ESMValTool User’s and Developer’s

Guide
Release 2.10.0.dev0+g99119697.d20230704

ESMValTool Development Team

Jul 04, 2023

L]

Getting started
1 Installation

2 Configuration files
3 Input data

4 Running

5 Output

II Example notebooks
6 Composing recipes
7 Discovering data

8 Loading, processing, and visualizing data

III The recipe format
9 Overview

10 Preprocessor

IV Diagnostic script interfaces
11 Provenance
12 Information provided by ESMValCore to the diagnostic script

13 Information provided by the diagnostic script to ESMValCore

V Development
14 Preprocessor function

15 Fixing data

ESMVALTOOL

21
33

37

41
45
55

59

63
65

77

113
117
119

121

123
127

133

16 Deriving a variable 141

VI Contributions are very welcome 143
17 Getting started 147
18 Checklist for pull requests 149
19 Scientific relevance 151
20 Pull request title and label 153
21 Code quality 155
22 Documentation 157
23 Tests 159
24 Backward compatibility 163
25 Dependencies 165
26 List of authors 167
27 Pull request checks 169
28 Making a release 171
VII ESMValCore API Reference 175
29 CMOR functions 179
30 Configuration 197
31 Dataset 203
32 Find and download files from ESGF 209
33 Exceptions 215
34 TIris helper functions 217
35 Find files on the local filesystem 219
36 Preprocessor functions 221
37 Type hints 253
38 Experimental API 255
VIII Changelog 271
39 v2.9.0 273

40 v2.8.1 277

41

42

43

44

45

46

47

48

49

50

51

52

IX Indices and tables

Python Module Index

v2.8.0

v2.7.1

v2.7.0

v2.6.0

v2.5.0

v2.4.0

v2.3.1

v2.3.0

v2.2.0

v2.1.0

v2.0.0

v2.0.0b9

Index

279

285

287

289

293

297

301

303

307

311

313

317

319

323

325

Part 1

Getting started

CHAPTER
ONE

INSTALLATION

1.1 Conda installation

In order to install the Conda package, you will need to install Conda first. For a minimal conda installation (recom-
mended) go to https://conda.io/miniconda.html. It is recommended that you always use the latest version of conda, as
problems have been reported when trying to use older versions.

Once you have installed conda, you can install ESMValCore by running:

conda install -c conda-forge esmvalcore

It is also possible to create a new Conda environment and install ESMValCore into it with a single command:

conda create --name esmvalcore -c conda-forge esmvalcore 'python=3.10'

Don’t forget to activate the newly created environment after the installation:

conda activate esmvalcore

Of course it is also possible to choose a different name than esmvalcore for the environment.

Note: Creating a new Conda environment is often much faster and more reliable than trying to update an existing
Conda environment.

1.2 Pip installation

It is also possible to install ESMValCore from PyPI. However, this requires first installing dependencies that are not
available on PyPI in some other way. By far the easiest way to install these dependencies is to use conda. For a minimal
conda installation (recommended) go to https://conda.io/miniconda.html.

After installing Conda, download the file with the list of dependencies:

wget https://raw.githubusercontent.com/ESMValGroup/ESMValCore/main/environment.yml

and install these dependencies into a new conda environment with the command

conda env create --name esmvalcore --file environment.yml

Finally, activate the newly created environment

https://docs.conda.io
https://conda.io/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-environments
https://pypi.org/project/ESMValCore/
https://docs.conda.io
https://conda.io/miniconda.html
https://raw.githubusercontent.com/ESMValGroup/ESMValCore/main/environment.yml

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

conda activate esmvalcore

and install ESMValCore as well as any remaining dependencies with the command:

pip install esmvalcore

1.3 Docker installation

ESMValCore is also provided through DockerHub in the form of docker containers. See https://docs.docker.com for
more information about docker containers and how to run them.

You can get the latest release with

docker pull esmvalgroup/esmvalcore:stable

If you want to use the current main branch, use

docker pull esmvalgroup/esmvalcore:latest

To run a container using those images, use:

docker run esmvalgroup/esmvalcore:stable --help
Note that the container does not see the data or environmental variables available in the host by default. You can make
data available with -v /path:/path/in/container and environmental variables with -e VARNAME.

For example, the following command would run a recipe

docker run -e HOME -v "S$HOME":"$HOME" -v /data:/data esmvalgroup/esmvalcore:stable -c ~/
—config-user.yml ~/recipes/recipe_example.yml

with the environmental variable $HOME available inside the container and the data in the directories $HOME and /data,
so these can be used to find the configuration file, recipe, and data.

