderr (Lmon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESACCI-SST</td>
<td>ts, tsStderr (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>ESRL</td>
<td>co2s (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>FLUXCOM</td>
<td>gpp (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>GCP</td>
<td>fgco2 (Omon), nbp (Lmon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>GHNC</td>
<td>pr (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>GHCN-CAMS</td>
<td>tas (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>GISTEMP</td>
<td>tasa (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>GPCC</td>
<td>pr (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>GRACE</td>
<td>lweGrace (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>HadCRUT3</td>
<td>tas, tasa (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Variables (MIP)</th>
<th>Tier</th>
<th>Script language</th>
</tr>
</thead>
<tbody>
<tr>
<td>HadCRUT4</td>
<td>tas, tasa (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>HadISST</td>
<td>sic (OImon), tos (Omon), ts (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>HALOE</td>
<td>tro3, hus (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>HIWSD</td>
<td>cSoil (Lmon), areacella (fx), sftlf (fx)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>ISCCP-FH</td>
<td>alb, prw, ps, rlds, rlus, rlut, rlutcs, rsds, rsdt, rsus, rsut, rsutcs, tas, ts (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>JMA-TRANSCOM</td>
<td>nbp (Lmon), fugo2 (Omon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>LAI3g</td>
<td>lai (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>LandFlux-EVAL</td>
<td>et, etStderr (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>Landschuetzer2016</td>
<td>dpco2, fugo2, spco2 (Omon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>MAC-LWP</td>
<td>lwp, lwpStderr (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>MERRA2</td>
<td>sm (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>MLS-AURA</td>
<td>hur, hurStderr (day)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>MODIS</td>
<td>cliwi, clt, clwvi, iwpStderr, lwpStderr (Amon), od550aer (aero)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>MTE</td>
<td>gpp, gppStderr (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>NCEP</td>
<td>hur, hus, pr, ta, tas, ua, va, wap, zg (Amon) pr, rlut, ua, va (day)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>NDP</td>
<td>cVeg (Lmon)</td>
<td>3</td>
<td>Python</td>
</tr>
<tr>
<td>NIWA-BS</td>
<td>toz, tozStderr (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>NSIDC-0116-[nh</td>
<td>sh]</td>
<td>usi, vsi (day)</td>
<td>3</td>
</tr>
<tr>
<td>OSI-450-[nh</td>
<td>sh]</td>
<td>sic (OImon), sic (day)</td>
<td>2</td>
</tr>
<tr>
<td>PATMOS-x</td>
<td>clt (Amon)</td>
<td>2</td>
<td>NCL</td>
</tr>
<tr>
<td>PERSIANN-CDR</td>
<td>pr (Amon), pr (day)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>PHC</td>
<td>thetako, so</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>PIOMAS</td>
<td>sit (day)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>REGEN</td>
<td>pr (day, Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>Scripps-CO2-KUM</td>
<td>co2s (Amon)</td>
<td>2</td>
<td>Python</td>
</tr>
<tr>
<td>UWisc</td>
<td>clwvi, lwpStderr (Amon)</td>
<td>3</td>
<td>NCL</td>
</tr>
<tr>
<td>WOA</td>
<td>no3, o2, po4, si (Oyr), so, thetako (Omon)</td>
<td>2</td>
<td>Python</td>
</tr>
</tbody>
</table>

ERA5 cmorization is built into ESMValTool through the native6 project, so there is no separate cmorizer script.
Part VI

Making a recipe or diagnostic
This chapter contains instructions for developing your own recipes and/or diagnostics. It also contains a section describing how to use additional datasets with ESMValTool. While it is possible to use just the ESMValCore package and run any recipes/diagnostics you develop with just this package, it is highly recommended that you consider contributing the work you do back to the ESMValTool community. Among the advantages of contributing to the community are improved visibility of your work and support by the community with making and maintaining your diagnostic. See the Community chapter for a guide on how to contribute to the community.
19.1 Writing a basic recipe

The user will need to write a basic recipe to be able to run their own personal diagnostic. An example of such a recipe is found in `esmvaltool/recipes/recipe_my_personal_diagnostic.yml`. For general guidelines with regards to ESMValTool recipes please consult the User Guide; the specific parameters needed by a recipe that runs a personal diagnostic are:

```yaml
scripts:
  my_diagnostic:
    script: /path/to/your/my_little_diagnostic.py
```

i.e. the full path to the personal diagnostic that the user needs to run.

There is also a lesson available in the ESMValTool tutorial that describes in a step-by-step procedure how to write your own recipe. It can be found here.
20.1 Instructions for personal diagnostic

Anyone can run a personal diagnostic, no matter where the location of it; there is no need to install esmvaltool in developer mode nor is it to git push or for that matter, do any git operations; the example recipe

```
esmvaltool/recipes/recipe_my_personal_diagnostic.yml
```

shows the use of running a personal diagnostic; the example

```
esmvaltool/diag_scripts/examples/my_little_diagnostic.py
```

and any of its alterations may be used as training wheels for the future ESMValTool diagnostic developer. The purpose of this example is to familiarize the user with the framework of ESMValTool without the constraints of installing and running the tool as developer.

20.2 Functionality

`my_little_diagnostic` (or whatever the user will call their diagnostic) makes full use of ESMValTool’s preprocessor output (both physical files and run variables); this output comes in form of a nested dictionary, or config dictionary, see an example below; it also makes full use of the ability to call any of the preprocessor’s functions, note that relative imports of modules from the esmvaltool package are allowed and work without altering the $PYTHONPATH.

The user may parse this dictionary so that they execute a number of operations on the preprocessed data; for example the `my_little_diagnostic.plot_time_series` grabs the preprocessed data output, computes global area averages for each model, then plots a time-series for each model. Different manipulation functionalities for grouping, sorting etc of the data in the config dictionary are available, please consult ESMValTool User Manual.

20.3 Example of config dictionary

To be added (use python-style code-block).
CHAPTER TWENTYONE

CONTRIBUTING A CMORIZING SCRIPT FOR AN ADDITIONAL DATASET

ESMValTool is designed to work with CF compliant data and follows the CMOR tables from the CMIP data request, therefore the observational datasets need to be CMORized for usage in ESMValTool. The following steps are necessary to prepare an observational data set for the use in ESMValTool.

1. Check if your variable is CMOR standard
2. Edit your configuration file
3. Store your dataset in the right place
4. Create a cmorizer for the dataset
 4.1 Cmorizer script written in python
 4.2 Cmorizer script written in NCL
5. Run the cmorizing script
6. Naming convention of the observational data files
7. Test the cmorized dataset

Note: CMORization as a fix. As of early 2020, we’ve started implementing cmorization as fixes. As compared to the workflow described below, this has the advantage that the user does not need to store a duplicate (CMORized) copy of the data. Instead, the CMORization is performed ‘on the fly’ when running a recipe. ERA5 is the first dataset for which this ‘CMORization on the fly’ is supported. For more information, see: Cmorization as a fix.

21.1 1. Check if your variable is CMOR standard

Most variables are defined in the CMIP data request and can be found in the CMOR tables in the folder /esmvalcore/cmor/tables/cmip6/Tables/, differentiated according to the MIP they belong to. The tables are a copy of the PCMDI guidelines. If you find the variable in one of these tables, you can proceed to the next section.

If your variable is not available in the standard CMOR tables, you need to write a custom CMOR table entry for the variable as outlined below and add it to /esmvalcore/cmor/tables/custom/.

To create a new custom CMOR table you need to follow these guidelines:

- Provide the variable_entry;
- Provide the modeling_realm;
• Provide the variable attributes, but leave standard_name blank. Necessary variable attributes are: units, cell_methods, cell_measures, long_name, comment.

• Provide some additional variable attributes. Necessary additional variable attributes are: dimensions, out_name, type. There are also additional variable attributes that can be defined here (see the already available cmorizers).

It is recommended to use an existing custom table as a template, to edit the content and save it as CMOR_<short_name>.dat.

21.2 2. Edit your configuration file

Make sure that beside the paths to the model simulations and observations, also the path to raw observational data to be cmorized (RAWOBS) is present in your configuration file.

21.3 3. Store your dataset in the right place

The folder RAWOBS needs the subdirectories Tier1, Tier2 and Tier3. The different tiers describe the different levels of restrictions for downloading (e.g. providing contact information, licence agreements) and using the observations. The unformatted (raw) observations should then be stored in the appropriate of these three folders.

21.4 4. Create a cmorizer for the dataset

There are many cmorizing scripts available in /esmvaltool/cmorizers/obs/ where solutions to many kinds of format issues with observational data are addressed. Most of these scripts are written in NCL at the moment, but more and more examples for Python-based cmorizing scripts become available.

Note: NCL support will terminate soon, so new cmorizer scripts should preferably be written in Python.

How much cmorizing an observational data set needs is strongly dependent on the original NetCDF file and how close the original formatting already is to the strict CMOR standard.

In the following two subsections two cmorizing scripts, one written in Python and one written in NCL, are explained in more detail.

21.4.1 4.1 Cmorizer script written in python

Find here an example of a cmorizing script, written for the MTE dataset that is available at the MPI for Biogeochemistry in Jena: cmorize_obs_mte.py.

All the necessary information about the dataset to write the filename correctly, and which variable is of interest, is stored in a separate configuration file: MTE.yml in the directory ESMValTool/esmvaltool/cmorizers/obs/cmor_config/. Note that the name of this configuration file has to be identical to the name of your data set. It is recommended that you set project to OBS6 in the configuration file. That way, the variables defined in the CMIP6 CMOR table, augmented with the custom variables described above, are available to your script.

The first part of this configuration file defines the filename of the raw observations file. The second part defines the common global attributes for the cmorizer output, e.g. information that is needed to piece together the final observations file name in the correct structure (see Section 6. Naming convention of the observational data files). Another global attribute is reference which includes a doi related to the dataset. Please see the section adding
references on how to add reference tags to the reference section in the configuration file. If a single dataset has more than one reference, it is possible to add tags as a list e.g. reference: ['tag1', 'tag2']. The third part in the configuration file defines the variables that are supposed to be cmorized.

The actual cmorizing script cmorize_obs_mte.py consists of a header with information on where and how to download the data, and noting the last access of the data webpage.

The main body of the CMORizer script must contain a function called

```python
def cmorization(in_dir, out_dir, cfg, config_user):
```

with this exact call signature. Here, in_dir corresponds to the input directory of the raw files, out_dir to the output directory of final reformatted data set and cfg to the configuration dictionary given by the .yml configuration file. The return value of this function is ignored. All the work, i.e. loading of the raw files, processing them and saving the final output, has to be performed inside its body. To simplify this process, ESMValTool provides a set of predefined utilities.py, which can be imported into your CMORizer by

```python
from . import utilities as utils
```

Apart from a function to easily save data, this module contains different kinds of small fixes to the data attributes, coordinates, and metadata which are necessary for the data field to be CMOR-compliant.

Note that this specific CMORizer script contains several subroutines in order to make the code clearer and more readable (we strongly recommend to follow that code style). For example, the function _get_filepath converts the raw filepath to the correct one and the function _extract_variable extracts and saves a single variable from the raw data.

21.4.2 4.2 Cmorizer script written in NCL

Find here an example of a cmorizing script, written for the ESPACCI XCH4 dataset that is available on the Copernicus Climate Data Store: cmorize_obs_cds_xch4.ncl.

The first part of the script collects all the information about the dataset that are necessary to write the filename correctly and to understand which variable is of interest here. Please make sure to provide the correct information for following key words: DIAG_SCRIPT, VAR, NAME, MIP, FREQ, CMOR_TABLE.

- **Note:** the fields VAR, NAME, MIP and FREQ all ask for one or more entries. If more than one entry is provided, make sure that the order of the entries is the same for all four fields! (for example, that the first entry in all four fields describe the variable xch4 that you would like to extract);

- **Note:** some functions in the script are NCL-specific and are available through the loading of the script interface.ncl. There are similar functions available for python scripts.

In the second part of the script each variable defined in VAR is separately extracted from the original data file and processed. Most parts of the code are commented, and therefore it should be easy to follow. ESMValTool provides a set of predefined utilities.ncl, which can be imported into your CMORizer by

```python
loadscript (getenv("esmvaltool_root") + "/esmvaltool/cmorizers/obs/utilities.ncl")
```

This module contains different kinds of small fixes to the data attributes, coordinates, and metadata which are necessary for the data field to be CMOR-compliant.

21.4. 4. Create a cmorizer for the dataset
21.5 5. Run the cmorizing script

The cmorizing script for the given dataset can be run with:

```
cmorize_obs -c <config-user.yml> -o <dataset-name>
```

Note: The output path given in the configuration file is the path where your cmorized dataset will be stored. The ESMValTool will create a folder with the correct tier information (see Section 2. Edit your configuration file) if that tier folder is not already available, and then a folder named after the data set. In this folder the cmorized data set will be stored as a netCDF file.

If your run was successful, one or more NetCDF files are produced in your output directory.

21.6 6. Naming convention of the observational data files

For the ESMValTool to be able to read the observations from the NetCDF file, the file name needs a very specific structure and order of information parts (very similar to the naming convention for observations in ESMValTool v1.0). The file name will be automatically correctly created if a cmorizing script has been used to create the netCDF file.

The correct structure of an observational data set is defined in `config-developer.yml`, and looks like the following:

```
OBS_[dataset]_[type]_[version]_[mip]_[short_name]_YYYYMM-YYYYMM.nc
```

For the example of the CDS-XCH4 data set, the correct structure of the file name looks then like this:

```
OBS_CDS-XCH4_sat_L3_Amon_xch4_200301-201612.nc
```

The different parts of the name are explained in more detail here:

- **OBS:** describes what kind of data can be expected in the file, in this case observations;
- **CDS-XCH4:** that is the name of the dataset. It has been named this way for illustration purposes (so that everybody understands it is the xch4 dataset downloaded from the CDS), but a better name would indeed be ESACCI-XCH4 since it is an ESA-CCI dataset;
- **sat:** describes the source of the data, here we are looking at satellite data (therefore sat), could also be reanaly for reanalyses;
- **L3:** describes the version of the dataset:
- **Amon:** is the information in which mip the variable is to be expected, and what kind of temporal resolution it has; here we expect xch4 to be part of the atmosphere (A) and we have the dataset in a monthly resolution (mon);
- **xch4:** is the name of the variable. Each observational data file is supposed to only include one variable per file;
- **200301-201612:** is the period the dataset spans with 200301 being the start year and month, and 201612 being the end year and month;

Note: There is a different naming convention for obs4mips data (see the exact specifications for the obs4mips data file naming convention in the `config-developer.yml` file).
21.7 7. Test the cmorized dataset

To verify that the cmorized data file is indeed correctly formatted, you can run a dedicated test recipe, that does not include any diagnostic, but only reads in the data file and has it processed in the preprocessor. Such a recipe is called recipes/examples/recipe_check_obs.yml. You just need to add a diagnostic for your dataset following the existing entries. Only the diagnostic of interest needs to be run, the others should be commented out for testing.
Part VII

Contributing to the community
CONTRIBUTION GUIDELINES

22.1 Contributions are very welcome

We greatly value contributions of any kind. Contributions could include, but are not limited to documentation improvements, bug reports, new or improved diagnostic code, scientific and technical code reviews, infrastructure improvements, mailing list and chat participation, community help/building, education and outreach. We value the time you invest in contributing and strive to make the process as easy as possible. If you have suggestions for improving the process of contributing, please do not hesitate to propose them, for example by starting a discussion on our discussions page.

If you have a bug or other issue to report, please open an issue on the issues tab on the ESMValTool github repository. If you would like to contribute a new diagnostic and recipe or a new feature, please discuss your idea with the development team before getting started, to avoid double work and/or disappointment later. A good way to do this is to open an issue on GitHub. This is also a good way to get help with the implementation.

22.2 Getting started

To install in development mode, follow these instructions.

- **Download and install conda** (this should be done even if the system in use already has a preinstalled version of conda, as problems have been reported with NCL when using such a version)
- **To make the conda command available,** add `source <prefix>/etc/profile.d/conda.sh` to your `.bashrc` file and restart your shell. If using (t)csh shell, add `source <prefix>/etc/profile.d/conda.csh` to your `.cshrc/.tcshrc` file instead.
- **Update conda:** conda update -y conda
- **Clone the ESMValTool public github repository:** git clone git@github.com:ESMValGroup/ESMValTool, or one of the private github repositories (e.g. git clone git@github.com:ESMValGroup/ESMValTool-private)
- **Go to the esmvaltool directory:** cd ESMValTool
- **Create the esmvaltool conda environment** conda env create --name esmvaltool --file environment.yml
- **Activate the esmvaltool environment:** conda activate esmvaltool
- **Install in development mode:** pip install -e '.[develop]'. If you are installing behind a proxy that does not trust the usual pip-urls you can declare them with the option --trusted-host, e.g. pip install --trusted-host=pypi.python.org --trusted-host=pypi.org --trusted-host=files.pythonhosted.org -e .[develop]
• If you want to use R diagnostics, run `esmvaltool install R` to install the R dependencies.

• If you want to use Julia diagnostics, first install Julia as described below in section “Installing Julia”, then run `esmvaltool install Julia` to install the Julia dependencies.

• Test that your installation was successful by running `esmvaltool -h`.

• If you log into a cluster or other device via `ssh` and your origin machine sends the `locale` environment via the `ssh` connection, make sure the environment is set correctly, specifically `LANG` and `LC_ALL` are set correctly (for GB English UTF-8 encoding these variables must be set to `en_GB.UTF-8`; you can set them by adding `export LANG=en_GB.UTF-8` and `export LC_ALL=en_GB.UTF-8` in your origin or login machines’ `.profile`)

• Do not run `conda update --update-all` in the `esmvaltool` environment since that will update some packages that are pinned to specific versions for the correct functionality of the environment.

22.3 Using the development version of the ESMValCore package

If you need the latest developments of the ESMValCore package, you can install it from source into the same conda environment. First follow the steps above and then:

- Clone the ESMValCore github repository: `git clone git@github.com:E3SMValGroup/ESMValCore`
- Go to the esmvalcore directory: `cd ESMValCore`
- Update the `esmvaltool` conda environment: `conda env update --name esmvaltool --file environment.yml`. This step is only needed if the dependencies changed since the latest release, which will rarely happen.
- Activate the `esmvaltool` environment: `conda activate esmvaltool`
- Install `esmvalcore` in development mode: `pip install -e '.[develop]'`.

22.4 Installing Julia

To run Julia diagnostics you will have to install Julia; the safest way is to use the official pre-built executable and link it in the conda environment:

- Get the tarball (for v1.0.3 in this case): `wget https://julialang-s3.julialang.org/bin/linux/x64/1.0/julia-1.0.3-linux-x86_64.tar.gz`
- Unpack the tarball: `tar xzf julia-1.0.3-linux-x86_64.tar.gz`
- Symlink the Julia executable into the conda environment: `ln -s $PWD/julia-*/bin/julia $HOME/$ANACONDA/envs/esmvaltool/bin` (here `$ANACONDA` represents the name of your anaconda or miniconda directory, most commonly `anaconda3` or `miniconda3`)
- Check executable location: `which julia`
- Check Julia startup: `julia --help`
- Optionally install the Julia diagnostics dependencies: `julia esmvaltool/install/Julia/setup.jl`

Note that sometimes, if you are under a firewall, the installation of Julia diagnostics dependencies may fail due to failure of cloning the references in `$HOME/.julia/registries/General`. To fix this issue you will have to touch the registry files: `touch $HOME/.julia/environments/v1.0/Manifest.toml && touch $HOME/.julia/environments/v1.0/Project.toml` and manually `git clone` the

22.5 Running tests

Go to the directory where the repository is cloned and run `pytest`. Tests will also be run automatically by CircleCI. These automated checks are run automatically when you add new commits to your pull request. They appear at the bottom of the pull request. Click on Details for more information.

22.6 Code style

To increase the readability and maintainability of the ESMValTool source code, we aim to adhere to best practices and coding standards. All pull requests are reviewed and tested by one or more members of the core development team. For code in all languages, it is highly recommended that you split your code up in functions that are short enough to view without scrolling.

We include checks for Python, R, NCL, and yaml files, most of which are described in more detail in the sections below. This includes checks for invalid syntax and formatting errors. Pre-commit is a handy tool that can run all of these checks automatically. It knows which tool to run for each filetype, and therefore provides a simple way to check your code!

22.6.1 Pre-commit

To run pre-commit on your code, go to the ESMValTool directory (`cd ESMValTool`) and run

```bash
pre-commit run
```

By default, pre-commit will only run on the files that have been changed, meaning those that have been staged in git (i.e. after `git add your_script.py`).

To make it only check some specific files, use

```bash
pre-commit run --files your_script.py
```

or

```bash
pre-commit run --files your_script.R
```

Alternatively, you can configure pre-commit to run on the staged files before every commit (i.e. `git commit`), by installing it as a git hook using

```bash
pre-commit install
```

Pre-commit hooks are used to inspect the code that is about to be committed. The commit will be aborted if files are changed or if any issues are found that cannot be fixed automatically. Some issues cannot be fixed (easily), so to bypass the check, run

```bash
git commit --no-verify
```

or
22.6.2 Python

The standard document on best practices for Python code is PEP8 and there is PEP257 for documentation. We make use of `numpy style docstrings` to document Python functions that are visible on `readthedocs`.

Most formatting issues in Python code can be fixed automatically by running the commands

```
isort some_file.py
```

to sort the imports in the standard way using `isort` and

```
yapf -i some_file.py
```

to add/remove whitespace as required by the standard using `yapf`.

```
docformatter -i your_script.py
```

to run `docformatter` which helps formatting the doc strings (such as line length, spaces).

To check if your code adheres to the standard, go to the directory where the repository is cloned, e.g. `cd ESMValTool`, and run `prospector`

```
prospector esmvaltool/diag_scripts/your_diagnostic/your_script.py
```

Run

```
python setup.py lint
```

to see the warnings about the code style of the entire project.

We use `flake8` on CircleCI to automatically check that there are no formatting mistakes and Codacy for monitoring (Python) code quality. Running `prospector` locally will give you quicker and sometimes more accurate results.

22.6.3 NCL

Because there is no standard best practices document for NCL, we use PEP8 for NCL code as well, with some minor adjustments to accommodate for differences in the languages. The most important difference is that for NCL code the indentation should be 2 spaces instead of 4. Use the command `nclicodestyle /path/to/file.ncl` to check if your code follows the style guide.
22.6.4 R

Best practices for R code are described in The tidyverse style guide. We check adherence to this style guide by using `lintr` on CircleCI. Please use `styler` to automatically format your code according to this style guide. In the future we would also like to make use of `goodpractice` to assess the quality of R code.

22.6.5 YAML

Please use `yamllint` to check that your YAML files do not contain mistakes.

22.6.6 Any text file

A generic tool to check for common spelling mistakes is `codespell`.

22.7 Documentation

22.7.1 What should be documented

Any code documentation that is visible on `docs.esmvaltool.org` should be well written and adhere to the standards for documentation for the respective language. Recipes should have a page in the `Recipes` section. This is also the place to document recipe options for the diagnostic scripts used in those recipes. When adding a new recipe, please start from the template and do not forget to add your recipe to the index. Note that there is no need to write extensive documentation for functions that are not visible in the online documentation. However, a short description in the docstring helps other contributors to understand what a function is intended to do and what its capabilities are. For short functions, a one-line docstring is usually sufficient, but more complex functions might require slightly more extensive documentation.

22.7.2 How to build the documentation locally

Go to the directory where the repository is cloned and run

```
python setup.py build_sphinx -Ea
```

Make sure that your newly added documentation builds without warnings or errors.

22.8 Branches, pull requests and code review

New development should preferably be done in the `ESMValTool` GitHub repository. However, for scientists requiring confidentiality, private repositories are available, see `Moving work from the private to the public repository` for more information. The default git branch is `master`. Use this branch to create a new feature branch from and make a pull request against. This page offers a good introduction to git branches, but it was written for BitBucket while we use GitHub, so replace the word `BitBucket` by `GitHub` whenever you read it.

It is recommended that you open a draft pull request early, as this will cause CircleCI to run the unit tests, Codacy to analyse your code, and `readthedocs` to build the documentation. It’s also easier to get help from other developers if your code is visible in a pull request.

You can view the results of the automatic checks below your pull request by clicking on `Details`. If one of the tests shows a red cross instead of a green approval sign, please click the link and try to solve the issue. Note that this kind
of automated checks make it easier to review code, but they are not flawless. Preferably Codacy code quality checks pass, however a few remaining hard to solve Codacy issues are still acceptable. If you suspect Codacy may be wrong, please ask by commenting.

The documentation can be seen by clicking on Details. Make sure the documentation is nicely formatted, and (if necessary) add the link to the top of the pull request.

Make sure your pull request has a descriptive title that can be used in the changelog.

22.8.1 Diagnostic script contributions

A pull request with diagnostic code should preferably not introduce new Codacy issues. However, we understand that there is a limit to how much time can be spend on polishing code, so up to 10 new (non-trivial) issues is still an acceptable amount.

22.8.2 List of authors

If you make a (significant) contribution to ESMValTool, please add your name to the list of authors in CITATION.cff and regenerate the file .zenodo.json by running the command

```bash
pip install cffconvert
cffconvert --ignore-suspect-keys --outputformat zenodo --outfile .zenodo.json
```
This document describes the process for the release of ESMValCore and ESMValTool. By following a defined process, we streamline the work, reduce uncertainty about required actions, and clarify the state of the code for the user. ESMValTool follows a strategy of timed releases. That means that we do releases with a regular frequency and all features that are implemented up to a certain cut-off-point can go into the upcoming release; those that are not are deferred to the next release. This means that generally no release will be delayed due to a pending feature. Instead, the regular nature of the release guarantees that every feature can be released in a timely manner even if a specific target release is missed.

Because of limited resources, only the latest released versions of ESMValTool and ESMValCore is maintained. If your project requires longer maintenance or you have other concerns about the release strategy, please contact the ESMValTool core development team, see Contact.

23.1 Overall Procedure

23.1.1 Timeline

Fig. 1: Example of a Release Timeline (in this case for 2.1.0)
1. Contributors assign issues (and pull requests) that they intend to finish before the due date, there is a separate milestone for ESMValCore and ESMValTool
2. The ESMValCore feature freeze takes place on the ESMValCore due date
3. Some additional testing of ESMValCore takes place
4. ESMValCore release
5. The ESMValTool feature freeze takes place
6. Some additional testing of ESMValTool takes place
7. ESMValTool release
8. Soon after the release, the core development team meets to coordinate the content of the milestone for the next release

23.1.2 Release schedule

With the following release schedule, we strive to have three releases per year and to avoid releases too close to holidays, as well as avoiding weekends.

Upcoming releases

- 2.2.0 (Release Manager: Javier Vegas-Regidor)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-02-01</td>
<td>ESMValCore feature freeze</td>
</tr>
<tr>
<td>2021-02-07</td>
<td>ESMValCore release</td>
</tr>
<tr>
<td>2021-02-14</td>
<td>ESMValTool feature freeze</td>
</tr>
<tr>
<td>2021-02-21</td>
<td>ESMValTool release</td>
</tr>
</tbody>
</table>

- 2.3.0 (Release Manager: tbd)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-06-07</td>
<td>ESMValCore feature freeze</td>
</tr>
<tr>
<td>2021-06-14</td>
<td>ESMValCore release</td>
</tr>
<tr>
<td>2021-06-21</td>
<td>ESMValTool feature freeze</td>
</tr>
<tr>
<td>2021-06-28</td>
<td>ESMValTool release</td>
</tr>
</tbody>
</table>

Past releases

- 2.1.1 (Bugfix, Release Manager: Valeriu Predoi)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Changelog</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-12-01</td>
<td>ESMValTool Release 2.1.1</td>
<td>v2.1.1</td>
</tr>
</tbody>
</table>

- 2.1.0 (Release Manager: Valeriu Predoi)

<table>
<thead>
<tr>
<th>Date</th>
<th>Planned</th>
<th>Done</th>
<th>Event</th>
<th>Changelog</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-10-05</td>
<td></td>
<td></td>
<td>ESMValCore Feature Freeze</td>
<td></td>
</tr>
<tr>
<td>2020-10-12</td>
<td>2020-10-12</td>
<td></td>
<td>ESMValCore Release 2.1.0</td>
<td>v2.1.0</td>
</tr>
<tr>
<td>2020-10-19</td>
<td></td>
<td></td>
<td>ESMValTool Feature Freeze</td>
<td></td>
</tr>
<tr>
<td>2020-10-26</td>
<td>2020-10-26</td>
<td></td>
<td>ESMValTool Release 2.1.0</td>
<td>v2.1.0</td>
</tr>
</tbody>
</table>
23.1.3 Detailed timeline steps

These are the detailed steps to take to make a release.

1. Populate the milestone
 - The core development team will make sure it adds issues that it intends to work on as early as possible.
 - Any contributor is welcome to add issues or pull requests that they intend to work on themselves to a milestone.

2. ESMValCore feature freeze
 - A release branch is created and branch protection rules are set up so only the release manager (i.e. the person in charge of the release branch) can push commits to that branch.
 - The creation of the release branch is announced to the ESMValTool development team along with the procedures to use the branch for testing and making last-minute changes (see next step)

3. Some additional testing of ESMValCore
 - Run all the recipes (optionally with a reduced amount of data) to check that they still work
 - If a bug is discovered that needs to be fixed before the release, a pull request can be made to the master branch to fix the bug. The person making the pull request can then ask the release manager to cherry-pick that commit into the release branch.

4. ESMValCore release
 - Make the release by following the ESMValCore release instructions.
 - Ask the user engagement team to announce the release to the user mailing list, the development team mailing list, on twitter

5. ESMValTool feature freeze
 - A release branch is created and branch protection rules are set up so only the release manager (i.e. the person in charge of the release branch) can push commits to that branch.
 - The creation of the release branch is announced to the ESMValTool development team along with the procedures to use the branch for testing and making last-minute changes (see next step)

6. Some additional testing of ESMValTool
 - Run all the recipes to check that they still work and ask authors to review the plots
 - If a bug is discovered that needs to be fixed before the release, a pull request can be made to the master branch to fix the bug. The person making the pull request can then ask the release manager to cherry-pick that commit into the release branch.

7. ESMValTool release
 - Make the release by following How to make an ESMValTool release
• Ask the user engagement team to announce the release to the user mailing list, the development team mailing list, and on twitter

8. Core development team meets to coordinate the content of next milestone
 • Create a doodle for the meeting or even better, have the meeting during an ESMValTool workshop
 • Prepare the meeting by filling the milestone
 • At the meeting, discuss
 – If the proposed issues cover everything we would like to accomplish
 – Are there things we need to change about the release process
 – Who will be the release manager(s) for the next release

23.2 Bugfix releases

Next to the feature releases described above, it is also possible to have bugfix releases (2.0.1, 2.0.2, etc). In general bugfix releases will only be done on the latest release, and may include ESMValCore, ESMValTool, or both.

23.2.1 Procedure

1. One or more issues are resolved that are deemed (by the core development team) to warrant a bugfix release.
2. A release branch is created from the last release tag and the commit that fixes the bug/commits that fix the bugs are cherry-picked into it from the master branch.
3. Some additional testing of the release branch takes place.
4. The release takes place.

Compatibility between ESMValTool and ESMValCore is ensured by the appropriate version pinning of ESMValCore by ESMValTool.

23.3 Glossary

23.3.1 Feature freeze

The date on which no new features may be submitted for the upcoming release. After this date, only critical bug fixes can still be included.

23.3.2 Milestone

A milestone is a list of issues and pull-request on GitHub. It has a due date, this date is the date of the feature freeze. Adding an issue or pull request indicates the intent to finish the work on this issue before the due date of the milestone. If the due date is missed, the issue can be included in the next milestone.
23.3.3 Release manager

The person in charge of making the release, both technically and organizationally. Appointed for a single release.

23.3.4 Release branch

The release branch can be used to do some additional testing before the release, while normal development work continues in the master branch. It will be branched off from the master branch after the feature freeze and will be used to make the release on the release date. The only way to still get something included in the release after the feature freeze is to ask the release manager to cherry-pick a commit from the master branch into this branch.

23.4 How to make an ESMValTool release

The release manager makes the release, assisted by the release manager of the previous release, or if that person is not available, another previous release manager. Perform the steps listed below with two persons, to reduce the risk of error.

To make a new release of the package, follow these steps:

23.4.1 1. Check the tests on GitHub Actions and CircleCI

Check the nightly build on CircleCI and the GitHub Actions run. All tests should pass before making a release (branch).

23.4.2 2. Increase the version number

The version number is stored in `esmvaltool/__init__.py`, `package/meta.yaml`, `CITATION.cff`. Make sure to update all files. Also update the release date in `CITATION.cff`. See https://semver.org for more information on choosing a version number. Make a pull request and get it merged into `master`.

23.4.3 3. Add release notes

Use the script `draft_release_notes.py` to create a draft of the release notes. This script uses the titles and labels of merged pull requests since the previous release. Review the results, and if anything needs changing, change it on GitHub and re-run the script until the changelog looks acceptable. Copy the result to the file `doc/sphinx/source/changelog.rst`. Make a pull request and get it merged into `master`.

23.4.4 4. Create a release branch

Create a branch off the `master` branch and push it to GitHub. Ask someone with administrative permissions to set up branch protection rules for it so only you and the person helping you with the release can push to it. Announce the name of the branch in an issue and ask the members of the ESMValTool development team to run their favourite recipe using this branch.
23.4.5 5. Cherry pick bugfixes into the release branch

If a bug is found and fixed (i.e. pull request merged into the master branch) during the period of testing, use the command `git cherry-pick COMMIT_HASH`, where COMMIT_HASH is the commit hash of the commit that needs to be cherry-picked, to include the commit for this bugfix into the release branch. Cherry-pick any new contributions in the order they were merged, to avoid conflicts. When the testing period is over, make a pull request to update the release notes with the latest changes (do not forget to include the pull request itself into the changelog), get it merged into master and cherry-pick it into the release branch.

23.4.6 6. Make the release on GitHub

Do a final check that all tests on CircleCI and GitHub Actions completed successfully. Then click the releases tab and create the new release from the release branch (i.e. not from master). The release tag always starts with the letter v followed by the version number, e.g. v2.1.0.

23.4.7 7. Create and upload the Conda package

The package is automatically uploaded to the ESMValGroup conda channel by a GitHub action. If this has failed for some reason, build and upload the package manually by following the instructions below.

Follow these steps to create a new conda package:

- Check out the tag corresponding to the release, e.g. `git checkout tags/v2.1.0`
- Make sure your current working directory is clean by checking the output of `git status` and by running `git clean -xdf` to remove any files ignored by git.
- Edit `package/meta.yaml` and uncomment the lines starting with `git_rev` and `git_url`, remove the line starting with `path` in the `source` section.
- Activate the base environment `conda activate base`
- Install the required packages: `conda install -y conda-build conda-verify ripgrep anaconda-client`
- Run `conda build package -c conda-forge -c esmvalgroup` to build the conda package
- If the build was successful, upload the package to the esmvalgroup conda channel, e.g. `anaconda upload --user esmvalgroup /path/to/conda/conda-bld/noarch/esmvaltool-2.1.0-py0.tar.bz2`.

23.4.8 8. Create and upload the PyPI package

The package is automatically uploaded to the PyPI by a GitHub action. If has failed for some reason, build and upload the package manually by following the instructions below.

Follow these steps to create a new Python package:

- Check out the tag corresponding to the release, e.g. `git checkout tags/v2.1.0`
- Make sure your current working directory is clean by checking the output of `git status` and by running `git clean -xdf` to remove any files ignored by git.
- Install the required packages: `python3 -m pip install --upgrade pep517 twine`
- Build the package: `python3 -m pep517.build --source --binary --out-dir dist/`. This command should generate two files in the dist directory, e.g. `ESMValTool-2.1.0-py3-none-any.whl` and `ESMValTool-2.1.0.tar.gz`.
• Upload the package: `python3 -m twine upload dist/*` You will be prompted for an API token if you have not set this up before, see here for more information.

You can read more about this in Packaging Python Projects.

23.5 Changelog

- 2020-09-09 Converted to rst and added to repository (future changes tracked by git)
- 2020-09-03 Update during video conference (present: Bouwe Andela, Niels Drost, Javier Vegas, Valeriu Predoi, Klaus Zimmermann)
- 2020-07-27 Update including tidying up and Glossary by Klaus Zimmermann and Bouwe Andela
- 2020-07-23 Update to timeline format by Bouwe Andela and Klaus Zimmermann
- 2020-06-08 First draft by Klaus Zimmermann and Bouwe Andela
24.1 Getting started

Please discuss your idea for a new diagnostic or recipe with the development team before getting started, to avoid disappointment later. A good way to do this is to open an issue on GitHub. This is also a good way to get help.

24.2 Creating a recipe and diagnostic script(s)

First create a recipe in esmvaltool/recipes to define the input data your analysis script needs and optionally preprocessing and other settings. Also create a script in the esmvaltool/diag_scripts directory and make sure it is referenced from your recipe. The easiest way to do this is probably to copy the example recipe and diagnostic script and adjust those to your needs.

If you have no preferred programming language yet, Python 3 is highly recommended, because it is most well supported. However, NCL, R, and Julia scripts are also supported.

Good example recipes for the different languages are:

- python: esmvaltool/recipes/examples/recipe_python.yml
- R: esmvaltool/recipes/examples/recipe_r.yml
- julia: esmvaltool/recipes/examples/recipe_julia.yml
- ncl: esmvaltool/recipes/examples/recipe_ncl.yml

Good example diagnostics are:

- python: esmvaltool/diag_scripts/examples/diagnostic.py
- R: esmvaltool/diag_scripts/examples/diagnostic.R
- julia: esmvaltool/diag_scripts/examples/diagnostic.jl
- ncl: esmvaltool/diag_scripts/examples/diagnostic.ncl

Unfortunately not much documentation is available at this stage, so have a look at the other recipes and diagnostics for further inspiration.
24.3 Re-using existing code

Always make sure your code is or can be released under a license that is compatible with the Apache 2 license.

If you have existing code in a supported scripting language, you have two options for re-using it. If it is fairly mature and a large amount of code, the preferred way is to package and publish it on the official package repository for that language and add it as a dependency of ESMValTool. If it is just a few simple scripts or packaging is not possible (i.e. for NCL) you can simply copy and paste the source code into the `esmvaltool/diag_scripts` directory.

If you have existing code in a compiled language like C, C++, or Fortran that you want to re-use, the recommended way to proceed is to add Python bindings and publish the package on PyPI so it can be installed as a Python dependency. You can then call the functions it provides using a Python diagnostic.

24.4 Additional dependencies

Add any additional dependencies needed for the diagnostic script to `setup.py`, `esmvaltool/install/R/r_requirements.txt` or `esmvaltool/install/Julia/Project.toml` (depending on the language of your script) and also to `package/meta.yaml` for conda dependencies (includes Python and others, but not R/Julia). Also check that the license of the dependency you want to add and any of its dependencies are compatible with Apache 2.0 (link).

24.5 Recording provenance

When ESMValCore (the `esmvaltool` command) runs a recipe, it will first find all data and run the default preprocessor steps plus any additional preprocessing steps defined in the recipe. Next it will run the diagnostic script defined in the recipe and finally it will store provenance information. Provenance information is stored in the W3C PROV XML format and also plotted in an SVG file for human inspection. In addition to provenance information, a caption is also added to the plots. When contributing a diagnostic, please make sure it records the provenance, and that no warnings related to provenance are generated when running the recipe.

24.5.1 Provenance items provided by the recipe

For each diagnostic in the recipe, ESMValCore supports the following additional information:

- **realms** a list of high-level modeling components
- **themes** a list of themes

Please see the (installed version of the) file `esmvaltool/config-references.yml` for all available information on each item.

24.5.2 Provenance items provided by the diagnostic script

For each output file produced by the diagnostic script, ESMValCore supports the following additional information:

- **ancestors** a list of input files used to create the plot.
- **caption** a caption text for the plot

Note that the level of detail is limited, the only valid choices for `ancestors` are files produced by `ancestor tasks`. It is also possible to add more information for the implemented diagnostics using the following items:
• authors a list of authors
• references a list of references, see Adding references below
• projects a list of projects
• domains a list of spatial coverage of the dataset
• plot_types a list of plot types if the diagnostic created a plot, e.g. error bar
• statistics a list of types of the statistic, e.g. anomaly

Arbitrarily named other items are also supported.

Please see the (installed version of the) file esmvaltool/config-references.yml for all available information on each item. In this file, the information is written in the form of key: value. Note that we add the keys to the diagnostics. The keys will automatically be replaced by their values in the final provenance records. For example, in the config-references.yml there is a category for types of the plots:

```yaml
plot_types:
  errorbar: error bar plot
```

In the diagnostics, we add the key as: plot_types: [errorbar] It is also possible to add custom provenance information by adding items to each category in this file.

In order to communicate with the diagnostic script, two interfaces have been defined, which are described in the ESMValCore documentation. Note that for Python and NCL diagnostics much more convenient methods are available than directly reading and writing the interface files. For other languages these are not implemented (yet).

Depending on your preferred programming language for developing a diagnostic, see the instructions and examples below on how to add provenance information:

24.5.3 Recording provenance in a Python diagnostic script

Always use `esmvaltool.diag_scripts.shared.run_diagnostic()` at the end of your script:

```python
if __name__ == '__main__':
    with run_diagnostic() as config:
        main(config)
```

And make use of a `esmvaltool.diag_scripts.shared.ProvenanceLogger` to log provenance:

```python
with ProvenanceLogger(cfg) as provenance_logger:
    provenance_logger.log(diagnostic_file, provenance_record)
```

The `diagnostic_file` can be obtained using `esmvaltool.diag_scripts.shared.get_diagnostic_filename`.

The `provenance_record` is a dictionary of provenance items, for example:

```python
provenance_record = {
    'ancestors': ancestor_files,
    'authors': ['andela_bouwe', 'righi_mattia'],
    'caption': caption,
    'domains': ['global'],
    'plot_types': ['zonal'],
}
```

(continues on next page)
Have a look at the example Python diagnostic in `esmvaltool/diag_scripts/examples/diagnostic.py` for a complete example.

24.5.4 Recording provenance in an NCL diagnostic script

Always call the `log_provenance` procedure after plotting from your NCL `diag_script`:

```plaintext
log_provenance(nc-file, plot_file, caption, statistics, domain, plottype, authors, references, input-files)
```

For example:

```plaintext
log_provenance(ncdf_outfile, \
  map@outfile, \
  "Mean of variable: " + var0, \
  "mean", \
  "global", \
  "geo", \
  "/righi_mattia", "/gottschaldt_klaus-dirk"), \
  "/acknow_author"), \
  metadata_att_as_array(info0, "filename")
```

Have a look at the example NCL diagnostic in `esmvaltool/diag_scripts/examples/diagnostic.ncl` for a complete example.

24.5.5 Recording provenance in a Julia diagnostic script

The provenance information is written in a `diagnostic_provenance.yml` that will be located in `run_dir`. For example a `provenance_record` can be stored in a yaml file as:

```plaintext
provenance_file = string(run_dir, "/diagnostic_provenance.yml")
open(provenance_file, "w") do io
  JSON.print(io, provenance_records, 4)
end
```

The `provenance_records` can be defined as a dictionary of provenance items. For example:

```plaintext
provenance_records = Dict()
provenance_record = Dict(
  "ancestors" => [input_file],
  "authors" => ["vonhardenberg_jost", "arnone_enrico"],
  "caption" => "Example diagnostic in Julia",
  "domains" => ["global"],
  "projects" => ["crescendo", "c3s-magic"],
  "references" => ["zhang11wcc"],
  "statistics" => ["other"],
```

(continues on next page)
provenance_records[output_file] = provenance_record

Have a look at the example Julia diagnostic in esmvaltool/diag_scripts/examples/diagnostic.jl for a complete example.

24.5.6 Recording provenance in an R diagnostic script

The provenance information is written in a `diagnostic_provenance.yml` that will be located in `run_dir`. For example a `provenance_record` can be stored in a yaml file as:

```r
provenance_file <- paste0(run_dir, "/", "diagnostic_provenance.yml")
write_yaml(provenance_records, provenance_file)
```

The `provenance_records` can be defined as a list of provenance items. For example:

```r
provenance_records <- list()

provenance_record <- list(
  ancestors = input_filenames,
  authors = list("hunter_alasdair", "perez-zanon_nuria"),
  caption = title,
  projects = list("c3s-magic"),
  statistics = list("other"),
)

provenance_records[[output_file]] <- provenance_record
```

24.6 Adding references

Recipes and diagnostic scripts can include references. When a recipe is run, citation information is stored in BibTeX format. Follow the steps below to add a reference to a recipe (or a diagnostic):

- make a `tag` that is representative of the reference entry. For example, `righi15gmd` shows the last name of the first author, year and journal abbreviation.
- add the `tag` to the `references` section in the recipe (or the diagnostic).
- make a BibTeX file for the reference entry. There are some online tools to convert a doi to BibTeX format like https://doi2bib.org/
- rename the file to the `tag`, keep the `.bibtex` extension.
- add the file to the folder `esmvaltool/references`.

Note: the `references` section in `config-references.yaml` has been replaced by the folder `esmvaltool/references`.
MAKING A NEW DATASET

If you are contributing a new dataset, please have a look at the documentation for how to do so.

25.1 Documentation

Make sure that the new dataset is added to the table in the documentation. The documentation should have clear instructions on how to obtain the data.

25.2 Testing

Add a test for the CMORized data to recipes/example/recipe_check_obs.yml and run the recipe, to make sure the CMOR checks pass without errors.

25.3 CMORizer output

When contributing a new dataset, we expect that the numbers and units of the dataset look physically meaningful.

25.4 Adding your dataset to the OBS data pool

Once your contribution has been accepted, tag @remi-kazeroni in your pull request, so that the new dataset can be added to the OBS data pool at DKRZ and synchronized with CEDA-Jasmin.
In the ESMValTool community we use pull request reviews to ensure all code and documentation contributions are of good quality. An introduction to code reviews can be found in The Turing Way, including why code reviews are important and advice on how to have constructive reviews.

Most pull requests will need two reviews before they can be merged. First a technical review takes place and then a scientific review. Once both reviewers have approved a pull request, it can be merged. These three steps are described in more detail below. If a pull request contains only technical changes, e.g. a pull request that corrects some spelling errors in the documentation or a pull request that fixes some installation problem, a scientific review is not needed.

If you are a regular contributor, please try to review a bit more than two other pull requests for every pull request you create yourself, to make sure that each pull request gets the attention it deserves.

26.1 1. Technical review

Technical reviews are done by the technical review team. This team consists of regular contributors that have a strong interest and experience in software engineering.

Technical reviewers use the technical checklist from the pull request template to make sure the pull request follows the standards we would like to uphold as a community. The technical reviewer also keeps an eye on the design and checks that no major design changes are made without the approval from the technical lead development team. If needed, the technical reviewer can help with programming questions, design questions, and other technical issues.

The technical review team can be contacted by writing @ESMValGroup/tech-reviewers in a comment on an issue or pull request on GitHub.

26.2 2. Scientific review

Scientific reviews are done by the scientific review team. This team consists of contributors that have a strong interest and experience in climate science or related domains.

Scientific reviewers use the scientific checklist from the pull request template to make sure the pull request follows the standards we would like to uphold as a community.

The scientific review team can be contacted by writing @ESMValGroup/science-reviewers in a comment on an issue or pull request on GitHub.
26.3 3. Merge

Pull requests are merged by the Monthly meetings. The team member who does the merge first checks that both the technical and scientific reviewer approved the pull request and that the reviews were conducted thoroughly. He or she looks at the list of files that were changed in the pull request and checks that all relevant checkboxes from the checklist in the pull request template have been added and ticked.

The core development team can be contacted by writing @ESMValGroup/esmvaltool-coreteam in a comment on an issue or pull request on GitHub.

26.4 Frequently asked questions

26.4.1 How do I request a review of my pull request?

If you know a suitable reviewer, e.g. because your pull request fixes an issue that they opened or they are otherwise interested in the work you are contributing, you can ask them for a review by clicking the cogwheel next to ‘Reviewers’ on the pull request ‘Conversation’ tab and clicking on that person. When changing code, it is a good idea to ask the original authors of that code for a review. An easy way to find out who previously worked on a particular piece of code is to use git blame. GitHub will also suggest reviewers based on who previously worked on the files changed in a pull request. Every recipe has a maintainer and authors listed in the recipe, it is a good idea to ask these people for a review.

If there is no obvious reviewer, you can attract the attention of the relevant team of reviewers by writing to @ESMValGroup/tech-reviewers or @ESMValGroup/science-reviewers in a comment on your pull request.

26.4.2 How do I optimize for a fast review?

When authoring a pull request, please keep in mind that it is easier and faster to review a pull request that does not contain many changes. Try to add one new feature per pull request and change only a few files. For the ESMValTool repository, try to limit changes to a few hundred lines of code and new diagnostics to not much more than a thousand lines of code. For the ESMValCore repository, a pull request should ideally change no more than about a hundred lines of existing code, though adding more lines for unit tests and documentation is fine.

If you are a regular contributor, make sure you regularly review other people’s pull requests, that way they will be more inclined to return the favor by reviewing your pull request.

26.4.3 How do I find a pull request to review?

Please pick pull requests to review yourself based on your interest or expertise. We try to be self organizing, so there is no central authority that will assign you to review anything. If someone knows you have expertise on a certain topic, they might request your review on a pull request though. If your review is requested, please try to respond within a few days if at all possible. If you do not have the time to review the pull request, notify the author and try to find a replacement reviewer.
26.4.4 How do I actually do a review?

To do a review, go to the pull request on GitHub, the list of all pull requests is available here https://github.com/ESMValGroup/ESMValCore/pulls for the ESMValCore and here https://github.com/ESMValGroup/ESMValTool/pulls for the ESMValTool, click the pull request you would like to review. The top comment should contain (a selection of) the checklist available in the pull request template. If it is not there, copy the relevant items from the pull request template. Which items from the checklist are relevant, depends on which files are changed in the pull request. A list of items to check with brief explanations is given in section Checklists for reviewing a pull request. The items are grouped by technical and scientific review. To see which files have changed, click the tab ‘Files changed’. To comment on specific lines of code or documentation, click the ‘plus’ icon next to a line of code and write your comment. When you are done reviewing, use the ‘Review changes’ button in the top right corner to comment on, request changes to, or approve the pull request.

26.4.5 What if the author and reviewer disagree?

When the author and the reviewer of a pull request have difficulty agreeing on what needs to be done before the pull request can be approved, it is usually both more pleasant and more efficient to schedule a meeting or co-working session, for example using Google meet or Jitsi meet.

When reviewing a pull request, try to refrain from making changes to the pull request yourself, unless the author specifically agrees to those changes, as this could potentially be perceived as offensive.

If talking about the pull requests in a meeting still does not resolve the disagreement, ask a member of the @ESMValGroup/esmvaltool-coreteam for their opinion and try to find a solution.

26.5 Checklists for reviewing a pull request

Below are general checklists for doing technical and scientific reviews including brief descriptions of the tasks to do. Reviewing CMORizer scripts consists mostly of technical tasks but differs slightly from the technical review tasks and is therefore listed in a third section below.

26.5.1 Technical reviews

Documentation

Check that the scientific documentation of the new diagnostic has been added to the user’s guide:

- A file (.doc/sphinx/source/recipes/recipe_<diagnostic>.rst) exists
- New documentation is included in .doc/sphinx/source/recipes/index.rst
- Documentation follows template (.doc/sphinx/source/recipes/recipe_template.rst. template)
- Description of configuration options
- Description of variables
- Valid image files
- Resolution of image files (~150 dpi is usually enough; file size should be kept small)
Recipe

Check yaml syntax and that new recipe contains:

- Documentation: description, authors, maintainer, references, projects
- Provenance tags: themes, realms

Diagnostic script

Check that the new diagnostic script(s) meet(s) standards. This includes the following items:

- In-code documentation (comments, docstrings)
- Code quality (e.g. no hardcoded pathnames)
- No Codacy errors reported
- Re-use of existing functions whenever possible
- Provenance implemented

Run recipe

Make sure new diagnostic(s) is working by running the ESMValTool with the recipe.

Check output of diagnostic

After successfully running the new recipe, check that:

- Netcdf output has been written
- Output contains (some) valid values (e.g. not only nan or zeros)
- Provenance information has been written

Check automated tests

Check for errors reported by automated tests

- Codacy
- CircleCI
- Documentation build

26.5.2 Scientific reviews

Documentation added to user’s guide

Check that the scientific documentation of the new diagnostic (./doc/sphinx/source/recipes/recipe_<diagnostic>.rst):

- Meets scientific documentation standard and
- Contains brief description of method
- Contains references
• Check for typos / broken text
• Documentation is complete and written in an understandable language
• References are complete

Recipe

Check that new recipe contains valid:
 • Documentation: description, references
 • Provenance tags: themes, realms

Diagnostic script

Check that the new diagnostic script(s) meet(s) scientific standards. This can include the following items:
 • Clear and understandable in-code documentation including brief description of diagnostic
 • References
 • Method / equations match reference(s) given

Run recipe

Make sure new diagnostic(s) is working by running the ESMValTool.

Check output of diagnostic

After successfully running the new recipe, check that:
 • Output contains (some) valid values (e.g. not only nan or zeros)
 • If applicable, check plots and compare with corresponding plots in the paper(s) cited

26.5.3 CMORizer scripts

Reviewing CMORizer scripts differs slightly from reviewing technical changes or scientific reviews of new diagnostics. A review typically contains mostly technical aspects given in the checklist below.

Dataset description

Check that new dataset has been added to the table of observations defined in the ESMValTool guide user’s guide in section “Obtaining input data” (./doc/sphinx/source/input.rst).
BibTeX info file

Check that a BibTeX file (i.e. `<dataset>.bibtex`) defining the reference(s) for the new dataset has been created in `./esmvaltool/references/`.

recipe_check_obs.yml

Check that new dataset has been added to the testing recipe `./esmvaltool/recipes/examples/recipe_check_obs.yml`.

CMORizer script

Check that the new CMORizer script (`./esmvaltool/cmorizers/obs/cmorize_obs_<dataset>.[py, ncl, r]`) meets standards. This includes the following items:

- In-code documentation (header) contains
 1. Download instructions
 2. Reference(s)
- Code quality checks
 1. Code quality (e.g. no hardcoded pathnames)
 2. No Codacy errors reported

Config file

If present, check config file `<dataset>.yml` in `./esmvaltool/cmorizers/obs/cmor_config/`.

Run CMORizer

Make sure CMORizer is working by running `cmorize_obs -c <config-file> -o <dataset>`.

Check output of CMORizer

After successfully running the new CMORizer, check that:

- Output contains (some) valid values (e.g. not only nan or zeros)
- Metadata is defined properly

Run `./esmvaltool/recipes/examples/recipe_check_obs.yml` for new dataset.
RAW data

Contact person in charge of ESMValTool data pool and request to copy RAW data to RAWOBS/Tier2 (Tier3).

CMORized data

Contact person in charge of ESMValTool data pool and request to

- Copy CMORized dataset to OBS/Tier2 (Tier3)
- Set file access rights for new dataset

26.5.4 After merging a pull request

After merging a pull request successfully, the Monthly meetings will:

- Close related issue if existent
- Delete feature branch
PORTING A NAMELIST (RECIPE) OR DIAGNOSTIC TO ESMVALTOOL V2.0

This guide summarizes the main steps to be taken in order to port an ESMValTool namelist (now called recipe) and the corresponding diagnostic(s) from v1.0 to v2.0, hereafter also referred as the “old” and the “new version”, respectively. The new ESMValTool version is being developed in the public git branch master. An identical version of this branch is maintained in the private repository as well and kept synchronized on an hourly basis.

In the following, it is assumed that the user has successfully installed ESMValTool v2 and has a rough overview of its structure (see Technical Overview).

27.1 Create a github issue

Create an issue in the public repository to keep track of your work and inform other developers. See an example here. Use the following title for the issue: “PORTING <recipe> into v2.0”. Do not forget to assign it to yourself.

27.2 Create your own branch

Create your own branch from master for each namelist (recipe) to be ported:

```
git checkout master
git pull
git checkout -b <recipe>
```

master contains only v2.0 under the ./esmvaltool/ directory.

27.3 Convert xml to yml

In ESMValTool v2.0, the namelist (now recipe) is written in yaml format (Yet Another Markup Language format). It may be useful to activate the yaml syntax highlighting for the editor in use. This improves the readability of the recipe file and facilitates the editing, especially concerning the indentations which are essential in this format (like in python). Instructions can be easily found online, for example for emacs and vim.

A xml2yml converter is available in esmvaltool/utils/xml2yml/, please refer to the corresponding README file for detailed instructions on how to use it.

Once the recipe is converted, a first attempt to run it can be done, possibly starting with a few datasets and one diagnostics and proceed gradually. The recipe file ./esmvaltool/recipes/recipe_perfmetrics_CMIP5.yml can be used as an example, as it covers most of the common cases.
Do not forget to also rewrite the recipe header in a documentation section using the yaml syntax and, if possible, to add themes and realms item to each diagnostic section. All keys and tags used for this part must be defined in ./esmvaltool/config-references.yml. See ./esmvaltool/recipes/recipe_perfmetrics_CMIP5.yml for an example.

27.4 Create a copy of the diag script in v2.0

The diagnostic script to be ported goes into the directory ./esmvaltool/diag_script/. It is recommended to get a copy of the very last version of the script to be ported from the version1 branch (either in the public or in the private repository). Just create a local (offline) copy of this file from the repository and add it to ./esmvaltool/diag_script/ as a new file.

Note that (in general) this is not necessary for plot scripts and for the libraries in ./esmvaltool/diag_script/ncl/lib/, which have already been ported. Changes may however still be necessary, especially in the plot scripts which have not yet been fully tested with all diagnostics.

27.5 Check and apply renamings

The new ESMValTool version includes a completely revised interface, handling the communication between the python workflow and the (NCL) scripts. This required several variables and functions to be renamed or removed. These changes are listed in the following table and have to be applied to the diagnostic code before starting with testing.

<table>
<thead>
<tr>
<th>Name in v1.0</th>
<th>Name in v2.0</th>
<th>Affected code</th>
</tr>
</thead>
<tbody>
<tr>
<td>getenv("ESMValTool_wrk_dir")</td>
<td>config_user_info@work_dir</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>getenv(ESMValTool_att)</td>
<td>diag_script_info@att</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>xml</td>
<td>yml</td>
<td>all scripts</td>
</tr>
<tr>
<td>var_attr_ref(0)</td>
<td>variable_info@reference_dataset</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>var_attr_ref(1)</td>
<td>variable_info@alternative_dataset</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>models</td>
<td>input_file_info</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>models@name</td>
<td>input_file_info@dataset</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>verbosity</td>
<td>config_user_info@log_level</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>isfilepresent_esmval</td>
<td>fileexists</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>messaging.ncl</td>
<td>logging.ncl</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>info_output(arg1, arg2, arg3)</td>
<td>log_info(arg1) if arg3=1</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>info_output(arg1, arg2, arg3)</td>
<td>log_debug(arg1) if arg3>1</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>verbosity = config_user_info@verbosity</td>
<td>remove this statement</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>enter_msg(arg1, arg2, arg3)</td>
<td>enter_msg(arg1, arg2)</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>leave_msg(arg1, arg2, arg3)</td>
<td>leave_msg(arg1, arg2)</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>noop()</td>
<td>appropriate if-else statement</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>nooperation()</td>
<td>appropriate if-else statement</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>fullpaths</td>
<td>input_file_info@filename</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>get_output_dir(arg1, arg2)</td>
<td>config_user_info@plot_dir</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>get_work_dir</td>
<td>config_user_info@work_dir</td>
<td>all .ncl scripts</td>
</tr>
<tr>
<td>inlist(arg1, arg2)</td>
<td>any(arg1.eq.arg2)</td>
<td>all .ncl scripts</td>
</tr>
</tbody>
</table>

continues on next page
The following changes may also have to be considered:

- namelists are now called recipes and collected in esmvaltool/recipes;
- models are now called datasets and all files have been updated accordingly, including NCL functions (see table above);
- run_dir (previous interface_data), plot_dir, work_dir are now unique to each diagnostic script, so it is no longer necessary to define specific paths in the diagnostic scripts to prevent file collision;
- input_file_info is now a list of a list of logicals, where each element describes one dataset and one variable. Convenience functions to extract the required elements (e.g., all datasets of a given variable) are provided in esmvaltool/interface_scripts/interface.ncl;
- the interface functions interface_get_* and get_figure_filename are no longer available: their functionalities can be easily reproduced using the input_file_info and the convenience functions in esmvaltool/interface_scripts/interface.ncl to access the required attributes;
- there are now only 4 log levels (debug, info, warning, and error) instead of (infinite) numerical values in verbosity
- diagnostic scripts are now organized in subdirectories in esmvaltool/diag_scripts/: all scripts belonging to the same diagnostics are to be collected in a single subdirectory (see esmvaltool/diag_scripts/perfmetrics/ for example). This applies also to the aux_scripts, unless they are shared among multiple diagnostics (in this case they go in shared/);
- the relevant input_file_info items required by a plot routine should be passed as argument to the routine itself;
- upper case characters have to be avoided in script names, if possible.

As for the recipe, the diagnostic script ./esmvaltool/diag_scripts/perfmetrics/main.ncl can be followed as working example.
27.6 Move preprocessing from the diagnostic script to the backend

Many operations previously performed by the diagnostic scripts, are now included in the backend, including level extraction, regridding, masking, and multi-model statistics. If the diagnostics to be ported contains code performing any of such operations, the corresponding code has to be removed from the diagnostic script and the respective backend functionality can be used instead.

The backend operations are fully controlled by the `preprocessors` section in the recipe. Here, a number of preprocessor sets can be defined, with different options for each of the operations. The sets defined in this section are applied in the `diagnostics` section to preprocess a given variable.

It is recommended to proceed step by step, porting and testing each operation separately before proceeding with the next one. A useful setting in the user configuration file (`config-private.yml`) called `write_intermediary_cube` allows writing out the variable field after each preprocessing step, thus facilitating the comparison with the old version (e.g., after CMORization, level selection, after regridding, etc.). The CMORization step of the new backend exactly corresponds to the operation performed by the old backend (and stored in the `climo` directory, now called `preprec`): this is the very first step to be checked, by simply comparing the intermediary file produced by the new backend after CMORization with the output of the old backend in the `climo` directory (see “Testing” below for instructions).

The new backend also performs variable derivation, replacing the `calculate` function in the `variable_defs` scripts. If the recipe which is being ported makes use of derived variables, the corresponding calculation must be ported from the `./variable_defs/<variable>.ncl` file to `./esmvaltool/preprocessor/_derive.py`.

Note that the Python library `esmval_lib`, containing the `ESMValProject` class is no longer available in version 2. Most functionalities have been moved to the new preprocessor. If you miss a feature, please open an issue on github [https://github.com/ESMValGroup/ESMValTool/issues].

27.7 Move diagnostic- and variable-specific settings to the recipe

In the new version, all settings are centralized in the recipe, completely replacing the diagnostic-specific settings in `./nml/cfg_files/` (passed as `diag_script_info` to the diagnostic scripts) and the variable-specific settings in `variable_defs/<variable>.ncl` (passed as `variable_info`). There is also no distinction anymore between diagnostic- and variable-specific settings: they are collectively defined in the `scripts` dictionary of each diagnostic in the recipe and passed as `diag_script_info` attributes by the new ESMValTool interface. Note that the `variable_info` logical still exists, but it is used to pass variable information as given in the corresponding dictionary of the recipe.

27.8 Make sure the diagnostic script writes NetCDF output

Each diagnostic script is required to write the output of the analysis in one or more NetCDF files. This is to give the user the possibility to further look into the results, besides the plots, but (most importantly) for tagging purposes when publishing the data in a report and/or on a website.

For each of the plot produced by the diagnostic script a single NetCDF file has to be generated. The variable saved in this file should also contain all the necessary metadata that documents the plot (dataset names, units, statistical methods, etc.). The files have to be saved in the work directory (defined in `cfg['work_dir']` and `config_user_info@work_dir`, for the python and NCL diagnostics, respectively).
27.9 Test the recipe/diagnostic in the new version

Once complete, the porting of the diagnostic script can be tested. Most of the diagnostic script allows writing the output in a NetCDF file before calling the plotting routine. This output can be used to check whether the results of v1.0 are correctly reproduced. As a reference for v1.0, it is recommended to use the development branch.

There are two methods for comparing NetCDF files: cdo and ncdiff. The first method is applied with the command:

```
cdo diffv old_output.nc new_output.nc
```

which will print a log on the stdout, reporting how many records of the file differ and the absolute/relative differences.

The second method produces a NetCDF file (e.g., diff.nc) with the difference between two given files:

```
ncdiff old_output.nc new_output.nc diff.nc
```

This file can be opened with ncview to visually inspect the differences.

In general, binary identical results cannot be expected, due to the use of different languages and algorithms in the two versions, especially for complex operations such as regridding. However, difference within machine precision are desirable. At this stage, it is essential to test all datasets in the recipe and not just a subset of them.

It is also recommended to compare the graphical output (this may be necessary if the ported diagnostic does not produce a NetCDF output). For this comparison, the PostScript format is preferable, since it is easy to directly compare two PostScript files with the standard diff command in Linux:

```
diff old_graphic.ps new_graphic.ps
```

but it is very unlikely to produce no differences, therefore visual inspection of the output may also be required.

27.10 Clean the code

Before submitting a pull request, the code should be cleaned to adhere to the coding standard, which are somehow stricter in v2.0. This check is performed automatically on GitHub (CircleCI and Codacy) when opening a pull request on the public repository. A code-style checker (nclcodestyle) is available in the tool to check NCL scripts and installed alongside the tool itself. When checking NCL code style, the following should be considered in addition to the warning issued by the style checker:

- two-space instead of four-space indentation is now adopted for NCL as per NCL standard;
- `load` statements for NCL standard libraries should be removed: these are automatically loaded since NCL v6.4.0 (see NCL documentation);
- the description of diagnostic- and variable-specific settings can be moved from the header of the diagnostic script to the recipe, since the settings are now defined there (see above);
- NCL `print` and `printVarSummary` statements must be avoided and replaced by the `log_info` and `log_debug` functions;
- for error and warning statements, the `error_msg` function can be used, which automatically include an exit statement.
27.11 Update the documentation

If necessary, add or update the documentation for your recipes in the corresponding rst file, which is now in doc\sphinx\source\recipes. Do not forget to also add the documentation file to the list in doc\sphinx\source\annex_c to make sure it actually appears in the documentation.

27.12 Open a pull request

Create a pull request on github to merge your branch back to master, provide a short description of what has been done and nominate one or more reviewers.
MOVING WORK FROM THE PRIVATE TO THE PUBLIC REPOSITORY

In case you develop a new diagnostic with the ESMValTool, and you plan on publishing the results of the diagnostic in a peer-reviewed paper, you might want to develop the diagnostic in a slightly less open setting than the ESMValTool-public repository. That is what the ESMValTool-private repository is for. It would be great, though, if you would make the diagnostic available for the whole community after your paper was accepted. The steps that you need to take to develop a diagnostic in the private repository and then open a pull request for it in the public repository are described in the following:

28.1 1. Clone the private repository

For example, to clone a repository called esmvaltool-private, you would run:

```
git clone git@github.com:esmvalgroup/esmvaltool-private
```

or

```
git clone https://github.com/esmvalgroup/esmvaltool-private
```

28.2 2. Make a branch to develop your recipe and diagnostic

```
git checkout master
```
```
git pull
```
```
git checkout -b my-awesome-diagnostic
```

28.3 3. Develop your diagnostic in that branch and push it to the private repository

```
git push -u origin my-awesome-diagnostic
```
the first time and
```
git push
```
any other time
28.4 4. Write and submit your paper

28.5 5. Push your branch to the public repository

Add the public repository as a remote

```bash
git remote add public git@github.com:esmvalgroup/esmvaltool
```
or

```bash
git remote add public https://github.com/esmvalgroup/esmvaltool
```
and push your branch to the public repository

```bash
git push -u public my-awesome-diagnostic
```

28.6 6. Make a pull request in the public repository

Go to https://github.com/esmvalgroup/esmvaltool/pulls and click the ‘New pull request button’. Process reviewer comments and get it merged as described in Review of pull requests.

28.7 7. Obtain a DOI for your code and add it to your paper

Wait for a new release of ESMValTool. Releases are scheduled normally every four months. Find the release schedule here: Release schedule. With the next release, your diagnostic recipe and source code will automatically be included in the archive on Zenodo and you can add the DOI from Zenodo to your paper: https://zenodo.org/record/3698045
29.1 Basics

The source code of the ESMValTool is hosted on GitHub. The following description gives an overview of the typical workflow and usage for implementing new diagnostics or technical changes into the ESMValTool. For general information on Git, see e.g. the online documentation at https://www.git-scm.com/doc.

There are two ESMValTool GitHub repositories available:

1. The PUBLIC GitHub repository is open to the public. The ESMValTool is released as open-source software under the Apache License 2.0. Use of the software constitutes acceptance of this license and terms. The PUBLIC ESMValTool repository is located at https://github.com/ESMValGroup/ESMValTool

2. The PRIVATE GitHub repository is restricted to the ESMValTool Development Team. This repository is only accessible to ESMValTool developers that have accepted the terms of use for the ESMValTool development environment. The use of the ESMValTool software and access to the private ESMValTool GitHub repository constitutes acceptance of these terms. When you fork or copy this repository, you must ensure that you do not copy the PRIVATE repository into an open domain! The PRIVATE ESMValTool repository for the ESMValTool development team is located at https://github.com/ESMValGroup/ESMValTool-private

All developments can be made in either of the two repositories. The creation of FEATURE BRANCHES (see below), however, is restricted to registered ESMValTool developers in both repositories. We encourage all developers to join the ESMValTool development team. Please contact the ESMValTool Core Development Team if you want to join the ESMValTool development team. The PRIVATE GitHub repository offers a central protected environment for ESMValTool developers who would like to keep their contributions undisclosed (e.g., unpublished scientific work, work in progress by PhD students) while at the same time benefiting from the possibilities of collaborating with other ESMValTool developers and having a backup of their work. FEATURE BRANCHES created in the PRIVATE repository are only visible to the ESMValTool development team but not to the public. The concept of a PRIVATE repository has proven to be very useful to efficiently share code during the development across institutions and projects in a common repository without having the contributions immediately accessible to the public.

Both, the PUBLIC and the PRIVATE repository, contain the following kinds of branches:

- **MASTER BRANCH** (official releases),
- **DEVELOPMENT BRANCH** (includes approved new contributions but version is not yet fully tested),
- **FEATURE BRANCH** (development branches for new features and diagnostics created by developers, the naming convention for FEATURE BRANCHES is <Project>_<myfeature>).
29.2 Access rights

- Write access to the MASTER and DEVELOPMENT BRANCH in both, the PUBLIC and the PRIVATE GitHub repositories, is restricted to the ESMValTool Core Development Team.

- FEATURE BRANCHES in both the PUBLIC and the PRIVATE repository can be created by all members of the ESMValTool development team (i.e. members in the GitHub organization “ESMValGroup”). If needed, branches can be individually write-protected within each repository so that other developers cannot accidently push changes to these branches.

The MASTER BRANCH of the PRIVATE repository will be regularly synchronized with the MASTER BRANCH of the PUBLIC repository (currently by hand). This ensures that they are identical at all times (see schematic in Figure Fig. 1). The recommended workflow for members of the ESMValTool development team is to create additional FEATURE BRANCHES in either the PUBLIC or the PRIVATE repository, see further instructions below.

29.3 Workflow

The following description gives an overview of the typical workflow and usage for implementing new diagnostics or technical changes into the ESMValTool. The description assumes that your local development machine is running a Unix-like operating system. For a general introduction to Git tutorials such as, for instance, https://www.git-scm.com/docs/gittutorial are recommended.
29.3.1 Getting started

First make sure that you have Git installed on your development machine. On shared machines, software is usually installed using the environment modules. Try e.g.

```
module avail git
```

if this is the case. You can ask your system administrator for assistance. You can test this with the command:

```
git --version
```

In order to properly identify your contributions to the ESMValTool you need to configure your local Git with some personal data. This can be done with the following commands:

```
git config --global user.name "YOUR NAME"
git config --global user.email "YOUR EMAIL"
```

Note: For working on GitHub you need to create an account and login to https://github.com/.

29.3.2 Working with the ESMValTool GitHub Repositories

As a member of the ESMValTool development team you can create *FEATURE BRANCHES* in the PUBLIC as well as in the PRIVATE repository. We encourage all ESMValTool developers to use the following workflow for long-lived developments (>2 weeks).

- Login to GitHub.com
- On GitHub, go to the website of the ESMValTool repository (https://github.com/ESMValGroup/ESMValTool-private or https://github.com/ESMValGroup/ESMValTool)
- Click on the button create *FEATURE BRANCH*
- Select the “DEVELOPMENT” BRANCH and create a new *FEATURE BRANCH* for the diagnostic/feature you want to implement. Please follow the following naming convention for your new *FEATURE BRANCH*: `<Project>_<myfeature>`.

- Click the button “Clone or Download” and copy the URL shown there
- Open a terminal window and go to the folder where you would like to store your local copy of the ESMValTool source
- Type git clone, and paste the URL:
This will clone the ESMValTool repository at GitHub to a local folder. You can now query the status of your local working copy with:

```
git status
```

You will see that you are on a branch called master and your local working copy is up to date with the remote repository. With

```
git branch --all
```

you can list all available remote and local branches. Now switch to your feature branch by:

```
git checkout <NAME_OF_YOUR_FEATURE_BRANCH>
```

You can now start coding. To check your current developments you can use the command

```
git status
```

You can add new files and folders that you want to have tracked by Git using:

```
git add <NEW_FILE|FOLDER>
```

Commit your tracked changes to your local working copy via:

```
git commit -m "YOUR COMMIT MESSAGE"
```

You can inspect your changes with (use man git-log for all options):

```
git log
```

To share your work and to have an online backup, push your local development to your FEATURE BRANCH on GitHub:

```
git push origin <YOUR_FEATURE_BRANCH>
```

Note: An overview on Git commands and best practices can be found e.g. here: https://zeroturnaround.com/rebellabs/git-commands-and-best-practices-cheat-sheet/

29.3.3 Pull requests

Once your development is completely finished, go to the GitHub website of the ESMValTool repository and switch to your FEATURE BRANCH. You can then initiate a pull request by clicking on the button “New pull request”. Select the DEVELOPMENT BRANCH as “base branch” and click on “Create pull request”. Your pull request will then be tested, discussed and implemented into the DEVELOPMENT BRANCH by the ESMValTool Core Development Team.

Attention: When creating a pull request, please carefully review the requirements and recommendations in CONTRIBUTING.md and try to implement those (see also checklist in the pull request template). It is recommended that you create a draft pull request early in the development process, when it is still possible to implement feedback. Do not wait until shortly before the deadline of the project you are working on. If you are unsure how to implement any of the requirements, please do not hesitate to ask for help in the pull request.
29.3.4 GitHub issues

In case you encounter a bug or if you have a feature request or something similar you can open an issue on the PUBLIC ESMValTool GitHub repository.

29.4 General do-s and don’t-s

29.4.1 Do-s

• Create a FEATURE BRANCH and use exclusively this branch for developing the ESMValTool. The naming convention for FEATURE BRANCHES is <Project>_<myfeature>.

• Comment your code as much as possible and in English.

• Use short but self-explanatory variable names (e.g., model_input and reference_input instead of xm and xr).

• Consider a modular/functional programming style. This often makes code easier to read and deletes intermediate variables immediately. If possible, separate diagnostic calculations from plotting routines.

• Consider reusing or extending existing code. General-purpose code can be found in esmvaltool/diag_scripts/shared/.

• Comment all switches and parameters including a list of all possible settings/options in the header section of your code (see also . . .).

• Use templates for recipes (see . . .) and diagnostics (see . . .) to help with proper documentation.

• Keep your FEATURE BRANCH regularly synchronized with the DEVELOPMENT BRANCH (git merge).

• Keep developments / modifications of the ESMValTool framework / backend / basic structure separate from developments of diagnostics by creating different FEATURE BRANCHES for these two kinds of developments. Create FEATURE BRANCHES for changes / modifications of the ESMValTool framework only in the PUBLIC repository.

29.4.2 Don’t-s

• Do not use other programming languages than the ones currently supported (Python, R, NCL, Julia). If you are unsure what language to use, Python is probably the best choice, because it has very good libraries available and is supported by a large community. Contact the ESMValTool Core Development Team if you wish to use another language, but remember that only open-source languages are supported by the ESMValTool.

• Do not develop without proper version control (see do-s above).

• Avoid large (memory, disk space) intermediate results. Delete intermediate files/variables or see modular/functional programming style.

• Do not use hard-coded pathnames or filenames.

• Do not mix developments / modifications of the ESMValTool framework and developments / modifications of diagnostics in the same FEATURE BRANCH.
Part VIII

Utilities
This section provides information on small tools that are available in the esmvaltool/utils directory.
This is a script for drafting release notes based on the titles and labels of the GitHub pull requests that have been merged since the previous release.

To use the tool, install the package pygithub:

```bash
pip install pygithub
```

Create a GitHub access token (leave all boxes for additional permissions unchecked) and store it in the file `~/github_api_key`.

Edit the script and update the date and time of the previous release. If needed, change it so it uses the correct repository.

Run the script:

```bash
python esmvaltool/utils/draft_release_notes.py
```

Review the resulting output (in .rst format) and if anything needs changing, change it on GitHub and re-run the script until the changelog looks acceptable. In particular, make sure that pull requests have the correct label, so they are listed in the correct category. Finally, copy and paste the generated content at the top of the changelog.
A tool for checking the style of NCL code, based on pycodestyle. Install ESMValTool in development mode (`pip install -e '.[develop]') to make it available. To use it, run

```
nclcodestyle /path/to/file.ncl
```
XML2YML

A tool for converting version 1 recipes to version 2 recipes. See the README.md file in the directory esmval-tool/utils/xml2yml for detailed usage instructions.
Tools for testing recipes.

33.1 test recipe settings

A tool for generating recipes with various diagnostic settings, to test of those work. Install ESMValTool in development mode (`pip install -e .[develop]`) to make it available. To use it, run

```
test_recipe --help
```
Part IX

ESMValTool Code API Documentation
ESMValTool is mostly used as a command line tool. However, it is also possible to use (parts of) ESMValTool as a library. This section documents the public API of ESMValTool.
Chapter Thirty-Four

Shared Diagnostic Script Code

Code that is shared between multiple diagnostic scripts.

Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Datasets(cfg)</code></td>
<td>Class to easily access a recipe’s datasets in a diagnostic script.</td>
</tr>
<tr>
<td><code>ProvenanceLogger(cfg)</code></td>
<td>Open the provenance logger.</td>
</tr>
<tr>
<td><code>Variable(short_name, standard_name, ...)</code></td>
<td>Variable class containing all relevant information.</td>
</tr>
<tr>
<td><code>Variables([cfg])</code></td>
<td>Class to easily access a recipe’s variables in a diagnostic.</td>
</tr>
</tbody>
</table>

Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply_supermeans(ctrl, exper, obs_list)</code></td>
<td>Apply supermeans on data components ie MEAN on time</td>
</tr>
<tr>
<td><code>extract_variables(cfg[, as_iris])</code></td>
<td>Extract basic variable information from configuration dictionary.</td>
</tr>
<tr>
<td><code>get_cfg([filename])</code></td>
<td>Read diagnostic script configuration from settings.yml.</td>
</tr>
<tr>
<td><code>get_control_exper_obs(short_name, ...)</code></td>
<td>Get control, exper and obs datasets</td>
</tr>
<tr>
<td><code>get_diagnostic_filename(basename, cef[, ...])</code></td>
<td>Get a valid path for saving a diagnostic data file.</td>
</tr>
<tr>
<td><code>get_plot_filename(basename, cfg)</code></td>
<td>Get a valid path for saving a diagnostic plot.</td>
</tr>
<tr>
<td><code>group_metadata(metadata, attribute[, sort])</code></td>
<td>Group metadata describing preprocessed data by attribute.</td>
</tr>
<tr>
<td><code>run_diagnostic()</code></td>
<td>Run a Python diagnostic.</td>
</tr>
<tr>
<td><code>save_data(basename, provenance, cfg, cube[, ...])</code></td>
<td>Save the data used to create a plot to file.</td>
</tr>
<tr>
<td><code>save_figure(basename, provenance, cfg[, ...])</code></td>
<td>Save a figure to file.</td>
</tr>
<tr>
<td><code>select_metadata(metadata, **attributes)</code></td>
<td>Select specific metadata describing preprocessed data.</td>
</tr>
<tr>
<td><code>sorted_group_metadata(metadata_groups, sort)</code></td>
<td>Sort grouped metadata.</td>
</tr>
<tr>
<td><code>sorted_metadata(metadata, sort)</code></td>
<td>Sort a list of metadata describing preprocessed data.</td>
</tr>
<tr>
<td><code>variables_available(cfg, short_names)</code></td>
<td>Check if data from certain variables is available.</td>
</tr>
</tbody>
</table>

```python
class esmvaltool.diag_scripts.shared.Datasets(cfg)
    Bases: object
    
    Class to easily access a recipe’s datasets in a diagnostic script.
```

Note: This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add_dataset(path[, data])</code></td>
<td>Add dataset to class.</td>
</tr>
<tr>
<td><code>add_to_data(data[, path])</code></td>
<td>Add element to a dataset’s data.</td>
</tr>
<tr>
<td><code>get_data([path])</code></td>
<td>Access a dataset’s data.</td>
</tr>
<tr>
<td><code>get_data_list(**dataset_info)</code></td>
<td>Access the datasets’ data in a list.</td>
</tr>
<tr>
<td><code>get_dataset_info([path])</code></td>
<td>Access a dataset’s information.</td>
</tr>
<tr>
<td><code>get_dataset_info_list(**dataset_info)</code></td>
<td>Access dataset’s information in a list.</td>
</tr>
<tr>
<td><code>get_info(key[, path])</code></td>
<td>Access a ’dataset_info’ s key.</td>
</tr>
<tr>
<td><code>get_info_list(key, **dataset_info)</code></td>
<td>Access dataset_info’s key values.</td>
</tr>
<tr>
<td><code>get_path(**dataset_info)</code></td>
<td>Access a dataset’s path.</td>
</tr>
<tr>
<td><code>get_path_list(**dataset_info)</code></td>
<td>Access dataset’s paths in a list.</td>
</tr>
<tr>
<td><code>set_data(data[, path])</code></td>
<td>Set element as a dataset’s data.</td>
</tr>
</tbody>
</table>

Examples

Get all variables of a recipe configuration `cfg`:

```python
datasets = Datasets(cfg)
```

Access data of a dataset with path `dataset_path`:

```python
datasets.get_data(path=dataset_path)
```

Access dataset information of the dataset:

```python
datasets.get_dataset_info(path=dataset_path)
```

Access the data of all datasets with `exp=piControl`:

```python
datasets.get_data_list(exp=piControl)
```

add_dataset *(path, data=None, **dataset_info)*

Add dataset to class.

Parameters

- **path** *(str)* – (Unique) path to the dataset.
- **data** *(optional)* – Arbitrary object to be saved as data for the dataset.
- **dataset_info** *(optional)* – Keyword arguments describing the dataset, e.g. `dataset=CanESM2, exp=piControl` or `short_name=tas`.

add_to_data *(data, path=None, **dataset_info)*

Add element to a dataset’s data.
Notes

Either *path* or a unique *dataset_info* description have to be given. Fails when given information is ambiguous.

Parameters

- **data** – Element to be added to the dataset’s data.
- **path** (*str, optional*) – Path to the dataset
- **dataset_info** (*optional*) – Keyword arguments describing the dataset, e.g. *dataset=CanESM2, exp=piControl* or *short_name=tas*.

Raises `RuntimeError` – If data given by *dataset_info* is ambiguous.

get_data *(path=None, **dataset_info)*

Access a dataset’s data.

Notes

Either *path* or a unique *dataset_info* description have to be given. Fails when given information is ambiguous.

Parameters

- **path** (*str, optional*) – Path to the dataset
- **dataset_info** (*optional*) – Keyword arguments describing the dataset, e.g. *dataset=CanESM2, exp=piControl* or *short_name=tas*.

Returns Data of the selected dataset.

Return type *data_object*

Raises `RuntimeError` – If data given by *dataset_info* is ambiguous.

get_data_list *(**dataset_info)*

Access the datasets’ data in a list.

Notes

The returned data is sorted alphabetically respective to the *paths*.

Parameters **dataset_info** (*optional*) – Keyword arguments describing the dataset, e.g. *dataset=CanESM2, exp=piControl* or *short_name=tas*.

Returns Data of the selected datasets.

Return type *list*

get_dataset_info *(path=None, **dataset_info)*

Access a dataset’s information.
Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambiguous.

Parameters

- path (str, optional) – Path to the dataset.
- **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns All dataset information.

Return type dict

Raises RuntimeError – If data given by dataset_info is ambiguous.

get_dataset_info_list (**dataset_info)
Access dataset’s information in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns Information dictionaries of the selected datasets.

Return type list

get_info (key, path=None, **dataset_info)
Access a ‘dataset_info’`s key.

Notes

Either path or a unique dataset_info description have to be given. Fails when given information is ambiguous. If the dataset_info does not contain the key, returns None.

Parameters

- key (str) – Desired dictionary key.
- path (str) – Path to the dataset.
- **dataset_info (optional) – Keyword arguments describing the dataset, e.g. dataset=CanESM2, exp=piControl or short_name=tas.

Returns key information of the given dataset.

Return type str

Raises RuntimeError – If data given by dataset_info is ambiguous.

get_info_list (key, **dataset_info)
Access dataset_info’s key values.
Notes

The returned data is sorted alphabetically respective to the paths.

Parameters

dataset_info *(optional)* – Keyword arguments describing the dataset, e.g. `dataset=CanESM2, exp=piControl` or `short_name=tas`.

Returns

Key information of the selected datasets.

Return type

list

get_path (**dataset_info**)

Access a dataset’s path.

Notes

A unique `dataset_info` description has to be given. Fails when given information is ambiguous.

Parameters

dataset_info *(optional)* – Keyword arguments describing the dataset, e.g. `dataset=CanESM2, exp=piControl` or `short_name=tas`.

Returns

Path of the selected dataset.

Return type

str

Raises

RuntimeError – If data given by `dataset_info` is ambiguous.

get_path_list (**dataset_info**)

Access dataset’s paths in a list.

Notes

The returned data is sorted alphabetically respective to the paths.

Parameters

dataset_info *(optional)* – Keyword arguments describing the dataset, e.g. `dataset=CanESM2, exp=piControl` or `short_name=tas`.

Returns

Paths of the selected datasets.

Return type

list

set_data *(data, path=None, **dataset_info**)*

Set element as a dataset’s data.

Notes

Either `path` or a unique `dataset_info` description have to be given. Fails when given information is ambiguous.

Parameters

- **data** – Element to be set as the dataset’s data.
- **path** *(str, optional)* – Path to the dataset.
- **dataset_info** *(optional)* – Keyword arguments describing the dataset, e.g. `dataset=CanESM2, exp=piControl` or `short_name=tas`.

Raises

RuntimeError – If data given by `dataset_info` is ambiguous.
class esmvaltool.diag_scripts.shared.ProvenanceLogger(cfg)
 Bases: object

 Open the provenance logger.

 Parameters

 cfg : dict
 Dictionary with diagnostic configuration.

 Methods

 log(filename, record)
 Record provenance.

Example

Use as a context manager:

```python
record = {
    'caption': "This is a nice plot.",
    'statistics': ['mean'],
    'domain': ['global'],
    'plot_type': ['zonal'],
    'authors': [
        'first_author',
        'second_author',
    ],
    'references': [
        'author20journal',
    ],
    'ancestors': [
        '/path/to/input_file_1.nc',
        '/path/to/input_file_2.nc',
    ],
}
output_file = '/path/to/result.nc'

with ProvenanceLogger(cfg) as provenance_logger:
    provenance_logger.log(output_file, record)
```

log(filename, record)
 Record provenance.

Parameters

- **filename** (str) – Name of the file containing the diagnostic data.
- **record** (dict) – Dictionary with the provenance information to be logged.

Typical keys are:

- ancestors
- authors
- caption
- domain
- plot_type
- references
- statistics
class esmvaltool.diag_scripts.shared.Variable

Bases: esmvaltool.diag_scripts.shared._diag.Variable

Variable class containing all relevant information.

Note: This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Methods

```
count(value, /)

index(value[, start, stop])

```

Attributes

```
long_name
short_name
standard_name
units
```

```
count(value, /)

index(value[, start, stop])

```

Class to easily access a recipe’s variables in a diagnostic.

Note: This class has been deprecated in version 2.2 and will be removed two minor releases later in version 2.4.

Methods
Examples

Get all variables of a recipe configuration `cfg`:

```python
variables = Variables(cfg)
```

Access information of a variable `tas`:

```python
variables.short_name('tas')
variables.standard_name('tas')
variables.long_name('tas')
variables.units('tas')
```

Access `iris`-suitable dictionary of a variable `tas`:

```python
variables.iris_dict('tas')
```

Check if variables `tas` and `pr` are available:

```python
variables.vars_available('tas', 'pr')
```

`add_vars(**names)`

Add custom variables to the class.

- **Parameters**
 - `**names` *(dict or Variable, optional)* – Keyword arguments of the form `short_name=Variable_object` where `Variable_object` can be given as dict or Variable.

`iris_dict(var)`

Access `iris` dictionary of the variable.

- **Parameters**
 - `var` *(str)* – (Short) name of the variable.

- **Returns**
 - Dictionary containing all attributes of the variable which can be used directly in `iris` (short_name replaced by var_name).

- **Return type**
 - dict

`long_name(var)`

Access long name.

- **Parameters**
 - `var` *(str)* – (Short) name of the variable.

- **Returns**
 - Long name of the variable.

- **Return type**
 - str
modify_var(var, **names)
Modify an already existing variable of the class.

Parameters

• var (str) – (Short) name of the existing variable.
• **names – Keyword arguments of the form short_name=tas.

Raises

• ValueError – If var is not an existing variable.
• TypeError – If a non-valid keyword argument is given.

short_name(var)
Access short name.

Parameters var (str) – (Short) name of the variable.

Returns Short name of the variable.

Return type str

short_names()
Get list of all short_names.

Returns List of all short_names.

Return type list

standard_name(var)
Access standard name.

Parameters var (str) – (Short) name of the variable.

Returns Standard name of the variable.

Return type str

standard_names()
Get list of all standard_names.

Returns List of all standard_names.

Return type list

units(var)
Access units.

Parameters var (str) – (Short) name of the variable.

Returns Units of the variable.

Return type str

var_name(var)
Access var name.

Parameters var (str) – (Short) name of the variable.

Returns Var name (=short name) of the variable.

Return type str

vars_available(*args)
Check if given variables are available.

Parameters *args – Short names of the variables to be tested.
Returns

Returns True if variables are available, False if not.

Return type bool

esmvaltool.diag_scripts.shared.apply_supermeans(ctrl, exper, obs_list)

Apply supermeans on data components ie MEAN on time

This function is an extension of climate_statistics() meant to ease the time-meaning procedure when dealing with CONTROL, EXPERIMENT and OBS (if any) datasets. ctrl: dictionary of CONTROL dataset exper: dictionary of EXPERIMENT dataset obs_list: list of dicts for OBS datasets (0, 1 or many)

Returns: control and experiment cubes and list of obs cubes

esmvaltool.diag_scripts.shared.extract_variables(cfg, as_iris=False)

Extract basic variable information from configuration dictionary.

Returns short_name, standard_name, long_name and units keys for each variable.

Parameters

- cfg (dict) – Diagnostic script configuration.
- as_iris (bool, optional) – Replace short_name by var_name, this can be used directly in iris classes.

Returns Variable information in dict`s (values) for each `short_name` (key).

Return type dict

esmvaltool.diag_scripts.shared.get_cfg(filename=None)

Read diagnostic script configuration from settings.yml.

esmvaltool.diag_scripts.shared.get_control_exper_obs(short_name, input_data, cfg, cmip_type)

Get control, exper and obs datasets

This function is used when running recipes that need a clear distinction between a control dataset, an experiment dataset and have optional obs (OBS, obs4mips etc) datasets; such recipes include recipe_validation, and all the autoassess ones; short_name: variable short name input_data: dict containing the input data info cfg: config file as used in this module

esmvaltool.diag_scripts.shared.get_diagnostic_filename(basename, cfg, extension='nc')

Get a valid path for saving a diagnostic data file.

Parameters

- basename (str) – The basename of the file.
- cfg (dict) – Dictionary with diagnostic configuration.
- extension (str) – File name extension.

Returns A valid path for saving a diagnostic data file.

Return type str

esmvaltool.diag_scripts.shared.get_plot_filename(basename, cfg)

Get a valid path for saving a diagnostic plot.

Parameters

- basename (str) – The basename of the file.
- cfg (dict) – Dictionary with diagnostic configuration.

Returns A valid path for saving a diagnostic plot.
Return type
str

```python
esmvaltool.diag_scripts.shared.group_metadata(metadata, attribute, sort=None)
```

Group metadata describing preprocessed data by attribute.

Parameters

- **metadata** *(list of dict)* – A list of metadata describing preprocessed data.
- **attribute** *(str)* – The attribute name that the metadata should be grouped by.
- **sort** – See `sorted_group_metadata`.

Returns
A dictionary containing the requested groups.

Return type
dict of list of dict

```python
esmvaltool.diag_scripts.shared.run_diagnostic()
```

Run a Python diagnostic.

This context manager is the main entry point for most Python diagnostics.

Example

See `esmvaltool/diag_scripts/examples/diagnostic.py` for an extensive example of how to start your diagnostic.