It might be useful to define a bash alias or script to abbreviate the above command, for example

alias esmvaltool="docker run -e HOME -v $HOME:$HOME -v /data:/data esmvalgroup/
—esmvalcore:stable"

would allow using the esmvaltool command without even noticing that the tool is running inside a Docker container.

1.4 Singularity installation

Docker is usually forbidden in clusters due to security reasons. However, there is a more secure alternative to run
containers that is usually available on them: Singularity.

Singularity can use docker containers directly from DockerHub with the following command

singularity run docker://esmvalgroup/esmvalcore:stable -c ~/config-user.yml ~/recipes/
. recipe_example.yml

4 Chapter 1. Installation

https://hub.docker.com/u/esmvalgroup/
https://docs.docker.com
https://opensource.com/article/19/7/bash-aliases
https://sylabs.io/guides/3.0/user-guide/quick_start.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Note that the container does not see the data available in the host by default. You can make host data available with -B
/path:/path/in/container.

It might be useful to define a bash alias or script to abbreviate the above command, for example

alias esmvaltool="singularity run -B $HOME:$HOME -B /data:/data docker://esmvalgroup/
—esmvalcore:stable"

would allow using the esmvaltool command without even noticing that the tool is running inside a Singularity con-
tainer.

Some clusters may not allow to connect to external services, in those cases you can first create a singularity image
locally:

singularity build esmvalcore.sif docker://esmvalgroup/esmvalcore:stable

and then upload the image file esmvalcore.sif to the cluster. To run the container using the image file esmvalcore.
sif use:

singularity run esmvalcore.sif -c ~/config-user.yml ~/recipes/recipe_example.yml

1.5 Installation from source

Note: If you would like to install the development version of ESMValCore alongside ESMValTool, please have a look
at these instructions.

To install from source for development, follow these instructions.

Download and install conda (this should be done even if the system in use already has a preinstalled version of
conda, as problems have been reported with using older versions of conda)

To make the conda command available, add source <prefix>/etc/profile.d/conda.sh to your .bashrc
file and restart your shell. If using (t)csh shell, add source <prefix>/etc/profile.d/conda.csh to your
.cshrc/. tcshrec file instead.

Update conda: conda update -y conda

Clone the ESMValCore Git repository: git clone https://github.com/ESMValGroup/ESMValCore.git

Go to the source code directory: cd ESMValCore

Create the esmvalcore conda environment conda env create --name esmvalcore --file
environment.yml

Activate the esmvalcore environment: conda activate esmvalcore

Install in development mode: pip install -e '.[develop]'. If you are installing behind a proxy
that does not trust the usual pip-urls you can declare them with the option --trusted-host, e.g. pip
install --trusted-host=pypi.python.org --trusted-host=pypi.org --trusted-host=files.
pythonhosted.org -e .[develop]

Test that your installation was successful by running esmvaltool -h.

1.5. Installation from source 5

https://opensource.com/article/19/7/bash-aliases
https://docs.esmvaltool.org/en/latest/quickstart/installation.html#esmvalcore-development-installation
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

1.6 Pre-installed versions on HPC clusters / other servers

If you would like to use pre-installed versions on HPC clusters (currently CEDA-JASMIN and DKRZ-Levante), and
other servers (currently Met Office Linux estate), please have a look at these instructions.

1.7 Installation from the conda lock file

A fast conda environment creation is possible using the provided conda lock files. This is a secure alternative to the
installation from source, whenever the conda environment can not be created for some reason. A conda lock file is
an explicit environment file that contains pointers to dependency packages as they are hosted on the Anaconda cloud;
these have frozen version numbers, build hashes, and channel names, parameters established at the time of the conda
lock file creation, so may be obsolete after a while, but they allow for a robust environment creation while they’re still
up-to-date. We regenerate these lock files every 10 days through automatic Pull Requests (or more frequently, since
the automatic generator runs on merges on the main branch too), so to minimize the risk of dependencies becoming
obsolete. Conda environment creation from a lock file is done just like with any other environment file:

conda create --name esmvaltool --file conda-linux-64.lock

The latest, most up-to-date file can always be downloaded directly from the source code repository, a direct download
link can be found here.

Note: pip and conda are NOT installed, so you will have to install them in the new environment: use conda-forge as
channel): conda install -c conda-forge pip at the very minimum so we can install esmvalcore afterwards.