Basic usage is as follows, add these lines at the bottom of your script:

```python
def main(cfg):
    # Your diagnostic code goes here.
    print(cfg)

if __name__ == '__main__':
    with run_diagnostic() as cfg:
        main(cfg)
```

The `cfg` dict passed to `main` contains the script configuration that can be used with the other functions in this module.

```python
esmvaltool.diag_scripts.shared.save_data(basename, provenance, cfg, cube, **kwargs)
```

Save the data used to create a plot to file.

Parameters

- **basename** *(str)* – The basename of the file.
- **provenance** *(dict)* – The provenance record for the data.
- **cfg** *(dict)* – Dictionary with diagnostic configuration.
- **cube** *(iris.cube.Cube)* – Data cube to save.
- ****kwargs – Extra keyword arguments to pass to `iris.save`.

See also:

ProvenanceLogger
For an example provenance record that can be used with this function.

```python
esmvaltool.diag_scripts.shared.save_figure(basename, provenance, cfg, figure=None, close=True, **kwargs)
```

Save a figure to file.

Parameters

```
• **basename** (*str*) – The basename of the file.
• **provenance** (*dict*) – The provenance record for the figure.
• **cfg** (*dict*) – Dictionary with diagnostic configuration.
• **figure** (*matplotlib.figure.Figure*) – Figure to save.
• **close** (*bool*) – Close the figure after saving.
• ****kwargs** – Keyword arguments to pass to *matplotlib.figure.Figure*.

See also:

*ProvenanceLogger* For an example provenance record that can be used with this function.

```python
esmvaltool.diag_scripts.shared.select_metadata(metadata, **attributes)
```
Select specific metadata describing preprocessed data.

**Parameters**

• **metadata** (*list of dict*) – A list of metadata describing preprocessed data.

• ****attributes** – Keyword arguments specifying the required variable attributes and their values. Use the value ‘*’ to select any variable that has the attribute.

**Returns** A list of matching metadata.

**Return type** *list of dict*

```python
esmvaltool.diag_scripts.shared.sorted_group_metadata(metadata_groups, sort)
```
Sort grouped metadata.

Sorting is done on strings and is not case sensitive.

**Parameters**

• **metadata_groups** (*dict of list of dict*) – Dictionary containing the groups of metadata.

• **sort** (*bool or str or list of str*) – One or more attributes to sort by or True to just sort the groups but not the lists.

**Returns** A dictionary containing the requested groups.

**Return type** *dict of list of dict*

```python
esmvaltool.diag_scripts.shared.sorted_metadata(metadata, sort)
```
Sort a list of metadata describing preprocessed data.

Sorting is done on strings and is not case sensitive.

**Parameters**

• **metadata** (*list of dict*) – A list of metadata describing preprocessed data.

• **sort** (*str or list of str*) – One or more attributes to sort by.

**Returns** The sorted list of variable metadata.

**Return type** *list of dict*

```python
esmvaltool.diag_scripts.shared.variables_available(cfg, short_names)
```
Check if data from certain variables is available.

**Parameters**
• `cfg (dict)` – Diagnostic script configuration.
• `short_names (list of str)` – Variable short_names which should be checked.

**Returns**  
*True* if all variables available, *False* if not.

**Return type**  
`bool`

### 34.1 Plotting

Module that provides common plot functions.

**Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_dataset_style(dataset[, style_file])</code></td>
<td>Retrieve the style information for the given dataset.</td>
</tr>
<tr>
<td><code>get_path_to_mpl_style([style_file])</code></td>
<td>Get path to matplotlib style file.</td>
</tr>
<tr>
<td><code>global_contourf(cube[, cbar_center, ...])</code></td>
<td>Plot global filled contour plot.</td>
</tr>
<tr>
<td><code>global_pcolormesh(cube[, cbar_center, ...])</code></td>
<td>Plot global color mesh.</td>
</tr>
<tr>
<td><code>multi_dataset_scatterplot(x_data, y_data, ...)</code></td>
<td>Plot a multi dataset scatterplot.</td>
</tr>
<tr>
<td><code>quickplot(cube, plot_type[, filename])</code></td>
<td>Plot a cube using one of the iris.quickplot functions.</td>
</tr>
<tr>
<td><code>scatterplot(x_data, y_data, filepath, **kwargs)</code></td>
<td>Plot a scatterplot.</td>
</tr>
</tbody>
</table>

**Note:**  
This is only possible if the cube has the coordinates *latitude* and *longitude*. A mean is performed over excessive coordinates.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cube (iris.cube.Cube)</code></td>
<td>Cube to plot.</td>
</tr>
<tr>
<td><code>cbar_center (float, optional)</code></td>
<td>Central value for the colormap, useful for diverging colormaps. Can only be used if <code>cbar_range</code> is given.</td>
</tr>
<tr>
<td><code>cbar_label (str, optional)</code></td>
<td>Label for the colorbar.</td>
</tr>
<tr>
<td><code>cbar_range (list of float, optional)</code></td>
<td>Range of the colorbar (first and second list element) and number of distinct colors (third element). See <code>numpy.linspace</code>.</td>
</tr>
<tr>
<td><code>cbar_ticks (list, optional)</code></td>
<td>Ticks for the colorbar.</td>
</tr>
</tbody>
</table>
| `**kwargs` | Keyword argument for `iris.plot.contourf()`.

**Returns**  
Plot object.
Plot global color mesh.

**Note:** This is only possible if the cube has the coordinates *latitude* and *longitude*. A mean is performed over excessive coordinates.

### Parameters

- **cube** *(iris.cube.Cube)*: Cube to plot.
- **cbar_center** *(float, optional)*: Central value for the colormap, useful for diverging colormaps. Can only be used if vmin and vmax are given.
- **cbar_label** *(str, optional)*: Label for the colorbar.
- **cbar_ticks** *(list, optional)*: Ticks for the colorbar.
- ****kwargs** – Keyword argument for iris.plot.pcolormesh().

**Returns** Plot object.

### Notes

Allowed keyword arguments:

- **mpl_style_file** *(str)*: Path to the matplotlib style file.
- **dataset_style_file** *(str)*: Path to the dataset style file.
- **plot_kwargs** *(array-like)*: Keyword arguments for the plot (e.g. *label*, *makersize*, etc.).
- **save_kwargs** *(dict)*: Keyword arguments for saving the plot.
- **axes_functions** *(dict)*: Arbitrary functions for axes, i.e. *axes.set_title('title').*

### Parameters

- **x_data** *(array-like)*: x data of each dataset.
- **y_data** *(array-like)*: y data of each dataset.
- **datasets** *(array-like)*: Names of the datasets.
- **filepath** *(str)*: Path to which plot is written.

Plot a multi dataset scatterplot.
**kwars – Keyword arguments.

**Raises**

- **TypeError** – A non-valid keyword argument is given or \( x\_data, y\_data, datasets \) or (if given) \( plot\_kwargs \) is not array-like.
- **ValueError** – \( x\_data, y\_data, datasets \) or \( plot\_kwargs \) do not have the same size.

```python
esmvaltool.diag_scripts.shared.plot.quickplot(cube, plot_type, filename=None, **kwargs)
```

Plot a cube using one of the iris.quickplot functions.

```python
esmvaltool.diag_scripts.shared.plot.scatterplot(x_data, y_data, filepath, **kwargs)
```

Plot a scatterplot.

**Notes**

Allowed keyword arguments:

- \( mpl\_style\_file (str) \): Path to the matplotlib style file.
- \( plot\_kwargs (array-like) \): Keyword arguments for the plot (e.g. \textit{label}, \textit{makersize}, etc.).
- \( save\_kwargs (dict) \): Keyword arguments for saving the plot.
- \( axes\_functions (dict) \): Arbitrary functions for axes, i.e. \texttt{axes.set_title('title')}.

**Parameters**

- \( x\_data (array-like) \) – x data of each dataset.
- \( y\_data (array-like) \) – y data of each dataset.
- \( filepath (str) \) – Path to which plot is written.
- **kwars – Keyword arguments.

**Raises**

- **TypeError** – A non-valid keyword argument is given or \( x\_data, y\_data \) or (if given) \( plot\_kwargs \) is not array-like.
- **ValueError** – \( x\_data, y\_data \) or \( plot\_kwargs \) do not have the same size.
Various diagnostic packages exist as part of ESMValTool.

ESMValTool diagnostic scripts.
Welcome to the API documentation for the ocean diagnostics tool kit. This toolkit is built to assist in the evaluation of models of the ocean.

This toolkit is part of ESMValTool v2.

Author: Lee de Mora (PML) ledm@pml.ac.uk

### 36.1 Maps diagnostics

Diagnostic to produce images of a map with coastlines from a cube. These plots show latitude vs longitude and the cube value is used as the colour scale.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a latitude and longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

```yaml
preprocessors:
 prep_map:
 extract_levels:
 levels: [100.,]
 scheme: linear_extrap
 climate_statistics:
 operator: mean
```

Note that this recipe may not function on machines with no access to the internet, as cartopy may try to download the shapefiles. The solution to this issue is the put the relevant cartopy shapefiles on a disk visible to your machine, then link that path to ESMValTool via the `auxiliary_data_dir` variable. The cartopy masking files can be downloaded from:

https://www.naturalearthdata.com/downloads/

Here, cartopy uses the 1:10, physical coastlines and land files:

```
110m_coastline.dbf 110m_coastline.shp 110m_coastline.shx
110m_land.dbf 110m_land.shp 110m_land.shx
```

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML) ledm@pml.ac.uk

Functions
Load the config file, and send it to the plot makers.

Parameters

• `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.

Make a simple contour map plot for an individual model.

Parameters

• `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
• `metadata (dict)` – the metadata dictionary
• `filename (str)` – the preprocessed model file.

Make a simple map plot for an individual model.

Parameters

• `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
• `metadata (dict)` – the metadata dictionary
• `filename (str)` – the preprocessed model file.

Make a contour map showing several models.

Parameters

• `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
• `metadata (dict)` – the metadata dictionary.

36.2 Model 1 vs Model 2 vs Observations diagnostics.

Diagnostic to produce an image showing four maps, based on a comparison of two different models results against an observational dataset. This process is often used to compare a new iteration of a model under development against a previous version of the same model. The four map plots are:

• Top left: model 1
• Top right: model 1 minus model 2
• Bottom left: model 2 minus obs
• Bottom right: model 1 minus obs
All four plots show latitude vs longitude and the cube value is used as the colour scale.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a latitude and longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

```yaml
preprocessors:
 prep_map:
 extract_levels:
 levels: [100.,]
 scheme: linear_extrap
 climate_statistics:
 operator: mean
```

This diagnostic also requires the `exper_model`, `control_model` and `observational_dataset` keys in the recipe:

```yaml
diagnostics:
 diag_name:
 ...
 scripts:
 Global_Ocean_map:
 script: ocean/diagnostic_maps_quad.py
 exper_model: {Model 1 dataset details}
 control_model: {Model 2 dataset details}
 observational_dataset: {Observational dataset details}
```

This tool is part of the ocean diagnostic tools package in the ESMValTool, and was based on the plots produced by the Ocean Assess/Marine Assess toolkit.

**Author:** Lee de Mora (PML) ledm@pml.ac.uk

**Functions**

```python
add_map_subplot(subplot, cube, nspace[, ...]) # Add a map subplot to the current pyplot figure.
main(cfg) # Load the config file, and send it to the plot maker.
multi_model_maps(cfg, input_files) # Make the four pane model vs model vs obs comparison plot.
```

```python
esmvaltool.diag_scripts.ocean.diagnostic_maps_quad.add_map_subplot(subplot, cube, nspace, title='', cmap='')
```

Add a map subplot to the current pyplot figure.

**Parameters**

- **subplot** *(int)* – The matplotlib.pyplot subplot number. (ie 221)
- **cube** *(iris.cube.Cube)* – the iris cube to be plotted.
- **nspace** *(numpy.array)* – An array of the ticks of the colour part.
- **title** *(str)* – A string to set as the subplot title.
- **cmap** *(str)* – A string to describe the matplotlib colour map.
Load the config file, and send it to the plot maker.

**Parameters**
cfg (dict) – the opened global config dictionary, passed by ESMValTool.

Make the four pane model vs model vs vs obs comparison plot.

**Parameters**

- cfg (dict) – the opened global config dictionary, passed by ESMValTool.
- input_files (dict) – the metadata dictionary

### 36.3 Model vs Observations maps Diagnostic.

Diagnostic to produce comparison of model and data. The first kind of image shows four maps and the other shows a scatter plot.

The four pane image is a latitude vs longitude figures showing:

- Top left: model
- Top right: observations
- Bottom left: model minus observations
- Bottom right: model over observations

The scatter plots plot the matched model coordinate on the x axis, and the observational dataset on the y coordinate, then performs a linear regression of those data and plots the line of best fit on the plot. The parameters of the fit are also shown on the figure.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a latitude and longitude coordinates.

An appropriate preprocessor for a 3D + time field would be:

```yaml
preprocessors:
 prep_map:
 extract_levels:
 levels: [100.,]
 scheme: linear_extrap
 climate_statistics:
 operator: mean
 regrid:
 target_grid: 1x1
 scheme: linear
```

This tool is part of the ocean diagnostic tools package in the ESMValTool, and was based on the plots produced by the Ocean Assess/Marine Assess toolkit.

**Author:** Lee de Mora (PML) ledm@pml.ac.uk

**Functions**

- `add_linear_regression(plot_axes, arr_x, arr_y)` Add a straight line fit to an axis.
- `add_map_subplot(subplot, cube, nspace[, ...])` Add a map subplot to the current pyplot figure.

continues on next page
Table 3 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>main(cfg)</code></td>
<td>Load the config file, and send it to the plot maker.</td>
</tr>
<tr>
<td><code>make_model_vs_obs_plots(cfg, metadata,...)</code></td>
<td>Make a figure showing four maps and the other shows a scatter plot.</td>
</tr>
<tr>
<td><code>make_scatter(cfg, metadata, model_filename,...)</code></td>
<td>Makes Scatter plots of model vs observational data.</td>
</tr>
<tr>
<td><code>rounds_sig(value[, sig])</code></td>
<td>Round a float to a specific number of sig.</td>
</tr>
</tbody>
</table>

**esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.add_linear_regression**

```python
plot_axes,
arr_x,
arr_y,
showtext=True,
add_diagonal=False,
extent=None)
```

Add a straight line fit to an axis.

**Parameters**

- **plot_axes** *(matplotlib.pyplot.axes)* – The matplotlib axes on which to plot the linear regression.
- **arr_x** *(numpy.array)* – The data for the x coordinate.
- **arr_y** *(numpy array)* – The data for the y coordinate.
- **showtext** *(bool)* – A flag to turn on or off the result of the fit on the plot.
- **add_diagonal** *(bool)* – A flag to also add the 1:1 diagonal line to the figure
- **extent** *(list of floats)* – The extent of the plot axes.

**esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.add_map_subplot**

```python
subplot,
cube,
nspace,
title='',
cmap='',
extend='neither',
log=False)
```

Add a map subplot to the current pyplot figure.

**Parameters**

- **subplot** *(int)* – The matplotlib.pyplot subplot number. (ie 221)
- **cube** *(iris.cube.Cube)* – the iris cube to be plotted.
- **nspace** *(numpy.array)* – An array of the ticks of the colour part.
- **title** *(str)* – A string to set as the subplot title.
- **cmap** *(str)* – A string to describe the matplotlib colour map.
- **extend** *(str)* – Contourf-coloring of values outside the levels range
- **log** *(bool)* – Flag to plot the colour scale linearly (False) or logarithmically (True)

**esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.main** *(cfg)*

Load the config file, and send it to the plot maker.

**Parameters**

- **cfg** *(dict)* – the opened global config dictionary, passed by ESMValTool.
esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.make_model_vs_obs_plots(cfg, metadata, model_filename, obs_filename)

Make a figure showing four maps and the other shows a scatter plot.
The four pane image is a latitude vs longitude figures showing:
- Top left: model
- Top right: observations
- Bottom left: model minus observations
- Bottom right: model over observations

Parameters
- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
- `metadata (dict)` – the input files dictionary
- `model_filename (str)` – the preprocessed model file.
- `obs_filename (str)` – the preprocessed observations file.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.make_scatter(cfg, metadata, model_filename, obs_filename)

Makes Scatter plots of model vs observational data.
Make scatter plot showing the matched model and observational data with the model data as the x-axis coordinate and the observational data as the y-axis coordinate. A linear regression is also applied to the matched data and the result of the fit is shown on the figure.

Parameters
- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
- `metadata (dict)` – the input files dictionary
- `model_filename (str)` – the preprocessed model file.
- `obs_filename (str)` – the preprocessed observations file.

esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs.rounds_sig(value, sig=3)

Round a float to a specific number of sig. figs. & return it as a string.

Parameters
- `value (float)` – The float that is to be rounded.
- `sig (int)` – The number of significant figures.

Returns The rounded output string.

Return type  `str`
### 36.4 Profile diagnostics.

Diagnostic to produce figure of the profile over time from a cube. These plots show cube value (i.e., temperature) on the x-axis, and depth/height on the y-axis. The colour scale is the time series.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has a time component, and depth component, but no latitude or longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

```yaml
preprocessors:
 prep_profile:
 extract_volume:
 long1: 0.
 long2: 20.
 lat1: -30.
 lat2: 30.
 z_min: 0.
 z_max: 3000.
 area_statistics:
 operator: mean
```

In order to add an observational dataset to the profile plot, the following arguments are needed in the diagnostic script:

```yaml
diagnostics:
 diagnostic_name:
 variables:
 ...
 additional_datasets:
 - {observational dataset description}
scripts:
 script_name:
 script: ocean/diagnostic_profiles.py
 observational_dataset: {observational dataset description}
```

This tool is part of the ocean diagnostic tools package in the ESMValTool.

**Author:** Lee de Mora (PML)  ledm@pml.ac.uk

**Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>determine_profiles_str(cube)</code></td>
<td>Determine a string from the cube, to describe the profile.</td>
</tr>
<tr>
<td><code>main(cfg)</code></td>
<td>Run the diagnostics profile tool.</td>
</tr>
<tr>
<td><code>make_profiles_plots(cfg, metadata, filename)</code></td>
<td>Make a profile plot for an individual model.</td>
</tr>
</tbody>
</table>

**esmvaltool.diag_scripts.ocean.determinant_profiles_str(cube)**

Determine a string from the cube, to describe the profile.

- **Parameters**
  - `cube (iris.cube.Cube)` – the opened dataset as a cube.

- **Returns**
  - Returns a string which describes the profile.

- **Return type**
  - `str`

**esmvaltool.diag_scripts.ocean.diagnostics_profiles.main(cfg)**

Run the diagnostics profile tool.

- Load the config file, find an observational dataset filename, pass loaded into the plot making tool.
Parameters `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.

```python
esmvaltool.diag_scripts.ocean.diagnostic_profiles.make_profiles_plots(cf,
meta-
data,
file-
name,
obs_metadata={},
obs_filename="")
```

Make a profile plot for an individual model.

The optional observational dataset can also be added.

Parameters

- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
- `metadata (dict)` – The metadata dictionary for a specific model.
- `filename (str)` – The preprocessed model file.
- `obs_metadata (dict)` – The metadata dictionary for the observational dataset.
- `obs_filename (str)` – The preprocessed observational dataset file.

### 36.5 Time series diagnostics

Diagnostic to produce figures of the time development of a field from cubes. These plots show time on the x-axis and cube value (ie temperature) on the y-axis.

Two types of plots are produced: individual model timeseries plots and multi model time series plots. The individual plots show the results from a single cube, even if this is a multi-model mean made by the `_multimodel.py` preprocessor. The multi model time series plots show several models on the same axes, where each model is represented by a different line colour.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has a time component, no depth component, and no latitude or longitude coordinates.

An appropriate preprocessor for a 3D+time field would be:

```yaml
preprocessors:
 prep_timeseries_1: # For Global Volume Averaged
 volume_statistics:
 operator: mean
```

An appropriate preprocessor for a 3D+time field at the surface would be:

```yaml
prep_timeseries_2: # For Global surface Averaged
 extract_levels:
 levels: [0.,]
 scheme: linear_extrap
 area_statistics:
 operator: mean
```

An approproate preprocessor for a 2D+time field would be:
prep_timeseries_2: # For Global surface Averaged
    area_statistics:
        operator: mean

This tool is part of the ocean diagnostic tools package in the ESMValTool.

**Author:** Lee de Mora (PML) ledm@pml.ac.uk

**Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>main(cfg)</td>
<td>Load the config file and some metadata, then pass them the plot making tools.</td>
</tr>
<tr>
<td>make_time_series_plots(cfg, metadata, filename)</td>
<td>Make a simple time series plot for an individual model 1D cube.</td>
</tr>
<tr>
<td>moving_average(cube, window)</td>
<td>Calculate a moving average.</td>
</tr>
<tr>
<td>multi_model_time_series(cfg, metadata)</td>
<td>Make a time series plot showing several preprocessed datasets.</td>
</tr>
<tr>
<td>timeplot(cube, **kwargs)</td>
<td>Create a time series plot from the cube.</td>
</tr>
</tbody>
</table>

```
esmvaltool.diag_scripts.ocean.diagnostic_timeseries.main(cfg)
 Load the config file and some metadata, then pass them the plot making tools.

 Parameters
cfg (dict) – the opened global config dictionary, passed by ESMValTool.
```

```
esmvaltool.diag_scripts.ocean.diagnostic_timeseries.make_time_series_plots(cfg, metadata, filename)
 Make a simple time series plot for an individual model 1D cube.

 Parameters
 • cfg (dict) – the opened global config dictionary, passed by ESMValTool.
 • metadata (dict) – The metadata dictionary for a specific model.
 • filename (str) – The preprocessed model file.
```

```
esmvaltool.diag_scripts.ocean.diagnostic_timeseries.moving_average(cube, window)
 Calculate a moving average.

 The window is a string which is a number and a measurement of time. For instance, the following are acceptable window strings:
 • 5 days
 • 12 years
 • 1 month
 • 5 yr

 Also note the the value used is the total width of the window. For instance, if the window provided was ‘10 years’, the the moving average returned would be the average of all values within 5 years of the central value.
```
In the case of edge conditions, at the start or end of the data, they only include the average of the data available. I.e. the first value in the moving average of a 10 year window will only include the average of the five subsequent years.

Parameters

- `cube (iris.cube.Cube)` – Input cube
- `window (str)` – A description of the window to use for the

Returns

A cube with the moving average set as the data points.

Return type `iris.cube.Cube`

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.multi_model_time_series(cfg, metadata)

Make a time series plot showing several preprocessed datasets.

This tool loads several cubes from the files, checks that the units are sensible BGC units, checks for layers, adjusts the titles accordingly, determines the ultimate file name and format, then saves the image.

Parameters

- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
- `metadata (dict)` – The metadata dictionary for a specific model.

esmvaltool.diag_scripts.ocean.diagnostic_timeseries.timeplot(cube, **kwargs)

Create a time series plot from the cube.

Note that this function simply does the plotting, it does not save the image or do any of the complex work. This function also takes and of the key word arguments accepted by the matplotlib.pyplot.plot function. These arguments are typically, color, linewidth, linestyle, etc...

If there’s only one datapoint in the cube, it is plotted as a horizontal line.

Parameters `cube (iris.cube.Cube)` – Input cube

36.6 Transects diagnostics

Diagnostic to produce images of a transect. These plots show either latitude or longitude against depth, and the cube value is used as the colour scale.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, and one of the latitude or longitude coordinates has been reduced to a single value.

An appropriate preprocessor for a 3D+time field would be:

```
preprocessors:
 prep_transect:
 climate_statistics:
 operator: mean
 extract_transect: # Atlantic Meridional Transect
 latitude: [-50., 50.]
 longitude: 332.
```

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML) ledm@pml.ac.uk
Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add_sea_floor(cube)</code></td>
<td>Add a simple sea floor line from the cube mask.</td>
</tr>
<tr>
<td><code>determine_set_y_logscale(cfg, metadata)</code></td>
<td>Determine whether to use a log scale y axis.</td>
</tr>
<tr>
<td><code>determine_transect_str(cube[, region])</code></td>
<td>Determine the Transect String.</td>
</tr>
<tr>
<td><code>main(cfg)</code></td>
<td>Load the config file and some metadata, then pass them the plot making tools.</td>
</tr>
<tr>
<td><code>make_cube_region_dict(cube)</code></td>
<td>Take a cube and return a dictionary region: cube.</td>
</tr>
<tr>
<td><code>make_depth_safe(cube)</code></td>
<td>Make the depth coordinate safe.</td>
</tr>
<tr>
<td><code>make_transect_contours(cfg, metadata, filename)</code></td>
<td>Make a contour plot of the transect for an indivudual model.</td>
</tr>
<tr>
<td><code>make_transects_plots(cfg, metadata, filename)</code></td>
<td>Make a simple plot of the transect for an indivudual model.</td>
</tr>
<tr>
<td><code>multi_model_contours(cfg, metadatas)</code></td>
<td>Make a multi model comparison plot showing several transect contour plots.</td>
</tr>
<tr>
<td><code>titlify(title)</code></td>
<td>Check whether a title is too long then add it to current figure.</td>
</tr>
</tbody>
</table>

### `esmvaltool.diag_scripts.ocean.diagnostic_transects.add_sea_floor(cube)`
Add a simple sea floor line from the cube mask.

**Parameters**
- `cube (iris.cube.Cube)` – Input cube to use to produce the sea floor.

### `esmvaltool.diag_scripts.ocean.diagnostic_transects.determine_set_y_logscale(cfg, metadata)`
Determine whether to use a log scale y axis.

**Parameters**
- `cfg (dict)` – the opened global config dictionairy, passed by ESMValTool.
- `metadata (dict)` – The metadata dictionairy for a specific model.

**Returns**
Boolean to flag whether to plot as a log scale.

**Return type**
`bool`

### `esmvaltool.diag_scripts.ocean.diagnostic_transects.determine_transect_str(cube[, region])`
Determine the Transect String.

Takes a guess at a string to describe the transect.

**Parameters**
- `cube (iris.cube.Cube)` – Input cube to use to determine the transect name.

### `esmvaltool.diag_scripts.ocean.diagnostic_transects.main(cfg)`
Load the config file and some metadata, then pass them the plot making tools.

**Parameters**
- `cfg (dict)` – the opened global config dictionairy, passed by ESMValTool.

### `esmvaltool.diag_scripts.ocean.diagnostic_transects.make_cube_region_dict(cube)`
Take a cube and return a dictionary region: cube.

Each item in the dict is a layer with a separate cube for each layer. ie: cubes[region] = cube from specific region

Cubes with no region component are returns as: cubes[""] = cube with no region component.

This is based on the method diagnostics_tools.make_cube_layer_dict, however, it wouldn’t make sense to look for depth layers here.

---

36.6. Transects diagnostics
**Parameters**  
cube (*iris.cube.Cube*) – the opened dataset as a cube.

**Returns**  
A dictionary of layer name : layer cube.

**Return type**  
dict

esmvaltool.diag_scripts.ocean.diag_contour_files.make_contour_files(cube)

Make the depth coordinate safe.

**Parameters**  
cube (*iris.cube.Cube*) – the opened dataset as a cube.

**Returns**  
A dictionary of layer name : layer cube.

**Return type**  
dict

esmvaltool.diag_scripts.ocean.diag_contour_files.make_transect_contours(cfg, metadata, filename)

Make a contour plot of the transect for an individual model.

This tool loads the cube from the file, checks that the units are sensible BGC units, checks for layers, adjusts the titles accordingly, determines the ultimate file name and format, then saves the image.

**Parameters**
- **cfg (dict)** – the opened global config dictionary, passed by ESMValTool.
- **metadata (dict)** – The metadata dictionary for a specific model.
- **filename (str)** – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diag_contour_files.make_transects_plots(cfg, metadata, filename)

Make a simple plot of the transect for an individual model.

This tool loads the cube from the file, checks that the units are sensible BGC units, checks for layers, adjusts the titles accordingly, determines the ultimate file name and format, then saves the image.

**Parameters**
- **cfg (dict)** – the opened global config dictionary, passed by ESMValTool.
- **metadata (dict)** – The metadata dictionary for a specific model.
- **filename (str)** – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diag_contour_files.multi_model_contours(cfg, metadatas)

Make a multi model comparison plot showing several transect contour plots.

This tool loads several cubes from the files, checks that the units are sensible BGC units, checks for layers, adjusts the titles accordingly, determines the ultimate file name and format, then saves the image.

**Parameters**
- **cfg (dict)** – the opened global config dictionary, passed by ESMValTool.
- **metadatas (dict)** – The metadatas dictionary for a specific model.
esmvaltool.diag_scripts.ocean.diagnostic_transects.titlify(title)
Check whether a title is too long then add it to current figure.

Parameters title (str) – The title for the figure.

36.7 Sea Ice Diagnostics.

Diagnostic to produce a series of images which are useful for evaluating the behaviour of the a sea ice model.

There are three kinds of plots shown here. 1. Sea ice Extent maps plots with a stereoscoic projection. 2. Maps plots of individual models ice fraction. 3. Time series plots for the total ice extent.

All three kinds of plots are made for both Summer and Winter in both the North and Southern hemisphere.

Note that this diagnostic assumes that the preprocessors do the bulk of the hard work, and that the cube received by this diagnostic (via the settings.yml and metadata.yml files) has no time component, a small number of depth layers, and a latitude and longitude coordinates.

This diagnostic takes data from either North or South hemisphere, and from either December-January-February or June-July-August. This diagnostic requires the data to be 2D+time, and typically expects the data field to be the sea ice cover. An approproate preprocessor would be:

```yaml
preprocessors:
timeseries_NHW_ice_extent: # North Hemisphere Winter ice_extent
custom_order: true
extract_time:
 start_year: 1960
 start_month: 12
 start_day: 1
 end_year: 2005
 end_month: 9
 end_day: 31
extract_season:
 season: DJF
extract_region:
 start_longitude: -180.
 end_longitude: 180.
 start_latitude: 0.
 end_latitude: 90.
```

Note that this recipe may not function on machines with no access to the internet, as cartopy may try to download the shapefiles. The solution to this issue is to put the relevant cartopy shapefiles on a disk visible to your machine, then link that path to ESMValTool via the `auxiliary_data_dir` variable. The cartopy masking files can be downloaded from:

https://www.naturalearthdata.com/downloads/

Here, cartopy uses the 1:10, physical coastlines and land files:

```
110m_coastline.dbf 110m_coastline.shp 110m_coastline.shx
110m_land.dbf 110m_land.shp 110m_land.shx
```

This tool is part of the ocean diagnostic tools package in the ESMValTool.

Author: Lee de Mora (PML)  ledm@pml.ac.uk

Functions
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aggregate_by_season(cube)</code></td>
<td>Aggregate the cube into seasonal means.</td>
</tr>
<tr>
<td><code>calculate_area_time_series(cube, plot_type, ...)</code></td>
<td>Calculate the area of unmasked cube cells.</td>
</tr>
<tr>
<td><code>create_ice_cmap([threshold])</code></td>
<td>Create colour map with ocean blue below a threshold and white above.</td>
</tr>
<tr>
<td><code>get_pole(cube)</code></td>
<td>Figure out the hemisphere and returns it as a string (North or South).</td>
</tr>
<tr>
<td><code>get_season(cube)</code></td>
<td>Return a climatological season time string.</td>
</tr>
<tr>
<td><code>get_time_string(cube)</code></td>
<td>Return a climatological season string in the format: “year season”.</td>
</tr>
<tr>
<td><code>get_year(cube)</code></td>
<td>Return the cube year as a string.</td>
</tr>
<tr>
<td><code>main(cfg)</code></td>
<td>Load the config file and metadata, then pass them the plot making tools.</td>
</tr>
<tr>
<td><code>make_map_extent_plots(cfg, metadata, filename)</code></td>
<td>Make an extent map plot showing several times for an individual model.</td>
</tr>
<tr>
<td><code>make_map_plots(cfg, metadata, filename)</code></td>
<td>Make a simple map plot for an individual model.</td>
</tr>
<tr>
<td><code>make_polar_map(cube[, pole, cmap])</code></td>
<td>Make a polar stereoscopic map plot.</td>
</tr>
<tr>
<td><code>make_ts_plots(cfg, metadata, filename)</code></td>
<td>Make a ice extent and ice area time series plot for an individual model.</td>
</tr>
</tbody>
</table>

ESMValTool User’s and Developer’s Guide, Release 2.1.1

### aggregate_by_season(cube)

Aggregate the cube into seasonal means.

Note that it is not currently possible to do this in the preprocessor, as the seasonal mean changes the cube units.

**Parameters**

- `cube (iris.cube.Cube)`: Data Cube

**Returns**

- Data Cube with the seasonal means

**Return type**

- `iris.cube.Cube`

### calculate_area_time_series(cube, plot_type, ...)

Calculate the area of unmasked cube cells.

Requires a cube with two spacial dimensions. (no depth coordinate).

**Parameters**

- `cube (iris.cube.Cube)`: Data Cube
- `plot_type (str)`: The type of plot: ice extent or ice area
- `threshold (float)`: The threshold for ice fraction (typically 15%)

**Returns**

- `numpy array`: An numpay array containing the time points.
- `numpy.array`: An numpay array containing the total ice extent or total ice area.

### create_ice_cmap(threshold=0.15)

Create colour map with ocean blue below a threshold and white above.

**Parameters**

- `threshold (float)`: The threshold for the line between blue and white.

**Returns**

- The resulting colour map.

**Return type**

- `matplotlib.colors.LinearSegmentedColormap`
esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_pole(cube)
Figure out the hemisphere and returns it as a string (North or South).

**Parameters**
- `cube (iris.cube.Cube)` – Data Cube

**Returns**
The hemisphere (North or South)

**Return type**
`str`

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_season(cube)
Return a climatological season time string.

**Parameters**
- `cube (iris.cube.Cube)` – Data Cube

**Returns**
The climatological season as a string

**Return type**
`str`

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_time_string(cube)
Return a climatological season string in the format: “year season”.

**Parameters**
- `cube (iris.cube.Cube)` – Data Cube

**Returns**
The climatological season as a string

**Return type**
`str`

esmvaltool.diag_scripts.ocean.diagnostic_seaice.get_year(cube)
Return the cube year as a string.

**Parameters**
- `cube (iris.cube.Cube)` – Data Cube

**Returns**
The year as a string

**Return type**
`str`

esmvaltool.diag_scripts.ocean.diagnostic_seaice.main(cfg)
Load the config file and metadata, then pass them the plot making tools.

**Parameters**
- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_map_extent_plots(cfg, metadata, filename)
Make an extent map plot showing several times for an individual model.

**Parameters**
- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
- `metadata (dict)` – The metadata dictionary for a specific model.
- `filename (str)` – The preprocessed model file.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_map_plots(cfg, metadata, filename)
Make a simple map plot for an individual model.

**Parameters**
- `cfg (dict)` – the opened global config dictionary, passed by ESMValTool.
- `metadata (dict)` – The metadata dictionary for a specific model.
- `filename (str)` – The preprocessed model file.
esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_polar_map(cube, pole='North', cmap='Blues_r')

Make a polar stereoscopic map plot.

The cube is the opened cube (two dimensional), pole is the polar region (North/South) cmap is the colourmap.

Parameters

- **cube** (*iris.cube.Cube*) – Data Cube
- **pole** (*str*) – The hemisphere
- **cmap** (*str*) – The string describing the matplotlib colourmap.

Returns

- **matplotlib.pyplot.figure** – The matplotlib figure where the map was drawn.
- **matplotlib.pyplot.axes** – The matplotlib axes where the map was drawn.

esmvaltool.diag_scripts.ocean.diagnostic_seaice.make_ts_plots(cfg, metadata, filename)

Make a ice extent and ice area time series plot for an individual model.

Parameters

- **cfg** (*dict*) – the opened global config dictionairy, passed by ESMValTool.
- **metadata** (*dict*) – The metadata dictionairy for a specific model.
- **filename** (*str*) – The preprocessed model file.

36.8 Diagnostic tools

This module contains several python tools used elsewhere by the ocean diagnostics package.
This tool is part of the ocean diagnostic tools package in the ESMValTool.

**Author:** Lee de Mora (PML)  ledm@pml.ac.uk

**Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_legend_outside_right(plot_details, ax1)</td>
<td>Add a legend outside the plot, to the right.</td>
</tr>
<tr>
<td>bgc_units(cube, name)</td>
<td>Convert the cubes into some friendlier units.</td>
</tr>
<tr>
<td>cube_time_to_float(cube)</td>
<td>Convert from time coordinate into decimal time.</td>
</tr>
<tr>
<td>decadal_average(cube)</td>
<td>Calculate the decadal_average.</td>
</tr>
<tr>
<td>folder(name)</td>
<td>Make a directory out of a string or list or strings.</td>
</tr>
<tr>
<td>get_array_range(arrays)</td>
<td>Determine the minimum and maximum values of a list of arrays.</td>
</tr>
<tr>
<td>get_colour_from_cmap(number, total[, cmap])</td>
<td>Get a colour number of total from a cmap.</td>
</tr>
<tr>
<td>get_cube_range(cubes)</td>
<td>Determine the minimum and maximum values of a list of cubes.</td>
</tr>
<tr>
<td>get_cube_range_diff(cubes)</td>
<td>Determine the largest deviation from zero in an list of cubes.</td>
</tr>
<tr>
<td>get_decade(coord, value)</td>
<td>Determine the decade.</td>
</tr>
<tr>
<td>get_image_format(cfg[, default])</td>
<td>Load the image format from the global config file.</td>
</tr>
<tr>
<td>get_image_path(cfg, metadata[, prefix, ...])</td>
<td>Produce a path to the final location of the image.</td>
</tr>
<tr>
<td>get_input_files(cfg[, index])</td>
<td>Load input configuration file as a Dictionairy.</td>
</tr>
</tbody>
</table>
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_obs_projects()</code></td>
<td>Return a list of strings with the names of observations projects.</td>
</tr>
<tr>
<td><code>guess_calendar_datetime(cube)</code></td>
<td>Guess the cftime.datetime form to create datetimes.</td>
</tr>
<tr>
<td><code>load_thresholds(cfg, metadata)</code></td>
<td>Load the thresholds for contour plots from the config files.</td>
</tr>
<tr>
<td><code>make_cube_layer_dict(cube)</code></td>
<td>Take a cube and return a dictionary layer:cube</td>
</tr>
<tr>
<td><code>match_model_to_key(model_type, cfg_dict, ...)</code></td>
<td>Match up model or observations dataset dictionaries from config file.</td>
</tr>
</tbody>
</table>

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.add_legend_outside_right(plot_details, ax1, column_width=0.1, loc='right')
```

Add a legend outside the plot, to the right.

`plot_details` is a 2 level dict, where the first level is some key (which is hidden) and the 2nd level contains the keys: ‘c’: color ‘lw’: line width ‘label’: label for the legend. `ax1` is the axis where the plot was drawn.

**Parameters**

- `plot_details (dict)` – A dictionary of the plot details (color, linestyle, linewidth, label)
- `ax1 (matplotlib.pyplot.axes)` – The pyplot axes to add the
- `column_width (float)` – The width of the legend column. This is used to adjust for longer words in the legends
- `loc (string)` – Location of the legend. Options are “right” and “below”.

**Returns** A datetime creator function from cftime, based on the cube’s calendar.

**Return type** `cftime.datetime`

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.bgc_units(cube, name)
```

Convert the cubes into some friendlier units.

This is because many CMIP standard units are not the standard units used by the BGC community (ie, Celsius is preferred over Kelvin, etc.)

**Parameters**

- `cube (iris.cube.Cube)` – the opened dataset as a cube.
- `name (str)` – The string describing the data field.

**Returns** the cube with the new units.

**Return type** `iris.cube.Cube`

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.cube_time_to_float(cube)
```

Convert from time coordinate into decimal time.

Takes an iris time coordinate and returns a list of floats. :param cube: the opened dataset as a cube. :type cube: `iris.cube.Cube`

**Returns** List of floats showing the time coordinate in decimal time.

**Return type** `list`

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.decadal_average(cube)
```

Calculate the decadal_average.
**Parameters** `cube (iris.cube.Cube)` – The input cube

**Returns**

**Return type** `iris.cube`

`esmvaltool.diag_scripts.ocean.diagnostic_tools.folder(name)`

Make a directory out of a string or list or strings.

Take a string or a list of strings, convert it to a directory style, then make the folder and the string. Returns folder string and final character is always os.sep. (‘/’)

**Parameters** `name (list or string)` – A list of nested directories, or a path to a directory.

**Returns** Returns a string of a full (potentially new) path of the directory.

**Return type** `str`

`esmvaltool.diag_scripts.ocean.diagnostic_tools.get_array_range(arrays)`

Determine the minimum and maximum values of a list of arrays.

**Parameters** `arrays (list of numpy.array)` – A list of numpy.array.

**Returns** A list of two values, the overall minimum and maximum values of the list of cubes.

**Return type** `list`

`esmvaltool.diag_scripts.ocean.diagnostic_tools.get_colour_from_cmap(number, total, cmap='jet')`

Get a colour `number of total` from a cmap.

This function is used when several lines are created evenly along a colour map.

**Parameters**

- `number (int, float)` – The
- `total (int)` –
- `cmap (string, plt.cm)` – A colour map, either by name (string) or from matplotlib

`esmvaltool.diag_scripts.ocean.diagnostic_tools.get_cube_range(cubes)`

Determine the minimum and maximum values of a list of cubes.

**Parameters** `cubes (list of iris.cube.Cube)` – A list of cubes.

**Returns** A list of two values: the overall minumum and maximum values of the list of cubes.

**Return type** `list`

`esmvaltool.diag_scripts.ocean.diagnostic_tools.get_cube_range_diff(cubes)`

Determine the largest deviation from zero in an list of cubes.

**Parameters** `cubes (list of iris.cube.Cube)` – A list of cubes.

**Returns** A list of two values: the maximum deviation from zero and its opposite.

**Return type** `list`

`esmvaltool.diag_scripts.ocean.diagnostic_tools.get_decade(coord, value)`

Determine the decade.

Called by iris.coord_categorisation.add_categorised_coord.

`esmvaltool.diag_scripts.ocean.diagnostic_tools.get_image_format(cfg, default='png')`

Load the image format from the global config file.
Current tested options are svg, png.

The cfg is the opened global config. The default format is used if no specific format is requested. The default is set in the user config.yml Individual diagnostics can set their own format which will supercede the main config.yml.

**Parameters**

- **cfg** (*dict*) – the opened global config dictionary, passed by ESMValTool.

**Returns**

The image format extension.

**Return type**

str

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.get_image_path(cfg, metadata, prefix='diag', suffix='image', metadata_id_list='default')
```

Produce a path to the final location of the image.

The cfg is the opened global config, metadata is the metadata dictionary (for the individual dataset file)

**Parameters**

- **cfg** (*dict*) – the opened global config dictionary, passed by ESMValTool.
- **metadata** (*dict*) – The metadata dictionary for a specific model.
- **prefix** (*str*) – A string to prepend to the image basename.
- **suffix** (*str*) – A string to append to the image basename
- **metadata_id_list** (*list*) – A list of strings to add to the file path. It loads these from the cfg.

**Returns**

The ultimate image path

**Return type**

str

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.get_input_files(cfg, index='')
```

Load input configuration file as a Dictionary.

Get a dictionary with input files from the metadata.yml files. This is a wrapper for the _get_input_data_files function from diag_scripts.shared._base.

**Parameters**

- **cfg** (*dict*) – the opened global config dictionary, passed by ESMValTool.
- **index** (*int*) – the index of the file in the cfg file.

**Returns**

A dictionary of the input files and their linked details.

**Return type**

dict

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.get_obs_projects()
```

Return a list of strings with the names of observations projects.

Please keep this list up to date, or replace it with something more sensible.

**Returns**

Returns a list of strings of the various types of observational data.

**Return type**

list

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.guess_calendar_datetime(cube)
```

Guess the cftime.datetime form to create datetimes.

**Parameters**

- **cube** (*iris.cube.Cube*) – the opened dataset as a cube.

**Returns**

A datetime creator function from cftime, based on the cube’s calendar.
**Return type**  cftime.datetime

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.load_thresholds(cfg, metadata)
```
Load the thresholds for contour plots from the config files.

**Parameters**

- **cfg (dict)** – the opened global config dictionary, passed by ESMValTool.
- **metadata (dict)** – the metadata dictionary

**Returns**  List of thresholds

**Return type**  list

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.make_cube_layer_dict(cube)
```
Take a cube and return a dictionary layer:cube

Each item in the dict is a layer with a separate cube for each layer. ie: cubes[depth] = cube from specific layer

Cubes with no depth component are returned as dict, where the dict key is a blank empty string, and the value is
the cube.

**Parameters**

- **cube (iris.cube.Cube)** – the opened dataset as a cube.

**Returns**  A dictionary of layer name : layer cube.

**Return type**  dict

```python
esmvaltool.diag_scripts.ocean.diagnostic_tools.match_model_to_key(model_type, cfg_dict, input_files_dict)
```
Match up model or observations dataset dictionaries from config file.

This function checks that the control_model, exper_model and observational_dataset dictionaries from the
recipe are matched with the input file dictionary in the cfg metadata.

**Parameters**

- **model_type (str)** – The string model_type to match (only used in debugging).
- **cfg_dict (dict)** – the config dictionary item for this model type, parsed directly from the diagnostics/ scripts, part of the recipe.
- **input_files_dict (dict)** – The input file dictionary, loaded directly from the get_input_files() function, in diagnostics_tools.py.

**Returns**  A dictionary of the input files and their linked details.

**Return type**  dict
CHAPTER
THIRTYSEVEN

MACHINE LEARNING REGRESSION (MLR) DIAGNOSTICS

This module provides various tools to create and evaluate MLR models for arbitrary input variables.

37.1 Examples

• Constraining uncertainty in projected gross primary production (GPP) with machine learning: Use Gradient Boosted Regression Tree (GBRT) algorithm to constrain projected Gross Primary Production (GPP) in RCP 8.5 scenario using observations of process-based predictors.

37.2 Diagnostic scripts

37.2.1 Evaluate residuals

Simple evaluation of residuals (coming from MLR model output).

Description

This diagnostic evaluates residuals created by MLR models.

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO
Configuration options in recipe

**ignore**: list of dict, optional  Ignore specific datasets by specifying multiple dict s of metadata.

**mse_plot**: dict, optional  Additional options for plotting the mean square errors (MSE). Specify additional keyword arguments for seaborn.boxplot() by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

**pattern**: str, optional  Pattern matched against ancestor file names.

**rmse_plot**: dict, optional  Additional options for plotting the root mean square errors (RMSE). Specify additional keyword arguments for seaborn.boxplot() by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

**savefig_kwargs**: dict, optional  Keyword arguments for matplotlib.pyplot.savefig().

**seaborn_settings**: dict, optional  Options for seaborn.set() (affects all plots), see https://seaborn.pydata.org/generated/seaborn.set.html.

**weighted_samples**: dict  If specified, use weighted root mean square error. The given keyword arguments are directly passed to esmvaltool.diag_scripts.mlr.get_all_weights() to calculate the sample weights. By default, area weights and time weights are used.

### 37.2.2 MLR main diagnostic

Main Diagnostic script to create MLR models.

**Description**

This diagnostic script creates Machine Learning Regression (MLR) models which use inter-model relations between process-based predictors (usually from the past/present climate) and a target variable (usually a projection of the future climate) to get a constrained prediction of the target variable. It provides an interface for using MLR models (subclasses of esmvaltool.diag_scripts.mlr.models.MLRModel).

**Author**

Manuel Schlund (DLR, Germany)

**Project**

CRESCENDO

Configuration options in recipe

**efecv_kwargs**: dict, optional  If specified, use these additional keyword arguments to perform a exhaustive feature elimination using cross-validation. May not be used together with grid_search_cv_param_grid or rfecv_kwargs.

grid_search_cv_param_grid: dict or list of dict, optional  If specified, perform exhaustive parameter search using cross-validation instead of simply calling `esmvaltool.diag_scripts.mlr.models.MLRModel.fit()`. Contains parameters (keys) and ranges (values) for the exhaustive parameter search. Have to be given for each step of the pipeline separated by two underscores, i.e. \texttt{s__p} is the parameter \texttt{p} for step \texttt{s}. May not be used together with \texttt{efecv_kwargs} or \texttt{rfecv_kwargs}.

\textbf{group_metadata: str, optional}  Group input data by an attribute. For every group element (set of datasets), an individual MLR model is calculated. Only affects \texttt{feature} and \texttt{label} datasets. May be used together with the option \texttt{pseudo_reality}.

\textbf{ignore: list of dict, optional}  Ignore specific datasets by specifying multiple \texttt{dict}s of metadata.

\textbf{mlr_model_type: str}  MLR model type. The given model has to be defined in `esmvaltool.diag_scripts.mlr.models`.

\textbf{only_predict: bool, optional (default: False)}  If True, only use `esmvaltool.diag_scripts.mlr.models.MLRModel.predict()` and do not create any other output (CSV files, plots, etc.).

\textbf{pattern: str, optional}  Pattern matched against ancestor file names.

\textbf{plot_partial_dependences: bool, optional (default: False)}  Plot partial dependence of every feature in MLR model (computationally expensive).

\textbf{predict_kwargs: dict, optional}  Optional keyword arguments for the final regressor's \texttt{predict()} function.

\textbf{pseudo_reality: list of str, optional}  List of dataset attributes which are used to group input data for a pseudo-reality test (also known as \textit{model-as-truth} or \textit{perfect-model} setup). For every element of the group a single MLR model is fitted on all data except for that of the specified group element. This group element is then used as additional \texttt{prediction_input} and \texttt{prediction_reference}. This allows a direct assessment of the predictive power of the MLR model by comparing the MLR prediction output and the true labels (similar to splitting the input data in a training and test set, but not dividing the data randomly but using specific datasets, e.g. the different climate models). May be used together with the option \texttt{group_metadata}.

\textbf{rfecv_kwargs: dict, optional}  If specified, use these additional keyword arguments to perform a recursive feature elimination using cross-validation, see \url{https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html}. May not be used together with \texttt{efecv_kwargs} or \texttt{grid_search_cv_param_grid}.

\textbf{save_mlr_model_error: str or int, optional}  Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with \texttt{var_type} set to \texttt{prediction_input_error} and setting \texttt{save_propagated_errors} to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option \texttt{test_size} is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the \texttt{group_attributes}. Only possible if \texttt{group_datasets_by_attributes} is given. If the option is set to an integer \texttt{n} (!= 0), the (constant) error is estimated as RMSEP using \texttt{n}-fold cross-validation.

\textbf{save_lime_importance: bool, optional (default: False)}  Additionally save local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

\textbf{save_propagated_errors: bool, optional (default: False)}  Additionally save propagated errors from \texttt{prediction_input_error} datasets.

\textbf{select_metadata: dict, optional}  Pre-select input data by specifying (key, value) pairs. Affects all datasets regardless of \texttt{var_type}.

Additional optional parameters are optional parameters for `esmvaltool.diag_scripts.mlr.models.MLRModel` given here or optional parameters of `esmvaltool.diag_scripts.mlr.mmm` if \texttt{mlr_model_type}='mmm'.
### 37.2.3 Multi-model means (MMM)

Use simple multi-model mean for predictions.

**Description**

This diagnostic calculates the (unweighted) mean over all given datasets for a given target variable.

**Author**

Manuel Schlund (DLR, Germany)

**Project**

CRESSENDO

**Configuration options in recipe**

- `convert_units_to: str, optional` Convert units of the input data. Can also be given as dataset option.
- `dtype: str (default: ‘float64’)` Internal data type which is used for all calculations, see https://docs.scipy.org/doc/numpy/user/basics.types.html for a list of allowed values.
- `ignore: list of dict, optional` Ignore specific datasets by specifying multiple dict s of metadata.
- `mlr_model_name: str, optional (default: ‘MMM’)` Human-readable name of the MLR model instance (e.g used for labels).
- `mmm_error_type: str, optional` If given, additionally saves estimated squared MMM model error. If the option is set to 'loo', the (constant) error is estimated as RMSEP using leave-one-out cross-validation. No other options are supported at the moment.
- `pattern: str, optional` Pattern matched against ancestor file names.
- `prediction_name: str, optional` Default prediction_name of output cubes if no ‘prediction_reference’ dataset is given.
- `weighted_samples: dict` If specified, use weighted mean square error to estimate prediction error. The given keyword arguments are directly passed to `esmvaltool.diag_scripts.mlr.get_all_weights()` to calculate the sample weights. By default, area weights and time weights are used.

### 37.2.4 Plotting functionalities

Plotting scripts for MLR models input/output.
Description

This diagnostic creates plots for MLR model input/output.

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Notes

All configuration options starting with plot_ specify keyword arguments for a specific plot type. A certain plot type is only plotted if the corresponding option is given in the recipe (if no additional keyword arguments are desired, use {}).

Configuration options in recipe

- **additional_plot_kwargs_xy_plots**: dict, optional  Optional keyword arguments (values) for single datasets used in X-Y plots. They keys may include a var_type or values of the attribute given by group_by_attribute.
- **alias**: dict, optional  str to str mapping for nicer plot labels (e.g. {'feature': 'Historical CMIP5 data'}).
- **apply_common_mask**: bool, optional (default: False)  Apply common mask to all datasets prior to plotting. Requires identical shapes for all datasets.
- **group_attribute_as_default_alias**: bool, optional (default: True)  If True, sse value of attribute given by group_by_attribute as default alias if possible. If False, use full group name (including var_type) as default alias.
- **group_by_attribute**: str, optional (default: 'mlr_model_name')  By default, datasets are grouped using the var_type attribute. This option can be used to specify a further attribute to group datasets. This diagnostic expects a single dataset per group.
- **ignore**: list of dict, optional  Ignore specific datasets by specifying multiple dict s of metadata.
- **legend_kwargs**: dict, optional  Optional keyword arguments of matplotlib.pyplot.legend() (affects only plots with legends).
- **map_plot_type**: str, optional (default: 'pcolormesh')  Type of plot used for plotting maps. Must be one of 'pcolormesh' or 'contourf'.
- **pattern**: str, optional  Pattern matched against ancestor file names.
- **plot_map**: dict, optional  Specify additional keyword arguments for plotting global maps showing datasets by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).
- **plot_map_abs_biases**: dict, optional  Specify additional keyword arguments for plotting global maps showing absolute biases by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).
plot_map_ratios: dict, optional Specify additional keyword arguments for plotting global maps showing ratios of datasets by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

plot_map_rel_biases: dict, optional Specify additional keyword arguments for plotting global maps showing relative biases of datasets by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot).

plot_xy: dict, optional Specify additional keyword arguments for simple X-Y plots by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot). By default, plots data against dimensional coordinate (if available). Use x_coord (str) to use another coordinate as X-axis. Use reg_line: True to additionally plot a linear regression line.

plot_xy_with_errors: dict, optional Specify additional keyword arguments for X-Y plots with error ranges plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot). By default, plots data against dimensional coordinate (if available). Use x_coord (str) to use another coordinate as X-axis.

print_corr: bool, optional (default: False) Print and save Pearson correlation coefficient between all datasets at the end. Requires identical shapes for all datasets.

savefig_kwargs: dict, optional Keyword arguments for matplotlib.pyplot.savefig().


years_in_title: bool, optional (default: False) Print years in default title of plots.

37.2.5 Postprocessing functionalities

Simple postprocessing of MLR model output.

Description

This diagnostic performs postprocessing operations for MLR model output (mean and error).

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Notes

Prior to postprocessing, this diagnostic groups input datasets according to tag and prediction_name. For each group, accepts datasets with three different var_types:

- prediction_output: Exactly one necessary, refers to the mean prediction and serves as reference dataset (regarding shape).
- prediction_output_error: Arbitrary number of error datasets. If not given, error calculation is skipped. May be squared errors (marked by the attribute squared) or not. In addition, a single covariance dataset can be specified (short_name ending with _cov).
• **prediction_input**: Dataset used to estimate covariance structure of the mean prediction (i.e. matrix of Pearson correlation coefficients) for error estimation. At most one dataset allowed. Ignored when no **prediction_output_error** is given. This is only possible when (1) the shape of the **prediction_input** dataset is identical to the shape of the **prediction_output_error** datasets, (2) the number of dimensions of the **prediction_input** dataset is higher than the number of dimensions of the **prediction_output_error** datasets and they have identical trailing (rightmost) dimensions or (3) the number of dimensions of the **prediction_input** dataset is higher than the number of dimensions of **prediction_output_error** datasets and all dimensions of the **prediction_output_error** datasets are mapped to a corresponding dimension of the **prediction_input** using the **cov_estimate_dim_map** option (e.g. when **prediction_input** has shape (10, 5, 100, 20) and **prediction_output_error** has shape (5, 20), you can use **cov_estimate_dim_map**: [1, 3] to map the dimensions of **prediction_output_error** to dimension 1 and 3 of **prediction_input**).

All data with other **var_type**s is ignored (feature, label, etc.).

Real error calculation (using covariance dataset given as **prediction_output_error**) and estimation (using **prediction_input** dataset to estimate covariance structure) is only possible if the mean prediction cube is collapsed completely during postprocessing, i.e. all coordinates are listed for either **mean** or **sum**.

**Configuration options in recipe**

- **add_var_from_cov**: bool, optional (default: True) Calculate variances from covariance matrix (diagonal elements) and add those to (squared) error datasets. Set to **False** if variance is already given separately in prediction output.

- **area_weighted**: bool, optional (default: True) Calculate weighted averages/sums when collapsing over latitude and/or longitude coordinates using grid cell areas (calculated using grid cell boundaries). Only possible if the datasets contains **latitude** and **longitude** coordinates.

- Convert units to: str, optional Convert units of the input data.

- **cov_estimate_dim_map**: list of int, optional Map dimensions of **prediction_output_error** datasets to corresponding dimensions of **prediction_input** used for estimating covariance. Only relevant if both dataset types are given. See notes above for more information.

- **ignore**: list of dict, optional Ignore specific datasets by specifying multiple dict s of metadata.

- **landsea_fraction_weighted**: str, optional When given, calculate weighted averages/sums when collapsing over latitude and/or longitude coordinates using land/sea fraction (calculated using Natural Earth masks). Only possible if the datasets contains **latitude** and **longitude** coordinates. Must be one of 'land', 'sea'.

- **mean**: list of str, optional Perform mean over the given coordinates.

- **pattern**: str, optional Pattern matched against ancestor file names.

- **sum**: list of str, optional Perform sum over the given coordinates.

- **time_weighted**: bool, optional (default: True) Calculate weighted averages/sums for time (using grid cell boundaries).
37.2.6 Preprocessing functionalities

Simple preprocessing of MLR model input.

Description

This diagnostic performs preprocessing operations for datasets used as MLR model input in a desired way. It can also be used to process output of MLR models for plotting.

Author

Manuel Schlund (DLR, Germany)

Project

CRESCENDO

Configuration options in recipe

aggregate_by: dict, optional Aggregate over given coordinates (dict values; given as list of str) using a desired aggregator (dict key; given as str). Allowed aggregators are 'max', 'mean', 'median', 'min', 'sum', 'std', 'var', and 'trend'.

apply_common_mask: bool, optional (default: False) Apply common mask to all datasets. Requires identical shapes for all datasets.

area_weighted: bool, optional (default: True) Use weighted aggregation when collapsing over latitude and/or longitude using collapse. Weights are estimated using grid cell boundaries. Only possible if the dataset contains latitude and longitude coordinates.

argsort: dict, optional Calculate numpy.ma.argsort() along given coordinate to get ranking. The coordinate can be specified by the coord key. If descending is set to True, use descending order instead of ascending.

collapse: dict, optional Collapse over given coordinates (dict values; given as list of str) using a desired aggregator (dict key; given as str). Allowed aggregators are 'max', 'mean', 'median', 'min', 'sum', 'std', 'var', and 'trend'.

convert_units_to: str, optional Convert units of the input data. Can also be given as dataset option.

extract: dict, optional Extract certain values (dict values, given as int, float or iterable of them) for certain coordinates (dict keys, given as str).

extract_ignore_bounds: bool, optional (default: False) If True, ignore coordinate bounds when using extract or extract_range. If False, consider coordinate bounds when using extract or extract_range. For time coordinates, bounds are always ignored.

extract_range: dict, optional Like extract, but instead of specific values extract ranges (dict values, given as iterable of exactly two int s or float s) for certain coordinates (dict keys, given as str).

ignore: list of dict, optional Ignore specific datasets by specifying multiple dict s of metadata.

landsea_fraction_weighted: str, optional When given, use land/sea fraction for weighted aggregation when collapsing over latitude and/or longitude using collapse. Only possible if the dataset contains latitude and longitude coordinates. Must be one of 'land', 'sea'.

mask: dict of dict Mask datasets. Keys have to be numpy.ma conversion operations (see https://docs.scipy.org/doc/numpy/reference/routines.ma.html) and values all the keyword arguments of them.
n_jobs: int (default: 1) Maximum number of jobs spawned by this diagnostic script. Use -1 to use all processors. More details are given here.

normalize_by_mean: bool, optional (default: False) Remove total mean of the dataset in the last step (resulting mean will be 0.0). Calculates weighted mean if area_weighted, time_weighted or landsea_fraction_weighted are set and the cube contains the corresponding coordinates. Does not apply to error datasets.

normalize_by_std: bool, optional (default: False) Scale total standard deviation of the dataset in the last step (resulting standard deviation will be 1.0).

output_attributes: dict, optional Write additional attributes to netcdf files, e.g. 'tag'.

pattern: str, optional Pattern matched against ancestor file names.

ref_calculation: str, optional Perform calculations involving reference dataset. Must be one of merge (simply merge two datasets by adding the data of the reference dataset as iris.coords.AuxCoord to the original dataset), add (add reference dataset), divide (divide by reference dataset), multiply (multiply with reference dataset), subtract (subtract reference dataset) or trend (use reference dataset as x axis for calculation of linear trend along a specified axis, see ref_kwargs).

ref_kwargs: dict, optional Keyword arguments for calculations involving reference datasets. Allowed keyword arguments are:

• matched_by (list of str, default: []): Use a given set of attributes to match datasets with their corresponding reference datasets (specified by ref = True).

• collapse_over (str, default: 'time'): Coordinate which is collapsed. Only relevant when ref_calculation is set to trend.

return_trend_stderr: bool, optional (default: True) Return standard error of slope in case of trend calculations (as var_type=prediction_input_error).

scalar_operations: dict, optional Operations involving scalars. Allowed keys are add, divide, multiply or subtract. The corresponding values (float or int) are scalars that are used with the operations.

time_weighted: bool, optional (default: True) Use weighted aggregation when collapsing over time dimension using collapse. Weights are estimated using grid cell boundaries.

unify_coords_to: dict, optional If given, replace coordinates of all datasets with that of a reference cube (if necessary and possible, broadcast beforehand). The reference dataset is determined by keyword arguments given to this option (keyword arguments must point to exactly one dataset).

37.2.7 Rescale data with emergent constraints

Rescale label data using a single emergent constraint.

Description

This diagnostic uses an emergent relationship between data marked as var_type=label (Y axis) and var_type=feature (X axis) together with an observation of the X axis (var_type=prediction_input and var_type=prediction_input_error) to calculate factors that are necessary to rescale each input point so that it matches the constraint. The rescaling is applied to data marked as var_type=label_to_rescale. All data needs the attribute tag which needs to be identical for label, prediction_input, prediction_input_error and label_to_rescale. Only a single tag for feature is possible.
Configuration options in recipe

group_by_attributes: list of str, optional (default: ['dataset']) List of attributes used to separate different input points.

ignore: list of dict, optional Ignore specific datasets by specifying multiple dict s of metadata.

legend_kwargs: dict, optional Optional keyword arguments of matplotlib.pyplot.legend() (affects only plots with legends).

pattern: str, optional Pattern matched against ancestor file names.

plot_emergent_relationship: dict, optional If given, plot emergent relationship between X and Y data. Specify additional keyword arguments by plot_kwargs and plot appearance options by pyplot_kwargs (processed as functions of matplotlib.pyplot). Use {} to plot with default settings.

plot_kwargs_for_groups: dict, optional Specify additional keyword arguments (values) for the different points defined by group_by_attributes (keys) used in plots.

savefig_kwargs: dict, optional Keyword arguments for matplotlib.pyplot.savefig().


37.3 Auxiliary scripts

37.3.1 Auxiliary functions for MLR scripts

Convenience functions for MLR diagnostics.

Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>check_predict_kwargs</td>
<td>Check keyword argument for predict() functions.</td>
</tr>
<tr>
<td>create_alias</td>
<td>Create alias key of a dataset using a list of attributes.</td>
</tr>
<tr>
<td>datasets_have_mlr_attributes</td>
<td>Check (MLR) attributes of datasets.</td>
</tr>
<tr>
<td>get_1d_cube</td>
<td>Convert 2 arrays to iris.cube.Cube (with single coordinate).</td>
</tr>
<tr>
<td>get_absolute_time_units</td>
<td>Convert time reference units to absolute ones.</td>
</tr>
<tr>
<td>get_alias</td>
<td>Get alias for dataset.</td>
</tr>
<tr>
<td>get_all_weights</td>
<td>Get all possible weights of cube.</td>
</tr>
<tr>
<td>get_area_weights</td>
<td>Get area weights of cube.</td>
</tr>
<tr>
<td>get_horizontal_weights</td>
<td>Get horizontal weights of cube.</td>
</tr>
<tr>
<td>get_input_data</td>
<td>Get input data and check MLR attributes if desired.</td>
</tr>
</tbody>
</table>

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_landsea_fraction_weights(cube, area_type)</code></td>
<td>Get land/sea fraction weights of cube using Natural Earth files.</td>
</tr>
<tr>
<td><code>get_new_path(cfg, old_path)</code></td>
<td>Convert old path to new diagnostic path.</td>
</tr>
<tr>
<td><code>get_squared_error_cube(ref_cube, error_datasets)</code></td>
<td>Get array of squared errors.</td>
</tr>
<tr>
<td><code>get_time_weights(cube[, normalize])</code></td>
<td>Get time weights of cube.</td>
</tr>
<tr>
<td><code>ignore_warnings()</code></td>
<td>Ignore warnings given by <code>WARNINGS_TO_IGNORE</code>.</td>
</tr>
<tr>
<td><code>square_root_metadata(cube)</code></td>
<td>Take the square root of the cube metadata.</td>
</tr>
<tr>
<td><code>units_power(units, power)</code></td>
<td>Raise a <code>cf_units.Unit</code> to given power preserving symbols.</td>
</tr>
</tbody>
</table>

**esmvaltool.diag_scripts.mlr.check_predict_kwargs** *(predict_kwargs)*

Check keyword argument for `predict()` functions.

- **Parameters**
  - `predict_kwargs` *(keyword arguments, optional)* – Keyword arguments for a `predict()` function.
  - **Raises** `RuntimeError` – return_var and return_cov are both set to True in the keyword arguments.

**esmvaltool.diag_scripts.mlr.create_alias** *(dataset, attributes, delimiter='*')*

Create alias key of a dataset using a list of attributes.

- **Parameters**
  - `dataset` *(dict)* – Metadata dictionary representing a single dataset.
  - `attributes` *(list of str)* – List of attributes used to create the alias.
  - `delimiter` *(str, optional (default: '-'))* – Delimiter used to separate different attributes in the alias.
- **Returns** Dataset alias.
- **Return type** `str`
- **Raises** `AttributeError` – dataset does not contain one of the attributes.

**esmvaltool.diag_scripts.mlr.datasets_have_mlr_attributes** *(datasets, log_level='debug', mode='full')*

Check (MLR) attributes of datasets.

- **Parameters**
  - `datasets` *(list of dict)* – Datasets to check.
  - `log_level` *(str, optional (default: 'debug'))* – Verbosity level of the logger.
  - `mode` *(str, optional (default: 'full'))* – Checking mode. Must be one of 'only_missing' (only check if attributes are missing), 'only_var_type' (check only var_type) or 'full' (check both).
- **Returns** True if all required attributes are available, False if not.
- **Return type** `bool`
- **Raises** `ValueError` – Invalid value for argument mode is given.

37.3. Auxiliary scripts
esmvaltool.diag_scripts.mlr.get_1d_cube(x_data, y_data, x_kwargs=None, y_kwargs=None)

Convert 2 arrays to iris.cube.Cube (with single coordinate).

Parameters

• `x_data` (numpy.ndarray) – Data for coordinate.
• `y_data` (numpy.ndarray) – Data for cube.
• `x_kwargs` (dict) – Keyword arguments passed to iris.coords.AuxCoord.
• `y_kwargs` (dict) – Keyword arguments passed to iris.cube.Cube.

Returns 1D cube with single auxiliary coordinate.
Return type iris.cube.Cube

Raises `ValueError` – Arrays are not 1D and do not have matching shapes.

esmvaltool.diag_scripts.mlr.get_absolute_time_units(units)

Convert time reference units to absolute ones.

This function converts reference time units (like 'days since YYYY') to absolute ones (like 'days').

Parameters `units` (cf_units.Unit) – Time units to convert.

Returns Absolute time units.
Return type cf_units.Unit

Raises `ValueError` – If conversion failed (e.g. input units are not time units).

esmvaltool.diag_scripts.mlr.get_alias(dataset)

Get alias for dataset.

Parameters `dataset` (dict) – Dataset metadata.

Returns Alias.
Return type str

esmvaltool.diag_scripts.mlr.get_all_weights(cube, area_weighted=True, time_weighted=True, landsea_fraction_weighted=None, normalize=False)

Get all possible weights of cube.

Parameters

• `cube` (iris.cube.Cube) – Input cube.
• `area_weighted` (bool, optional (default: True)) – Use area weights.
• `time_weighted` (bool, optional (default: True)) – Use time weights.
• `landsea_fraction_weighted` (str, optional) – If given, use land/sea fraction weights. Must be one of 'land', 'sea'.
• `normalize` (bool, optional (default: False)) – Normalize weights with total area and total time range.

Returns Area weights.
Return type numpy.ndarray

esmvaltool.diag_scripts.mlr.get_area_weights(cube, normalize=False)

Get area weights of cube.
Parameters

- **cube** (*iris.cube.Cube*) – Input cube.

- **normalize** (*bool, optional (default: False)*) – Normalize weights with total area.

Returns Area weights.

Return type *numpy.ndarray*

Raises *iris.exceptions.CoordinateNotFoundError* – Cube does not contain the coordinates latitude and longitude.

```python
esmvaltool.diag_scripts.mlr.get_horizontal_weights(cube, area_weighted=True, landsea_fraction_weighted=None, normalize=False)
```

Get horizontal weights of cube.

Parameters

- **cube** (*iris.cube.Cube*) – Input cube.

- **area_weighted** (*bool, optional (default: True)*) – Use area weights.

- **landsea_fraction_weighted** (*str, optional*) – If given, use land/sea fraction weights. Must be one of 'land', 'sea'.

- **normalize** (*bool, optional (default: False)*) – Normalize weights with sum of weights over latitude and longitude (i.e. if only area_weighted is given, this is equal to the total area).

Returns Area weights.

Return type *numpy.ndarray*

Raises

- *iris.exceptions.CoordinateMultiDimError* – Dimension of latitude or longitude coordinate is greater than 1.

- *iris.exceptions.CoordinateNotFoundError* – Cube does not contain the coordinates latitude and longitude.

- *ValueError* – landsea_fraction_weighted is not one of 'land', 'sea'.

```python
esmvaltool.diag_scripts.mlr.get_input_data(cfg, pattern=None, check_mlr_attributes=True, ignore=None)
```

Get input data and check MLR attributes if desired.

Use `input_data` and ancestors to get all relevant input files.

Parameters

- **cfg** (*dict*) – Recipe configuration.

- **pattern** (*str, optional*) – Pattern matched against ancestor file names.

- **check_mlr_attributes** (*bool, optional (default: True)*) – If True, only returns datasets with valid MLR attributes. If False, returns all found datasets.

- **ignore** (*list of dict, optional*) – Ignore specific datasets by specifying multiple dict’s of metadata. By setting an attribute to ```None```, ignore all datasets which do not have that attribute.

Returns List of input datasets.

37.3. Auxiliary scripts
esmvaltool.diag_scripts.mlr.get_landsea_fraction_weights(cube, area_type, normalize=False)

Get land/sea fraction weights of cube using Natural Earth files.

Note: The implementation of this feature is not optimal. For large cubes, calculating the land/sea fraction weights might be very slow.

Parameters

- **area_type (str)** – Area type. Must be one of 'land' (land fraction weighting) or 'sea' (sea fraction weighting).
- **normalize (bool, optional (default: False))** – Normalize weights with total land/sea fraction.

Raises

- **iris.exceptions.CoordinateMultiDimError** – Dimension of latitude or longitude coordinate is greater than 1.
- **iris.exceptions.CoordinateNotFoundError** – Cube does not contain the coordinates latitude and longitude.
- **ValueError** – area_type is not one of 'land', 'sea'.

esmvaltool.diag_scripts.mlr.get_new_path(cfg, old_path)

Convert old path to new diagnostic path.

Parameters

- **cfg (dict)** – Recipe configuration.
- **old_path (str)** – Old path.

Returns New diagnostic path.

Return type **str**

esmvaltool.diag_scripts.mlr.get_squared_error_cube(ref_cube, error_datasets)

Get array of squared errors.

Parameters

- **ref_cube (iris.cube.Cube)** – Reference cube (determines mask, coordinates and attributes of output).
- **error_datasets (list of dict)** – List of metadata dictionaries where each dictionary represents a single dataset.

Returns Cube containing squared errors.

Return type **iris.cube.Cube**

Raises **ValueError** – Shape of a dataset does not match shape of reference cube.

esmvaltool.diag_scripts.mlr.get_time_weights(cube, normalize=False)

Get time weights of cube.
Parameters

- `normalize (bool, optional (default: False))` – Normalize weights with total time range.

Returns Time weights.

Return type `numpy.ndarray`

Raises `iris.exceptions.CoordinateNotFoundError` – Cube does not contain the coordinate time.

esmvaltool.diag_scripts.mlr.ignore_warnings()
Ignore warnings given by WARNINGS_TO_IGNORE.

esmvaltool.diag_scripts.mlr.square_root_metadata(cube)
Take the square root of the cube metadata.

Parameters `cube (iris.cube.Cube)` – Cube (will be modified in-place).

esmvaltool.diag_scripts.mlr.units_power(units, power)
Raise a `cf_units.Unit` to given power preserving symbols.

Raise `cf_units.Unit` to given power without expanding it first. For example, using `units_power(Unit('J'), 2)` gives `Unit('J2')`. In contrast, simply using `Unit('J')**2` would yield 'kg2 m4 s-4'.

Parameters

- `units (cf_units.Unit)` – Input units.
- `power (int)` – Desired exponent.

Returns Input units raised to given power.

Return type `cf_units.Unit`

Raises

- `TypeError` – Argument `power` is not `int`-like.
- `ValueError` – Invalid unit given.

37.3.2 Custom extensions of sklearn functionalities

Custom expansions of `sklearn` functionalities.

Note: This module provides custom expansions of some `sklearn` classes and functions which are necessary to fit the purposes for the desired functionalities of the `MLR module`. As long-term goal we would like to include these functionalities to the `sklearn` package since we believe these additions might be helpful for everyone. This module serves as interim solution. To ensure that all features are properly working this module is also covered by tests, which will also be expanded in the future.

Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdvancedPipeline(*args, **kwargs)</td>
<td>Expand <code>sklearn.pipeline.Pipeline</code>.</td>
</tr>
<tr>
<td>AdvancedRFE(*args, **kwargs)</td>
<td>Expand <code>sklearn.feature_selection.RFE</code>.</td>
</tr>
<tr>
<td>AdvancedRFECV(*args, **kwargs)</td>
<td>Expand <code>sklearn.feature_selection.RFECV</code>.</td>
</tr>
</tbody>
</table>

continues on next page
### AdvancedTransformedTargetRegressor

*args, **kwargs

Transformer step of a feature selection estimator.

### FeatureSelectionTransformer

*args, **kwargs

Transformer step of a feature selection estimator.

## Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cross_val_score_weighted</code></td>
<td>Expand <code>sklearn.model_selection.cross_val_score()</code></td>
</tr>
<tr>
<td><code>get_rfecv_transformer</code></td>
<td>Get transformer step of RFECV estimator.</td>
</tr>
<tr>
<td><code>perform_rfecv</code></td>
<td>Perform exhaustive feature selection.</td>
</tr>
</tbody>
</table>

## AdvancedPipeline

```python
class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedPipeline(*args: Any, **kwargs: Any)
 Bases: sklearn.pipeline.
 Expand sklearn.pipeline.Pipeline. Attributes
```

### Attributes

- `coef_`: Model coefficients.
- `feature_importances_`: Feature importances.

### Methods

- `fit_target_transformer_only`(*y_data, **fit_kwargs*)
  - Fit only transform step of target regressor.
- `fit_transformers_only`(*x_data, y_data, ...)`
  - Fit only transform steps of Pipeline.
- `transform_only`(*x_data*)
  - Only perform transform steps of Pipeline.
- `transform_target_only`(*y_data*)
  - Only perform transform steps of target regressor.

```python
property coef_
 Model coefficients.
 Type numpy.ndarray

property feature_importances_
 Feature importances.
 Type numpy.ndarray
```

## AdvancedRFE

```python
class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFE(*args: Any, **kwargs: Any)
 Bases: sklearn.feature_selection.
```

---

**Table 2 – continued from previous page**

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>FeatureSelectionTransformer</code>(*args, **kwargs)</td>
<td>Transformer step of a feature selection estimator.</td>
</tr>
</tbody>
</table>
Expand `sklearn.feature_selection.RFE`. Methods

```python
fit(x_data, y_data, **fit_kwargs)
Predict `fit()` to accept kwargs.

predict(x_data, **predict_kwargs)
Predict `predict()` to accept kwargs.
```

```python
fit(x_data, y_data, **fit_kwargs)
Fit `fit()` to accept kwargs.

predict(x_data, **predict_kwargs)
Predict `predict()` to accept kwargs.
```

class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedRFECV(*args: Any, **kwargs: Any)
Bases: sklearn.feature_selection.RFECV. Methods

```python
fit(x_data, y_data[, groups])
Fit `fit()` to accept kwargs.

predict(x_data, **predict_kwargs)
Predict `predict()` to accept kwargs.
```

```python
fit(x_data, y_data, groups=None, **fit_kwargs)
Fit `fit()` to accept kwargs.

predict(x_data, **predict_kwargs)
Predict `predict()` to accept kwargs.
```

class esmvaltool.diag_scripts.mlr.custom_sklearn.AdvancedTransformedTargetRegressor(*args: Any, **kwargs: Any)
Bases: sklearn.compose.TransformedTargetRegressor. Attributes

```python
coef_
Model coefficients.

feature_importances_
Feature importances.
```

Methods

```python
fit(x_data, y_data, **fit_kwargs)
Fit `fit()` to accept kwargs.

fit_transformer_only(y_data, **fit_kwargs)
Fit only transformer step.

predict(x_data[, always_return_1d])
Predict `predict()` to accept kwargs.
```

```python
property coef_
Model coefficients.

Type: numpy.ndarray

property feature_importances_
Feature importances.

Type: numpy.ndarray
```

```python
fit(x_data, y_data, **fit_kwargs)
Expand `fit()` to accept kwargs.
```
**fit_transformer_only** *(y_data, **fit_kwargs)*
Fit only transformer step.

**predict** *(x_data, always_return_1d=True, **predict_kwargs)*
Expand **predict**() to accept kwargs.

class esmvaltool.diag_scripts.mlr.custom_sklearn.FeatureSelectionTransformer(*args: Any, **kwargs: Any)*
Transformer step of a feature selection estimator. **Methods**

```
fit(*_, **__)
Empty method.
```

```
fit(*_, **__)
Empty method.
```

esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted(estimator, x_data, y_data=None, groups=None, scoring=None, cv=None, n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', error_score=nan, sample_weights=None)
Expand sklearn.model_selection.cross_val_score().

esmvaltool.diag_scripts.mlr.custom_sklearn.get_rfecv_transformer(rfecv_estimator)
Get transformer step of RFECV estimator.

esmvaltool.diag_scripts.mlr.custom_sklearn.perform_efecv(estimator, x_data, y_data, **kwargs)
Perform exhaustive feature selection.

### 37.3.3 MLRModel base class

**Classes**

```
MLRModel(input_datasets, **kwargs) Base class for MLR models.
```

Base class for MLR models.
Example recipe

The **MLR main diagnostic script** provides an interface for using MLR models in recipes. The following recipe shows a typical example on how to setup MLR recipes/diagnostics with the following properties:

1. Setup an MLR model with target variable \( y \) (using the tag \( Y \)) and three predictors \( x_1, x_2 \) and \( \text{latitude} \) (with tags \( X_1, X_2 \) and \( \text{latitude} \), respectively). The target variable needs the attribute \text{var_type}: \text{label}; the predictors \( x_1 \) and \( x_2 \) the attribute \text{var_type}: \text{feature}. The coordinate feature \text{latitude} is added via the option \text{coords_as_features}: \{\text{latitude}\}.

2. Suppose \( y \) and \( x_1 \) are 3D fields (pressure, latitude, longitude); \( x_2 \) is a 2D field (latitude, longitude). Thus, it is necessary to add the attribute \text{broadcast_from}: [1, 2] to it (see \text{dim_map} parameter in \text{iris.util.broadcast_to_shape()} for details). In order to consider multiple climate models (A, B and C) at once, the option \text{group_datasets_by_attributes}: [\text{dataset}] is necessary. Otherwise the diagnostic will complain about duplicate data.

3. For the prediction, data from dataset D is used (with \text{var_type}: \text{prediction_input}). For the feature \( X_1 \) additional input error (with \text{var_type}: \text{prediction_input_error}) is used.

```plaintext

diag_feature_x1:
 variables:
 feature:
 ... # specify project, mip, start_year, end_year, etc.
 short_name: x1
 var_type: feature
 tag: X1
 additional_datasets:
 - {dataset: A, ...}
 - {dataset: B, ...}
 - {dataset: C, ...}
 prediction_input:
 ... # specify project, mip, start_year, end_year, etc.
 short_name: x1
 var_type: prediction_input
 tag: X1
 additional_datasets:
 - {dataset: D, ...}
 prediction_input_error:
 ... # specify project, mip, start_year, end_year, etc.
 short_name: x1Stderr
 var_type: prediction_input_error
 tag: X1
 additional_datasets:
 - {dataset: D, ...}
 scripts:
 null

diag_feature_x2:
 variables:
 feature:
 ... # specify project, mip, start_year, end_year, etc.
 short_name: x2
 var_type: feature
 broadcast_from: [1, 2]
 tag: X2
 additional_datasets:
 - {dataset: A, ...}
 - {dataset: B, ...}
```

(continues on next page)
4. In this example, a GBRT model (with mlr_model_type: gbr_sklearn) is used. Parameters for this are specified via parameters_final_regressor. Apart from the best-estimate prediction, the estimated MLR model error (save_mlr_model_error: test) and the propagated prediction input error (save_propagated_errors: true) are returned.

5. With postprocess.py, the global mean of the best estimate prediction and the corresponding errors (MLR model + propagated input error) are calculated.
6. Plots of the global distribution (latitude, longitude) are created with `plot.py` after calculating the mean over the pressure coordinate using `preprocess.py`.

```python
diag_plot:
 scripts:
 preprocess:
 script: mlr/preprocess.py
 ancestors: ['diag_mlr_gbrt/mlr']
 collapse: [pressure]
 ignore:
 - {var_type: null}
 plot:
 script: mlr/plot.py
 ancestors: ['diag_plot/preprocess']
 plot_kwargs:
 cbar_label: 'Y'
 cbar_ticks: [0, 1, 2, 3]
 vmin: 0
 vmax: 3
```

All datasets must have the attribute `var_type` which specifies the type of the dataset. Possible values are `feature` (independent variables used for training/testing), `label` (dependent variables, y-axis), `prediction_input` (independent variables used for prediction of dependent variables, usually observational data), `prediction_input_error` (standard error of the prediction_input data, optional), or `prediction_reference` (true values for the prediction_input data, optional). In addition, all datasets must have the attribute `tag`, which specifies the name of variable/diagnostic. All datasets can be converted to new units in the loading step by specifying the key `convert_units_to` in the respective dataset(s).

**Training data**

All groups (specified in `group_datasets_by_attributes`, if desired) given for `label` datasets must also be given for the `feature` datasets. Within these groups, all `feature` and `label` datasets must have the same shape, except the attribute `broadcast_from` is set to a list of suitable coordinate indices to map this dataset to regular datasets (see parameter `dim_map` in `iris.util.broadcast_to_shape()`).

**Prediction data**

All tags specified for `prediction_input` datasets must also be given for the `feature` datasets (except `allow_missing_features` is set to True). Multiple predictions can be specified by `prediction_name`. Within these predictions, all `prediction_input` datasets must have the same shape, except the attribute `broadcast_from` is given. Errors in the prediction input data can be specified by `prediction_input_error`. If given, these errors are used to calculate errors in the final prediction using linear error propagation given by LIME. Additionally, `true` values for `prediction_input` can be specified with `prediction_reference` datasets (together with the respective `prediction_name`). This allows an evaluation of the performance of the MLR model by calculating residuals (true minus predicted values).
Available MLR models

MLR models are subclasses of this base class. A list of all available MLR models can be found here. To add a new MLR model, create a new file in esmvaltool/diag_scripts/mlr/models/ with a child class of esmvaltool.diag_scripts.mlrm.models.MLRModel decorated with esmvaltool.diag_scripts.mlrm.models.MLRModel.register_mlr_model().

Optional parameters for class initialization

- **accept_only_scalar_data**: bool (default: False) If set to True, only accept scalar input data. Should be used together with the option group_datasets_by_attributes.
- **allow_missing_features**: bool (default: False) Allow missing features in the training data.
- **cache_intermediate_results**: bool (default: True) Cache the intermediate results of the pipeline’s transformers.
- **categorical_features**: list of str Names of features which are interpreted as categorical features (in contrast to numerical features).
- **coords_as_features**: list of str If given, specify a list of coordinates which should be used as features.
- **dtype**: str (default: ‘float64’) Internal data type which is used for all calculations, see https://docs.scipy.org/doc/numpy/user/basics.types.html for a list of allowed values.
- **fit_kwargs**: dict Optional keyword arguments for the pipeline’s fit() function. These arguments have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.
- **group_datasets_by_attributes**: list of str List of dataset attributes which are used to group input data for features and labels. For example, this is necessary if the MLR model should consider multiple climate models in the training phase. If this option is not given, specifying multiple datasets with identical var_type and tag entries results in an error. If given, all the input data is first grouped by the given attributes and then checked for uniqueness within this group. After that, all groups are stacked to form a single set of training data.
- **imputation_strategy**: str (default: ‘remove’) Strategy for the imputation of missing values in the features. Must be one of 'remove', 'mean', 'median', 'most_frequent' or 'constant'.
- **log_level**: str (default: ‘info’) Verbosity for the logger. Must be one of 'debug', 'info', 'warning' or 'error'.
- **mlr_model_name**: str Human-readable name of the MLR model instance (e.g used for labels).
- **n_jobs**: int (default: 1) Maximum number of jobs spawned by this class. Use -1 to use all processors. More details are given here.
- **output_file_type**: str (default: ‘png’) File type for the plots.
- **parameters**: dict Parameters used for the whole pipeline. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.
- **parameters_final_regressor**: dict Parameters used for the final regressor. If these parameters are updated using the function update_parameters(), the new names have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.
- **pca**: bool (default: False) Preprocess numerical input features using PCA. Parameters for this pipeline step can be given via the parameters argument.
- **plot_dir**: str (default: ‘~/plots’) Root directory to save plots.
- **plot_units**: dict Replace specific units (keys) with other text (values) in plots.
- **savefig_kwargs**: dict Keyword arguments for matplotlib.pyplot.savefig().

446 Chapter 37. Machine Learning Regression (MLR) diagnostics

standardize_data: bool (default: True)  Linearly standardize numerical input data by removing mean and scaling to unit variance.

sub_dir: str  Create additional subdirectory for output in work_dir and plot_dir.

test_size: float (default: 0.25)  If given, randomly exclude the desired fraction of input data from training and use it as test data.

weighted_samples: dict  If specified, use weighted samples whenever possible. The given keyword arguments are directly passed to esmvaltool.diag_scripts.mlr.get_all_weights() to calculate the sample weights. By default, area weights and time weights are used.

work_dir: str (default: ~/work)  Root directory to save all other files (mainly *.nc files).

write_plots: bool (default: True)  If False, do not write any plot.

class esmvaltool.diag_scripts.mlr.models.MLRModel (input_datasets, **kwargs)
Bases: object
Base class for MLR models. Attributes

categorical_features  Categorical features.
data  Input data of the MLR model.
features  Features of the input data.
features_after_preprocessing  Features of the input data after preprocessing.
features_types  Types of the features.
features_units  Units of the features.
fit_kwargs  Keyword arguments for fit().
group_attributes  Group attributes of the input data.
label  Label of the input data.
label_units  Units of the label.
mlr_model_type  MLR model type.
numerical_features  Numerical features.
parameters  Parameters of the complete MLR model pipeline.

Methods

create(mlr_model_type, *args, **kwargs)  Create desired MLR model subclass (factory method).

efecv(**kwargs)  Perform exhaustive feature elimination using cross-validation.

export_prediction_data([filename])  Export all prediction data contained in self._data.
export_training_data([filename])  Export all training data contained in self._data.
fit()  Fit MLR model.
get_ancestors([label, features, ...])  Return ancestor files.
get_data_frame(data_type[, impute_nans])  Return data frame of specified type.
get_x_array(data_type[, impute_nans])  Return x data of specific type.
get_y_array(data_type[, impute_nans])  Return y data of specific type.
grid_search_cv(param_grid, **kwargs)  Perform exhaustive parameter search using cross-validation.

plot_1d_model([filename, n_points])  Plot lineplot that represents the MLR model.
plot_partial_dependences([filename])  Plot partial dependences for every feature.
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot_prediction_errors</code></td>
<td>Plot predicted vs.</td>
</tr>
<tr>
<td><code>plot_residuals</code></td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td><code>plot_residuals_distribution</code></td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td><code>plot_residuals_histogram</code></td>
<td>Plot histogram of residuals of training and test data.</td>
</tr>
<tr>
<td><code>plot_residuals_scatterplots</code></td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices</code></td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics</code></td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model</code></td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline</code></td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv</code></td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals</code></td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters</code></td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**
Categorical features.

*Type* `numpy.ndarray`

**classmethod create** *(mlr_model_type, *args, **kwargs)*
Create desired MLR model subclass (factory method).

**property data**
Input data of the MLR model.

*Type* `dict`

**efecv** *(**kwargs)*
Perform exhaustive feature elimination using cross-validation.

*Parameters**

- **kwargs** *(keyword arguments, optional)* – Additional options for esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted().

**export_prediction_data** *(filename=None)*
Export all prediction data contained in self._data.

*Parameters*

- **filename** *(str, optional (default: '{data_type}_{pred_name}.csv'))* – Name of the exported files.

**export_training_data** *(filename=None)*
Export all training data contained in self._data.

*Parameters*

- **filename** *(str, optional (default: '{data_type}.csv'))* – Name of the exported files.

**property features**
Features of the input data.

*Type* `numpy.ndarray`

**property features_after_preprocessing**
Features of the input data after preprocessing.

*Type* `numpy.ndarray`
property features_types
Types of the features.
Type pandas.Series

property features_units
Units of the features.
Type pandas.Series

fit()
Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs during class initialization instead.

property fit_kwargs
Keyword arguments for fit().
Type dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

- **label** (bool, optional (default: True)) – Return label files.
- **features** (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- **prediction_names** (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
- **prediction_reference** (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
Return data frame of specified type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type pandas.DataFrame

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).
get_x_array \( (\text{data\_type}, \text{impute\_nans}=\text{False}) \)
Return x data of specific type.

Parameters

- **data\_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute\_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises TypeError – data\_type is invalid or data does not exist (e.g. test data is not set).

get_y_array \( (\text{data\_type}, \text{impute\_nans}=\text{False}) \)
Return y data of specific type.

Parameters

- **data\_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute\_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises TypeError – data\_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv \( (\text{param\_grid}, **\text{kwargs}) \)
Perform exhaustive parameter search using cross-validation.

Parameters

- **param\_grid** (dict or list of dict) – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.
- ****kwargs (keyword arguments, optional) – Additional options for sklearn.model_selection.GridSearchCV.

Raises ValueError – Final regressor does not supply the attributes best\_estimator_ or best\_params_.

property group\_attributes
Group attributes of the input data.

Type numpy.ndarray

property label
Label of the input data.

Type str

property label\_units
Units of the label.

Type str

property mlr\_model\_type
MLR model type.
property numerical_features
    Numerical features.

property parameters
    Parameters of the complete MLR model pipeline.

plot_1d_model (filename=None, n_points=1000)
    Plot lineplot that represents the MLR model.

    Note: This only works for a model with a single feature.

Parameters

    • filename (str, optional (default: '1d_mlr_model')) – Name of the plot file.

    • n_points (int, optional (default: 1000)) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

Raises

    • sklearn.exceptions.NotFittedError – MLR model is not fitted.

    • ValueError – MLR model is built from more than 1 feature.

plot_partial_dependences (filename=None)
    Plot partial dependences for every feature.

Parameters filename (str, optional (default: 'partial_dependence_{feature}')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors (filename=None)
    Plot predicted vs. true values.

Parameters filename (str, optional (default: 'prediction_errors')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals (filename=None)
    Plot residuals of training and test (if available) data.

Parameters filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution (filename=None)
    Plot distribution of residuals of training and test data (KDE).

Parameters filename (str, optional (default: 'residuals_distribution')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.
**plot_residuals_histogram** *(filename=None)*

Plot histogram of residuals of training and test data.

**Parameters**

- **filename** *(str, optional (default: 'residuals_histogram'))* – Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* – MLR model is not fitted.

**plot_scatterplots** *(filename=None)*

Plot scatterplots label vs. feature for every feature.

**Parameters**

- **filename** *(str, optional (default: 'scatterplot_{feature}'))* – Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* – MLR model is not fitted.

**predict** *(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)*

Perform prediction using the MLR model(s) and write *.nc* files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False))* – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** *(bool, optional (default: False))* – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- ****kwargs** *(keyword arguments, optional)* – Additional options for the final regressors predict() function.

**Raises**

- **RuntimeError** – return_var and return_cov are both set to True.

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – An invalid value for save_mlr_model_error is given.

- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices** *

Print correlation matrices for all datasets.

**print_regression_metrics** *(logo=False)*

Print all available regression metrics for training data.
Parameters `logo` *(bool, optional (default: False))* – Print regression metrics using `sklearn.model_selection.LeaveOneGroupOut` cross-validation. Only possible when `group_datasets_by_attributes` was given during class initialization.