1.8 Creating a conda lock file

We provide a conda lock file for Linux-based operating systems, but if you prefer to build a conda lock file yourself,
install the conda-lock package first:

conda install -c conda-forge conda-lock

then run

conda-lock lock --platform linux-64 -f environment.yml --mamba

(mamba activated for speed) to create a conda lock file for Linux platforms, or run

conda-lock lock --platform osx-64 -f environment.yml --mamba

to create a lock file for OSX platforms. Note however, that using conda lock files on OSX is still problematic!

6 Chapter 1. Installation

https://docs.esmvaltool.org/en/latest/quickstart/installation.html#install-on-hpc
https://raw.githubusercontent.com/ESMValGroup/ESMValCore/main/conda-linux-64.lock

CHAPTER
TWO

CONFIGURATION FILES

2.1 Overview

There are several configuration files in ESMValCore:

» config-user.yml: sets a number of user-specific options like desired graphical output format, root paths to
data, etc.;

e config-developer.yml: sets a number of standardized file-naming and paths to data formatting;
and one configuration file which is distributed with ESMValTool:

» config-references.yml: stores information on diagnostic and recipe authors and scientific journals refer-
ences;

2.2 User configuration file

The config-user.yml configuration file contains all the global level information needed by ESMValTool. It can
be reused as many times the user needs to before changing any of the options stored in it. This file is essentially the
gateway between the user and the machine-specific instructions to esmvaltool. By default, esmvaltool looks for it in
the home directory, inside the .esmvaltool folder.

Users can get a copy of this file with default values by running

esmvaltool config get-config-user --path=${TARGET_FOLDER

If the option --path is omitted, the file will be created in ${HOME}/.esmvaltool

The following shows the default settings from the config-user.yml file with explanations in a commented line above
each option. If only certain values are allowed for an option, these are listed after ---. The option in square brackets
is the default value, i.e., the one that is used if this option is omitted in the file.

Destination directory where all output will be written
Includes log files and performance stats.
output_dir: ~/esmvaltool_output

Auxiliary data directory
Used by some recipes to look for additional datasets.
auxiliary_data_dir: ~/auxiliary_data

Automatic data download from ESGF --- [never]/when_missing/always
Use automatic download of missing CMIP3, CMIP5, CMIP6, CORDEX, and obs4MIPs

(continues on next page)

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

data from ESGF. “‘never' disables this feature, which is useful if you are
working on a computer without an internet connection, or if you have limited
disk space. “‘when_missing " enables the automatic download for files that
are not available locally. “always™ will always check ESGF for the latest
version of a file, and will only use local files if they correspond to that
latest version.

search_esgf: never

HOoR R R R W

Directory for storing downloaded climate data

Make sure to use a directory where you can store multiple GBs of data. Your
home directory on a HPC is usually not suited for this purpose, so please

change the default value in this case!

download_dir: ~/climate_data

Rootpaths to the data from different projects

This default setting will work if files have been downloaded by ESMValTool
via “'search_esgf . Lists are also possible. For site-specific entries,
see the default “‘config-user.yml file that can be installed with the
command “‘esmvaltool config get_config user' . For each project, this can
be either a single path or a list of paths. Comment out these when using a
site-specific path.

rootpath:

default: ~/climate_data

o R W W W R

Directory structure for input data --- [default]/ESGF/BADC/DKRZ/ETHZ/etc.
This default setting will work if files have been downloaded by ESMValTool
via “'search_esgf . See “‘config-developer.yml' for definitions. Comment

out/replace as per needed.

drs:
CMIP3: ESGF
CMIP5: ESGF
CMIP6: ESGF
CORDEX: ESGF

obs4MIPs: ESGF

Run at most this many tasks in parallel --- [null]/1/2/3/4/...

Set to “null” to use the number of available CPUs. If you run out of
memory, try setting max_parallel_tasks to "1 and check the amount of
memory you need for that by inspecting the file “‘run/resource_usage.txt™ in
the output directory. Using the number there you can increase the number of
parallel tasks again to a reasonable number for the amount of memory

available in your system.

max_parallel_tasks: null

H R R R

Log level of the console --- debug/[info]/warning/error
For much more information printed to screen set log_level to “‘debug .
log_level: info

Exit on warning --- true/[false]
Only used in NCL diagnostic scripts.

exit_on_warning: false

(continues on next page)

8 Chapter 2. Configuration files

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

Plot file format --- [png]/pdf/ps/eps/epsi
output_file_type: png

Remove the “‘preproc™ directory if the run was successful --- [true]/false

By default this option is set to “‘true'’, so all preprocessor output files

will be removed after a successful run. Set to “‘false™ if you need those files.
remove_preproc_dir: true