```python
classmethod register_mlr_model (mlr_model_type)

Add MLR model (subclass of this class) (decorator).
```

```python
reset_pipeline()

Reset regressor pipeline.
```

```python
rfecv(**kwargs)

Perform recursive feature elimination using cross-validation.
```

**Note:** This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

```python
Parameters **kwargs (keyword arguments, optional) – Additional options for `sklearn.feature_selection.RFECV`.

Raises `RuntimeError` – Final estimator does not provide `coef_` or `feature_importances_` attribute.
```

```python
test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.
```

```python
update_parameters(**params)

Update parameters of the whole pipeline.
```

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

```python
Parameters **params (keyword arguments, optional) – Parameters for the pipeline which should be updated.

Raises `ValueError` – Invalid parameter for pipeline given.
```

### 37.3.4 Base class for Gradient Boosted Regression models

Base class for Gradient Boosting Regression model.

**Classes**

```python
GBRModel(input_datasets, **kwargs)

Base class for Gradient Boosting Regression models.
```

```python
class esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel (input_datasets,

**kwargs)

Bases: esmvaltool.diag_scripts.mlr.models.MLRModel

Base class for Gradient Boosting Regression models. Attributes
```

```python
categorical_features

Categorical features.
```

37.3. Auxiliary scripts
Table 15 – continued from previous page

<table>
<thead>
<tr>
<th><strong>data</strong></th>
<th>Input data of the MLR model.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>features</strong></td>
<td>Features of the input data.</td>
</tr>
<tr>
<td><strong>features_after_preprocessing</strong></td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td><strong>features_types</strong></td>
<td>Types of the features.</td>
</tr>
<tr>
<td><strong>features_units</strong></td>
<td>Units of the features.</td>
</tr>
<tr>
<td><strong>fit_kwargs</strong></td>
<td>Keyword arguments for \textit{fit}().</td>
</tr>
<tr>
<td><strong>group_attributes</strong></td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td><strong>label</strong></td>
<td>Label of the input data.</td>
</tr>
<tr>
<td><strong>label_units</strong></td>
<td>Units of the label.</td>
</tr>
<tr>
<td><strong>mlr_model_type</strong></td>
<td>MLR model type.</td>
</tr>
<tr>
<td><strong>numerical_features</strong></td>
<td>Numerical features.</td>
</tr>
<tr>
<td><strong>parameters</strong></td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

\texttt{create}(mlr_model_type, *args, **kwargs)	Create desired MLR model subclass (factory method).
\texttt{efecv(**kwargs)}	Perform exhaustive feature elimination using cross-validation.
\texttt{export_prediction_data}([filename])	Export all prediction data contained in \textit{self.data}.
\texttt{export_training_data}([filename])	Export all training data contained in \textit{self.data}.
\texttt{fit()}	Fit MLR model.
\texttt{get_ancestors}([label, features, ...])	Return ancestor files.
\texttt{get_data_frame}([data_type[, impute_nans]])	Return data frame of specified type.
\texttt{get_x_array}([data_type[, impute_nans]])	Return x data of specific type.
\texttt{get_y_array}([data_type[, impute_nans]])	Return y data of specific type.
\texttt{grid_search_cv}((param_grid, **kwargs))	Perform exhaustive parameter search using cross-validation.
\texttt{plot_1d_model}([filename, n_points])	Plot lineplot that represents the MLR model.
\texttt{plot_feature_importance}([filename, color_coded])	Plot feature importance.
\texttt{plot_partial_dependences}([filename])	Plot partial dependences for every feature.
\texttt{plot_prediction_errors}([filename])	Plot predicted vs.
\texttt{plot_residuals}([filename])	Plot residuals of training and test (if available) data.
\texttt{plot_residuals_distribution}([filename])	Plot distribution of residuals of training and test data (KDE).
\texttt{plot_residuals_histogram}([filename])	Plot histogram of residuals of training and test data.
\texttt{plot_scatterplots}([filename])	Plot scatterplots label vs.
\texttt{predict}([save_mlr_model_error, ...])	Perform prediction using the MLR model(s) and write *.nc files.
\texttt{print_correlation_matrices}()	Print correlation matrices for all datasets.
\texttt{print_regression_metrics}([logo])	Print all available regression metrics for training data.
\texttt{register_mlr_model}(mlr_model_type)	Add MLR model (subclass of this class) (decorator).
\texttt{reset_pipeline}()	Reset regressor pipeline.
\texttt{rfecv(**kwargs)}	Perform recursive feature elimination using cross-validation.
\texttt{test_normality_of_residuals}()	Perform Shapiro-Wilk test to normality of residuals.
\texttt{update_parameters(**params)}	Update parameters of the whole pipeline.

property categorical_features
Categorical features.

**Type** numpy.ndarray

**classmethod create**(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

**property data**
Input data of the MLR model.

**Type** dict

**efecv**(**kwargs)
Perform exhaustive feature elimination using cross-validation.

**Parameters**

**kwargs** *(keyword arguments, optional)* – Additional options for esmvaltool.diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().

**export_prediction_data**(filename=None)
Export all prediction data contained in self._data.

**Parameters**

filename *(str, optional (default: '{data_type}_{pred_name}.csv'))* – Name of the exported files.

**export_training_data**(filename=None)
Export all training data contained in self._data.

**Parameters**

filename *(str, optional (default: '{data_type}.csv'))* – Name of the exported files.

**property features**
Features of the input data.

**Type** numpy.ndarray

**property features_after_preprocessing**
Features of the input data after preprocessing.

**Type** numpy.ndarray

**property features_types**
Types of the features.

**Type** pandas.Series

**property features_units**
Units of the features.

**Type** pandas.Series

**fit()**
Fit MLR model.

**Note:** Specifying keyword arguments for this function is not allowed here since features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs during class initialization instead.

**property fit_kwargs**
Keyword arguments for fit().

**Type** dict
get_ancestors (label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

- **label** (bool, optional (default: True)) – Return label files.
- **features** (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- **prediction_names** (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
- **prediction_reference** (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises ValueError – Invalid feature or prediction_name given.

get_data_frame (data_type, impute_nans=False)
Return data frame of specified type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type pandas.DataFrame

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array (data_type, impute_nans=False)
Return x data of specific type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array (data_type, impute_nans=False)
Return y data of specific type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** `TypeError` – data_type is invalid or data does not exist (e.g. test data is not set).

**grid_search_cv** *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.

**Parameters**

• **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

• ****kwars (keyword arguments, optional) – Additional options for sklearn.model_selection.GridSearchCV.

**Raises** `ValueError` – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

**property group_attributes**

Group attributes of the input data.

**Type** numpy.ndarray

**property label**

Label of the input data.

**Type** str

**property label_units**

Units of the label.

**Type** str

**property mlr_model_type**

MLR model type.

**Type** str

**property numerical_features**

Numerical features.

**Type** numpy.ndarray

**property parameters**

Parameters of the complete MLR model pipeline.

**Type** dict

**plot_1d_model** *(filename=None, n_points=1000)*

Plot lineplot that represents the MLR model.

**Note:** This only works for a model with a single feature.

**Parameters**

• **filename** *(str, optional (default: '1d_mlr_model')) – Name of the plot file.*
• **n_points** *(int, optional (default: 1000)) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).*

**Raises**

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – MLR model is built from more than 1 feature.

**plot_feature_importance** *(filename=None, color_coded=True)*

Plot feature importance.

This function uses properties of the GBR model based on the number of appearances of that feature in the regression trees and the improvements made by the individual splits (see Friedman, 2001).

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** *(str, optional (default: 'feature_importance')) – Name of the plot file.*
- **color_coded** *(bool, optional (default: True)) – If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.*

**plot_partial_dependences** *(filename=None)*

Plot partial dependences for every feature.

**Parameters**

- **filename** *(str, optional (default: 'partial_dependence_{feature}')) – Name of the plot file.*

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_prediction_errors** *(filename=None)*

Plot predicted vs. true values.

**Parameters**

- **filename** *(str, optional (default: 'prediction_errors')) – Name of the plot file.*

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals** *(filename=None)*

Plot residuals of training and test (if available) data.

**Parameters**

- **filename** *(str, optional (default: 'residuals')) – Name of the plot file.*

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals_distribution** *(filename=None)*

Plot distribution of residuals of training and test data (KDE).

**Parameters**

- **filename** *(str, optional (default: 'residuals_distribution')) – Name of the plot file.*

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
plot_residuals_histogram (filename=None)
Plot histogram of residuals of training and test data.

Parameters
filename (str, optional (default: 'residuals_histogram')) -- Name of the plot file.

Raises sklearn.exceptions.NotFittedError -- MLR model is not fitted.

plot_scatterplots (filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}')) -- Name of the plot file.

Raises sklearn.exceptions.NotFittedError -- MLR model is not fitted.

predict (save_mlr_model_error=None, save_propagated_errors=False, save_lime_importance=False, **kwargs)
Perform prediction using the MLR model(s) and write *.nc files.

Parameters
* save_mlr_model_error (str or int, optional) -- Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

* save_lime_importance (bool, optional (default: False)) -- Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

* save_propagated_errors (bool, optional (default: False)) -- Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

**kwargs (keyword arguments, optional) -- Additional options for the final regressors predict() function.

Raises
* RuntimeError -- return_var and return_cov are both set to True.

* sklearn.exceptions.NotFittedError -- MLR model is not fitted.

* ValueError -- An invalid value for save_mlr_model_error is given.

* ValueError -- save_propagated_errors is True and no prediction_input_error data is available.

print_correlation_matrices ()
Print correlation matrices for all datasets.

print_regression_metrics (logo=False)
Print all available regression metrics for training data.
**Parameters** `logo` *(bool, optional (default: False)) –* Print regression metrics using `sklearn.model_selection.LeaveOneGroupOut` cross-validation. Only possible when `group_datasets_by_attributes` was given during class initialization.

**classmethod register_mlr_model** *(mlr_model_type)*  
Add MLR model (subclass of this class) (decorator).

**reset_pipeline** ()  
Reset regressor pipeline.

**rfecv** (**kwargs**)*  
Perform recursive feature elimination using cross-validation.

**Note:** This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

**Parameters** `**kwargs` *(keyword arguments, optional)* – Additional options for `sklearn.feature_selection.RFECV`.

**Raises** `RuntimeError` – Final estimator does not provide `coef_` or `feature_importances_` attribute.

**test_normality_of_residuals** ()  
Perform Shapiro-Wilk test to normality of residuals.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**update_parameters** (**params**)  
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

**Parameters** `**params` *(keyword arguments, optional)* – Parameters for the pipeline which should be updated.

**Raises** `ValueError` – Invalid parameter for pipeline given.

### 37.3.5 Base class for Linear models

Base class for linear Machine Learning Regression models.

**Classes**

**LinearModel** *(input_datasets, **kwargs)*  
Base class for linear Machine Learning models.

**class** `esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel` *(input_datasets, **kwargs)*  
Base class for linear Machine Learning models. **Attributes**

**categorical_features**  
Categorical features.
Table 18 – continued from previous page

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td>features</td>
<td>Features of the input data.</td>
</tr>
<tr>
<td>features_after_preprocessing</td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td>features_types</td>
<td>Types of the features.</td>
</tr>
<tr>
<td>features_units</td>
<td>Units of the features.</td>
</tr>
<tr>
<td>fit_kwargs</td>
<td>Keyword arguments for fit().</td>
</tr>
<tr>
<td>group_attributes</td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td>label</td>
<td>Label of the input data.</td>
</tr>
<tr>
<td>label_units</td>
<td>Units of the label.</td>
</tr>
<tr>
<td>mlr_model_type</td>
<td>MLR model type.</td>
</tr>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

**create**(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory method).

**efecv**(**kwargs) Perform exhaustive feature elimination using cross-validation.

**export_prediction_data**(filename) Export all prediction data contained in self._data.

**export_training_data**(filename) Export all training data contained in self._data.

**fit**() Fit MLR model.

**get_ancestors**(label, features, ...) Return ancestor files.

**get_data_frame**(data_type[, impute_nans]) Return data frame of specified type.

**get_x_array**(data_type[, impute_nans]) Return x data of specific type.

**get_y_array**(data_type[, impute_nans]) Return y data of specific type.

**grid_search_cv**(param_grid, **kwargs) Perform exhaustive parameter search using cross-validation.

**plot_1d_model**(filename, n_points) Plot lineplot that represents the MLR model.

**plot_coeffs**(filename) Plot linear coefficients of models.

**plot_feature_importance**(filename, color_coded) Plot feature importance given by linear coefficients.

**plot_partial_dependences**(filename) Plot partial dependences for every feature.

**plot_prediction_errors**(filename) Plot predicted vs.

**plot_residuals**(filename) Plot residuals of training and test (if available) data.

**plot_residuals_distribution**(filename) Plot distribution of residuals of training and test data (KDE).

**plot_residuals_histogram**(filename) Plot histogram of residuals of training and test data.

**plot_scatterplots**(filename) Plot scatterplots label vs.

**predict**(save_mlr_model_error, ...) Perform prediction using the MLR model(s) and write *.nc files.

**print_correlation_matrices**() Print correlation matrices for all datasets.

**print_regression_metrics**(logo) Print all available regression metrics for training data.

**register_mlr_model**(mlr_model_type) Add MLR model (subclass of this class) (decorator).

**reset_pipeline**() Reset regressor pipeline.

**rfecv**(**kwargs) Perform recursive feature elimination using cross-validation.

**test_normality_of_residuals**() Perform Shapiro-Wilk test to normality of residuals.

**update_parameters**(**params) Update parameters of the whole pipeline.
property categorical_features
Categorical features.

Type numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

property data
Input data of the MLR model.

Type dict

defecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted().

export_prediction_data(filename=None)
Export all prediction data contained in self._data.

Parameters filename (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

export_training_data(filename=None)
Export all training data contained in self._data.

Parameters filename (str, optional (default: '{data_type}.csv') – Name of the exported files.

property features
Features of the input data.

Type numpy.ndarray

property features_after_preprocessing
Features of the input data after preprocessing.

Type numpy.ndarray

property features_types
Types of the features.

Type pandas.Series

property features_units
Units of the features.

Type pandas.Series

fit()
Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs during class initialization instead.

property fit_kwargs
Keyword arguments for fit().

Type dict
get_ancestors (label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

- **label** (bool, optional (default: True)) – Return label files.
- **features** (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- **prediction_names** (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
- **prediction_reference** (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises **ValueError** – Invalid feature or prediction_name given.

get_data_frame (data_type, impute_nans=False)
Return data frame of specified type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type pandas.DataFrame

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array (data_type, impute_nans=False)
Return x data of specific type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array (data_type, impute_nans=False)
Return y data of specific type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
• **impute_nans**(bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

**grid_search_cv(param_grid, **kwargs)**

Perform exhaustive parameter search using cross-validation.

Parameters

- **param_grid**(dict or list of dict) – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

- ****kwargs**(keyword arguments, optional) – Additional options for sklearn.model_selection.GridSearchCV.

Raises **ValueError** – Final regressor does not supply the attributes best_estimator_ or best_params_.

**property group_attributes**

Group attributes of the input data.

Type numpy.ndarray

**property label**

Label of the input data.

Type str

**property label_units**

Units of the label.

Type str

**property mlr_model_type**

MLR model type.

Type str

**property numerical_features**

Numerical features.

Type numpy.ndarray

**property parameters**

Parameters of the complete MLR model pipeline.

Type dict

**plot_1d_model(filename=None, n_points=1000)**

Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters

- **filename**(str, optional (default: '1d_mlr_model')) – Name of the plot file.
• **n_points** (*int*, optional (default: 1000)) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

**Raises**

• **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

• **ValueError** – MLR model is built from more than 1 feature.

**plot_coefs** (*filename=None*)

Plot linear coefficients of models.

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** (*str*, optional (default: 'coefs')) – Name of the plot file.

**plot_feature_importance** (*filename=None, color_coded=True*)

Plot feature importance given by linear coefficients.

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** (*str*, optional (default: 'feature_importance')) – Name of the plot file.

- **color_coded** (*bool*, optional (default: True)) – If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

**plot_partial_dependences** (*filename=None*)

Plot partial dependences for every feature.

**Parameters**

- **filename** (*str*, optional (default: 'partial_dependence_{feature}')) – Name of the plot file.

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_prediction_errors** (*filename=None*)

Plot predicted vs. true values.

**Parameters**

- **filename** (*str*, optional (default: 'prediction_errors')) – Name of the plot file.

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals** (*filename=None*)

Plot residuals of training and test (if available) data.

**Parameters**

- **filename** (*str*, optional (default: 'residuals')) – Name of the plot file.

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
**plot_residuals_distribution** *(filename=None)*  
Plot distribution of residuals of training and test data (KDE).

**Parameters**  
filename *(str, optional (default: 'residuals_distribution'))* – Name of the plot file.

**Raises**  
sklearn.exceptions.NotFittedError – MLR model is not fitted.

**plot_residuals_histogram** *(filename=None)*  
Plot histogram of residuals of training and test data.

**Parameters**  
filename *(str, optional (default: 'residuals_histogram'))* – Name of the plot file.

**Raises**  
sklearn.exceptions.NotFittedError – MLR model is not fitted.

**plot_scatterplots** *(filename=None)*  
Plot scatterplots label vs. feature for every feature.

**Parameters**  
filename *(str, optional (default: 'scatterplot_{feature}'))* – Name of the plot file.

**Raises**  
sklearn.exceptions.NotFittedError – MLR model is not fitted.

**predict** *(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)*  
Perform prediction using the MLR model(s) and write *.nc* files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False))* – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** *(bool, optional (default: False))* – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- ****kwargs** *(keyword arguments, optional)* – Additional options for the final regressors predict() function.

**Raises**

- RuntimeError – return_var and return_cov are both set to True.

- sklearn.exceptions.NotFittedError – MLR model is not fitted.

- ValueError – An invalid value for save_mlr_model_error is given.

- ValueError – save_propagated_errors is True and no prediction_input_error data is available.
print_correlation_matrices()
Print correlation matrices for all datasets.

print_regression_metrics(logo=False)
Print all available regression metrics for training data.

Parameters

logo (bool, optional (default: False)) – Print regression metrics using `sklearn.model_selection.LeaveOneGroupOut` cross-validation. Only possible when `group_datasets_by_attributes` was given during class initialization.

classmethod register_mlr_model(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()
Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

Parameters

**kwargs (keyword arguments, optional) – Additional options for `sklearn.feature_selection.RFECV`.

Raises

RuntimeError – Final estimator does not provide `coef_` or `feature_importances_` attribute.

test_normality_of_residuals()
Perform Shapiro-Wilk test to normality of residuals.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

Parameters

**params (keyword arguments, optional) – Parameters for the pipeline which should be updated.

Raises ValueError – Invalid parameter for pipeline given.

37.4 Available MLR models

37.4.1 Gradient Boosted Regression Trees (sklearn implementation)

Gradient Boosting Regression model (using sklearn).

Use `mlr_model_type: gbr_sklearn` to use this MLR model in the recipe.

Classes
**SklearnGBRModel**(*input_datasets, **kwargs*) Gradient Boosting Regression model (sklearn implementation).

```python
class esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel(*input_datasets, **kwargs*)
```

**Bases:** esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel

Gradient Boosting Regression model (sklearn implementation). **Attributes**

- `categorical_features`: Categorical features.
- `data`: Input data of the MLR model.
- `features`: Features of the input data.
- `features_after_preprocessing`: Features of the input data after preprocessing.
- `features_types`: Types of the features.
- `features_units`: Units of the features.
- `fit_kwargs`: Keyword arguments for `fit()`.
- `group_attributes`: Group attributes of the input data.
- `label`: Label of the input data.
- `label_units`: Units of the label.
- `mlr_model_type`: MLR model type.
- `numerical_features`: Numerical features.
- `parameters`: Parameters of the complete MLR model pipeline.

**Methods**

- `create(mlr_model_type, *args, **kwargs)`: Create desired MLR model subclass (factory method).
- `efecv(**kwargs)`: Perform exhaustive feature elimination using cross-validation.
- `export_prediction_data([filename])`: Export all prediction data contained in `self._data`.
- `export_training_data([filename])`: Export all training data contained in `self._data`.
- `fit()`: Fit MLR model.
- `get_ancestors([label, features, ...])`: Return ancestor files.
- `get_data_frame(data_type[, impute_nans])`: Return data frame of specified type.
- `get_x_array(data_type[, impute_nans])`: Return x data of specific type.
- `get_y_array(data_type[, impute_nans])`: Return y data of specific type.
- `grid_search_cv(param_grid, **kwargs)`: Perform exhaustive parameter search using cross-validation.
- `plot_1d_model([filename, n_points])`: Plot lineplot that represents the MLR model.
- `plot_feature_importance([filename, color_coded])`: Plot feature importance.
- `plot_partial_dependences([filename])`: Plot partial dependences for every feature.
- `plot_prediction_errors([filename])`: Plot predicted vs.
- `plot_residuals([filename])`: Plot residuals of training and test (if available) data.
- `plot_residuals_distribution([filename])`: Plot distribution of residuals of training and test data (KDE).
- `plot_residuals_histogram([filename])`: Plot histogram of residuals of training and test data.
- `plot_scatterplots([filename])`: Plot scatterplots label vs.
- `plot_training_progress([filename])`: Plot training progress for training and (if possible) test data.

continues on next page
Table 22 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predict(save_mlr_model_error, ...)</code></td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices()</code></td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics()</code></td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model(mlr_model_type)</code></td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline()</code></td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv(**kwargs)</code></td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals()</code></td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters(**params)</code></td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**

Categorical features.

*Type* `numpy.ndarray`

**classmethod create (mlr_model_type, *args, **kwargs)**

Create desired MLR model subclass (factory method).

**property data**

Input data of the MLR model.

*Type* `dict`

**efecv(**kwargs)**

Perform exhaustive feature elimination using cross-validation.

*Parameters** `**kwargs` (keyword arguments, optional) – Additional options for `esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted()`.

**export_prediction_data (filename=None)**

Export all prediction data contained in `self._data`.

*Parameters* `filename` (`str`, optional (default: `{data_type}_{pred_name}.csv`) – Name of the exported files.

**export_training_data (filename=None)**

Export all training data contained in `self._data`.

*Parameters* `filename` (`str`, optional (default: `{data_type}.csv`) – Name of the exported files.

**property features**

Features of the input data.

*Type* `numpy.ndarray`

**property features_after_preprocessing**

Features of the input data after preprocessing.

*Type* `numpy.ndarray`

**property features_types**

Types of the features.

*Type* `pandas.Series`

**property features_units**

Units of the features.

37.4. Available MLR models
Type  pandas.Series

**fit()**

Fit MLR model.

**Note:** Specifying keyword arguments for this function is not allowed here since `features_after_preprocessing` might be altered by that. Use the keyword argument `fit_kwargs` during class initialization instead.

**property fit_kwargs**

Keyword arguments for `fit()`.

Type  dict

**get_ancestors** *(label=True, features=None, prediction_names=None, prediction_reference=False)*

Return ancestor files.

**Parameters**

- **label** *(bool, optional (default: True))* – Return label files.
- **features** *(list of str, optional (default: None))* – Features for which files should be returned. If None, return files for all features.
- **prediction_names** *(list of str, optional (default: None))* – Prediction names for which files should be returned. If None, return files for all prediction names.
- **prediction_reference** *(bool, optional (default: False))* – Return prediction_reference files if available for given prediction_names.

**Returns** Ancestor files.

**Return type**  list of str

**Raises**  ValueError – Invalid feature or prediction_name given.

**get_data_frame** *(data_type, impute_nans=False)*

Return data frame of specified type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** *(bool, optional (default: False))* – Impute nans if desired.

**Returns** Desired data.

**Return type**  pandas.DataFrame

**Raises**  TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

**get_x_array** *(data_type, impute_nans=False)*

Return x data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type: numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

**get_y_array** *(data_type, impute_nans=False)*

Return y data of specific type.

Parameters

• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type: numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

**grid_search_cv** *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.

Parameters

• **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

• **kwargs** *(keyword arguments, optional)* – Additional options for sklearn.model_selection.GridSearchCV.

Raises **ValueError** – Final regressor does not supply the attributes best_estimator_ or best_params_.

**property group_attributes**

Group attributes of the input data.

Type: numpy.ndarray

**property label**

Label of the input data.

Type: str

**property label_units**

Units of the label.

Type: str

**property mlr_model_type**

MLR model type.

Type: str

**property numerical_features**

Numerical features.

Type: numpy.ndarray

37.4. Available MLR models
**property parameters**
Parameters of the complete MLR model pipeline.

**Type**
dict

**plot_1d_model** *(filename=None, n_points=1000)*
Plot lineplot that represents the MLR model.

**Note:** This only works for a model with a single feature.

**Parameters**

- **filename** *(str, optional (default: '1d_mlr_model'))* - Name of the plot file.
- **n_points** *(int, optional (default: 1000))* - Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

**Raises**

- **sklearn.exceptions.NotFittedError** - MLR model is not fitted.
- **ValueError** - MLR model is built from more than 1 feature.

**plot_feature_importance** *(filename=None, color_coded=True)*
Plot feature importance.

This function uses properties of the GBR model based on the number of appearances of that feature in the regression trees and the improvements made by the individual splits (see Friedman, 2001).

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** *(str, optional (default: 'feature_importance'))* - Name of the plot file.
- **color_coded** *(bool, optional (default: True))* - If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

**plot_partial_dependences** *(filename=None)*
Plot partial dependences for every feature.

**Parameters**

- **filename** *(str, optional (default: 'partial_dependence_{feature}'))* - Name of the plot file.

**Raises** **sklearn.exceptions.NotFittedError** - MLR model is not fitted.

**plot_prediction_errors** *(filename=None)*
Plot predicted vs. true values.

**Parameters**

- **filename** *(str, optional (default: 'prediction_errors'))* - Name of the plot file.

**Raises** **sklearn.exceptions.NotFittedError** - MLR model is not fitted.
**plot_residuals** *(filename=None)*  
Plot residuals of training and test (if available) data.

**Parameters**  
`filename` *(str, optional (default: 'residuals'))* – Name of the plot file.

**Raises**  
`scklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_residuals_distribution** *(filename=None)*  
Plot distribution of residuals of training and test data (KDE).

**Parameters**  
`filename` *(str, optional (default: 'residuals_distribution'))* – Name of the plot file.

**Raises**  
`scklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_residuals_histogram** *(filename=None)*  
Plot histogram of residuals of training and test data.

**Parameters**  
`filename` *(str, optional (default: 'residuals_histogram'))* – Name of the plot file.

**Raises**  
`scklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_scatterplots** *(filename=None)*  
Plot scatterplots label vs. feature for every feature.

**Parameters**  
`filename` *(str, optional (default: 'scatterplot_{feature}'))* – Name of the plot file.

**Raises**  
`scklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_training_progress** *(filename=None)*  
Plot training progress for training and (if possible) test data.

**Parameters**  
`filename` *(str, optional (default: 'training_progress'))* – Name of the plot file.

**predict** *(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)*  
Perform prediction using the MLR model(s) and write *.nc* files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False))* – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).
• **save_propagated_errors**(bool, optional (default: True)) – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

• **kwargs**(keyword arguments, optional) – Additional options for the final regressors predict() function.

**Raises**

• **RuntimeError** – return_var and return_cov are both set to True.

• **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

• **ValueError** – An invalid value for save_mlr_model_error is given.

• **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices()**
Print correlation matrices for all datasets.

**print_regression_metrics**(logo=False)
Print all available regression metrics for training data.

**Parameters**

logo (bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model**(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**
Reset regressor pipeline.

**rfecv**(**kwargs)
Perform recursive feature elimination using cross-validation.

**Parameters**

**kwargs**(keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

**Raises**

**RuntimeError** – Final estimator does not provide coef_ or feature_importances_attribute.

**test_normality_of_residuals()**
Perform Shapiro-Wilk test to normality of residuals.

**Raises**

**sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**update_parameters**(**params**)
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. s_p is the parameter p for step s.
Parameters **params** *(keyword arguments, optional)* – Parameters for the pipeline which should be updated.

**Raises** ValueError – Invalid parameter for pipeline given.

### 37.4.2 Gradient Boosted Regression Trees (xgboost implementation)

Gradient Boosting Regression model (using xgboost).

Use `mlr_model_type: gbr_xgboost` to use this MLR model in the recipe.

**Classes**

```python
XGBoostGBRModel(input_datasets, **kwargs)
```

Gradient Boosting Regression model (xgboost implementation).

**class** `esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel(input_datasets, **kwargs)`

Bases: `esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel`

Gradient Boosting Regression model (xgboost implementation).

**Attributes**

- `categorical_features`: Categorical features.
- `data`: Input data of the MLR model.
- `features`: Features of the input data.
- `features_after_preprocessing`: Features of the input data after preprocessing.
- `features_types`: Types of the features.
- `features_units`: Units of the features.
- `fit_kwargs`: Keyword arguments for `fit()`.
- `group_attributes`: Group attributes of the input data.
- `label`: Label of the input data.
- `label_units`: Units of the label.
- `mlr_model_type`: MLR model type.
- `numerical_features`: Numerical features.
- `parameters`: Parameters of the complete MLR model pipeline.

**Methods**

- `create(mlr_model_type, *args, **kwargs)`: Create desired MLR model subclass (factory method).
- `efecv(**kwargs)`: Perform exhaustive feature elimination using cross-validation.
- `export_prediction_data([filename])`: Export all prediction data contained in `self._data`.
- `export_training_data([filename])`: Export all training data contained in `self._data`.
- `fit()`: Fit MLR model.
- `get_ancestors([label, features, ...])`: Return ancestor files.
- `get_data_frame(data_type[, impute_nans])`: Return data frame of specified type.
- `get_x_array(data_type[, impute_nans])`: Return x data of specific type.
- `get_y_array(data_type[, impute_nans])`: Return y data of specific type.
- `grid_search_cv(param_grid, **kwargs)`: Perform exhaustive parameter search using cross-validation.
- `plot_1d_model([filename, n_points])`: Plot lineplot that represents the MLR model.

Continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot_feature_importance</code></td>
<td>Plot feature importance.</td>
</tr>
<tr>
<td><code>plot_partial_dependences</code></td>
<td>Plot partial dependences for every feature.</td>
</tr>
<tr>
<td><code>plot_prediction_errors</code></td>
<td>Plot predicted vs.</td>
</tr>
<tr>
<td><code>plot_residuals</code></td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td><code>plot_residuals_distribution</code></td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td><code>plot_residuals_histogram</code></td>
<td>Plot histogram of residuals of training and test data.</td>
</tr>
<tr>
<td><code>plot_scatterplots</code></td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td><code>plot_training_progress</code></td>
<td>Plot training progress for training and (if possible) test data.</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices</code></td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics</code></td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model</code></td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline</code></td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv(**kwargs)</code></td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals</code></td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters(**params)</code></td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**

Categorical features.

Type `numpy.ndarray`

**classmethod create (mlr_model_type, *args, **kwargs)**

Create desired MLR model subclass (factory method).

**property data**

Input data of the MLR model.

Type `dict`

**efecv(**kwargs)**

Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted().

**export_prediction_data (filename=None)**

Export all prediction data contained in self._data.

Parameters filename (str, optional (default: '{data_type}_{pred_name}.csv')) – Name of the exported files.

**export_training_data (filename=None)**

Export all training data contained in self._data.

Parameters filename (str, optional (default: '{data_type}.csv')) – Name of the exported files.

**property features**

Features of the input data.
**Type**  numpy.ndarray

**property features_after_preprocessing**
Features of the input data after preprocessing.

**Type**  numpy.ndarray

**property features_types**
Types of the features.

**Type**  pandas.Series

**property features_units**
Units of the features.

**Type**  pandas.Series

**fit()**
Fit MLR model.

**Note:** Specifying keyword arguments for this function is not allowed here since `features_after_preprocessing` might be altered by that. Use the keyword argument `fit_kwargs` during class initialization instead.

**property fit_kwargs**
Keyword arguments for `fit()`.

**Type**  dict

**get_ancestors** (*label=True, features=None, prediction_names=None, prediction_reference=False*)
Return ancestor files.

**Parameters**

- **label** *(bool, optional (default: True)) – Return label files.*
- **features** *(list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.*
- **prediction_names** *(list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.*
- **prediction_reference** *(bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.*

**Returns**  Ancestor files.

**Return type**  list of str

**Raises**  ValueError – Invalid feature or prediction_name given.

**get_data_frame** (*data_type, impute_nans=False*)
Return data frame of specified type.

**Parameters**

- **data_type** *(str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.*
- **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*
Returns  Desired data.

Return type  pandas.DataFrame

Raises  TypeError – `data_type` is invalid or data does not exist (e.g. test data is not set).

`get_x_array` *(data_type, impute_nans=False)*

Return x data of specific type.

Parameters

- `data_type` *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- `impute_nans` *(bool, optional (default: False)) – Impute nans if desired.*

Returns  Desired data.

Return type  numpy.ndarray

Raises  TypeError – `data_type` is invalid or data does not exist (e.g. test data is not set).

`get_y_array` *(data_type, impute_nans=False)*

Return y data of specific type.

Parameters

- `data_type` *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- `impute_nans` *(bool, optional (default: False)) – Impute nans if desired.*

Returns  Desired data.

Return type  numpy.ndarray

Raises  TypeError – `data_type` is invalid or data does not exist (e.g. test data is not set).

`grid_search_cv` *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.

Parameters

- `param_grid` *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

Raises  ValueError – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

property  group_attributes

Group attributes of the input data.

Type  numpy.ndarray

property  label

Label of the input data.

Type  str

property  label_units

Units of the label.
property mlr_model_type
MLR model type.

property numerical_features
Numerical features.

property parameters
Parameters of the complete MLR model pipeline.

plot_1d_model (filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

**Note:** This only works for a model with a single feature.

**Parameters**

- **filename** *(str, optional (default: '1d_mlr_model'))* – Name of the plot file.
- **n_points** *(int, optional (default: 1000))* – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

**Raises**

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – MLR model is built from more than 1 feature.

plot_feature_importance (filename=None, color_coded=True)
Plot feature importance.

This function uses properties of the GBR model based on the number of appearances of that feature in the regression trees and the improvements made by the individual splits (see Friedman, 2001).

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** *(str, optional (default: 'feature_importance'))* – Name of the plot file.
- **color_coded** *(bool, optional (default: True))* – If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

plot_partial_dependences (filename=None)
Plot partial dependences for every feature.
Parameters `filename` *(str, optional (default: 'partial_dependence_{feature}'))* – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_prediction_errors** *(filename=None)*

Plot predicted vs. true values.

Parameters `filename` *(str, optional (default: 'prediction_errors'))* – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_residuals** *(filename=None)*

Plot residuals of training and test (if available) data.

Parameters `filename` *(str, optional (default: 'residuals'))* – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_residuals_distribution** *(filename=None)*

Plot distribution of residuals of training and test data (KDE).

Parameters `filename` *(str, optional (default: 'residuals_distribution'))* – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_residuals_histogram** *(filename=None)*

Plot histogram of residuals of training and test data.

Parameters `filename` *(str, optional (default: 'residuals_histogram'))* – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_scatterplots** *(filename=None)*

Plot scatterplots label vs. feature for every feature.

Parameters `filename` *(str, optional (default: 'scatterplot_{feature}'))* – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**plot_training_progress** *(filename=None)*

Plot training progress for training and (if possible) test data.

Parameters `filename` *(str, optional (default: 'training_progress'))* – Name of the plot file.

**predict** *(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)*

Perform prediction using the MLR model(s) and write *.*nc files.

Parameters

- `save_mlr_model_error` *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with `var_type` set to `prediction_input_error` and setting `save_propagated_errors` to `True`). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option `test_size` is not set to `False` during class initialization. If
the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (≠ 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False)) –* Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** *(bool, optional (default: False)) –* Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- **kwargs** *(keyword arguments, optional) –* Additional options for the final regressors predict() function.

**Raises**

- **RuntimeError** – return_var and return_cov are both set to True.
- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – An invalid value for save_mlr_model_error is given.
- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices()**

Print correlation matrices for all datasets.

**print_regression_metrics(logo=False)**

Print all available regression metrics for training data.

**Parameters**

- **logo** *(bool, optional (default: False)) –* Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model(mlr_model_type)**

Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**

Reset regressor pipeline.

**rfecv(**kwargs**)**

Perform recursive feature elimination using cross-validation.

**Parameters**

- **kwargs** *(keyword arguments, optional) –* Additional options for sklearn.feature_selection.RFECV.

**Raises**

- **RuntimeError** – Final estimator does not provide coef_ or feature_importances_attribute.

**test_normality_of_residuals()**

Perform Shapiro-Wilk test to normality of residuals.

**Parameters**

- **kwargs** *(keyword arguments, optional) –* Additional options for sklearn.feature_selection.RFECV.

**Raises**

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
update_parameters(**params)
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

**Parameters** **params** *(keyword arguments, optional)* — Parameters for the pipeline which should be updated.

**Raises** **ValueError** — Invalid parameter for pipeline given.

### 37.4.3 Gaussian Process Regression (sklearn implementation)

Gaussian Process Regression model (using sklearn).

Use `mlr_model_type: gpr_sklearn` to use this MLR model in the recipe.

**Classes**

| SklearnGPRModel(input_datasets, **kwargs) | Gaussian Process Regression model (sklearn implementation). |

```python
class esmvaltool.diag_scripts.mlr.models.gpr_sklearn.AdvancedGaussianProcessRegressor(*args: Any, **kwargs: Any)

predict(x_data[, return_var, return_cov]) | Expand predict() to accept return_var. |

predict(x_data, return_var=False, return_cov=False) | Expand predict() to accept return_var. |
```

```python
class esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel(input_datasets, **kwargs)

Bases: esmvaltool.diag_scripts.mlr.models.MLRModel

Gaussian Process Regression model (sklearn implementation). Attributes
```

categorical_features	Categorical features.
data	Input data of the MLR model.
features	Features of the input data.
features_after_preprocessing	Features of the input data after preprocessing.
features_types	Types of the features.
features_units	Units of the features.
fit_kwargs	Keyword arguments for fit().
group_attributes	Group attributes of the input data.
label	Label of the input data.
Table 28 – continued from previous page

<table>
<thead>
<tr>
<th>label_units</th>
<th>Units of the label.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlr_model_type</td>
<td>MLR model type.</td>
</tr>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

create(mlr_model_type, *args, **kwargs)  
Create desired MLR model subclass (factory method).

efecv(**kwargs)  
Perform exhaustive feature elimination using cross-validation.

export_prediction_data([filename])  
Export all prediction data contained in self._data.

export_training_data([filename])  
Export all training data contained in self._data.

fit()  
Fit MLR model.

get_ancestors([label, features, ...])  
Return ancestor files.

get_data_frame(data_type[, impute_nans])  
Return data frame of specified type.

get_x_array(data_type[, impute_nans])  
Return x data of specific type.

get_y_array(data_type[, impute_nans])  
Return y data of specific type.

grid_search_cv(param_grid, **kwargs)  
Perform exhaustive parameter search using cross-validation.

plot_1d_model([filename, n_points])  
Plot lineplot that represents the MLR model.

plot_partial_dependences([filename])  
Plot partial dependences for every feature.

plot_prediction_errors([filename])  
Plot predicted vs.

plot_residuals([filename])  
Plot residuals of training and test (if available) data.

plot_residuals_distribution([filename])  
Plot distribution of residuals of training and test data (KDE).

plot_residuals_histogram([filename])  
Plot histogram of residuals of training and test data.

plot_scatterplots([filename])  
Plot scatterplots label vs.

predict([save_mlr_model_error, ...])  
Perform prediction using the MLR model(s) and write *.nc files.

print_correlation_matrices()  
Print correlation matrices for all datasets.

print_kernel_info()  
Print information of the fitted kernel of the GPR model.

print_regression_metrics([logo])  
Print all available regression metrics for training data.

register_mlr_model(mlr_model_type)  
Add MLR model (subclass of this class) (decorator).

reset_pipeline()  
Reset regressor pipeline.

rfecv(**kwargs)  
Perform recursive feature elimination using cross-validation.

test_normality_of_residuals()  
Perform Shapiro-Wilk test to normality of residuals.

update_parameters(**params)  
Update parameters of the whole pipeline.

property categorical_features

  Categorical features.

  Type: numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)

  Create desired MLR model subclass (factory method).

property data

  Input data of the MLR model.

37.4. Available MLR models 483
Type  dict

def cv(**kwargs)
    Perform exhaustive feature elimination using cross-validation.

    Parameters **kwargs (keyword arguments, optional) – Additional
    options for esmvaltool.diag_scripts.mlr.custom_sklearn.
    cross_val_score_weighted().

export_prediction_data (filename=None)
    Export all prediction data contained in self._data.

    Parameters filename (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

export_training_data (filename=None)
    Export all training data contained in self._data.

    Parameters filename (str, optional (default: '{data_type}.csv'))
    – Name of the exported files.

property features
    Features of the input data.

    Type  numpy.ndarray

property features_after_preprocessing
    Features of the input data after preprocessing.

    Type  numpy.ndarray

property features_types
    Types of the features.

    Type  pandas.Series

property features_units
    Units of the features.

    Type  pandas.Series

fit()
    Fit MLR model.

    Note: Specifying keyword arguments for this function is not allowed here since
    features_after_preprocessing might be altered by that. Use the keyword argument
    fit_kw_args during class initialization instead.

property fit_kw_args
    Keyword arguments for fit().

    Type  dict

get_ancestors (label=True, features=None, prediction_names=None, prediction_reference=False)
    Return ancestor files.

    Parameters

    • label (bool, optional (default: True)) – Return label files.

    • features (list of str, optional (default: None)) – Features
      for which files should be returned. If None, return files for all features.
• `prediction_names` *(list of str, optional (default: None))* — Prediction names for which files should be returned. If None, return files for all prediction names.

• `prediction_reference` *(bool, optional (default: False))* — Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises ValueError — Invalid feature or prediction_name given.

`get_data_frame(data_type, impute_nans=False)`

Return data frame of specified type.

Parameters

• `data_type` *(str)* — Data type to be returned. Must be one of 'all', 'train' or 'test'.

• `impute_nans` *(bool, optional (default: False))* — Impute nans if desired.

Returns Desired data.

Return type pandas.DataFrame

Raises TypeError — data_type is invalid or data does not exist (e.g. test data is not set).

`get_x_array(data_type, impute_nans=False)`

Return x data of specific type.

Parameters

• `data_type` *(str)* — Data type to be returned. Must be one of 'all', 'train' or 'test'.

• `impute_nans` *(bool, optional (default: False))* — Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises TypeError — data_type is invalid or data does not exist (e.g. test data is not set).

`get_y_array(data_type, impute_nans=False)`

Return y data of specific type.

Parameters

• `data_type` *(str)* — Data type to be returned. Must be one of 'all', 'train' or 'test'.

• `impute_nans` *(bool, optional (default: False))* — Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises TypeError — data_type is invalid or data does not exist (e.g. test data is not set).

`grid_search_cv(param_grid, **kwargs)`

Perform exhaustive parameter search using cross-validation.
Parameters

- **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. \( s__p \) is the parameter \( p \) for step \( s \).

Raises **ValueError** – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

**property group_attributes**
Group attributes of the input data.

Type `numpy.ndarray`

**property label**
Label of the input data.

Type `str`

**property label_units**
Units of the label.

Type `str`

**property mlr_model_type**
MLR model type.

Type `str`

**property numerical_features**
Numerical features.

Type `numpy.ndarray`

**property parameters**
Parameters of the complete MLR model pipeline.

Type `dict`

**plot_1d_model**(filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters

- **filename** *(str, optional (default: '1d_mlr_model'))* – Name of the plot file.
- **n_points** *(int, optional (default: 1000))* – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

Raises

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – MLR model is built from more than 1 feature.
plot_partial_dependences (filename=None)
Plot partial dependences for every feature.

Parameters filename (str, optional (default: 'partial_dependence_{feature}')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors (filename=None)
Plot predicted vs. true values.

Parameters filename (str, optional (default: 'prediction_errors')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals (filename=None)
Plot residuals of training and test (if available) data.

Parameters filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution (filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters filename (str, optional (default: 'residuals_distribution')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram (filename=None)
Plot histogram of residuals of training and test data.

Parameters filename (str, optional (default: 'residuals_histogram')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots (filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters filename (str, optional (default: 'scatterplot_{feature}')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict (save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)
Perform prediction using the MLR model(s) and write *.nc files.

Parameters

• save_mlr_model_error (str or int, optional) – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if
group_datasets_by_attributes is given. If the option is set to an integer \( n \) \((!= 0)\), the (constant) error is estimated as RMSEP using \( n \)-fold cross-validation.

- **save_lime_importance** (bool, optional (default: False)) – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).
- **save_propagated_errors** (bool, optional (default: False)) – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.
- **kwargs** (keyword arguments, optional) – Additional options for the final regressors predict() function.

Raises

- **RuntimeError** – return_var and return_cov are both set to True.
- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – An invalid value for save_mlr_model_error is given.
- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices()**
Print correlation matrices for all datasets.

**print_kernel_info()**
Print information of the fitted kernel of the GPR model.

**print_regression_metrics**(logo=False)
Print all available regression metrics for training data.

Parameters

- **logo** (bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model**(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**
Reset regressor pipeline.

**rfecv(**kwargs**)**
Perform recursive feature elimination using cross-validation.

**Note:** This only works for final estimators that provide information about feature importance either through a coef_ attribute or through a feature_importances_ attribute.

**Parameters**

- **kwargs** (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

**Raises**

- **RuntimeError** – Final estimator does not provide coef_ or feature_importances_ attribute.

**test_normality_of_residuals()**
Perform Shapiro-Wilk test to normality of residuals.

**Raises**

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
**update_parameters** (**params**)  
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. \texttt{s\_\_p} is the parameter \texttt{p} for step \texttt{s}.

**Parameters** **params** (keyword arguments, optional) – Parameters for the pipeline which should be updated.

**Raises** \texttt{ValueError} – Invalid parameter for pipeline given.

### 37.4.4 Huber Regression

Huber Regression model.

Use \texttt{mlr_model_type: huber} to use this MLR model in the recipe.

#### Classes

```python
HuberRegressionModel(input_datasets, **kwargs)
Huber Regression model.
```

```python
class esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel(input_datasets, **kwargs)
```

Bases: \texttt{esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel}

Huber Regression model. **Attributes**

- **categorical_features**  
Categorical features.

- **data**  
Input data of the MLR model.

- **features**  
Features of the input data.

- **features_after_preprocessing**  
Features of the input data after preprocessing.

- **features_types**  
Types of the features.

- **features_units**  
Units of the features.

- **fit_kwargs**  
Keyword arguments for \texttt{fit()}

- **group_attributes**  
Group attributes of the input data.

- **label**  
Label of the input data.

- **label_units**  
Units of the label.

- **mlr_model_type**  
MLR model type.

- **numerical_features**  
Numerical features.

- **parameters**  
Parameters of the complete MLR model pipeline.

#### Methods

- **create**(mlr_model_type, *args, **kwargs)  
Create desired MLR model subclass (factory method).

- **efecv**(**kwargs)  
Perform exhaustive feature elimination using cross-validation.

- **export_prediction_data**(filename)  
Export all prediction data contained in \texttt{self.data}.

- **export_training_data**(filename)  
Export all training data contained in \texttt{self.data}.

- **fit**( )  
Fit MLR model.

continues on next page

37.4. Available MLR models

489
Table 32 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_ancestors</code>([label, features, ...])</td>
<td>Return ancestor files.</td>
</tr>
<tr>
<td><code>get_data_frame</code>(data_type[, impute_nans])</td>
<td>Return data frame of specified type.</td>
</tr>
<tr>
<td><code>get_x_array</code>(data_type[, impute_nans])</td>
<td>Return x data of specific type.</td>
</tr>
<tr>
<td><code>get_y_array</code>(data_type[, impute_nans])</td>
<td>Return y data of specific type.</td>
</tr>
<tr>
<td><code>grid_search_cv</code>(param_grid, **kwargs)</td>
<td>Perform exhaustive parameter search using cross-validation.</td>
</tr>
<tr>
<td><code>plot_1d_model</code>([filename, n_points])</td>
<td>Plot lineplot that represents the MLR model.</td>
</tr>
<tr>
<td><code>plot_coeffs</code>([filename])</td>
<td>Plot linear coefficients of models.</td>
</tr>
<tr>
<td><code>plot_feature_importance</code>([filename, color_coded])</td>
<td>Plot feature importance given by linear coefficients.</td>
</tr>
<tr>
<td><code>plot_partial_dependences</code>([filename])</td>
<td>Plot partial dependences for every feature.</td>
</tr>
<tr>
<td><code>plot_prediction_errors</code>([filename])</td>
<td>Plot predicted vs.</td>
</tr>
<tr>
<td><code>plot_residuals</code>([filename])</td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td><code>plot_residuals_distribution</code>([filename])</td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td><code>plot_residuals_histogram</code>([filename])</td>
<td>Plot histogram of residuals of training and test data.</td>
</tr>
<tr>
<td><code>plot_scatterplots</code>([filename])</td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td><code>predict</code>([save_mlr_model_error, ...])</td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices</code>()</td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics</code>([logo])</td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model</code>(mlr_model_type)</td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline</code>()</td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv</code>(**kwargs)</td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals</code>()</td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters</code>(**params)</td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**
Categorical features.

Type numpy.ndarray

**classmethod create**(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

**property data**
Input data of the MLR model.

Type dict

**efecv**(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr. custom_sklearn. cross_val_score_weighted().

**export_prediction_data**(filename=None)
Export all prediction data contained in self._data.

Parameters filename (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

**export_training_data**(filename=None)
Export all training data contained in self._data.
Parameters `filename` *(str, optional (default: '{data_type}.csv'))*
– Name of the exported files.

**property features**
Features of the input data.

*Type* `numpy.ndarray`

**property features_after_preprocessing**
Features of the input data after preprocessing.

*Type* `numpy.ndarray`

**property features_types**
Types of the features.

*Type* `pandas.Series`

**property features_units**
Units of the features.

*Type* `pandas.Series`

**fit()**
Fit MLR model.

*Note:* Specifying keyword arguments for this function is not allowed here since `features_after_preprocessing` might be altered by that. Use the keyword argument `fit_kwargs` during class initialization instead.

**property fit_kwargs**
Keyword arguments for `fit()`.

*Type* `dict`

**get_ancestors** *(label=True, features=None, prediction_names=None, prediction_reference=False)*
Return ancestor files.

*Parameters*

- **label** *(bool, optional (default: True)) – Return label files.*
- **features** *(list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.*
- **prediction_names** *(list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.*
- **prediction_reference** *(bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.*

*Returns* Ancestor files.

*Return type* `list of str`

*Raises* `ValueError` – Invalid feature or prediction_name given.

**get_data_frame** *(data_type, impute_nans=False)*
Return data frame of specified type.

*Parameters*
• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type pandas.DataFrame

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

### get_x_array *(data_type, impute_nans=False)*

Return x data of specific type.

Parameters

• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

### get_y_array *(data_type, impute_nans=False)*

Return y data of specific type.

Parameters

• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

### grid_search_cv *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.

Parameters

• **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

• **kwargs** *(keyword arguments, optional)* – Additional options for sklearn.model_selection.GridSearchCV.

Raises **ValueError** – Final regressor does not supply the attributes best_estimator_ or best_params_.

### property group_attributes

Group attributes of the input data.

Type numpy.ndarray
property label
Label of the input data.
    Type str

property label_units
Units of the label.
    Type str

property mlr_model_type
MLR model type.
    Type str

property numerical_features
Numerical features.
    Type numpy.ndarray

property parameters
Parameters of the complete MLR model pipeline.
    Type dict

plot_1d_model (filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

**Note:** This only works for a model with a single feature.

**Parameters**

- **filename** (str, optional (default: '1d_mlr_model')) – Name of the plot file.
- **n_points** (int, optional (default: 1000)) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

**Raises**

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – MLR model is built from more than 1 feature.

plot_coefs (filename=None)
Plot linear coefficients of models.

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** (str, optional (default: 'coefs')) – Name of the plot file.

plot_feature_importance (filename=None, color_coded=True)
Plot feature importance given by linear coefficients.
**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- `filename (str, optional (default: 'feature_importance'))` - Name of the plot file.

- `color_coded (bool, optional (default: True))` - If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

`plot_partial_dependences (filename=None)`

Plot partial dependences for every feature.

**Parameters**

- `filename (str, optional (default: 'partial_dependece_{feature}'))` - Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_prediction_errors (filename=None)`

Plot predicted vs. true values.

**Parameters**

- `filename (str, optional (default: 'prediction_errors'))` - Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals (filename=None)`

Plot residuals of training and test (if available) data.

**Parameters**

- `filename (str, optional (default: 'residuals'))` - Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals_distribution (filename=None)`

Plot distribution of residuals of training and test data (KDE).

**Parameters**

- `filename (str, optional (default: 'residuals_distribution'))` - Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals_histogram (filename=None)`

Plot histogram of residuals of training and test data.

**Parameters**

- `filename (str, optional (default: 'residuals_histogram'))` - Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_scatterplots (filename=None)`

Plot scatterplots label vs. feature for every feature.

**Parameters**

- `filename (str, optional (default: 'scatterplot_{feature}'))` - Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.
**predict** (save_mlr_model_error=None, save_propagated_errors=False, **kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with `var_type` set to `prediction_input_error` and setting `save_propagated_errors` to `True`). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option `test_size` is not set to `False` during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the `group_attributes`. Only possible if `group_datasets_by_attributes` is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False))* – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** *(bool, optional (default: False))* – Additionally saves propagated errors from `prediction_input_error` datasets. Only possible when these are available.

- ****kwargs** *(keyword arguments, optional)* – Additional options for the final regressors `predict()` function.

**Raises**

- **RuntimeError** – `return_var` and `return_cov` are both set to `True`.

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – An invalid value for `save_mlr_model_error` is given.

- **ValueError** – `save_propagated_errors` is `True` and no `prediction_input_error` data is available.

**print_correlation_matrices()**

Print correlation matrices for all datasets.

**print_regression_metrics(logo=False)**

Print all available regression metrics for training data.

**Parameters logo** *(bool, optional (default: False))* – Print regression metrics using `sklearn.model_selection.LeaveOneGroupOut` cross-validation. Only possible when `group_datasets_by_attributes` was given during class initialization.

**classmethod register_mlr_model(mlr_model_type)**

Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**

Reset regressor pipeline.

**rfecv(**kwargs)**

Perform recursive feature elimination using cross-validation.
Note: This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

**Parameters**

**kwargs (keyword arguments, optional)** – Additional options for `sklearn.feature_selection.RFECV`. 

**Raises** `RuntimeError` – Final estimator does not provide `coef_` or `feature_importances_` attribute.

test_normality_of_residuals()

Perform Shapiro-Wilk test to normality of residuals.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

update_parameters(**params)

Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

**Parameters**

**params (keyword arguments, optional)** – Parameters for the pipeline which should be updated.

**Raises** `ValueError` – Invalid parameter for pipeline given.

### 37.4.5 Kernel Ridge Regression

Kernel Ridge Regression model.

Use `mlr_model_type: krr` to use this MLR model in the recipe.

**Classes**

`KRRModel(input_datasets, **kwargs)`

Kernel Ridge Regression model.

`esmvaltool.diag_scripts.mlr.models.krr.KRRModel(input_datasets, **kwargs)`

Bases: `esmvaltool.diagScripts.mlr.models.MLRModel`

Kernel Ridge Regression model. **Attributes**

<table>
<thead>
<tr>
<th>attribute</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>categorical_features</code></td>
<td>Categorical features.</td>
</tr>
<tr>
<td><code>data</code></td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td><code>features</code></td>
<td>Features of the input data.</td>
</tr>
<tr>
<td><code>features_after_preprocessing</code></td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td><code>features_types</code></td>
<td>Types of the features.</td>
</tr>
<tr>
<td><code>features_units</code></td>
<td>Units of the features.</td>
</tr>
<tr>
<td><code>fit_kwargs</code></td>
<td>Keyword arguments for <code>fit()</code>.</td>
</tr>
<tr>
<td><code>group_attributes</code></td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td><code>label</code></td>
<td>Label of the input data.</td>
</tr>
<tr>
<td><code>label_units</code></td>
<td>Units of the label.</td>
</tr>
<tr>
<td><code>mlr_model_type</code></td>
<td>MLR model type.</td>
</tr>
</tbody>
</table>

continues on next page
Table 34 – continued from previous page

<table>
<thead>
<tr>
<th>numerical_features</th>
<th>Numerical features.</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

- **create**(mlr_model_type, *args, **kwargs) Create desired MLR model subclass (factory method).
- **efecv**(**kwargs) Perform exhaustive feature elimination using cross-validation.
- **export_prediction_data**(filename) Export all prediction data contained in self._data.
- **export_training_data**(filename) Export all training data contained in self._data.
- **fit** Fit MLR model.
- **get_ancestors**(label, features, ...) Return ancestor files.
- **get_data_frame**(data_type[, impute_nans]) Return data frame of specified type.
- **get_x_array**(data_type[, impute_nans]) Return x data of specific type.
- **get_y_array**(data_type[, impute_nans]) Return y data of specific type.
- **grid_search_cv**(param_grid, **kwargs) Perform exhaustive parameter search using cross-validation.
- **plot_1d_model**(filename, n_points) Plot lineplot that represents the MLR model.
- **plot_partial_dependences**(filename) Plot partial dependences for every feature.
- **plot_prediction_errors**(filename) Plot predicted vs.
- **plot_residuals**(filename) Plot residuals of training and test (if available) data.
- **plot_residuals_distribution**(filename) Plot distribution of residuals of training and test data (KDE).
- **plot_residuals_histogram**(filename) Plot histogram of residuals of training and test data.
- **plot_scatterplots**(filename) Plot scatterplots label vs.
- **predict**(save_mlr_model_error,...) Perform prediction using the MLR model(s) and write *.nc files.
- **print_correlation_matrices**() Print correlation matrices for all datasets.
- **print_regression_metrics**(logo) Print all available regression metrics for training data.
- **register_mlr_model**(mlr_model_type) Add MLR model (subclass of this class) (decorator).
- **reset_pipeline**() Reset regressor pipeline.
- **rfecv**(**kwargs) Perform recursive feature elimination using cross-validation.
- **test_normality_of_residuals**() Perform Shapiro-Wilk test to normality of residuals.
- **update_parameters**(**params) Update parameters of the whole pipeline.

**property categorical_features**
Categorical features.

Type numpy.ndarray

**classmethod create**(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

**property data**
Input data of the MLR model.

Type dict

**efecv**(**kwargs)
Perform exhaustive feature elimination using cross-validation.

37.4. Available MLR models
Parameters

**kwargs (keyword arguments, optional) – Additional options for `esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted()`.

`export_prediction_data(filename=None)`
Export all prediction data contained in `self._data`.

Parameters

filename (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

`export_training_data(filename=None)`
Export all training data contained in `self._data`.

Parameters

filename (str, optional (default: '{data_type}.csv')) – Name of the exported files.

`property features`
Features of the input data.

Type `numpy.ndarray`

`property features_after_preprocessing`
Features of the input data after preprocessing.

Type `numpy.ndarray`

`property features_types`
Types of the features.

Type `pandas.Series`

`property features_units`
Units of the features.

Type `pandas.Series`

`fit()`
Fit MLR model.

**Note:** Specifying keyword arguments for this function is not allowed here since `features_after_preprocessing` might be altered by that. Use the keyword argument `fit_kwargs` during class initialization instead.

`property fit_kwargs`
Keyword arguments for `fit()`.

Type `dict`

`get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)`
Return ancestor files.

Parameters

- `label` (bool, optional (default: True)) – Return label files.
- `features` (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- `prediction_names` (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
• `prediction_reference`  (bool, optional (default: False))
  – Return `prediction_reference` files if available for given `prediction_names`.

Returns  Ancestor files.
Return type  list of str
Raises `ValueError` – Invalid feature or `prediction_name` given.

`get_data_frame` (data_type, impute_nans=False)
Return data frame of specified type.

Parameters
• `data_type` (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
• `impute_nans` (bool, optional (default: False)) – Impute nans if desired.

Returns  Desired data.
Return type  pandas.DataFrame
Raises `TypeError` – `data_type` is invalid or data does not exist (e.g. test data is not set).

`get_x_array` (data_type, impute_nans=False)
Return x data of specific type.

Parameters
• `data_type` (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
• `impute_nans` (bool, optional (default: False)) – Impute nans if desired.

Returns  Desired data.
Return type  numpy.ndarray
Raises `TypeError` – `data_type` is invalid or data does not exist (e.g. test data is not set).

`get_y_array` (data_type, impute_nans=False)
Return y data of specific type.

Parameters
• `data_type` (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
• `impute_nans` (bool, optional (default: False)) – Impute nans if desired.

Returns  Desired data.
Return type  numpy.ndarray
Raises `TypeError` – `data_type` is invalid or data does not exist (e.g. test data is not set).

`grid_search_cv` (param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters
• **param_grid** (*dict* or *list of dict*) – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. *s__p* is the parameter *p* for step *s*.

• **kwargs** (*keyword arguments, optional*) – Additional options for `sklearn.model_selection.GridSearchCV`.

Raises **ValueError** – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

**property group_attributes**
Group attributes of the input data.

**Type** `numpy.ndarray`

**property label**
Label of the input data.

**Type** `str`

**property label_units**
Units of the label.

**Type** `str`

**property mlr_model_type**
MLR model type.

**Type** `str`

**property numerical_features**
Numerical features.

**Type** `numpy.ndarray`

**property parameters**
Parameters of the complete MLR model pipeline.

**Type** `dict`

**plot_1d_model** (*filename=None, n_points=1000*)
Plot lineplot that represents the MLR model.

**Note:** This only works for a model with a single feature.

**Parameters**

• **filename** (*str, optional (default: '1d_mlr_model')*) – Name of the plot file.

• **n_points** (*int, optional (default: 1000]*) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

**Raises**

• **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

• **ValueError** – MLR model is built from more than 1 feature.

**plot_partial_dependences** (*filename=None*)
Plot partial dependences for every feature.
Parameters `filename`:

\[(\text{str, optional (default: 'partial\_dependence\_\{feature\}')})\] – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_prediction_errors` (filename=None)

Plot predicted vs. true values.

Parameters `filename`:

\[(\text{str, optional (default: 'prediction\_errors')})\] – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals` (filename=None)

Plot residuals of training and test (if available) data.

Parameters `filename`:

\[(\text{str, optional (default: 'residuals')})\] – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals_distribution` (filename=None)

Plot distribution of residuals of training and test data (KDE).

Parameters `filename`:

\[(\text{str, optional (default: 'residuals\_distribution')})\] – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals_histogram` (filename=None)

Plot histogram of residuals of training and test data.

Parameters `filename`:

\[(\text{str, optional (default: 'residuals\_histogram')})\] – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_scatterplots` (filename=None)

Plot scatterplots label vs. feature for every feature.

Parameters `filename`:

\[(\text{str, optional (default: 'scatterplot\_\{feature\}')})\] – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`predict` (save_mlr_model_error=None, save_lime_importance=False, save_propagated Errors=False, **kwargs)

Perform prediction using the MLR model(s) and write *.nc files.

Parameters

• `save_mlr_model_error` (\text{str or int, optional}) – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with \text{var\_type set to prediction\_input\_error and setting save\_propagated\_errors to True}). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option \text{test\_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group\_attributes. Only possible if \text{group\_datasets\_by\_attributes is given. If the option is set to an integer n (\text{\neq 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.}

37.4. Available MLR models
• **save_lime_importance** *(bool, optional (default: False)) –* Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

• **save_propagated_errors** *(bool, optional (default: False)) –* Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

• **kwargs** *(keyword arguments, optional) –* Additional options for the final regressors predict() function.

Raises

• **RuntimeError** – return_var and return_cov are both set to True.

• **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

• **ValueError** – An invalid value for save_mlr_model_error is given.

• **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices()**
Print correlation matrices for all datasets.

**print_regression_metrics**(logo=False)
Print all available regression metrics for training data.

Parameters **logo** *(bool, optional (default: False)) –* Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model**(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**
Reset regressor pipeline.

**rfecv**(**kwargs)**
Perform recursive feature elimination using cross-validation.

**Note:** This only works for final estimators that provide information about feature importance either through a coef_ attribute or through a feature_importances_ attribute.

Parameters **kwargs** *(keyword arguments, optional) –* Additional options for sklearn.feature_selection.RFECV.

Raises **RuntimeError** – Final estimator does not provide coef_ or feature_importances_ attribute.

**test_normality_of_residuals()**
Perform Shapiro-Wilk test to normality of residuals.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**update_parameters**(**params)**
Update parameters of the whole pipeline.
Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. \texttt{s\_p} is the parameter \texttt{p} for step \texttt{s}.

\begin{itemize}
  \item \textbf{Parameters} \texttt{**params (keyword arguments, optional)} – Parameters for the pipeline which should be updated.

  \item \textbf{Raises} \texttt{ValueError} – Invalid parameter for pipeline given.
\end{itemize}

37.4.6 LASSO Regression

Lasso Regression model.

Use \texttt{mlr\_model\_type: lasso} to use this MLR model in the recipe.

Classes

\begin{verbatim}
LassoModel(input_datasets, **kwargs) Lasso Regression model.

class esmvaltool.diag_scripts.mlr.models.lasso.LassoModel(input_datasets,
  **kwargs)

Bases: esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel

Lasso Regression model.
\end{verbatim}

Attributes

\begin{itemize}
  \item \texttt{categorical\_features} Categorical features.
  \item \texttt{data} Input data of the MLR model.
  \item \texttt{features} Features of the input data.
  \item \texttt{features\_after\_preprocessing} Features of the input data after preprocessing.
  \item \texttt{features\_types} Types of the features.
  \item \texttt{features\_units} Units of the features.
  \item \texttt{fit\_kwargs} Keyword arguments for \texttt{fit()}.
  \item \texttt{group\_attributes} Group attributes of the input data.
  \item \texttt{label} Label of the input data.
  \item \texttt{label\_units} Units of the label.
  \item \texttt{mlr\_model\_type} MLR model type.
  \item \texttt{numerical\_features} Numerical features.
  \item \texttt{parameters} Parameters of the complete MLR model pipeline.
\end{itemize}

Methods

\begin{itemize}
  \item \texttt{create(mlr\_model\_type, *args, **kwargs)} Create desired MLR model subclass (factory method).
  \item \texttt{efecv(**kwargs)} Perform exhaustive feature elimination using cross-validation.
  \item \texttt{export\_prediction\_data([filename])} Export all prediction data contained in \texttt{self\_data}.
  \item \texttt{export\_training\_data([filename])} Export all training data contained in \texttt{self\_data}.
  \item \texttt{fit()} Fit MLR model.
  \item \texttt{get\_ancestors([label, features, ...])} Return ancestor files.
  \item \texttt{get\_data\_frame(data\_type[, impute\_nans])} Return data frame of specified type.
  \item \texttt{get\_x\_array(data\_type[, impute\_nans])} Return x data of specific type.
\end{itemize}

continues on next page
### Table 38 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_y_array(data_type[, impute_nans])</code></td>
<td>Return y data of specific type.</td>
</tr>
<tr>
<td><code>grid_search_cv(param_grid, **kwargs)</code></td>
<td>Perform exhaustive parameter search using cross-validation.</td>
</tr>
<tr>
<td><code>plot_1d_model([filename, n_points])</code></td>
<td>Plot lineplot that represents the MLR model.</td>
</tr>
<tr>
<td><code>plot_coefs([filename])</code></td>
<td>Plot linear coefficients of models.</td>
</tr>
<tr>
<td><code>plot_feature_importance([filename, color_coded])</code></td>
<td>Plot feature importance given by linear coefficients.</td>
</tr>
<tr>
<td><code>plot_partial_dependences([filename])</code></td>
<td>Plot partial dependences for every feature.</td>
</tr>
<tr>
<td><code>plot_prediction_errors([filename])</code></td>
<td>Plot predicted vs.</td>
</tr>
<tr>
<td><code>plot_residuals([filename])</code></td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td><code>plot_residuals_distribution([filename])</code></td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td><code>plot_scatterplots([filename])</code></td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td><code>predict([save_mlr_model_error, ...])</code></td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices()</code></td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics([logo])</code></td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model(mlr_model_type)</code></td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline()</code></td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv(**kwargs)</code></td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals()</code></td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters(**params)</code></td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**

Categorical features.

Type: numpy.ndarray

**classmethod create**(mlr_model_type, *args, **kwargs)

Create desired MLR model subclass (factory method).

**property data**

Input data of the MLR model.

Type: dict

**efecv(**kwargs)**

Perform exhaustive feature elimination using cross-validation.

**Parameters **kwargs** (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr. custom_sklearn. cross_val_score_weighted()**

**export_prediction_data**(filename=None)

Export all prediction data contained in self._data.

**Parameters filename** (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

**export_training_data**(filename=None)

Export all training data contained in self._data.

**Parameters filename** (str, optional (default: '{data_type}.csv') – Name of the exported files.
property features
   Features of the input data.
   Type numpy.ndarray

property features_after_preprocessing
   Features of the input data after preprocessing.
   Type numpy.ndarray

property features_types
   Types of the features.
   Type pandas.Series

property features_units
   Units of the features.
   Type pandas.Series

fit()
   Fit MLR model.

   Note: Specifying keyword arguments for this function is not allowed here since features_after_preprocessing might be altered by that. Use the keyword argument fit_kwargs during class initialization instead.

property fit_kwargs
   Keyword arguments for fit().
   Type dict

get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)
   Return ancestor files.

   Parameters

   • label (bool, optional (default: True)) – Return label files.
   • features (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
   • prediction_names (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
   • prediction_reference (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

   Returns Ancestor files.
   Return type list of str

   Raises ValueError – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)
   Return data frame of specified type.

   Parameters

   • data_type (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.

37.4. Available MLR models
• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type pandas.DataFrame

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

`get_x_array`(data_type, impute_nans=False)

Return x data of specific type.

Parameters

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

`get_y_array`(data_type, impute_nans=False)

Return y data of specific type.

Parameters

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

`grid_search_cv`(param_grid, **kwargs)

Perform exhaustive parameter search using cross-validation.

Parameters

- **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.
- **kwargs** *(keyword arguments, optional)* – Additional options for sklearn.model_selection.GridSearchCV.

Raises **ValueError** – Final regressor does not supply the attributes best_estimator_ or best_params_.

**property group_attributes**

Group attributes of the input data.

Type numpy.ndarray

**property label**

Label of the input data.

Type str
**property label_units**
Units of the label.

Type: str

**property mlr_model_type**
MLR model type.

Type: str

**property numerical_features**
Numerical features.

Type: numpy.ndarray

**property parameters**
Parameters of the complete MLR model pipeline.

Type: dict

**plot_1d_model** *(filename=None, n_points=1000)*
Plot lineplot that represents the MLR model.

**Parameters**

- `filename` *(str, optional (default: '1d_mlr_model'))* – Name of the plot file.
- `n_points` *(int, optional (default: 1000))* – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

**Raises**

- `sklearn.exceptions.NotFittedError` – MLR model is not fitted.
- `ValueError` – MLR model is built from more than 1 feature.

**plot_coefs** *(filename=None)*
Plot linear coefficients of models.

**Parameters**

- `filename` *(str, optional (default: 'coefs'))* – Name of the plot file.

**plot_feature_importance** *(filename=None, color_coded=True)*
Plot feature importance given by linear coefficients.

**Parameters**

- `filename` *(str, optional (default: 'coefs'))* – Name of the plot file.
- `color_coded` *(bool, optional (default: True))* – Use color coding for feature importance.

---

**37.4. Available MLR models**

---
• **filename** *(str, optional (default: 'feature_importance'))*—Name of the plot file.

• **color_coded** *(bool, optional (default: True))*—If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

```python
plot_partial_dependences (filename=None)
```
Plot partial dependences for every feature.

**Parameters**

- **filename** *(str, optional (default: 'partial_dependence_{feature}'))*—Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* — MLR model is not fitted.

```python
plot_prediction_errors (filename=None)
```
Plot predicted vs. true values.

**Parameters**

- **filename** *(str, optional (default: 'prediction_errors'))*—Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* — MLR model is not fitted.

```python
plot_residuals (filename=None)
```
Plot residuals of training and test (if available) data.

**Parameters**

- **filename** *(str, optional (default: 'residuals'))*—Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* — MLR model is not fitted.

```python
plot_residuals_distribution (filename=None)
```
Plot distribution of residuals of training and test data (KDE).

**Parameters**

- **filename** *(str, optional (default: 'residuals_distribution'))*—Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* — MLR model is not fitted.

```python
plot_residuals_histogram (filename=None)
```
Plot histogram of residuals of training and test data.

**Parameters**

- **filename** *(str, optional (default: 'residuals_histogram'))*—Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* — MLR model is not fitted.

```python
plot_scatterplots (filename=None)
```
Plot scatterplots label vs. feature for every feature.

**Parameters**

- **filename** *(str, optional (default: 'scatterplot_{feature}'))*—Name of the plot file.

**Raises** *sklearn.exceptions.NotFittedError* — MLR model is not fitted.

```python
predict (save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)
```
Perform prediction using the MLR model(s) and write *.nc files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)*—Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type
set to prediction_input_error and setting save_propagated_errors to True. If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** (bool, optional (default: False)) – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).
- **save_propagated_errors** (bool, optional (default: False)) – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.
- ****kwargs (keyword arguments, optional) – Additional options for the final regressors predict() function.

**Raises**

- **RuntimeError** – return_var and return_cov are both set to True.
- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – An invalid value for save_mlr_model_error is given.
- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices()**

Print correlation matrices for all datasets.

**print_regression_metrics** (logo=False)

Print all available regression metrics for training data.

**Parameters**

- **logo** (bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model** (mlr_model_type)

Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**

Reset regressor pipeline.

**rfecv(**kwargs**)

Perform recursive feature elimination using cross-validation.

**Note:** This only works for final estimators that provide information about feature importance either through a coef_ attribute or through a feature_importances_ attribute.

**Parameters**

- ****kwargs (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

**Raises**

- **RuntimeError** – Final estimator does not provide coef_ or feature_importances_ attribute.
**test_normality_of_residuals()**
Perform Shapiro-Wilk test to normality of residuals.

*Raises* `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

**update_parameters(**params**)
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. \( s_{-p} \) is the parameter \( p \) for step \( s \).

**Parameters** `**params` *(keyword arguments, optional)* – Parameters for the pipeline which should be updated.

*Raises* `ValueError` – Invalid parameter for pipeline given.

### 37.4.7 LASSO Regression with built-in CV

Lasso Regression model with built-in CV.

Use `mlr_model_type: lasso_cv` to use this MLR model in the recipe.

**Classes**

```python
class esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel(input_datasets, **kwargs)
```

Bases: `esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel`

Lasso Regression model with built-in CV. **Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>categorical_features</td>
<td>Categorical features.</td>
</tr>
<tr>
<td>data</td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td>features</td>
<td>Features of the input data.</td>
</tr>
<tr>
<td>features_after_preprocessing</td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td>features_types</td>
<td>Types of the features.</td>
</tr>
<tr>
<td>features_units</td>
<td>Units of the features.</td>
</tr>
<tr>
<td>fit_kwargs</td>
<td>Keyword arguments for <code>fit()</code>.</td>
</tr>
<tr>
<td>group_attributes</td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td>label</td>
<td>Label of the input data.</td>
</tr>
<tr>
<td>label_units</td>
<td>Units of the label.</td>
</tr>
<tr>
<td>mlr_model_type</td>
<td>MLR model type.</td>
</tr>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>create(mlr_model_type,*args,**kwargs)</td>
<td>Create desired MLR model subclass (factory method).</td>
</tr>
<tr>
<td>efecv(**kwargs)</td>
<td>Perform exhaustive feature elimination using cross-validation.</td>
</tr>
</tbody>
</table>

continues on next page
Table 41 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>export_prediction_data([filename])</code></td>
<td>Export all prediction data contained in <code>self._data</code>.</td>
</tr>
<tr>
<td><code>export_training_data([filename])</code></td>
<td>Export all training data contained in <code>self._data</code>.</td>
</tr>
<tr>
<td><code>fit()</code></td>
<td>Print final alpha after successful fitting.</td>
</tr>
<tr>
<td><code>get_ancestors([label, features, ...])</code></td>
<td>Return ancestor files.</td>
</tr>
<tr>
<td><code>get_data_frame(data_type[, impute_nans])</code></td>
<td>Return data frame of specified type.</td>
</tr>
<tr>
<td><code>get_x_array(data_type[, impute_nans])</code></td>
<td>Return x data of specific type.</td>
</tr>
<tr>
<td><code>get_y_array(data_type[, impute_nans])</code></td>
<td>Return y data of specific type.</td>
</tr>
<tr>
<td><code>grid_search_cv(param_grid, **kwargs)</code></td>
<td>Perform exhaustive parameter search using cross-validation.</td>
</tr>
<tr>
<td><code>plot_1d_model([filename, n_points])</code></td>
<td>Plot lineplot that represents the MLR model.</td>
</tr>
<tr>
<td><code>plot_coefs([filename])</code></td>
<td>Plot linear coefficients of models.</td>
</tr>
<tr>
<td><code>plot_feature_importance([filename, color_coded])</code></td>
<td>Plot feature importance given by linear coefficients.</td>
</tr>
<tr>
<td><code>plot_partial_dependences([filename])</code></td>
<td>Plot partial dependences for every feature.</td>
</tr>
<tr>
<td><code>plot_prediction_errors([filename])</code></td>
<td>Plot predicted vs.</td>
</tr>
<tr>
<td><code>plot_residuals([filename])</code></td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td><code>plot_residuals_distribution([filename])</code></td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td><code>plot_residuals_histogram([filename])</code></td>
<td>Plot histogram of residuals of training and test data.</td>
</tr>
<tr>
<td><code>plot_scatterplots([filename])</code></td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td><code>predict([save_mlr_model_error, ...])</code></td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices()</code></td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics([logo])</code></td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model(mlr_model_type)</code></td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline()</code></td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv(**kwargs)</code></td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals()</code></td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters(**params)</code></td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**

Categorical features.

Type `numpy.ndarray`

**classmethod create**( `mlr_model_type`, *args, **kwargs`)

Create desired MLR model subclass (factory method).

**property data**

Input data of the MLR model.

Type `dict`

**efecv**( **kwargs`)

Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs ` (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr. custom_sklearn.cross_val_score_weighted().`

**export_prediction_data** ( `filename=None`)  
Export all prediction data contained in `self._data`. 

37.4. Available MLR models
Parameters `filename` (str, optional (default: '{data_type}_{pred_name}.csv')) – Name of the exported files.

`export_training_data` (filename=None)
Export all training data contained in `self._data`.

Parameters `filename` (str, optional (default: '{data_type}.csv')) – Name of the exported files.

`property features`
Features of the input data.

`property features_after_preprocessing`
Features of the input data after preprocessing.

`property features_types`
Types of the features.

`property features_units`
Units of the features.

`fit()`
Print final `alpha` after successful fitting.

`property fit_kwargs`
Keyword arguments for `fit()`.

`get_ancestors` (label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

- `label` (bool, optional (default: True)) – Return label files.
- `features` (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- `prediction_names` (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
- `prediction_reference` (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises `ValueError` – Invalid feature or prediction_name given.

`get_data_frame` (data_type, impute_nans=False)
Return data frame of specified type.

Parameters
- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False))* – Impute nans if desired.

**Returns** Desired data.

**Return type** pandas.DataFrame

**Raises** TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

**get_x_array** *(data_type, impute_nans=False)*

Return x data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False))* – Impute nans if desired.

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

**get_y_array** *(data_type, impute_nans=False)*

Return y data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False))* – Impute nans if desired.

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

**grid_search_cv** *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.

**Parameters**

- **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

- ****kwargs** *(keyword arguments, optional)* – Additional options for sklearn.model_selection.GridSearchCV.

**Raises** ValueError – Final regressor does not supply the attributes best_estimator_ or best_params_

**property group_attributes**

Group attributes of the input data.

**Type** numpy.ndarray

---

**37.4. Available MLR models**
property label
    Label of the input data.
    Type str

property label_units
    Units of the label.
    Type str

property mlr_model_type
    MLR model type.
    Type str

property numerical_features
    Numerical features.
    Type numpy.ndarray

property parameters
    Parameters of the complete MLR model pipeline.
    Type dict

plot_1d_model (filename=None, n_points=1000)
    Plot lineplot that represents the MLR model.

    Note: This only works for a model with a single feature.

Parameters

- **filename** (str, optional (default: '1d_mlr_model')) – Name of
  the plot file.

- **n_points** (int, optional (default: 1000)) – Number of sampled
  points for the single feature (using linear spacing between minimum and maximum
  value).

Raises

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – MLR model is built from more than 1 feature.

plot_coefs (filename=None)
    Plot linear coefficients of models.

    Note: The features plotted here are not necessarily the real input features, but the ones after preproces-
    sing.

Parameters filename (str, optional (default: 'coefs')) – Name of the
    plot file.

plot_feature_importance (filename=None, color_coded=True)
    Plot feature importance given by linear coefficients.
Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters

- **filename** *(str, optional (default: 'feature_importance'))* - Name of the plot file.

- **color_coded** *(bool, optional (default: True))* - If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

**plot_partial_dependences** *(filename=None)*

Plot partial dependences for every feature.

Parameters

- **filename** *(str, optional (default: 'partial_dependence_{feature}'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_prediction_errors** *(filename=None)*

Plot predicted vs. true values.

Parameters

- **filename** *(str, optional (default: 'prediction_errors'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals** *(filename=None)*

Plot residuals of training and test (if available) data.

Parameters

- **filename** *(str, optional (default: 'residuals'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals_distribution** *(filename=None)*

Plot distribution of residuals of training and test data (KDE).

Parameters

- **filename** *(str, optional (default: 'residuals_distribution'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals_histogram** *(filename=None)*

Plot histogram of residuals of training and test data.

Parameters

- **filename** *(str, optional (default: 'residuals_histogram'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_scatterplots** *(filename=None)*

Plot scatterplots label vs. feature for every feature.

Parameters

- **filename** *(str, optional (default: 'scatterplot_{feature}'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
**predict**