Use netCDF compression --- true/[false]
compress_netcdf: false

Save intermediary cubes in the preprocessor --- true/[false]

Setting this to “‘true” will save the output cube from each preprocessing
step. These files are numbered according to the preprocessing order.
save_intermediary_cubes: false

Use a profiling tool for the diagnostic run --- [false]/true

A profiler tells you which functions in your code take most time to run.
For this purpose we use “‘vprof ', see below for notes. Only available for
Python diagnostics.

profile_diagnostic: false

Path to custom ‘‘config-developer.yml™ file

This can be used to customise project configurations. See

“config-developer.yml for an example. Set to “"null™” to use the default.
config_developer_file: null

The search_esgf setting can be used to disable or enable automatic downloads from ESGF. If search_esgf is set
to never, the tool does not download any data from the ESGF. If search_esgf is set to when_missing, the tool will
download any CMIP3, CMIP5, CMIP6, CORDEX, and obs4MIPs data that is required to run a recipe but not available
locally and store it in download_dir using the ESGF directory structure defined in the Developer configuration file.
If search_esgf is set to always, the tool will first check the ESGF for the needed data, regardless of any local data
availability; if the data found on ESGF is newer than the local data (if any) or the user specifies a version of the data
that is available only from the ESGF, then that data will be downloaded; otherwise, local data will be used.

The auxiliary_data_dir setting is the path to place any required additional auxiliary data files. This is necessary
because certain Python toolkits, such as cartopy, will attempt to download data files at run time, typically geographic
data files such as coastlines or land surface maps. This can fail if the machine does not have access to the wider internet.
This location allows the user to specify where to find such files if they can not be downloaded at runtime. The example
user configuration file already contains two valid locations for auxiliary_data_dir directories on CEDA-JASMIN
and DKRZ, and a number of such maps and shapefiles (used by current diagnostics) are already there. You will need
esmeval group workspace membership to access the JASMIN one (see instructions how to gain access to the group
workspace.

Warning: This setting is not for model or observational datasets, rather it is for extra data files such as shapefiles
or other data sources needed by the diagnostics.

The profile_diagnostic setting triggers profiling of Python diagnostics, this will tell you which functions in the
diagnostic took most time to run. For this purpose we use vprof. For each diagnostic script in the recipe, the profiler
writes a . json file that can be used to plot a flame graph of the profiling information by running

2.2. User configuration file 9

https://help.jasmin.ac.uk/article/199-introduction-to-group-workspaces
https://github.com/nvdv/vprof
https://queue.acm.org/detail.cfm?id=2927301

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

vprof --input-file esmvaltool_output/recipe_output/run/diagnostic/script/profile. json

Note that it is also possible to use vprof to understand other resources used while running the diagnostic, including
execution time of different code blocks and memory usage.

A detailed explanation of the data finding-related sections of the config-user.yml (rootpath and drs) is presented
in the Data retrieval section. This section relates directly to the data finding capabilities of ESMValTool and are very
important to be understood by the user.

Note: You can choose your config-user.yml file at run time, so you could have several of them available with
different purposes. One for a formalised run, another for debugging, etc. You can even provide any config user value
as a run flag --argument_name argument_value

2.3 Dask distributed configuration

The preprocessor functions and many of the Python diagnostics in ESMValTool make use of the Iris library to work
with the data. In Iris, data can be either real or lazy. Lazy data is represented by dask arrays. Dask arrays consist of
many small numpy arrays (called chunks) and if possible, computations are run on those small arrays in parallel. In
order to figure out what needs to be computed when, Dask makes use of a ‘scheduler’. The default scheduler in Dask
is rather basic, so it can only run on a single computer and it may not always find the optimal task scheduling solution,
resulting in excessive memory use when using e.g. the esmvalcore.preprocessor.multi_model_statistics()
preprocessor function. Therefore it is recommended that you take a moment to configure the Dask distributed scheduler.
A Dask scheduler and the ‘workers’ running the actual computations, are collectively called a ‘Dask cluster’.

In ESMValCore, the Dask cluster can configured by creating a file called ~/.esmvaltool/dask.yml, where ~ is
short for your home directory. In this file, under the client keyword, the arguments to distributed.Client can be
provided. Under the cluster keyword, the type of cluster (e.g. distributed.LocalCluster), as well as any argu-
ments required to start the cluster can be provided. Extensive documentation on setting up Dask Clusters is available
here.

Warning: The format of the ~/.esmvaltool/dask.yml configuration file is not yet fixed and may change in the
next release of ESMValCore.

Note: If not all preprocessor functions support lazy data, computational performance may be best with the default
scheduler. See issue #674 for progress on making all preprocessor functions lazy.

Example configurations
Personal computer

Create a Dask distributed cluster on the computer running ESMValCore using all available resources:

cluster:
type: distributed.LocalCluster

this should work well for most personal computers.

Note: Note that, if running this configuration on a shared node of an HPC cluster, Dask will try and use as many

10 Chapter 2. Configuration files

https://docs.esmvaltool.org/en/latest/recipes/index.html#recipes
https://scitools-iris.readthedocs.io/en/latest/index.html#iris-docs
https://scitools-iris.readthedocs.io/en/latest/userguide/real_and_lazy_data.html#real-and-lazy-data
https://docs.dask.org/en/stable/array.html
https://numpy.org/doc/stable/user/absolute_beginners.html#what-is-an-array
https://docs.dask.org/en/stable/scheduling.html
https://distributed.dask.org
https://distributed.dask.org/en/stable/api.html#distributed.Client
https://distributed.dask.org/en/stable/api.html#distributed.LocalCluster
https://docs.dask.org/en/latest/deploying.html
https://github.com/ESMValGroup/ESMValCore/issues/674

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

resources it can find available, and this may lead to overcrowding the node by a single user (you)!

Shared computer

Create a Dask distributed cluster on the computer running ESMValCore, with 2 workers with 4 threads/4 GiB of
memory each (8 GiB in total):

cluster:
type: distributed.LocalCluster
n_workers: 2
threads_per_worker: 4
memory_limit: 4 GiB

this should work well for shared computers.
Computer cluster

Create a Dask distributed cluster on the Levante supercomputer using the Dask-Jobqueue package:

cluster:
type: dask_jobqueue.SLURMCluster
queue: shared
account: bk1088
cores: 8
memory: 7680MiB
processes: 2
interface: ib0®
local_directory: "/scratch/b/b381141/dask-tmp"
n_workers: 24

This will start 24 workers with cores / processes = 4 threads each, resulting in n_workers / processes =
12 Slurm jobs, where each Slurm job will request 8 CPU cores and 7680 MiB of memory and start processes
2 workers. This example will use the fast infiniband network connection (called ib® on Levante) for communication
between workers running on different nodes. It is important to set the right location for temporary storage, in this
case the /scratch space is used. It is also possible to use environmental variables to configure the temporary storage
location, if you cluster provides these.

A configuration like this should work well for larger computations where it is advantageous to use multiple nodes in a
compute cluster. See Deploying Dask Clusters on High Performance Computers for more information.

Externally managed Dask cluster

Use an externally managed cluster, e.g. a cluster that you started using the Dask Jupyterlab extension:

client:
address: '127.0.0.1:8786"

See here for an example of how to configure this on a remote system.

For debugging purposes, it can be useful to start the cluster outside of ESMValCore because then Dask dashboard
remains available after ESMValCore has finished running.

Advice on choosing performant configurations

The threads within a single worker can access the same memory locations, so they may freely pass around chunks, while
communicating a chunk between workers is done by copying it, so this is (a bit) slower. Therefore it is beneficial for
performance to have multiple threads per worker. However, due to limitations in the CPython implementation (known
as the Global Interpreter Lock or GIL), only a single thread in a worker can execute Python code (this limitation does

2.3. Dask distributed configuration 11

https://docs.dkrz.de/doc/levante/running-jobs/index.html
https://jobqueue.dask.org/en/latest/
https://docs.dask.org/en/latest/deploying-hpc.html#local-storage
https://docs.dask.org/en/latest/deploying-hpc.html
https://github.com/dask/dask-labextension#dask-jupyterlab-extension
https://jobqueue.dask.org/en/latest/interactive.html
https://docs.dask.org/en/stable/dashboard.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

not apply to compiled code called by Python code, e.g. numpy), therefore the best performing configurations will
typically not use much more than 10 threads per worker.

Due to limitations of the NetCDF library (it is not thread-safe), only one of the threads in a worker can read or write
to a NetCDF file at a time. Therefore, it may be beneficial to use fewer threads per worker if the computation is very
simple and the runtime is determined by the speed with which the data can be read from and/or written to disk.