```python
predict(save_mlr_model_error=None,
 save_propagated_errors=False, **kwargs)
```

Perform prediction using the MLR model(s) and write *.nc files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False))* – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** *(bool, optional (default: False))* – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- ****kwargs** *(keyword arguments, optional)* – Additional options for the final regressors predict() function.

**Raises**

- **RuntimeError** – return_var and return_cov are both set to True.

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – An invalid value for save_mlr_model_error is given.

- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices**

Print correlation matrices for all datasets.

**print_regression_metrics** *logo=False*

Print all available regression metrics for training data.

**Parameters**

- **logo** *(bool, optional (default: False))* – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model** *(mlr_model_type)*

Add MLR model (subclass of this class) (decorator).

**reset_pipeline**

Reset regressor pipeline.

**rfecv** *(**kwargs)*

Perform recursive feature elimination using cross-validation.
Note: This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

Parameters **kwargs (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

Raises RuntimeError – Final estimator does not provide `coef_` or `feature_importances_` attribute.

test_normality_of_residuals()  
Perform Shapiro-Wilk test to normality of residuals.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)  
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

Parameters **params (keyword arguments, optional) – Parameters for the pipeline which should be updated.

Raises ValueError – Invalid parameter for pipeline given.

37.4.8 LASSO Regression (using Least-angle Regression algorithm) with built-in CV

Lasso Regression model with built-in CV using LARS algorithm.

Use mlr_model_type: lasso_lars_cv to use this MLR model in the recipe.

Classes

LassoLarsCVModel(input_datasets, **kwargs)  
Lasso Regression model with built-in CV using LARS algorithm.

Bases: esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel

Lasso Regression model with built-in CV using LARS algorithm. Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>categorical_features</td>
<td>Categorical features.</td>
</tr>
<tr>
<td>data</td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td>features</td>
<td>Features of the input data.</td>
</tr>
<tr>
<td>features_after_preprocessing</td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td>features_types</td>
<td>Types of the features.</td>
</tr>
<tr>
<td>features_units</td>
<td>Units of the features.</td>
</tr>
<tr>
<td>fit_kwargs</td>
<td>Keyword arguments for <code>fit()</code></td>
</tr>
<tr>
<td>group_attributes</td>
<td>Group attributes of the input data.</td>
</tr>
</tbody>
</table>

continues on next page
Table 43 – continued from previous page

<table>
<thead>
<tr>
<th>label</th>
<th>Label of the input data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>label_units</td>
<td>Units of the label.</td>
</tr>
<tr>
<td>mlr_model_type</td>
<td>MLR model type.</td>
</tr>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>create(mlr_model_type, *args, **kwargs)</td>
<td>Create desired MLR model subclass (factory method).</td>
</tr>
<tr>
<td>efecv(**kwargs)</td>
<td>Perform exhaustive feature elimination using cross-validation.</td>
</tr>
<tr>
<td>export_prediction_data([filename])</td>
<td>Export all prediction data contained in self._data.</td>
</tr>
<tr>
<td>export_training_data([filename])</td>
<td>Export all training data contained in self._data.</td>
</tr>
<tr>
<td>fit()</td>
<td>Print final alpha after successful fitting.</td>
</tr>
<tr>
<td>get_ancestors([label, features, . . .])</td>
<td>Return ancestor files.</td>
</tr>
<tr>
<td>get_data_frame(data_type[, impute_nans])</td>
<td>Return data frame of specified type.</td>
</tr>
<tr>
<td>get_x_array(data_type[, impute_nans])</td>
<td>Return x data of specific type.</td>
</tr>
<tr>
<td>get_y_array(data_type[, impute_nans])</td>
<td>Return y data of specific type.</td>
</tr>
<tr>
<td>grid_search_cv(param_grid, **kwargs)</td>
<td>Perform exhaustive parameter search using cross-validation.</td>
</tr>
<tr>
<td>plot_1d_model([filename, n_points])</td>
<td>Plot lineplot that represents the MLR model.</td>
</tr>
<tr>
<td>plot_coefs([filename])</td>
<td>Plot linear coefficients of models.</td>
</tr>
<tr>
<td>plot_feature_importance([filename, color_coded])</td>
<td>Plot feature importance given by linear coefficients.</td>
</tr>
<tr>
<td>plot_partial_dependencies([filename])</td>
<td>Plot partial dependences for every feature.</td>
</tr>
<tr>
<td>plot_prediction_errors([filename])</td>
<td>Plot predicted vs.</td>
</tr>
<tr>
<td>plot_residuals([filename])</td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td>plot_residuals_distribution([filename])</td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td>plot_residuals_histogram([filename])</td>
<td>Plot histogram of residuals of training and test data.</td>
</tr>
<tr>
<td>plot_scatterplots([filename])</td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td>predict([save_mlr_model_error, . . .])</td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td>print_correlation_matrices()</td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td>print_regression_metrics([logo])</td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td>register_mlr_model(mlr_model_type)</td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td>reset_pipeline()</td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td>rfecv(**kwargs)</td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td>test_normality_of_residuals()</td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td>update_parameters(**params)</td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

property categorical_features  
Categorical features.  
Type numpy.ndarray

classmethod create(mlr_model_type, *args, **kwargs)  
Create desired MLR model subclass (factory method).

property data
Input data of the MLR model.

**Type** dict

def efecv(**kwargs)

Perform exhaustive feature elimination using cross-validation.

**Parameters**

**kwargs (keyword arguments, optional)** – Additional options for `esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted()`.

def export_prediction_data(filename=None)

Export all prediction data contained in `self._data`.

**Parameters**

filename (str, optional (default: '{data_type}_{pred_name}.csv')) – Name of the exported files.

def export_training_data(filename=None)

Export all training data contained in `self._data`.

**Parameters**

filename (str, optional (default: '{data_type}.csv')) – Name of the exported files.

**property features**

Features of the input data.

**Type** numpy.ndarray

**property features_after_preprocessing**

Features of the input data after preprocessing.

**Type** numpy.ndarray

**property features_types**

Types of the features.

**Type** pandas.Series

**property features_units**

Units of the features.

**Type** pandas.Series

**fit()**

Print final `alpha` after successful fitting.

**property fit_kwargs**

Keyword arguments for `fit()`.

**Type** dict

def get_ancestors(label=True, features=None, prediction_names=None, prediction_reference=False)

Return ancestor files.

**Parameters**

- **label** (bool, optional (default: True)) – Return label files.
- **features** (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- **prediction_names** (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
• **prediction_reference** *(bool, optional (default: False)) — Return prediction_reference files if available for given prediction_names.*

**Returns** Ancestor files.

**Return type** list of str

**Raises** ValueError — Invalid feature or prediction_name given.

### get_data_frame(data_type, impute_nans=False)

Return data frame of specified type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False)) — Impute nans if desired.*

**Returns** Desired data.

**Return type** pandas.DataFrame

**Raises** TypeError — data_type is invalid or data does not exist (e.g. test data is not set).

### get_x_array(data_type, impute_nans=False)

Return x data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False)) — Impute nans if desired.*

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** TypeError — data_type is invalid or data does not exist (e.g. test data is not set).

### get_y_array(data_type, impute_nans=False)

Return y data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False)) — Impute nans if desired.*

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** TypeError — data_type is invalid or data does not exist (e.g. test data is not set).

### grid_search_cv(param_grid, **kwargs)

Perform exhaustive parameter search using cross-validation.

**Parameters**
• **param_grid** (*dict or list of dict*) – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

• **kwargs** (*keyword arguments, optional*) – Additional options for `sklearn.model_selection.GridSearchCV`.

Raises **ValueError** – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

**property group_attributes**
Group attributes of the input data.

*Type* `numpy.ndarray`

**property label**
Label of the input data.

*Type* `str`

**property label_units**
Units of the label.

*Type* `str`

**property mlr_model_type**
MLR model type.

*Type* `str`

**property numerical_features**
Numerical features.

*Type* `numpy.ndarray`

**property parameters**
Parameters of the complete MLR model pipeline.

*Type* `dict`

**plot_1d_model** (*filename=None, n_points=1000*)
Plot lineplot that represents the MLR model.

**Note:** This only works for a model with a single feature.

**Parameters**

• **filename** (*str, optional (default: '1d_mlr_model')*) – Name of the plot file.

• **n_points** (*int, optional (default: 1000)*) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

Raises

• **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

• **ValueError** – MLR model is built from more than 1 feature.

**plot_coefs** (*filename=None*)
Plot linear coefficients of models.
Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** *(str, optional (default: 'coefs'))* - Name of the plot file.

**plot_feature_importance** *(filename=None, color_coded=True)*
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- **filename** *(str, optional (default: 'feature_importance'))* - Name of the plot file.

- **color_coded** *(bool, optional (default: True))* - If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

**plot_partial_dependences** *(filename=None)*
Plot partial dependences for every feature.

**Parameters**

- **filename** *(str, optional (default: 'partial_dependence_{feature}'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_prediction_errors** *(filename=None)*
Plot predicted vs. true values.

**Parameters**

- **filename** *(str, optional (default: 'prediction_errors'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals** *(filename=None)*
Plot residuals of training and test (if available) data.

**Parameters**

- **filename** *(str, optional (default: 'residuals'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals_distribution** *(filename=None)*
Plot distribution of residuals of training and test data (KDE).

**Parameters**

- **filename** *(str, optional (default: 'residuals_distribution'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**plot_residuals_histogram** *(filename=None)*
Plot histogram of residuals of training and test data.

**Parameters**

- **filename** *(str, optional (default: 'residuals_histogram'))* - Name of the plot file.
plot_scatterplots (filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters
filename (str, optional (default: 'scatterplot_{feature}') – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict (save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)
Perform prediction using the MLR model(s) and write *.nc files.

Parameters

• save_mlr_model_error (str or int, optional) – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

• save_lime_importance (bool, optional (default: False)) – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

• save_propagated_errors (bool, optional (default: False)) – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

• **kwargs (keyword arguments, optional) – Additional options for the final regressors predict() function.

Raises

• RuntimeError – return_var and return_cov are both set to True.

• sklearn.exceptions.NotFittedError – MLR model is not fitted.

• ValueError – An invalid value for save_mlr_model_error is given.

• ValueError – save_propagated_errors is True and no prediction_input_error data is available.

print_correlation_matrices ()
Print correlation matrices for all datasets.

print_regression_metrics (logo=False)
Print all available regression metrics for training data.

Parameters

logo (bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

classmethod register_mlr_model (mlr_model_type)
Add MLR model (subclass of this class) (decorator).
reset_pipeline()
Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either through a coef_ attribute or through a feature_importances_ attribute.

Parameters **kwargs (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

Raises RuntimeError – Final estimator does not provide coef_ or feature_importances_ attribute.

test_normality_of_residuals()
Perform Shapiro-Wilk test to normality of residuals.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

Parameters **params (keyword arguments, optional) – Parameters for the pipeline which should be updated.

Raises ValueError – Invalid parameter for pipeline given.

37.4.9 Linear Regression
Linear Regression model.
Use mlr_model_type: linear to use this MLR model in the recipe.

Classes

LinearRegressionModel(input_datasets, **kwargs)
Linear Regression model.

class esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel(input_datasets, **kwargs)

Bases: esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel

Linear Regression model. Attributes

categorical_features Categorical features.
data Input data of the MLR model.
features Features of the input data.
features_after_preprocessing Features of the input data after preprocessing.
Table 46 – continued from previous page

<table>
<thead>
<tr>
<th>feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>features_types</td>
<td>Types of the features.</td>
</tr>
<tr>
<td>features_units</td>
<td>Units of the features.</td>
</tr>
<tr>
<td>fit_kwargs</td>
<td>Keyword arguments for fit().</td>
</tr>
<tr>
<td>group_attributes</td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td>label</td>
<td>Label of the input data.</td>
</tr>
<tr>
<td>label_units</td>
<td>Units of the label.</td>
</tr>
<tr>
<td>mlr_model_type</td>
<td>MLR model type.</td>
</tr>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

`create(mlr_model_type, *args, **kwargs)` Create desired MLR model subclass (factory method).

`efecv(**kwargs)` Perform exhaustive feature elimination using cross-validation.

`export_prediction_data([filename])` Export all prediction data contained in self._data.

`export_training_data([filename])` Export all training data contained in self._data.

`fit()` Fit MLR model.

`get_ancestors([label, features, . . . ])` Return ancestor files.

`get_data_frame(data_type[, impute_nans])` Return data frame of specified type.

`get_x_array(data_type[, impute_nans])` Return x data of specific type.

`get_y_array(data_type[, impute_nans])` Return y data of specific type.

`grid_search_cv(param_grid, **kwargs)` Perform exhaustive parameter search using cross-validation.

`plot_1d_model([filename, n_points])` Plot lineplot that represents the MLR model.

`plot_coefs([filename])` Plot linear coefficients of models.

`plot_feature_importance([filename, color_coded])` Plot feature importance given by linear coefficients.

`plot_partial_dependences([filename])` Plot partial dependences for every feature.

`plot_prediction_errors([filename])` Plot predicted vs.

`plot_residuals([filename])` Plot residuals of training and test (if available) data.

`plot_residuals_distribution([filename])` Plot distribution of residuals of training and test data (KDE).

`plot_residuals_histogram([filename])` Plot histogram of residuals of training and test data.

`plot_scatterplots([filename])` Plot scatterplots label vs.

`predict([save_mlr_model_error, . . . ])` Perform prediction using the MLR model(s) and write *.nc files.

`print_correlation_matrices()` Print correlation matrices for all datasets.

`print_regression_metrics([logo])` Print all available regression metrics for training data.

`register_mlr_model(mlr_model_type)` Add MLR model (subclass of this class) (decorator).

`reset_pipeline()` Reset regressor pipeline.

`rfecv(**kwargs)` Perform recursive feature elimination using cross-validation.

`test_normality_of_residuals()` Perform Shapiro-Wilk test to normality of residuals.

`update_parameters(**params)` Update parameters of the whole pipeline.

**property categorical_features**

Categorical features.
Type `numpy.ndarray`

classmethod `create` *(mlr_model_type, *args, **kwargs)*
Create desired MLR model subclass (factory method).

**property data**
Input data of the MLR model.

Type `dict`

def `efecv` (**kwargs)**
Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted().

**export_prediction_data** *(filename=None)*
Export all prediction data contained in `self._data`.

Parameters filename (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

**export_training_data** *(filename=None)*
Export all training data contained in `self._data`.

Parameters filename (str, optional (default: '{data_type}.csv')) – Name of the exported files.

**property features**
Features of the input data.

Type `numpy.ndarray`

**property features_after_preprocessing**
Features of the input data after preprocessing.

Type `numpy.ndarray`

**property features_types**
Types of the features.

Type `pandas.Series`

**property features_units**
Units of the features.

Type `pandas.Series`

**fit** ()
Fit MLR model.

**Note:** Specifying keyword arguments for this function is not allowed here since `features_after_preprocessing` might be altered by that. Use the keyword argument `fit_kwargs` during class initialization instead.

**property fit_kwargs**
Keyword arguments for `fit()`.

Type `dict`

**get_ancestors** *(label=True, features=None, prediction_names=None, prediction_reference=False)*
Return ancestor files.

Chapter 37. Machine Learning Regression (MLR) diagnostics
Parameters

- **label** (bool, optional (default: True)) – Return label files.
- **features** (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.
- **prediction_names** (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.
- **prediction_reference** (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises **ValueError** – Invalid feature or prediction_name given.

get_data_frame(data_type, impute_nans=False)

Return data frame of specified type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type pandas.DataFrame

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array(data_type, impute_nans=False)

Return x data of specific type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array(data_type, impute_nans=False)

Return y data of specific type.

Parameters

- **data_type** (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.
- **impute_nans** (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.
Return type  numpy.ndarray

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv(param_grid, **kwargs)
Perform exhaustive parameter search using cross-validation.

Parameters

- **param_grid (dict or list of dict)** – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.
- ****kwargs (keyword arguments, optional) – Additional options for sklearn.model_selection.GridSearchCV.

Raises ValueError – Final regressor does not supply the attributes best_estimator_ or best_params_.

property group_attributes
Group attributes of the input data.

Type  numpy.ndarray

property label
Label of the input data.

Type  str

property label_units
Units of the label.

Type  str

property mlr_model_type
MLR model type.

Type  str

property numerical_features
Numerical features.

Type  numpy.ndarray

property parameters
Parameters of the complete MLR model pipeline.

Type  dict

plot_1d_model (filename=None, n_points=1000)
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters

- **filename (str, optional (default: '1d_mlr_model'))** – Name of the plot file.
- **n_points (int, optional (default: 1000))** – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).
Raises

- `sklearn.exceptions.NotFittedError` – MLR model is not fitted.
- `ValueError` – MLR model is built from more than 1 feature.

`plot_coefs` *(filename=None)*

Plot linear coefficients of models.

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- `filename` *str, optional (default: 'coefs')* – Name of the plot file.

`plot_feature_importance` *(filename=None, color_coded=True)*

Plot feature importance given by linear coefficients.

**Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

**Parameters**

- `filename` *str, optional (default: 'feature_importance')* – Name of the plot file.
- `color_coded` *bool, optional (default: True)* – If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

`plot_partial_dependences` *(filename=None)*

Plot partial dependences for every feature.

**Parameters**

- `filename` *str, optional (default: 'partial_dependence_{feature}')* – Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_prediction_errors` *(filename=None)*

Plot predicted vs. true values.

**Parameters**

- `filename` *str, optional (default: 'prediction_errors')* – Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals` *(filename=None)*

Plot residuals of training and test (if available) data.

**Parameters**

- `filename` *str, optional (default: 'residuals')* – Name of the plot file.

**Raises** `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals_distribution` *(filename=None)*

Plot distribution of residuals of training and test data (KDE).
Parameters: 
- `filename` *(str, optional (default: 'residuals_distribution'))*—Name of the plot file.

Raises `sklearn.exceptions.NotFittedError`—MLR model is not fitted.

**plot_residuals_histogram** *(filename=None)*
Plot histogram of residuals of training and test data.

Parameters:
- `filename` *(str, optional (default: 'residuals_histogram'))*—Name of the plot file.

Raise: `sklearn.exceptions.NotFittedError`—MLR model is not fitted.

**plot_scatterplots** *(filename=None)*
Plot scatterplots label vs. feature for every feature.

Parameters:
- `filename` *(str, optional (default: 'scatterplot_{feature}'))*—Name of the plot file.

Raise: `sklearn.exceptions.NotFittedError`—MLR model is not fitted.

**predict** *(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)*
Perform prediction using the MLR model(s) and write *.nc* files.

Parameters:
- `save_mlr_model_error` *(str or int, optional)*—Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with `var_type` set to `prediction_input_error` and setting `save_propagated_errors` to `True`). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option `test_size` is not set to `False` during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the `group_attributes`. Only possible if `group_datasets_by_attributes` is given. If the option is set to an integer `n` (≠ 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- `save_lime_importance` *(bool, optional (default: False))*—Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- `save_propagated_errors` *(bool, optional (default: False))*—Additionally saves propagated errors from `prediction_input_error` datasets. Only possible when these are available.

- `**kwargs` *(keyword arguments, optional)*—Additional options for the final regressors `predict()` function.

Raises:
- `RuntimeError`—Both `return_var` and `return_cov` are both set to `True`.

- `sklearn.exceptions.NotFittedError`—MLR model is not fitted.

- `ValueError`—An invalid value for `save_mlr_model_error` is given.

- `ValueError`—`save_propagated_errors` is `True` and no `prediction_input_error` data is available.

**print_correlation_matrices** *
Print correlation matrices for all datasets.*
**print_regression_metrics** *(logo=False)*
Print all available regression metrics for training data.

**Parameters**
- **logo** *(bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation.
  Only possible when *group_datasets_by_attributes* was given during class initialization.

**classmethod register_mlr_model** *(mlr_model_type)*
Add MLR model (subclass of this class) (decorator).

**reset_pipeline** *
Reset regressor pipeline.

**rfecv** *(**kwargs)*
Perform recursive feature elimination using cross-validation.

**Note:** This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

**Parameters**
- ****kwargs**(keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

**Raises** **RuntimeError** – Final estimator does not provide `coef_` or `feature_importances_` attribute.

**test_normality_of_residuals** *
Perform Shapiro-Wilk test to normality of residuals.

**Raises** **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

**update_parameters** *(**params)*
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

**Parameters**
- ****params**(keyword arguments, optional) – Parameters for the pipeline which should be updated.

**Raises** **ValueError** – Invalid parameter for pipeline given.

### 37.4.10 Random Forest Regression

Random Forest Regression model.

Use **mlr_model_type**: rfr to use this MLR model in the recipe.

**Classes**

| RFRModel(input_datasets, **kwargs) | Random Forest Regression model. |

**class** esmvaltool.diag_scripts.mlr.models.rfr.RFRModel *(input_datasets, **kwargs)*

**Bases**: esmvaltool.diag_scripts.mlr.models.MLRModel

Random Forest Regression model. **Attributes**
categorical_features  Categorical features.
data  Input data of the MLR model.
features  Features of the input data.
features_after_preprocessing  Features of the input data after preprocessing.
features_types  Types of the features.
features_units  Units of the features.
fit_kwargs  Keyword arguments for fit().
group_attributes  Group attributes of the input data.
label  Label of the input data.
label_units  Units of the label.
mlr_model_type  MLR model type.
numerical_features  Numerical features.
parameters  Parameters of the complete MLR model pipeline.

Methods

create(mlr_model_type, *args, **kwargs)  Create desired MLR model subclass (factory method).
efecv(**kwargs)  Perform exhaustive feature elimination using cross-validation.
export_prediction_data([filename])  Export all prediction data contained in self._data.
export_training_data([filename])  Export all training data contained in self._data.
fit()  Fit MLR model.
get_ancestors([label, features, ...])  Return ancestor files.
get_data_frame(data_type[, impute_nans])  Return data frame of specified type.
get_x_array(data_type[, impute_nans])  Return x data of specific type.
get_y_array(data_type[, impute_nans])  Return y data of specific type.
grid_search_cv(param_grid, **kwargs)  Perform exhaustive parameter search using cross-validation.
plot_1d_model([filename, n_points])  Plot lineplot that represents the MLR model.
plot_partial_dependences([filename])  Plot partial dependences for every feature.
plot_prediction_errors([filename])  Plot predicted vs.
plot_residuals([filename])  Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename])  Plot distribution of residuals of training and test data (KDE).
plot_residuals_histogram([filename])  Plot histogram of residuals of training and test data.
plot_scatterplots([filename])  Plot scatterplots label vs.
predict([save_mlr_model_error, ...])  Perform prediction using the MLR model(s) and write *.nc files.
print_correlation_matrices()  Print correlation matrices for all datasets.
print_regression_metrics([logo])  Print all available regression metrics for training data.
register_mlr_model(mlr_model_type)  Add MLR model (subclass of this class) (decorator).
reset_pipeline()  Reset regressor pipeline.
rfecv(**kwargs)  Perform recursive feature elimination using cross-validation.
test_normality_of_residuals()  Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params)  Update parameters of the whole pipeline.
**Type** numpy.ndarray

**classmethod create**(mlr_model_type, *args, **kwargs)
Create desired MLR model subclass (factory method).

**property data**
Input data of the MLR model.

**property fit_kwargs**
Keyword arguments for `fit()`.

**Type** dict

**efecv**(**kwargs)
Perform exhaustive feature elimination using cross-validation.

**Parameters** **kwargs (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr. custom_sklearn. cross_val_score_weighted().

**export_prediction_data**(filename=None)
Export all prediction data contained in `self._data`.

**Parameters** filename (str, optional (default: '{data_type}_{pred_name}.csv')) – Name of the exported files.

**export_training_data**(filename=None)
Export all training data contained in `self._data`.

**Parameters** filename (str, optional (default: '{data_type}.csv')) – Name of the exported files.

**property features**
Features of the input data.

**property features_after_preprocessing**
Features of the input data after preprocessing.

**property features_types**
Types of the features.

**property features_units**
Units of the features.

**fit()**
Fit MLR model.

**Note:** Specifying keyword arguments for this function is not allowed here since `features_after_preprocessing` might be altered by that. Use the keyword argument `fit_kwargs` during class initialization instead.

**property fit_kwargs**
Keyword arguments for `fit()`.

**Type** dict

**get_ancestors**(label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.
Parameters

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features for which files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.

• prediction_reference (bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.

Returns Ancestor files.

Return type list of str

Raises ValueError – Invalid feature or prediction_name given.

get_data_frame (data_type, impute_nans=False)
Return data frame of specified type.

Parameters

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type pandas.DataFrame

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array (data_type, impute_nans=False)
Return x data of specific type.

Parameters

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.

Return type numpy.ndarray

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array (data_type, impute_nans=False)
Return y data of specific type.

Parameters

• data_type (str) – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• impute_nans (bool, optional (default: False)) – Impute nans if desired.

Returns Desired data.
Return type  numpy.ndarray

Raises  **TypeError** – data_type is invalid or data does not exist (e.g. test data is not set).

```
grid_search_cv(param_grid, **kwargs)
```

Perform exhaustive parameter search using cross-validation.

Parameters

- **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

- ****kwargs *(keyword arguments, optional)* – Additional options for sklearn.model_selection.GridSearchCV.

Raises  **ValueError** – Final regressor does not supply the attributes best_estimator_ or best_params_.

```
property group_attributes
```

Group attributes of the input data.

Type  numpy.ndarray

```
property label
```

Label of the input data.

Type  str

```
property label_units
```

Units of the label.

Type  str

```
property mlr_model_type
```

MLR model type.

Type  str

```
property numerical_features
```

Numerical features.

Type  numpy.ndarray

```
property parameters
```

Parameters of the complete MLR model pipeline.

Type  dict

```
plot_1d_model(filename=None, n_points=1000)
```

Plot lineplot that represents the MLR model.

Parameters

- **filename** *(str, optional (default: '1d_mlr_model')* – Name of the plot file.

- **n_points** *(int, optional (default: 1000))* – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

---

37.4. Available MLR models
Raises

- `sklearn.exceptions.NotFittedError` – MLR model is not fitted.
- `ValueError` – MLR model is built from more than 1 feature.

`plot_partial_dependences(filename=None)`
Plot partial dependences for every feature.

Parameters

- `filename` (str, optional (default: 'partial_dependence_{feature}')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_prediction_errors(filename=None)`
Plot predicted vs. true values.

Parameters

- `filename` (str, optional (default: 'prediction_errors')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals(filename=None)`
Plot residuals of training and test (if available) data.

Parameters

- `filename` (str, optional (default: 'residuals')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot residuals_distribution(filename=None)`
Plot distribution of residuals of training and test data (KDE).

Parameters

- `filename` (str, optional (default: 'residuals_distribution')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_residuals_histogram(filename=None)`
Plot histogram of residuals of training and test data.

Parameters

- `filename` (str, optional (default: 'residuals_histogram')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`plot_scatterplots(filename=None)`
Plot scatterplots label vs. feature for every feature.

Parameters

- `filename` (str, optional (default: 'scatterplot_{feature}')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

`predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)`
Perform prediction using the MLR model(s) and write *.nc files.

Parameters

- `save_mlr_model_error` (str or int, optional) – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with `var_type` set to `prediction_input_error` and setting `save_propagated_errors`
to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (≠ 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** (bool, optional (default: False)) – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** (bool, optional (default: False)) – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- **kwargs** (keyword arguments, optional) – Additional options for the final regressors predict() function.

**Raises**

- **RuntimeError** – return_var and return_cov are both set to True.

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – An invalid value for save_mlr_model_error is given.

- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices()**
Print correlation matrices for all datasets.

**print_regression_metrics**(logo=False)
Print all available regression metrics for training data.

**Parameters**

- **logo** (bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model**(mlr_model_type)
Add MLR model (subclass of this class) (decorator).

**reset_pipeline()**
Reset regressor pipeline.

**rfecv(**kwargs**)**
Perform recursive feature elimination using cross-validation.

**Parameters**

**kwargs** (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

**Raises**

- **RuntimeError** – Final estimator does not provide coef_ or feature_importances_attribute.

**test_normality_of_residuals()**
Perform Shapiro-Wilk test to normality of residuals.

---

37.4. Available MLR models
Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

```python
update_parameters(**params)
```
Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

**Parameters**

`**params (keyword arguments, optional)` – Parameters for the pipeline which should be updated.

**Raises** `ValueError` – Invalid parameter for pipeline given.

### 37.4.11 Ridge Regression

Ridge Regression model.

Use `mlr_model_type: ridge` to use this MLR model in the recipe.

**Classes**

```python
RidgeModel(input_datasets, **kwargs)
```
Ridge Regression model.

```python
class esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel(input_datasets, **kwargs)
```
Bases: `esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel`

Ridge Regression model. **Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>categorical_features</code></td>
<td>Categorical features.</td>
</tr>
<tr>
<td><code>data</code></td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td><code>features</code></td>
<td>Features of the input data.</td>
</tr>
<tr>
<td><code>features_after_preprocessing</code></td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td><code>features_types</code></td>
<td>Types of the features.</td>
</tr>
<tr>
<td><code>features_units</code></td>
<td>Units of the features.</td>
</tr>
<tr>
<td><code>fit_kwargs</code></td>
<td>Keyword arguments for <code>fit()</code>.</td>
</tr>
<tr>
<td><code>group_attributes</code></td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td><code>label</code></td>
<td>Label of the input data.</td>
</tr>
<tr>
<td><code>label_units</code></td>
<td>Units of the label.</td>
</tr>
<tr>
<td><code>mlr_model_type</code></td>
<td>MLR model type.</td>
</tr>
<tr>
<td><code>numerical_features</code></td>
<td>Numerical features.</td>
</tr>
<tr>
<td><code>parameters</code></td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

**Methods**

```python
create(mlr_model_type, *args, **kwargs)
```
Create desired MLR model subclass (factory method).

```python
efecv(**kwargs)
```
Perform exhaustive feature elimination using cross-validation.

```python
export_prediction_data(filename)
```
Export all prediction data contained in `self.data`.

```python
export_training_data(filename)
```
Export all training data contained in `self.data`.

continues on next page
Table 53 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fit()</code></td>
<td>Fit MLR model.</td>
</tr>
<tr>
<td><code>get_ancestors([label, features, ...])</code></td>
<td>Return ancestor files.</td>
</tr>
<tr>
<td><code>get_data_frame(data_type[, impute_nans])</code></td>
<td>Return data frame of specified type.</td>
</tr>
<tr>
<td><code>get_x_array(data_type[, impute_nans])</code></td>
<td>Return x data of specific type.</td>
</tr>
<tr>
<td><code>get_y_array(data_type[, impute_nans])</code></td>
<td>Return y data of specific type.</td>
</tr>
<tr>
<td><code>grid_search_cv(param_grid, **kwargs)</code></td>
<td>Perform exhaustive parameter search using cross-validation.</td>
</tr>
<tr>
<td><code>plot_1d_model([filename, n_points])</code></td>
<td>Plot lineplot that represents the MLR model.</td>
</tr>
<tr>
<td><code>plot_coeffs([filename])</code></td>
<td>Plot linear coefficients of models.</td>
</tr>
<tr>
<td><code>plot_feature_importance([filename, color_coded])</code></td>
<td>Plot feature importance given by linear coefficients.</td>
</tr>
<tr>
<td><code>plot_partial_dependencies([filename])</code></td>
<td>Plot partial dependences for every feature.</td>
</tr>
<tr>
<td><code>plot_residuals([filename])</code></td>
<td>Plot residuals of training and test (if available) data.</td>
</tr>
<tr>
<td><code>plot_residuals_distribution([filename])</code></td>
<td>Plot distribution of residuals of training and test data (KDE).</td>
</tr>
<tr>
<td><code>plot_residuals_histogram([filename])</code></td>
<td>Plot histogram of residuals of training and test data.</td>
</tr>
<tr>
<td><code>plot_scatterplots([filename])</code></td>
<td>Plot scatterplots label vs.</td>
</tr>
<tr>
<td><code>predict([save_mlr_model_error, ...])</code></td>
<td>Perform prediction using the MLR model(s) and write *.nc files.</td>
</tr>
<tr>
<td><code>print_correlation_matrices()</code></td>
<td>Print correlation matrices for all datasets.</td>
</tr>
<tr>
<td><code>print_regression_metrics([logo])</code></td>
<td>Print all available regression metrics for training data.</td>
</tr>
<tr>
<td><code>register_mlr_model(mlr_model_type)</code></td>
<td>Add MLR model (subclass of this class) (decorator).</td>
</tr>
<tr>
<td><code>reset_pipeline()</code></td>
<td>Reset regressor pipeline.</td>
</tr>
<tr>
<td><code>rfecv(**kwargs)</code></td>
<td>Perform recursive feature elimination using cross-validation.</td>
</tr>
<tr>
<td><code>test_normality_of_residuals()</code></td>
<td>Perform Shapiro-Wilk test to normality of residuals.</td>
</tr>
<tr>
<td><code>update_parameters(**params)</code></td>
<td>Update parameters of the whole pipeline.</td>
</tr>
</tbody>
</table>

**property categorical_features**

Categorical features.

Type `numpy.ndarray`

**classmethod create (mlr_model_type, *args, **kwargs)**

Create desired MLR model subclass (factory method).

**property data**

Input data of the MLR model.

Type `dict`

**efecv(**kwargs**)**

Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs (keyword arguments, optional) – Additional options for esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted().**

**export_prediction_data (filename=None)**

Export all prediction data contained in self._data.

Parameters filename `(str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.`
export_training_data(filename=None)
Export all training data contained in self._data.

Parameters filename (str, optional (default: '{data_type}.csv'))
– Name of the exported files.

property features
Features of the input data.

Type numpy.ndarray

property features_after_preprocessing
Features of the input data after preprocessing.

Type numpy.ndarray

property features_types
Types of the features.

Type pandas.Series

property features_units
Units of the features.

Type pandas.Series

fit()
Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument
fit_kwargs during class initialization instead.

property fit_kwargs
Keyword arguments for fit().

Type dict

get_ancestors (label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

• label (bool, optional (default: True))– Return label files.

• features (list of str, optional (default: None)) – Features
  for which files should be returned. If None, return files for all features.

• prediction_names (list of str, optional (default: None))–
  Prediction names for which files should be returned. If None, return files for all
  prediction names.

• prediction_reference (bool, optional (default: False))
  – Return prediction_reference files if available for given
  prediction_names.

Returns Ancestor files.

Return type list of str

Raises ValueError – Invalid feature or prediction_name given.
**get_data_frame** *(data_type, impute_nans=False)*

Return data frame of specified type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.

**Returns** Desired data.

**Return type** pandas.DataFrame

**Raises** *TypeError – data_type is invalid or data does not exist (e.g. test data is not set).*

**get_x_array** *(data_type, impute_nans=False)*

Return x data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** *TypeError – data_type is invalid or data does not exist (e.g. test data is not set).*

**get_y_array** *(data_type, impute_nans=False)*

Return y data of specific type.

**Parameters**

- **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

- **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.

**Returns** Desired data.

**Return type** numpy.ndarray

**Raises** *TypeError – data_type is invalid or data does not exist (e.g. test data is not set).*

**grid_search_cv** *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.

**Parameters**

- **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. s__p is the parameter p for step s.

- ****kwargs *(keyword arguments, optional) – Additional options for sklearn.model_selection.GridSearchCV.*

**Raises** *ValueError – Final regressor does not supply the attributes best_estimator_ or best_params_*.

---

**37.4. Available MLR models**
property group_attributes
   Group attributes of the input data.
   Type numpy.ndarray

property label
   Label of the input data.
   Type str

property label_units
   Units of the label.
   Type str

property mlr_model_type
   MLR model type.
   Type str

property numerical_features
   Numerical features.
   Type numpy.ndarray

property parameters
   Parameters of the complete MLR model pipeline.
   Type dict

plot_1d_model (filename=None, n_points=1000)
   Plot lineplot that represents the MLR model.

   **Note:** This only works for a model with a single feature.

   **Parameters**
   - **filename** (str, optional (default: '1d_mlr_model')) – Name of the plot file.
   - **n_points** (int, optional (default: 1000)) – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

   **Raises**
   - **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
   - **ValueError** – MLR model is built from more than 1 feature.

plot_coefs (filename=None)
   Plot linear coefficients of models.

   **Note:** The features plotted here are not necessarily the real input features, but the ones after preprocessing.

   **Parameters**
   - **filename** (str, optional (default: 'coefs')) – Name of the plot file.
plot_feature_importance (filename=None, color_coded=True)
Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters

- **filename** *(str, optional (default: 'feature_importance'))* - Name of the plot file.
- **color_coded** *(bool, optional (default: True))* - If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

plot_partial_dependences (filename=None)
Plot partial dependences for every feature.

Parameters

- **filename** *(str, optional (default: 'partial_dependence_{feature}'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_prediction_errors (filename=None)
Plot predicted vs. true values.

Parameters

- **filename** *(str, optional (default: 'prediction_errors'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_residuals (filename=None)
Plot residuals of training and test (if available) data.

Parameters

- **filename** *(str, optional (default: 'residuals'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_residuals_distribution (filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters

- **filename** *(str, optional (default: 'residuals_distribution'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_residuals_histogram (filename=None)
Plot histogram of residuals of training and test data.

Parameters

- **filename** *(str, optional (default: 'residuals_histogram'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_scatterplots (filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters

- **filename** *(str, optional (default: 'scatterplot_{feature}'))* - Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
**predict** *(save_mlr_model_error=None,  
save_propagated_errors=False, **kwargs)*  
Perform prediction using the MLR model(s) and write *.nc* files.

**Parameters**

- **save_mlr_model_error** *(str or int, optional)* – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if group_datasets_by_attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- **save_lime_importance** *(bool, optional (default: False))* – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** *(bool, optional (default: False))* – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- ****kwargs** *(keyword arguments, optional)* – Additional options for the final regressors predict() function.

**Raises**

- **RuntimeError** – return_var and return_cov are both set to True.

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – An invalid value for save_mlr_model_error is given.

- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

**print_correlation_matrices** ()
Print correlation matrices for all datasets.

**print_regression_metrics** *(logo=False)*
Print all available regression metrics for training data.

**Parameters**

- **logo** *(bool, optional (default: False))* – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

**classmethod register_mlr_model** *(mlr_model_type)*
Add MLR model (subclass of this class) (decorator).

**reset_pipeline** ()
Reset regressor pipeline.

**rfecv** *(**kwargs)*
Perform recursive feature elimination using cross-validation.
**Note:** This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

Parameters **kwargs (keyword arguments, optional) – Additional options for `sklearn.feature_selection.RFECV`.

Raises `RuntimeError` – Final estimator does not provide `coef_` or `feature_importances_` attribute.

test_normality_of_residuals() Perform Shapiro-Wilk test to normality of residuals.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

update_parameters(**params) Update parameters of the whole pipeline.

**Note:** Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

Parameters **params (keyword arguments, optional) – Parameters for the pipeline which should be updated.

Raises `ValueError` – Invalid parameter for pipeline given.

### 37.4.12 Ridge Regression with built-in CV

Ridge Regression model with built-in CV.

Use `mlr_model_type: ridge_cv` to use this MLR model in the recipe.

**Classes**

```python
RidgeCVModel(input_datasets, **kwargs) Ridge Regression model with built-in CV.
```

class esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel(input_datasets, **kwargs)

Bases: `esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel`

Ridge Regression model with built-in CV. **Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>categorical_features</td>
<td>Categorical features.</td>
</tr>
<tr>
<td>data</td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td>features</td>
<td>Features of the input data.</td>
</tr>
<tr>
<td>features_after_preprocessing</td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td>features_types</td>
<td>Types of the features.</td>
</tr>
<tr>
<td>features_units</td>
<td>Units of the features.</td>
</tr>
<tr>
<td>fit_kwargs</td>
<td>Keyword arguments for fit().</td>
</tr>
<tr>
<td>group_attributes</td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td>label</td>
<td>Label of the input data.</td>
</tr>
<tr>
<td>label_units</td>
<td>Units of the label.</td>
</tr>
</tbody>
</table>
```

continues on next page
Table 55 – continued from previous page

<table>
<thead>
<tr>
<th>mlr_model_type</th>
<th>MLR model type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

- `create(mlr_model_type, *args, **kwargs)` Create desired MLR model subclass (factory method).
- `efecv(**kwargs)` Perform exhaustive feature elimination using cross-validation.
- `export_prediction_data([filename])` Export all prediction data contained in `self.data`.
- `export_training_data([filename])` Export all training data contained in `self.data`.
- `fit()` Print final `alpha` after successful fitting.
- `get_ancestors([label, features, ...])` Return ancestor files.
- `get_data_frame(data_type[, impute_nans])` Return data frame of specified type.
- `get_x_array(data_type[, impute_nans])` Return x data of specific type.
- `get_y_array(data_type[, impute_nans])` Return y data of specific type.
- `grid_search_cv(param_grid, **kwargs)` Perform exhaustive parameter search using cross-validation.
- `plot_1d_model([filename, n_points])` Plot lineplot that represents the MLR model.
- `plot_coefs([filename])` Plot linear coefficients of models.
- `plot_feature_importance([filename, color_coded])` Plot feature importance given by linear coefficients.
- `plot_partial_dependencies([filename])` Plot partial dependences for every feature.
- `plot_prediction_errors([filename])` Plot predicted vs.
- `plot_residuals([filename])` Plot residuals of training and test (if available) data.
- `plot_residuals_distribution([filename])` Plot distribution of residuals of training and test data (KDE).
- `plot_residuals_histogram([filename])` Plot histogram of residuals of training and test data.
- `plot_scatterplots([filename])` Plot scatterplots label vs.
- `predict([save_mlr_model_error, ...])` Perform prediction using the MLR model(s) and write `*.nc` files.
- `print_correlation_matrices()` Print correlation matrices for all datasets.
- `print_regression_metrics([logo])` Print all available regression metrics for training data.
- `register_mlr_model(mlr_model_type)` Add MLR model (subclass of this class) (decorator).
- `reset_pipeline()` Reset regressor pipeline.
- `rfecv(**kwargs)` Perform recursive feature elimination using cross-validation.
- `test_normality_of_residuals()` Perform Shapiro-Wilk test to normality of residuals.
- `update_parameters(**params)` Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type `numpy.ndarray`

classmethod create (mlr_model_type, *args, **kwargs)

Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.
Type \texttt{dict}

\texttt{efecv(**kwargs)}

Perform exhaustive feature elimination using cross-validation.

\textbf{Parameters} **kwargs \textit{(keyword arguments, optional)} – Additional options for \texttt{esmvaltool.diag_scripts.mlr.custom_sklearn.cross_val_score_weighted()}.

\texttt{export_prediction_data (filename=None)}

Export all prediction data contained in \texttt{self.data}.

\textbf{Parameters} filename \textit{(str, optional (default: '{data_type}_{pred_name}.csv'))} – Name of the exported files.

\texttt{export_training_data (filename=None)}

Export all training data contained in \texttt{self.data}.

\textbf{Parameters} filename \textit{(str, optional (default: '{data_type}.csv'))} – Name of the exported files.

\textbf{property features}

Features of the input data.

\textbf{Type} \texttt{numpy.ndarray}

\textbf{property features_after_preprocessing}

Features of the input data after preprocessing.

\textbf{Type} \texttt{numpy.ndarray}

\textbf{property features_types}

Types of the features.

\textbf{Type} \texttt{pandas.Series}

\textbf{property features_units}

Units of the features.

\textbf{Type} \texttt{pandas.Series}

\textbf{fit()}

Print final \texttt{alpha} after successful fitting.

\textbf{property fit_kwargs}

Keyword arguments for \texttt{fit()}.

\textbf{Type} \texttt{dict}

\textbf{get_ancestors (label=True, features=None, prediction_names=None, prediction_reference=False)}

Return ancestor files.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{label (bool, optional (default: True))} – Return label files.
 \item \texttt{features (list of str, optional (default: None))} – Features for which files should be returned. If \texttt{None}, return files for all features.
 \item \texttt{prediction_names (list of str, optional (default: None))} – Prediction names for which files should be returned. If \texttt{None}, return files for all prediction names.
\end{itemize}
• `prediction_reference` *(bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.*

 Returns Ancestor files.
 Return type list of str
 Raises `ValueError` – Invalid feature or prediction_name given.

`get_data_frame(data_type, impute_nans=False)`

 Return data frame of specified type.

 Parameters

 • `data_type` *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
 • `impute_nans` *(bool, optional (default: False)) – Impute nans if desired.*

 Returns Desired data.
 Return type pandas.DataFrame
 Raises `TypeError` – `data_type` is invalid or data does not exist (e.g. test data is not set).

`get_x_array(data_type, impute_nans=False)`

 Return x data of specific type.

 Parameters

 • `data_type` *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
 • `impute_nans` *(bool, optional (default: False)) – Impute nans if desired.*

 Returns Desired data.
 Return type numpy.ndarray
 ** Raises** `TypeError` – `data_type` is invalid or data does not exist (e.g. test data is not set).

`get_y_array(data_type, impute_nans=False)`

 Return y data of specific type.

 Parameters

 • `data_type` *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.
 • `impute_nans` *(bool, optional (default: False)) – Impute nans if desired.*

 Returns Desired data.
 Return type numpy.ndarray
 ** Raises** `TypeError` – `data_type` is invalid or data does not exist (e.g. test data is not set).

`grid_search_cv(param_grid, **kwargs)`

 Perform exhaustive parameter search using cross-validation.

 Parameters
• **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. \(s_p \) is the parameter \(p \) for step \(s \).

• **kwargs** *(keyword arguments, optional)* – Additional options for `sklearn.model_selection.GridSearchCV`.

Raises **ValueError** – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

property group_attributes
Group attributes of the input data.

Type `numpy.ndarray`

property label
Label of the input data.

Type `str`

property label_units
Units of the label.

Type `str`

property mlr_model_type
MLR model type.

Type `str`

property numerical_features
Numerical features.

Type `numpy.ndarray`

property parameters
Parameters of the complete MLR model pipeline.

Type `dict`

plot_1d_model *(filename=None, n_points=1000)*
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters

• **filename** *(str, optional (default: '1d_mlr_model'))* – Name of the plot file.

• **n_points** *(int, optional (default: 1000))* – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

Raises

• `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

• **ValueError** – MLR model is built from more than 1 feature.

plot_coeffs *(filename=None)*
Plot linear coefficients of models.
Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters

- **filename** *(str, optional (default: 'coefs'))* – Name of the plot file.

plot_feature_importance *(filename=None, color_coded=True)*

Plot feature importance given by linear coefficients.

Note: The features plotted here are not necessarily the real input features, but the ones after preprocessing.

Parameters

- **filename** *(str, optional (default: 'feature_importance'))* – Name of the plot file.
- **color_coded** *(bool, optional (default: True))* – If True, mark positive (linear) correlations with red bars and negative (linear) correlations with blue bars. If False, all bars are blue.

plot_partial_dependences *(filename=None)*

Plot partial dependences for every feature.

Parameters

- **filename** *(str, optional (default: 'partial_dependence_{feature}')*) – Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_prediction_errors *(filename=None)*

Plot predicted vs. true values.

Parameters

- **filename** *(str, optional (default: 'prediction_errors'))* – Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_residuals *(filename=None)*

Plot residuals of training and test (if available) data.

Parameters

- **filename** *(str, optional (default: 'residuals'))* – Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_residuals_distribution *(filename=None)*

Plot distribution of residuals of training and test data (KDE).

Parameters

- **filename** *(str, optional (default: 'residuals_distribution'))* – Name of the plot file.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

plot_residuals_histogram *(filename=None)*

Plot histogram of residuals of training and test data.

Parameters

- **filename** *(str, optional (default: 'residuals_histogram'))* – Name of the plot file.
Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

```python
plot_scatterplots(filename=None)
```
Plot scatterplots label vs. feature for every feature.

Parameters

- `filename` (str, optional (default: 'scatterplot_{feature}')) – Name of the plot file.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

```python
predict(save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)
```
Perform prediction using the MLR model(s) and write *.nc files.

Parameters

- `save_mlr_model_error` (str or int, optional) – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with `var_type` set to `prediction_input_error` and setting `save_propagated_errors` to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option `test_size` is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group attributes. Only possible if group datasets by attributes is given. If the option is set to an integer n (!= 0), the (constant) error is estimated as RMSEP using n-fold cross-validation.

- `save_lime_importance` (bool, optional (default: False)) – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- `save_propagated_errors` (bool, optional (default: False)) – Additionally saves propagated errors from `prediction_input_error` datasets. Only possible when these are available.

- `**kwargs` (keyword arguments, optional) – Additional options for the final regressors `predict()` function.

Raises

- `RuntimeError` – `return_var` and `return_cov` are both set to True.

- `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

- `ValueError` – An invalid value for `save_mlr_model_error` is given.

- `ValueError` – `save_propagated_errors` is True and no `prediction_input_error` data is available.

```python
print_correlation_matrices()  
```
Print correlation matrices for all datasets.

```python
print_regression_metrics(logo=False)
```
Print all available regression metrics for training data.

Parameters

- `logo` (bool, optional (default: False)) – Print regression metrics using `sklearn.model_selection.LeaveOneGroupOut` cross-validation. Only possible when `group_datasets_by_attributes` was given during class initialization.

```python
classmethod register_mlr_model(mlr_model_type)
```
Add MLR model (subclass of this class) (decorator).

37.4. Available MLR models
reset_pipeline()
Reset regressor pipeline.

rfecv(**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either through a `coef_` attribute or through a `feature_importances_` attribute.

Parameters **kwargs (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

Raises `RuntimeError` – Final estimator does not provide `coef_` or `feature_importances_` attribute.

test_normality_of_residuals()
Perform Shapiro-Wilk test to normality of residuals.

Raises `sklearn.exceptions.NotFittedError` – MLR model is not fitted.

update_parameters(**params)
Update parameters of the whole pipeline.

Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

Parameters **params (keyword arguments, optional) – Parameters for the pipeline which should be updated.

Raises `ValueError` – Invalid parameter for pipeline given.

37.4.13 Support Vector Regression

Support Vector Regression model.

Use `mlr_model_type: svr` to use this MLR model in the recipe.

Classes

<table>
<thead>
<tr>
<th>SVRModel(input_datasets, **kwargs)</th>
<th>Support Vector Regression model.</th>
</tr>
</thead>
</table>

```python
class esmvaltool.diag_scripts.mlr.models.svr.SVRModel(input_datasets, **kwargs)
    Bases: esmvaltool.diag_scripts.mlr.models.MLRModel
    Support Vector Regression model. Attributes
```

<table>
<thead>
<tr>
<th>categorical_features</th>
<th>Categorical features.</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Input data of the MLR model.</td>
</tr>
<tr>
<td>features</td>
<td>Features of the input data.</td>
</tr>
<tr>
<td>features_after_preprocessing</td>
<td>Features of the input data after preprocessing.</td>
</tr>
<tr>
<td>features_types</td>
<td>Types of the features.</td>
</tr>
<tr>
<td>features_units</td>
<td>Units of the features.</td>
</tr>
</tbody>
</table>
Table 58 – continued from previous page

<table>
<thead>
<tr>
<th>fit_kwargs</th>
<th>Keyword arguments for fit().</th>
</tr>
</thead>
<tbody>
<tr>
<td>group_attributes</td>
<td>Group attributes of the input data.</td>
</tr>
<tr>
<td>label</td>
<td>Label of the input data.</td>
</tr>
<tr>
<td>label_units</td>
<td>Units of the label.</td>
</tr>
<tr>
<td>mlr_model_type</td>
<td>MLR model type.</td>
</tr>
<tr>
<td>numerical_features</td>
<td>Numerical features.</td>
</tr>
<tr>
<td>parameters</td>
<td>Parameters of the complete MLR model pipeline.</td>
</tr>
</tbody>
</table>

Methods

create(mlr_model_type, *args, **kwargs)	Create desired MLR model subclass (factory method).
efecv(**kwargs)	Perform exhaustive feature elimination using cross-validation.
export_prediction_data([filename])	Export all prediction data contained in self._data.
export_training_data([filename])	Export all training data contained in self._data.
fit()	Fit MLR model.
get_ancestors([label, features, ...])	Return ancestor files.
get_data_frame(data_type[, impute_nans])	Return data frame of specified type.
get_x_array(data_type[, impute_nans])	Return x data of specific type.
get_y_array(data_type[, impute_nans])	Return y data of specific type.
grid_search_cv(param_grid, **kwargs)	Perform exhaustive parameter search using cross-validation.
plot_1d_model([filename, n_points])	Plot lineplot that represents the MLR model.
plot_partial_dependencies([filename])	Plot partial dependences for every feature.
plot_prediction_errors([filename])	Plot predicted vs.
plot_residuals([filename])	Plot residuals of training and test (if available) data.
plot_residuals_distribution([filename])	Plot distribution of residuals of training and test data (KDE).
plot_residuals_histogram([filename])	Plot histogram of residuals of training and test data.
plot_scatterplots([filename])	Plot scatterplots label vs.
predict([save_mlr_model_error, ...])	Perform prediction using the MLR model(s) and write *.nc files.
print_correlation_matrices()	Print correlation matrices for all datasets.
print_regression_metrics([logo])	Print all available regression metrics for training data.
register_mlr_model(mlr_model_type)	Add MLR model (subclass of this class) (decorator).
reset_pipeline()	Reset regressor pipeline.
rfecv(**kwargs)	Perform recursive feature elimination using cross-validation.
test_normality_of_residuals()	Perform Shapiro-Wilk test to normality of residuals.
update_parameters(**params)	Update parameters of the whole pipeline.

property categorical_features

Categorical features.

Type numpy.ndarray

classmethod create (mlr_model_type, *args, **kwargs)

Create desired MLR model subclass (factory method).

property data

Input data of the MLR model.
Type dict
defecv(**kwargs)
Perform exhaustive feature elimination using cross-validation.

Parameters **kwargs (keyword arguments, optional) – Additional
options for esmvaltool.diag_scripts.mlr.custom_sklearn.
cross_val_score_weighted().

export_prediction_data (filename=None)
Export all prediction data contained in self._data.

Parameters filename (str, optional (default: '{data_type}_{pred_name}.csv') – Name of the exported files.

export_training_data (filename=None)
Export all training data contained in self._data.

Parameters filename (str, optional (default: '{data_type}.csv'))
– Name of the exported files.

property features
Features of the input data.

Type numpy.ndarray

property features_after_preprocessing
Features of the input data after preprocessing.

Type numpy.ndarray

property features_types
Types of the features.

Type pandas.Series

property features_units
Units of the features.

Type pandas.Series

fit()
Fit MLR model.

Note: Specifying keyword arguments for this function is not allowed here since
features_after_preprocessing might be altered by that. Use the keyword argument
fit_kwargs during class initialization instead.

property fit_kwargs
Keyword arguments for fit().

Type dict

def get_ancestors (label=True, features=None, prediction_names=None, prediction_reference=False)
Return ancestor files.

Parameters

• label (bool, optional (default: True)) – Return label files.

• features (list of str, optional (default: None)) – Features
for which files should be returned. If None, return files for all features.
• **prediction_names** *(list of str, optional (default: None)) – Prediction names for which files should be returned. If None, return files for all prediction names.*

• **prediction_reference** *(bool, optional (default: False)) – Return prediction_reference files if available for given prediction_names.*

Returns Ancestor files.

Return type list of str

Raises ValueError – Invalid feature or prediction_name given.

get_data_frame *(data_type, impute_nans=False)*

Return data frame of specified type.

Parameters

• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type pandas.DataFrame

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_x_array *(data_type, impute_nans=False)*

Return x data of specific type.

Parameters

• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type numpy.ndarray

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

get_y_array *(data_type, impute_nans=False)*

Return y data of specific type.

Parameters

• **data_type** *(str)* – Data type to be returned. Must be one of 'all', 'train' or 'test'.

• **impute_nans** *(bool, optional (default: False)) – Impute nans if desired.*

Returns Desired data.

Return type numpy.ndarray

Raises TypeError – data_type is invalid or data does not exist (e.g. test data is not set).

grid_search_cv *(param_grid, **kwargs)*

Perform exhaustive parameter search using cross-validation.
Parameters

- **param_grid** *(dict or list of dict)* – Parameter names (keys) and ranges (values) for the search. Have to be given for each step of the pipeline separated by two underscores, i.e. `s__p` is the parameter `p` for step `s`.

Raises **ValueError** – Final regressor does not supply the attributes `best_estimator_` or `best_params_`.

property group_attributes
Group attributes of the input data.

Type `numpy.ndarray`

property label
Label of the input data.

Type `str`

property label_units
Units of the label.

Type `str`

property mlr_model_type
MLR model type.

Type `str`

property numerical_features
Numerical features.

Type `numpy.ndarray`

property parameters
Parameters of the complete MLR model pipeline.

Type `dict`

plot_1d_model *(filename=None, n_points=1000)*
Plot lineplot that represents the MLR model.

Note: This only works for a model with a single feature.

Parameters

- **filename** *(str, optional (default: '1d_mlr_model'))* – Name of the plot file.

- **n_points** *(int, optional (default: 1000))* – Number of sampled points for the single feature (using linear spacing between minimum and maximum value).

Raises

- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

- **ValueError** – MLR model is built from more than 1 feature.
plot_partial_dependences (filename=None)
Plot partial dependences for every feature.

Parameters
filename (str, optional (default: 'partial_dependence_{feature}')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_prediction_errors (filename=None)
Plot predicted vs. true values.

Parameters
filename (str, optional (default: 'prediction_errors')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals (filename=None)
Plot residuals of training and test (if available) data.

Parameters filename (str, optional (default: 'residuals')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_distribution (filename=None)
Plot distribution of residuals of training and test data (KDE).

Parameters filename (str, optional (default: 'residuals_distribution')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_residuals_histogram (filename=None)
Plot histogram of residuals of training and test data.

Parameters filename (str, optional (default: 'residuals_histogram')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

plot_scatterplots (filename=None)
Plot scatterplots label vs. feature for every feature.

Parameters filename (str, optional (default: 'scatterplot_{feature}')) – Name of the plot file.

Raises sklearn.exceptions.NotFittedError – MLR model is not fitted.

predict (save_mlr_model_error=None, save_lime_importance=False, save_propagated_errors=False, **kwargs)
Perform prediction using the MLR model(s) and write *.nc files.

Parameters

* save_mlr_model_error (str or int, optional) – Additionally saves estimated squared MLR model error. This error represents the uncertainty of the prediction caused by the MLR model itself and not by errors in the prediction input data (errors in that will be considered by including datasets with var_type set to prediction_input_error and setting save_propagated_errors to True). If the option is set to 'test', the (constant) error is estimated as RMSEP using a (hold-out) test data set. Only possible if test data is available, i.e. the option test_size is not set to False during class initialization. If the option is set to 'logo', the (constant) error is estimated as RMSEP using leave-one-group-out cross-validation using the group_attributes. Only possible if
group_datasets_by_attributes is given. If the option is set to an integer \(n \) (\(n \neq 0 \)), the (constant) error is estimated as RMSEP using \(n \)-fold cross-validation.

- **save_lime_importance** (bool, optional (default: False)) – Additionally saves local feature importance given by LIME (Local Interpretable Model-agnostic Explanations).

- **save_propagated_errors** (bool, optional (default: False)) – Additionally saves propagated errors from prediction_input_error datasets. Only possible when these are available.

- **kwargs** (keyword arguments, optional) – Additional options for the final regressors predict() function.

Raises

- **RuntimeError** – return_var and return_cov are both set to True.
- **sklearn.exceptions.NotFittedError** – MLR model is not fitted.
- **ValueError** – An invalid value for save_mlr_model_error is given.
- **ValueError** – save_propagated_errors is True and no prediction_input_error data is available.

print_correlation_matrices()
Print correlation matrices for all datasets.

print_regression_metrics (logo=False)
Print all available regression metrics for training data.

Parameters logo (bool, optional (default: False)) – Print regression metrics using sklearn.model_selection.LeaveOneGroupOut cross-validation. Only possible when group_datasets_by_attributes was given during class initialization.

classmethod register_mlr_model (mlr_model_type)
Add MLR model (subclass of this class) (decorator).

reset_pipeline()
Reset regressor pipeline.

rfecv (**kwargs)
Perform recursive feature elimination using cross-validation.

Note: This only works for final estimators that provide information about feature importance either through a coef_ attribute or through a feature_importances_ attribute.

Parameters **kwargs** (keyword arguments, optional) – Additional options for sklearn.feature_selection.RFECV.

Raises **RuntimeError** – Final estimator does not provide coef_ or feature_importances_ attribute.

test_normality_of_residuals()
Perform Shapiro-Wilk test to normality of residuals.

Raises **sklearn.exceptions.NotFittedError** – MLR model is not fitted.

update_parameters (**params**)
Update parameters of the whole pipeline.
Note: Parameter names have to be given for each step of the pipeline separated by two underscores, i.e. s_p is the parameter p for step s.

Parameters `**params` *(keyword arguments, optional)* – Parameters for the pipeline which should be updated.

Raises `ValueError` – Invalid parameter for pipeline given.
Part X

Frequently Asked Questions
Yes, you can subscribe to the ESMValTool user mailing list and join the discussion on general topics (installation, configuration, etc). See User mailing list.
WHAT IS YAML?

While .yaml or .yml is a relatively common format, users may not have encountered this language before. The key information about this format is:

- yaml is a human friendly markup language;
- yaml is commonly used for configuration files (gradually replacing the venerable .ini);
- the syntax is relatively straightforward;
- indentation matters a lot (like Python);
- yaml is case sensitive;

More information can be found in the yaml tutorial and yaml quick reference card. ESMValTool uses the yamllint linter tool to check recipe syntax.
RE-RUNNING DIAGNOSTICS

If a diagnostic fails, you will get the message

```
INFO  To re-run this diagnostic script, run:
```

If you run the command in the stdout you will be able to re-run the diagnostic without having to re-run the whole preprocessor. If you add the `-f` argument (available only for Python diagnostics, check your options with `--help`) that will force an overwrite, and it will delete not just the failed diagnostic, but the contents of its `work_dir` and `plot_dir` directories - this is useful when needing to redo the whole work. Adding `-i` or `--ignore-existing` will not delete any existing files, and it can be used to skip work that was already done successfully, provided that the diagnostic script supports this.
ENTER INTERACTIVE MODE WITH IPYTHON

Sometimes it is useful to enter an interactive session to have a look what’s going on. Insert a single line in the code where you want to enter IPython: `import IPython; IPython.embed()`

This is a useful functionality because it allows the user to fix things on-the-fly and after quitting the Ipython console, code execution continues as per normal.
USE MULTIPLE CONFIG-USER.YML FILES

The user selects the configuration yaml file at run time. It’s possible to have several configurations files. For instance, it may be practical to have one config file for debugging runs and another for production runs.
CREATE A SYMBOLIC LINK TO THE LATEST OUTPUT DIRECTORY

When running multiple times the same recipe, the tool creates separate output directories sorted by the time tag that they were created at; sometimes, when running quite a few times, it is not straightforward to detect which one is the latest output directory, so a symbolic link attached to it would make things more clear e.g.:

```
recipe_example_20190905_163431
recipe_example_20190905_163519
recipe_example_latest -> recipe_example_20190905_163519
```

You can do that by running the tool using the latest output as basis and creating a symbolic link to it so it gets picked up at every re-run iteration:

```
esmvaltool run recipe_example.yml; \
ln -sfT $(ls -1d ~/esmvaltool_output/recipe_example_* | tail -1) ~/esmvaltool_output/
  → recipe_example_latest
```
Chapter 43. Create a symbolic link to the latest output directory
Part XI

Changelog
This release includes

44.1 Improvements

- Fix the conda build on CircleCI (#1883) Bouwe Andela
- Pin matplotlib to <3.3 and add compilers (#1898) Bouwe Andela
- Pin esmvaltool subpackages to the same version and build as the esmvaltool conda package (#1899) Bouwe Andela

44.2 Documentation

- Release notes v2.1.1 (#1932) Valeriu Predoi
This release includes

45.1 Diagnostics

- Add extra steps to diagnostic to make output of hydrology/recipe_lisflood.yml usable by the LISFLOOD model (#1737) Jaro Camphuijsen
- Recipe to reproduce the 2014 KNMI Climate Scenarios (kcs). (#1667) Peter Kalverla
- Implement the climwip weighting scheme in a recipe and diagnostic (#1648) Jaro Camphuijsen
- Remove unreviewed autoassess recipes (#1840) Valeriu Predoi
- Changes in shared scripts for Schlund et al., JGR: Biogeosciences, 2020 (#1845) Manuel Schlund
- Updated derivation test recipe (#1790) Manuel Schlund
- Support for multiple model occurrence in perf main (#1649) Bettina Gier
- Add recipe and diagnostics for Schlund et al., JGR: Biogeosciences, 2020 (#1860) Manuel Schlund
- Adjust recipe_extract_shape.yml to recent changes in the example diagnostic.py (#1880) Bouwe Andela

45.2 Documentation

- Add pip installation instructions (#1783) Bouwe Andela
- Add installation instruction for R and Julia dependencies tot pip install (#1787) Bouwe Andela
- Avoid autodocsumm 0.2.0 and update documentation build dependencies (#1794) Bouwe Andela
- Add more information on working on cluster attached to ESGF node (#1821) Bouwe Andela
- Add release strategy to community documentation (#1809) Klaus Zimmermann
- Update esmvaltool run command everywhere in documentation (#1820) Bouwe Andela
- Add more info on documenting a recipe (#1795) Bouwe Andela
- Improve the Python example diagnostic and documentation (#1827) Bouwe Andela
- Improve description of how to use draft_release_notes.py (#1848) Bouwe Andela
- Increase version to 2.1.0 and add release notes (#1868) Valeriu Predoi
- Update changelog for release 2.1 (#1886) Valeriu Predoi
45.3 Improvements

- Fix R installation in WSL (#1789) Javier Vegas-Regidor
- Add pre-commit for linting/formatting (#1796) Stef Smeets
- Speed up tests on CircleCI and use pytest to run them (#1804) Bouwe Andela
- Move pre-commit excludes to top-level and correct order of lintr and styler (#1805) Stef Smeets
- Remove isort setup to fix formatting conflict with yapf (#1815) Stef Smeets
- GitHub Actions (#1806) Valeriu Predoi
- Fix yapf-isort import formatting conflict (#1822) Stef Smeets
- Replace vmprof with vprof as the default profiler (#1829) Bouwe Andela
- Update ESMValCore v2.1.0 requirement (#1839) Javier Vegas-Regidor
- Pin iris to version 2 (#1881) Bouwe Andela
- Pin eccodes to not use eccodes=2.19.0 for cdo to work fine (#1869) Valeriu Predoi
- Increase version to 2.1.0 and add release notes (#1868) Valeriu Predoi
- Github Actions Build Packages and Deploy tests (conda and PyPi) (#1858) Valeriu Predoi

45.4 Observational and re-analysis dataset support

- Added CMORizer for Scripps-CO2-KUM (#1857) Manuel Schlund
This release includes

46.1 Bug fixes

- Fix pep8-naming errors and fix zmnam diagnostic (#1702) Bouwe Andela
- Fix keyword argument in cmorize_obs (#1721) Mattia Righi
- Fixed JMA-TRANSCOM CMORizer (#1735) Manuel Schlund
- Fix bug in extract_doi_value (#1734) bascrezee
- Fix small errors in the arctic_ocean diagnostic (#1722) Nikolay Koldunov
- Flatten ancestor lists for diag_spei.R and diag_spi.R. (#1745) katjaweigel
- Fix for recipe_ocean_ice_extent.yml (#1744) Mattia Righi
- Fix recipe_combined_indices.yml provenance (#1746) Javier Vegas-Regidor
- Fix provenance in recipe_multimodel_products (#1747) Javier Vegas-Regidor
- Exclude FGOALS-g2 due to ESMValCore issue #728 (#1749) Mattia Righi
- Fix recipe_modes_of_variability (#1753) Javier Vegas-Regidor
- Flatten lists for ancestors for hyint to prevent nested lists. (#1752) katjaweigel
- Fix bug in cmorize_obs_eppley_vgpm_modis.py (#1729) (#1759) Tomas Lovato
- Correct mip for clltkiscrp in example derive preprocessor recipe (#1768) Bouwe Andela
- Update date conversion in recipe_hype.yml (#1769) Bouwe Andela
- Fix recipe_correlation.yml (#1767) Bouwe Andela
- Add attribute positive: down to plev coordinate in ERA-Interim CMORizer (#1771) Bouwe Andela
- Fix sispeed in recipe_preprocessor_derive_test (#1772) Javier Vegas-Regidor
- Fix extreme events and extreme index ancestors (#1774) katjaweigel
- Correct date in output filenames of ERA5 CMORizer recipe (#1773) Bouwe Andela
- Exclude WOA from multi-model stats in recipe_ocean_bgc (#1778) Mattia Righi
46.2 Diagnostics

- Enhancement of the hyint recipe to include etccdi indices (#1133) Enrico Arnone
- Add lazy regridding for wflow diagnostic (#1630) Bouwe Andela
- Miles default domains to include lat=0 (#1626) Jost von Hardenberg
- Miles: selection of reference dataset based on experiment (#1632) Jost von Hardenberg
- New recipe/diagnostic: recipe_li17natec.yml for Axels GMD Paper (#1567) katjaweigel
- New recipe/diagnostics: recipe_deangelis_for_gmdpart4.yml for Axels GMD Paper (#1576) katjaweigel
- EWaer: Add recipe to prepare input for LISFLOOD (#1298) Stefan Verhoeven
- Use area weighted regridding in wflow diagnostic (#1643) Bouwe Andela
- Workaround for permetrics recipe until Iris3 (#1674) Mattia Righi
- C3S_511_MPQB_bas-features (#1465) bascrezee
- Additional Land perfmetrics (#1641) Bettina Gier
- Necessary diagnostic from eyring06jgr for the release of version2 (#1686) Birgit Hassler
- Drought characteristics based on Martin2018 and SPI for gmd paper (#1689) katjaweigel
- Additional features and bugfixes for recipe anav13clim (#1723) Bettina Gier
- Gmd laueretal2020 revisions (#1725) Axel Lauer
- Wenzel16nature (#1692) zechlau
- Add mask albedolandcover (#1673) bascrezee
- IPCC AR5 fig. 9.3 (seasonality) (#1726) Axel Lauer
- Added additional emergent constraints on ECS (#1585) Manuel Schlund
- A diagnostic to evaluate the turnover times of land ecosystem carbon (#1395) koir-su
- Removed multi_model_statistics step in recipe_oceans_example.yml as a workaround (#1779) Valeriu Predoi

46.3 Documentation

- Extend getting started instructions to obtain config-user.yml (#1642) Peter Kalverla
- Extend information about native6 support on RTD (#1652) Peter Kalverla
- Update citation of ESMValTool paper in the doc (#1664) Mattia Righi
- Updated references to documentation (now docs.esmvaltool.org) (#1679) Axel Lauer
- Replace dead link with ESGF link. (#1681) Mattia Righi
- Add all European grants to Zenodo (#1682) Bouwe Andela
- Update Sphinx to v3 or later (#1685) Bouwe Andela
- Small fix to number of models in ensclus documentation (#1691) Jost von Hardenberg
- Move draft_release_notes.py from ESMValCore to here and update (#1701) Bouwe Andela
- Improve the installation instructions (#1634) Valeriu Predoi
- Improve description of how to implement provenance in diagnostic (#1750) SarahAlidoost
• Update command line interface documentation and add links to ESMValCore configuration documentation (#1776) Bouwe Andela
• Documentation on how to find shapefiles for hydrology recipes (#1777) Jaro Camphuijsen

46.4 Improvements

• Pin flake8<3.8.0 (#1635) Valeriu Predoi
• Update conda package path in more places (#1636) Bouwe Andela
• Remove curly brackets around issue number in pull request template (#1637) Bouwe Andela
• Fix style issue in test (#1639) Bouwe Andela
• Update Codacy badges (#1662) Bouwe Andela
• Support extra installation methods in R (#1360) Javier Vegas-Regidor
• Add ncdf4.helpers package as a dependency again (#1678) Bouwe Andela
• Speed up conda installation (#1677) Bouwe Andela
• Update CMORizers and recipes for ESMValCore v2.0.0 (#1699) SarahAlidoost
• Update setup.py for PyPI package (#1700) Bouwe Andela
• Cleanup recipe headers before the release (#1740) Mattia Righi
• Add colortables as esmvaltool subcommand (#1666) Javier Vegas-Regidor
• Increase version to v2.0.0 (#1756) Bouwe Andela
• Update job script (#1757) Mattia Righi
• Read authors and description from .zenodo.json (#1758) Bouwe Andela
• Update docker recipe to install from source (#1651) Javier Vegas-Regidor

46.5 Observational and re-analysis dataset support

• Cmorize aphro ma (#1555) mwjury
• Respectable testing for cmorizers/obs/utilities.py and cmorizers/obs/cmorize_obs.py (#1517) Valeriu Predoi
• Fix start year in recipe_check_obs (#1638) Mattia Righi
• Cmorizer for the PERSIANN-CDR precipitation data (#1633) Birgit Hassler
• Cmorize eobs (#1554) mwjury
• Update download cds satellite lai fapar (#1654) bascrezee
• Added monthly mean vars (ta, va, zg) to era5 cmorizer via recipe (#1644) Evgenia Galytska
• Make format time check more flexible (#1661) Mattia Righi
• Exclude od550lt1aer from recipe_check_obs.yml (#1720) Mattia Righi
• PERSIANN-CDR cmorizer update: adding the capability to save monthly mean files (#1728) Birgit Hassler
• Add standard_name attribute to lon and lat in cmorize_obs_esacci_oc.py (#1760) Tomas Lovato
• Allow for incomplete months on daily frequency in cmorizer ncl utilities (#1754) Mattia Righi
• Fix AURA-TES cmorizer (#1766) Mattia Righi
This release includes

47.1 Bug fixes

- Fix HALOE plev coordinate (#1590) Mattia Righi
- Fix tro3 units in HALOE (#1591) Mattia Righi

47.2 Diagnostics

- Applicate sea ice negative feedback (#1299) Javier Vegas-Regidor
- Add Russell18jgr ocean diagnostics (#1592) Bouwe Andela
- Refactor marmot recipe and diagnostic to use ERA5 daily data made by new cmorizer (#1600) Sarah Alidoost
- In recipe_wflow, use daily ERA5 data from the new cmorizer. (#1599) Peter Kalverla
- In wflow diagnostic, calculate PET after(!) interpolation and lapse rate correction (#1618) Jerom Aerts
- Fixed wenz14jgr (#1562) zechlau
- Update portrait_plot.ncl (#1625) Bettina Gier

47.3 Documentation

- Restructure documentation (#1587) Bouwe Andela
- Add more links to documentation (#1595) Bouwe Andela
- Update links in readme (#1598) Bouwe Andela
- Minor improvements to installation documentation (#1608) Bouwe Andela
- Add info for new mailing list to documentation. (#1607) Björn Brötz
- Update making a release documentation (#1627) Bouwe Andela
47.4 Improvements

- Avoid broken pytest-html plugin (#1583) Bouwe Andela
- Remove reference section in config-references.yml (#1545) SarahAlidoost
- Various improvements to development infrastructure (#1570) Bouwe Andela
- Install scikit-learn from conda, remove libunwind as a direct dependency (#1611) Valeriu Predoi
- Create conda subpackages and enable tests (#1624) Bouwe Andela

47.5 Observational and re-analysis dataset support

- Cmorizer for HALOE (#1581) Mattia Righi
- Add CMORizer for CT2019 (#1604) Manuel Schlund

For older releases, see the release notes on https://github.com/ESMValGroup/ESMValTool/releases.
Part XII

Indices and tables
• genindex
• search
esmvaltool.diag_scripts, 403
esmvaltool.diag_scripts.mlr, 434
esmvaltool.diag_scripts.mlr.custom_sklearn, 439
esmvaltool.diag_scripts.mlr.evaluate_residuals, 425
esmvaltool.diag_scripts.mlr.main, 426
esmvaltool.diag_scripts.mlr.mmm, 428
esmvaltool.diag_scripts.mlr.models, 442
esmvaltool.diag_scripts.mlr.models.gbr_base, 453
esmvaltool.diag_scripts.mlr.models.gbr_sklearn, 467
esmvaltool.diag_scripts.mlr.models.gbr_xgboost, 475
esmvaltool.diag_scripts.mlr.models.gpr_sklearn, 482
esmvaltool.diag_scripts.mlr.models.huber, 489
esmvaltool.diag_scripts.mlr.models.krr, 496
esmvaltool.diag_scripts.mlr.models.lasso, 503
esmvaltool.diag_scripts.mlr.models.lasso_cv, 510
esmvaltool.diag_scripts.mlr.models.lasso_lars_cv, 517
esmvaltool.diag_scripts.mlr.models.linear, 524
esmvaltool.diag_scripts.mlr.models.linear_base, 531
esmvaltool.diag_scripts.mlr.models.rfr, 545
esmvaltool.diag_scripts.mlr.models.ridge, 552
esmvaltool.diag_scripts.mlr.plot, 428
esmvaltool.diag_scripts.mlr.postprocess, 430
esmvaltool.diag_scripts.mlr.preprocess, 432
esmvaltool.diag_scripts.mlr.rescale_with_emergent_constraint, 433
esmvaltool.diag_scripts.ocean, 403
esmvaltool.diag_scripts.ocean.diagnostic_maps, 405
esmvaltool.diag_scripts.ocean.diagnostic_maps_quad, 406
esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs, 408
esmvaltool.diag_scripts.ocean.diagnostic_profiles, 410
esmvaltool.diag_scripts.ocean.diagnostic_seaice, 412
esmvaltool.diag_scripts.ocean.diagnostic_timeseries, 414
esmvaltool.diag_scripts.ocean.diagnostic_tools, 417
esmvaltool.diag_scripts.shared, 387
esmvaltool.diag_scripts.shared.plot, 399
add_dataset() (esmvaltool.diag_scripts.shared.Datasets method), 388
add_legend_outside_right() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 421
add_linear_regression() (in module esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs), 409
add_map_subplot() (in module esmvaltool.diag_scripts.ocean.diagnostic_maps_quad), 407
add_map_subplot() (in module esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs), 409
add_sea_floor() (in module esmvaltool.diag_scripts.ocean.diagnostic_transects), 415
add_to_data() (esmvaltool.diag_scripts.shared.Datasets method), 388
add_vars() (esmvaltool.diag_scripts.shared.Variables method), 394
AdvancedGaussianProcessRegressor
(class in esmvaltool.diag_scripts.mlr.models.gpr_sklearn), 482
AdvancedPipeline (class in esmvaltool.diag_scripts.mlr.custom_sklearn), 440
AdvancedRFE (class in esmvaltool.diag_scripts.mlr.custom_sklearn), 440
AdvancedRFECV (class in esmvaltool.diag_scripts.mlr.custom_sklearn), 441
AdvancedTransformedTargetRegressor
(class in esmvaltool.diag_scripts.mlr.custom_sklearn), 441
aggregate_by_season() (in module esmvaltool.diag_scripts.ocean.diagnostic_seaice), 418
apply_supermeans() (in module esmvaltool.diag_scripts.shared), 396
bgc_units() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 421
categorical_features() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel property), 453
categorical_features() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel property), 468
categorical_features() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 475
categorical_features() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 489
categorical_features() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 503
categorical_features() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 510
categorical_features() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 524
categorical_features()

categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
categorical_features()
determine_profiles_str()
(determine_set_y_logscale()
(determine_transect_str()

efecv()

esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel

esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel

esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel

esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel

esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel

esmvaltool.diag_scripts.mlr.models.krr.KRRModel

esmvaltool.diag_scripts.mlr.models.lasso.LassoModel

esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel

esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel

esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel

esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel

esmvaltool.diag_scripts.mlr.models.MLRModel

esmvaltool.diag_scripts.mlr.models.rfr.RFRModel

esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel

esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel

esmvaltool.diag_scripts.mlr.models.svr.SVRModel

esmvaltool.diag_scripts.mlr.plot.module

esmvaltool.diag_scripts.mlr.preprocessing.module

esmvaltool.diag_scripts.mlr.postprocessing.module

esmvaltool.diag_scripts.ocean.module

esmvaltool.diag_scripts.mlr.main

Index
module, 417
esmvaltool.diag_scripts.ocean.diagnostic_timeseries

module, 412
esmvaltool.diag_scripts.ocean.diagnostic_tools

module, 420
esmvaltool.diag_scripts.ocean.diagnostic

export_training_data() (esmvaltool.diag_scripts.mlrun.models.ridge_cv.RidgeCVModel

method), 547
esmvaltool.diag_scripts.mlrun.models.svr.SVRModel

method), 554
esmvaltool.diag_scripts.mlrun.models.gbr_base.GBRModel

method), 455
esmvaltool.diag_scripts.mlrun.models.gbr_sklearn.SklearnGBRModel

method), 469
esmvaltool.diag_scripts.mlrun.models.gbr_xgboost.XGBoostGBRModel

method), 476
esmvaltool.diag_scripts.mlrun.models.gpr_sklearn.SklearnGPRModel

method), 484
esmvaltool.diag_scripts.mlrun.models.huber.HuberRegressionModel

method), 490
esmvaltool.diag_scripts.mlrun.models.krr.KRRModel

method), 498
esmvaltool.diag_scripts.mlrun.models.lasso.LassoModel

method), 504
esmvaltool.diag_scripts.mlrun.models.lasso_cv.LassoCVModel

method), 512
esmvaltool.diag_scripts.mlrun.models.lasso_lars_cv.LassoLarsCVModel

method), 519
esmvaltool.diag_scripts.mlrun.models.linear_base.LinearModel

method), 526
esmvaltool.diag_scripts.mlrun.models.linear_base.LinearModel

method), 462

export_prediction_data() (esmvaltool.diag_scripts.mlrun.models.mlr_base.LinearModel

method), 462

export_prediction_data() (esmvaltool.diag_scripts.mlrun.models.mlr_base.LinearModel

method), 448

export_prediction_data() (esmvaltool.diag_scripts.mlrun.models.mlr_base.LinearModel

method), 448
tool.diag_scripts.shared), 396

features() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel property), 455
features() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 477
features() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 491
features() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel property), 498
features() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel property), 462
features() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 526
features() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 505
features() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 512
features() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 526
features() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel property), 462
features() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 519
features() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel property), 554

Index 597
<table>
<thead>
<tr>
<th>features_types()</th>
<th>features_units()</th>
<th>features_units()</th>
</tr>
</thead>
</table>
get_dataset_info() (esmvaltool.diag_scripts.shared.Datasets method), 389
get_dataset_info_list() (esmvaltool.diag_scripts.shared.Datasets method), 390
get_dataset_style() (in module esmvaltool.diag_scripts.shared.plot), 422
get_decade() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 422
get_diagnostic_filename() (in module esmvaltool.diag_scripts.shared), 396
get_horizontal_weights() (in module esmvaltool.diag_scripts.mlr), 437
get_image_format() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 422
get_image_path() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 423
get_info() (esmvaltool.diag_scripts.shared.Datasets method), 390
get_info_list() (esmvaltool.diag_scripts.shared.Datasets method), 390
get_input_data() (in module esmvaltool.diag_scripts.mlr), 437
get_input_files() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 423
get_landsea_fraction_weights() (in module esmvaltool.diag_scripts.mlr), 438
get_new_path() (in module esmvaltool.diag_scripts.mlr), 438
get_obs_projects() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 423
get_path() (esmvaltool.diag_scripts.shared.Datasets method), 391
get_path_list() (esmvaltool.diag_scripts.shared.Datasets method), 391
get_path_to_mpl_style() (in module esmvaltool.diag_scripts.shared.plot), 399
get_plot_filename() (in module esmvaltool.diag_scripts.shared), 396
get_pole() (in module esmvaltool.diag_scripts.ocean.diagnostic_seaice), 418
get_rfecv_transformer() (in module esmvaltool.diag_scripts.mlcr.models.custom_sklearn), 442
get_season() (in module esmvaltool.diag_scripts.ocean.diagnostic_seaice), 419
get_squared_error_cube() (in module esmvaltool.diag_scripts.mlr), 438
get_time_string() (in module esmvaltool.diag_scripts.ocean.diagnostic_seaice), 419
get_time_weights() (in module esmvaltool.diag_scripts.mlr), 438
get_x_array() (esmvaltool.diag_scripts.mlr.models.grb_base.GBRModel method), 456
get_x_array() (esmvaltool.diag_scripts.mlr.models.grb_sklearn.SklearnGBRModel method), 470
get_x_array() (esmvaltool.diag_scripts.mlr.models.grb_xgboost.XGBoostGBRModel method), 478
get_x_array() (esmvaltool.diag_scripts.mlr.models.grb_sklearn.SklearnGPRModel method), 485
get_x_array() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel method), 492
get_x_array() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel method), 499
get_x_array() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel method), 506
get_x_array() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel method), 513
get_x_array() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel method), 520
get_x_array() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel method), 527
get_x_array() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel method), 463
get_x_array() (esmvaltool.diag_scripts.mlr.models.MLRModel method), 449
get_x_array() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel method), 534
get_x_array() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel method), 541
get_x_array() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel method), 548
get_x_array() (esmval-tool.diag_scripts.mlr.models.svr.SVRModel method), 555
get_y_array() (esmval-tool.diag_scripts.mlr.models.gbr_base.GBRModel method), 456
get_y_array() (esmval-tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel method), 471
get_y_array() (esmval-tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel method), 478
get_y_array() (esmval-tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel method), 485
get_y_array() (esmval-tool.diag_scripts.mlr.models.huber.HuberRegressionModel method), 492
get_y_array() (esmval-tool.diag_scripts.mlr.models.krr.KRRModel method), 499
get_y_array() (esmval-tool.diag_scripts.mlr.models.lasso.LassoModel method), 506
get_y_array() (esmval-tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel method), 513
get_y_array() (esmval-tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel method), 520
get_y_array() (esmval-tool.diag_scripts.mlr.models.linear.LinearRegressionModel method), 527
get_y_array() (esmval-tool.diag_scripts.mlr.models.linear_base.LinearModel method), 463
get_y_array() (esmval-tool.diag_scripts.mlr.models.MLRModel method), 450
get_y_array() (esmval-tool.diag_scripts.mlr.models.rfr.RFRModel method), 534
get_y_array() (esmval-tool.diag_scripts.mlr.models.ridge.RidgeModel method), 541
get_y_array() (esmval-tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel method), 548
get_y_array() (esmval-tool.diag_scripts.mlr.models.svr.SVRModel method), 555
get_year() (in module esmval-tool.diag_scripts.ocean.diagnostic_seaice), 419

global_contourf() (in module esmval-tool.diag_scripts.shared.plot), 399

global_pcolormesh() (in module esmval-tool.diag_scripts.shared.plot), 400

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.gbr_base.GBRModel method), 457

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel method), 471

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel method), 478

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel method), 485

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.huber.HuberRegressionModel method), 492

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.krr.KRRModel method), 499

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.lasso.LassoModel method), 506

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel method), 513

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel method), 520

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.linear.LinearRegressionModel method), 528

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.linear_base.LinearModel method), 464

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.MLRModel method), 450

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.rfr.RFRModel method), 535

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.ridge.RidgeModel method), 541

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel method), 548

global_pcolormesh() (esmval-tool.diag_scripts.mlr.models.svr.SVRModel method), 555

group_attributes() (esmval-tool.diag_scripts.mlr.models.gbr_base.GBRModel method), 555

Index
property), 457

group_attributes() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel property), 471

group_attributes() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 478

group_attributes() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel property), 486

group_attributes() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 492

group_attributes() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel property), 500

group_attributes() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 506

group_attributes() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 513

group_attributes() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 521

group_attributes() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 528

group_attributes() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel property), 464

group_attributes() (esmvaltool.diag_scripts.mlr.models.MLRModel property), 450

group_attributes() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel property), 535

group_attributes() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel property), 541

group_attributes() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel property), 549

group_attributes() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel property), 556

group_metadata() (in module esmvaltool.diag_scripts.shared), 397

guess_calendar_datetime() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 423

H

HuberRegressionModel (class in esmvaltool.diag_scripts.mlr.models.huber), 489

I

ignore_warnings() (in module esmvaltool.diag_scripts.mlr), 439

index() (esmvaltool.diag_scripts.shared.Variable method), 393

iris_dict() (esmvaltool.diag_scripts.shared.Variables method), 394

K

KRRModel (class in esmvaltool.diag_scripts.mlr.models.krr), 496

L

label() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel property), 457

label() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel property), 471

label() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 478

label() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel property), 486

label() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 492

label() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel property), 500

label() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 506

label() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 513

label() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 521

label() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 528

label() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel property), 464

label() (esmvaltool.diag_scripts.mlr.models.MLRModel property), 450

label() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel property), 535

label() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel property), 541

label() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel property), 549

label() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel property), 556

label_units() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel property), 457

label_units() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 471

label_units() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 489

label_units() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 506

label_units() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 513

label_units() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 521

label_units() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 528

label_units() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel property), 464

label_units() (esmvaltool.diag_scripts.mlr.models.MLRModel property), 450

label_units() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel property), 535

label_units() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel property), 541

label_units() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel property), 549

label_units() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel property), 556

Index 603
make_polar_map() (in module esmvaltool.diag_scripts.ocean.diagnostic_seaice), 409

make_profiles_plots() (in module esmvaltool.diag_scripts.ocean.diagnostic_profiles), 412

make_scatter() (in module esmvaltool.diag_scripts.ocean.diagnostic_model_vs_obs), 410

make_time_series_plots() (in module esmvaltool.diag_scripts.ocean.diagnostic_timeseries), 412

make_transect_contours() (in module esmvaltool.diag_scripts.ocean.diagnostic_transects), 416

make_transects_plots() (in module esmvaltool.diag_scripts.ocean.diagnostic_transects), 416

make_ts_plots() (in module esmvaltool.diag_scripts.ocean.diagnostic_seaice), 410

match_model_to_key() (in module esmvaltool.diag_scripts.ocean.diagnostic_tools), 424

mlr_model_type() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel property), 528

mlr_model_type() (esmvaltool.diag_scripts.mlr.models.MLRModel property), 464

mlr_model_type() (esmvaltool.diag_scripts.mlr.models.RFRModel property), 535

mlr_model_type() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel property), 542

mlr_model_type() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel property), 549

MLRModel (class in esmvaltool.diag_scripts.mlr.models), 447

modify_var() (esmvaltool.diag_scripts.shared.Variables method), 394

module esmvaltool.diag_scripts, 403

esmvaltool.diag_scripts.mlr, 434

esmvaltool.diag_scripts.mlr.custom_sklearn, 439

esmvaltool.diag_scripts.mlr.evaluate_residuals, 425

esmvaltool.diag_scripts.mlr.main, 426

esmvaltool.diag_scripts.mlr.mmm, 428

esmvaltool.diag_scripts.mlr.models, 442

esmvaltool.diag_scripts.mlr.models.gbr_base, 453

esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel property), 457

esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel property), 471

esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 479

esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 475

esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel property), 486

esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel property), 482

esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 493

esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 496

esmvaltool.diag_scripts.mlr.models.krr.KRRModel property), 500

esmvaltool.diag_scripts.mlr.models.krr.KRRModel property), 489

esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 507

esmvaltool.diag_scripts.mlr.models.lasso.LassoModel property), 503

esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 514

esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 510

esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 521

esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel property) 517
esmvaltool.diag_scripts.mlr.models.linear, tool.diag_scripts.ocean.diagnostics_timeseries), 414
460 esmvaltool.diag_scripts.mlr.models.linear_base, 460
esmvaltool.diag_scripts.mlr.models.rfr numerical_features() (esmval-
tool.diag_scripts.mlr.models.gbr_base.GBRModel property), 457
531 esmvaltool.diag_scripts.mlr.models.ridge, numerical_features() (esmval-
tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel property), 471
538 esmvaltool.diag_scripts.mlr.models.ridge_cv numerical_features() (esmval-
tool.diag_scripts.mlr.models.gbr_xgboost.XGBGBRModel property), 479
545 esmvaltool.diag_scripts.mlr.models.svr numerical_features() (esmval-
tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel property), 486
552 esmvaltool.diag_scripts.mlr.plot, numerical_features() (esmval-
tool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 493
428 esmvaltool.diag_scripts.mlr.postprocess, numerical_features() (esmval-
tool.diag_scripts.mlr.models.krr.KRRModel property), 500
430 esmvaltool.diag_scripts.mlr.preprocess numerical_features() (esmval-
tool.diag_scripts.mlr.models.lasso.LassoModel property), 507
432 esmvaltool.diag_scripts.mlr.rescale_with_emergent_constraint, numerical_features() (esmval-
tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 514
433 esmvaltool.diag_scripts.ocean, 403 numerical_features() (esmval-
tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 521
405 esmvaltool.diag_scripts.ocean.diagnostics_timeseries numerical_features() (esmval-
tool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 464
406 esmvaltool.diag_scripts.ocean.diagnostics_timeseries numerical_features() (esmval-
tool.diag_scripts.mlr.models.linear_base.LinearModel property), 464
408 esmvaltool.diag_scripts.ocean.diagnostics_profiles numerical_features() (esmval-
tool.diag_scripts.mlr.models.MLRModel property), 451
410 esmvaltool.diag_scripts.ocean.diagnostics_seaice numerical_features() (esmval-
tool.diag_scripts.mlr.models.RFRModel property), 535
417 esmvaltool.diag_scripts.ocean.diagnostics_seaice numerical_features() (esmval-
tool.diag_scripts.mlr.models.RidgeModel property), 542
421 esmvaltool.diag_scripts.ocean.diagnostics_model_vs_obs numerical_features() (esmval-
tool.diag_scripts.mlr.models.RidgeCVModel property), 549
409 esmvaltool.diag_scripts.ocean.diagnostics_transects numerical_features() (esmval-
tool.diag_scripts.mlr.models.svr.SVRModel property), 556
414 esmvaltool.diag_scripts.ocean.diagnostics_transects numerical_features() (esmval-
tool.diag_scripts.mlr.models.MLRModel property), 451
387 esmvaltool.diag_scripts.shared plot numerical_features() (esmval-
tool.diag_scripts.mlr.models.RFRModel property), 535
399 moving_average() (in module esmval-
tool.diag_scripts.ocean.diagnostics_timeseries), 413
413 multi_dataset_scatterplot() (in module esmval-
tool.diag_scripts.shared.plot), 400
400 multi_model_contours() (in module esmval-
tool.diag_scripts.ocean.diagnostics_maps), 406
406 multi_model_contours() (in module esmval-
tool.diag_scripts.ocean.diagnostics_transects), 416
416 multi_model_maps() (in module esmval-
tool.diag_scripts.ocean.diagnostics_maps_quad), 408
408 multi_model_time_series() (in module esmval-
parameters() (esmval-tool.diag_scripts.mlr.models.gbr_base.GBRModel property), 457
parameters() (esmval-tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel property), 471
parameters() (esmval-tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel property), 479
parameters() (esmval-tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel property), 486
parameters() (esmval-tool.diag_scripts.mlr.models.huber.HuberRegressionModel property), 493
parameters() (esmval-tool.diag_scripts.mlr.models.krr.KRRModel property), 500
parameters() (esmval-tool.diag_scripts.mlr.models.lasso.LassoModel property), 507
parameters() (esmval-tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel property), 514
parameters() (esmval-tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel property), 521
parameters() (esmval-tool.diag_scripts.mlr.models.linear.LinearRegressionModel property), 528
parameters() (esmval-tool.diag_scripts.mlr.models.linear_base.LinearModel property), 464
parameters() (esmval-tool.diag_scripts.mlr.models.MLRModel property), 451
parameters() (esmval-tool.diag_scripts.mlr.models.rfr.RFRModel property), 535
parameters() (esmval-tool.diag_scripts.mlr.models.ridge.RidgeModel property), 542
parameters() (esmval-tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel property), 549
parameters() (esmval-tool.diag_scripts.mlr.models.svr.SVRModel property), 556
perform_efecv() (in module esmval-tool.diag_scripts.mlr.custom_sklearn), 442
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.gbr_base.GBRModel method), 457
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel method), 472
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel method), 479
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel method), 486
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.huber.HuberRegressionModel method), 493
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.krr.KRRModel method), 500
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.lasso.LassoModel method), 507
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel method), 514
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel method), 521
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.linear.LinearRegressionModel method), 464
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.MLRModel method), 451
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.rfr.RFRModel method), 535
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.ridge.RidgeModel method), 542
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel method), 549
plot_1d_model() (esmval-tool.diag_scripts.mlr.models.svr.SVRModel method), 556
plot_coefs() (esmval-tool.diag_scripts.mlr.models.huber.HuberRegressionModel method), 493
plot_coefs() (esmval-tool.diag_scripts.mlr.models.lasso.LassoModel method), 507
plot_coefs() (esmval-tool.diag_scripts.mlr.models.lasso_cv.LassoCVModel method), 514
<table>
<thead>
<tr>
<th>Function</th>
<th>Module</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_coefs()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso</td>
<td>LassoLarsCVModel</td>
<td>521</td>
</tr>
<tr>
<td>plot_coefs()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear</td>
<td>LinearRegressionModel</td>
<td>529</td>
</tr>
<tr>
<td>plot_coefs()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear_base</td>
<td>LinearModel</td>
<td>465</td>
</tr>
<tr>
<td>plot_coefs()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge</td>
<td>RidgeModel</td>
<td>542</td>
</tr>
<tr>
<td>plot_coefs()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge_cv</td>
<td>RidgeCVModel</td>
<td>549</td>
</tr>
<tr>
<td>plot_feature_importance()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_base</td>
<td>GBRModel</td>
<td>458</td>
</tr>
<tr>
<td>plot_feature_importance()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_sklearn</td>
<td>SklearnGBRModel</td>
<td>515</td>
</tr>
<tr>
<td>plot_feature_importance()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_xgboost</td>
<td>XGBoostGBRModel</td>
<td>522</td>
</tr>
<tr>
<td>plot_feature_importance()</td>
<td>esmval-tool.diag_scripts.mlr.models.gpr_sklearn</td>
<td>SklearnGPRModel</td>
<td>472</td>
</tr>
<tr>
<td>plot_feature_importance()</td>
<td>esmval-tool.diag_scripts.mlr.models.rfr</td>
<td>RFRModel</td>
<td>544</td>
</tr>
<tr>
<td>plot_feature_importance()</td>
<td>esmval-tool.diag_scripts.mlr.models.svr</td>
<td>SVRModel</td>
<td>556</td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_base</td>
<td>GBRModel</td>
<td>548</td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_xgboost</td>
<td>XGBoostGBRModel</td>
<td>472</td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.gpr_sklearn</td>
<td>SklearnGPRModel</td>
<td>487</td>
</tr>
<tr>
<td>Function</td>
<td>Module</td>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.huber</td>
<td>HuberRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.krr</td>
<td>KRRModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso</td>
<td>LassoModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso_cv</td>
<td>LassoCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso_lars</td>
<td>LassoLarsCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear</td>
<td>LinearRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear_base</td>
<td>LinearModel</td>
<td></td>
</tr>
<tr>
<td>plot_prediction_errors()</td>
<td>esmval-tool.diag_scripts.mlr.models.MLRModel</td>
<td>MLRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.rfr</td>
<td>RFRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge</td>
<td>RidgeModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge_cv</td>
<td>RidgeCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.svr</td>
<td>SVRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_base</td>
<td>GBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_sklearn</td>
<td>SklearnGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_xgboost</td>
<td>XGBoostGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.huber</td>
<td>HuberRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.krr</td>
<td>KRRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso</td>
<td>LassoModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso_cv</td>
<td>LassoCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear</td>
<td>LinearRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear_base</td>
<td>LinearModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.MLRModel</td>
<td>MLRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.rfr</td>
<td>RFRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge</td>
<td>RidgeModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge_cv</td>
<td>RidgeCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.svr</td>
<td>SVRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_base</td>
<td>GBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_sklearn</td>
<td>SklearnGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_xgboost</td>
<td>XGBoostGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.huber</td>
<td>HuberRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.krr</td>
<td>KRRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso</td>
<td>LassoModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso_cv</td>
<td>LassoCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear</td>
<td>LinearRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear_base</td>
<td>LinearModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.MLRModel</td>
<td>MLRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.rfr</td>
<td>RFRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge</td>
<td>RidgeModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge_cv</td>
<td>RidgeCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.svr</td>
<td>SVRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_base</td>
<td>GBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_sklearn</td>
<td>SklearnGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_xgboost</td>
<td>XGBoostGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.huber</td>
<td>HuberRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.krr</td>
<td>KRRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso</td>
<td>LassoModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.lasso_cv</td>
<td>LassoCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear</td>
<td>LinearRegressionModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.linear_base</td>
<td>LinearModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.MLRModel</td>
<td>MLRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.rfr</td>
<td>RFRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge</td>
<td>RidgeModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.ridge_cv</td>
<td>RidgeCVModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.svr</td>
<td>SVRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_base</td>
<td>GBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_sklearn</td>
<td>SklearnGBRModel</td>
<td></td>
</tr>
<tr>
<td>plot_residuals()</td>
<td>esmval-tool.diag_scripts.mlr.models.gbr_xgboost</td>
<td>XGBoostGBRModel</td>
<td></td>
</tr>
</tbody>
</table>
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel, 522)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel, 529)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel, 465)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.MLRModel, 451)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel, 536)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel, 543)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel, 550)
plot_residuals_distribution() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel, 557)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.gbr_base.GBRModel, 459)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.gbr_sklearn.SklearnGBRModel, 473)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.gbr_xgboost.XGBoostGBRModel, 480)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.gpr_sklearn.SklearnGPRModel, 487)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.huber.HuberRegressionModel, 494)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel, 501)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel, 508)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel, 515)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel, 530)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel, 522)
plot_residuals_histogram() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel, 466)
print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.gbr_base.GBRModel method), 488

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.gbr_sklearn.SklearnGBRModel method), 492

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.gbr_xgboost.XGBoostGBRModel method), 481

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.gpr_sklearn.SklearnGPRModel method), 488

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.huber.HuberRegressionModel method), 495

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.krr.KRRModel method), 502

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.lasso.LassoModel method), 509

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.lasso_cv.LassoCVModel method), 516

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.lasso_lars_cv.LassoLarsCVModel method), 523

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.linear.LinearRegressionModel method), 530

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.linear_base.LinearModel method), 467

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.MLRModel method), 452

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.rfr.RFRModel method), 537

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.ridge.RidgeModel method), 544

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.ridge_cv.RidgeCVModel method), 551

print_regression_metrics() (esmval-tool.diag_scripts.mlrs.models.svr.SVRModel method), 558

ProvenanceLogger (class in esmval-tool.diag_scripts.shared), 391

Q

quickplot() (in module esmval-tool.diag_scripts.shared.plot), 401

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.gbr_base.GBRModel class method), 460

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.gbr_sklearn.SklearnGBRModel class method), 474

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.gbr_xgboost.XGBoostGBRModel class method), 481

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.gpr_sklearn.SklearnGPRModel class method), 488

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.huber.HuberRegressionModel class method), 495

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.krr.KRRModel class method), 502

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.lasso.LassoModel class method), 509

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.lasso_cv.LassoCVModel class method), 516

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.lasso_lars_cv.LassoLarsCVModel class method), 523

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.linear.LinearRegressionModel class method), 523

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.linear_base.LinearModel class method), 531

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.MLRModel class method), 453

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.rfr.RFRModel class method), 537

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.ridge.RidgeModel class method), 544

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.ridge_cv.RidgeCVModel class method), 551

register_mlr_model() (esmval-tool.diag_scripts.mlrs.models.svr.SVRModel class method), 558

reset_pipeline() (esmval-tool.diag_scripts.mlrs.models.gbr_base.GBRModel method), 460
tool.diag_scripts.mlr.models.huber.HuberRegressionModel

update_parameters() (esmvaltool.diag_scripts.mlr.models.krr.KRRModel method), 502

update_parameters() (esmvaltool.diag_scripts.mlr.models.lasso.LassoModel method), 510

update_parameters() (esmvaltool.diag_scripts.mlr.models.lasso_cv.LassoCVModel method), 517

update_parameters() (esmvaltool.diag_scripts.mlr.models.lasso_lars_cv.LassoLarsCVModel method), 524

update_parameters() (esmvaltool.diag_scripts.mlr.models.linear.LinearRegressionModel method), 531

update_parameters() (esmvaltool.diag_scripts.mlr.models.linear_base.LinearModel method), 467

update_parameters() (esmvaltool.diag_scripts.mlr.models.MLRModel method), 453

update_parameters() (esmvaltool.diag_scripts.mlr.models.rfr.RFRModel method), 538

update_parameters() (esmvaltool.diag_scripts.mlr.models.ridge.RidgeModel method), 545

update_parameters() (esmvaltool.diag_scripts.mlr.models.ridge_cv.RidgeCVModel method), 552

update_parameters() (esmvaltool.diag_scripts.mlr.models.svr.SVRModel method), 558

\V

var_name() (esmvaltool.diag_scripts.shared.Variables method), 395

Variable (class in esmvaltool.diag_scripts.shared), 393

Variables (class in esmvaltool.diag_scripts.shared), 393

variables_available() (in module esmvaltool.diag_scripts.shared), 398

vars_available() (esmvaltool.diag_scripts.shared.Variables method), 395

\X

XGBoostGBRModel (class in esmvaltool.diag_scripts.mlr.models.gbr_xgboost), 475