2.4 ESGF configuration

The esmvaltool run command can automatically download the files required to run a recipe from ESGF
for the projects CMIP3, CMIPS, CMIP6, CORDEX, and obs4MIPs. The downloaded files will be stored in
the download_dir specified in the User configuration file. To enable automatic downloads from ESGF, set
search_esgf: when_missing or search_esgf: always inthe User configuration file, or provide the correspond-
ing command line arguments --search_esgf=when_missing or --search_esgf=always when running the recipe.

Note: When running a recipe that uses many or large datasets on a machine that does not have any data available
locally, the amount of data that will be downloaded can be in the range of a few hundred gigabyte to a few terrabyte.
See Obtaining input data for advice on getting access to machines with large datasets already available.

A log message will be displayed with the total amount of data that will be downloaded before starting the download.
If you see that this is more than you would like to download, stop the tool by pressing the Ctrl and C keys on your
keyboard simultaneously several times, edit the recipe so it contains fewer datasets and try again.

For downloading some files (e.g. those produced by the CORDEX project), you need to log in to be able to download
the data.

See the ESGF user guide for instructions on how to create an ESGF OpenlID account if you do not have one yet. Note
that the OpenlD account consists of 3 components instead of the usual two, in addition a username and password you
also need the hostname of the provider of the ID; for example esgf-data.dkrz.de. Even though the account is issued by
a particular host, the same OpenlD account can be used to download data from all hosts in the ESGF.

Next, configure your system so the esmvaltool can use your credentials. This can be done using the keyring package
or they can be stored in a configuration file.

2.4.1 Storing credentials in keyring

First install the keyring package. Note that this requires a supported backend that may not be available on compute
clusters, see the keyring documentation for more information.

pip install keyring

Next, set your username and password by running the commands:

keyring set ESGF hostname
keyring set ESGF username
keyring set ESGF password

for example, if you created an account on the host esgf-data.dkrz.de with username ‘cookiemonster’ and password
‘Welcome01’, run the command

keyring set ESGF hostname

this will display the text

12 Chapter 2. Configuration files

https://docs.esmvaltool.org/en/latest/input.html#inputdata
https://esgf.github.io/esgf-user-support/user_guide.html
https://esgf-data.dkrz.de/user/add/?next=http://esgf-data.dkrz.de/projects/esgf-dkrz/
https://pypi.org/project/keyring
https://esgf-data.dkrz.de/user/add/?next=http://esgf-data.dkrz.de/projects/esgf-dkrz/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Password for 'hostname' in 'ESGF':

type esgf-data.dkrz.de (the characters will not be shown) and press Enter. Repeat the same procedure with
keyring set ESGF username, type cookiemonster and press Enter and keyring set ESGF password, type
WelcomeO®1 and press Enter.

To check that you entered your credentials correctly, run:

keyring get ESGF hostname
keyring get ESGF username
keyring get ESGF password

2.4.2 Configuration file

An optional configuration file can be created for configuring how the tool uses esgf-pyclient to find and download data.
The name of this file is ~/.esmvaltool/esgf-pyclient.yml.

Logon

In the logon section you can provide arguments that will be passed on to pyesgf.logon.LogonManager.logon().
For example, you can store the hostname, username, and password or your OpenlID account in the file like this:

logon:
hostname: "your-hostname"
username: "your-username'
password: "your-password"

for example

logon:
hostname: "esgf-data.dkrz.de"
username: "cookiemonster"
password: "Welcome®1"

if you created an account on the host esgf-data.dkrz.de with username ‘cookiemonster’ and password “WelcomeO1’.
Alternatively, you can configure an interactive log in:

logon:
interactive: true

Note that storing your password in plain text in the configuration file is less secure. On shared systems, make sure the
permissions of the file are set so only you and administrators can read it, i.e.

ls -1 ~/.esmvaltool/esgf-pyclient.yml

shows permissions -rw------- .

2.4. ESGF configuration 13

https://esgf-pyclient.readthedocs.io
https://esgf-pyclient.readthedocs.io/en/latest/api.html#pyesgf.logon.LogonManager.logon
https://esgf-data.dkrz.de/user/add/?next=http://esgf-data.dkrz.de/projects/esgf-dkrz/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Search

Any arguments to pyesgf.search.connection.SearchConnection can be provided in the section
search_connection, for example:

search_connection:
expire_after: 2592000 # the number of seconds in a month

to keep cached search results for a month.

The default settings are:

urls:

- 'https://esgf.ceda.ac.uk/esg-search’
'https://esgf-node.llnl.gov/esg-search’
- 'https://esgf-data.dkrz.de/esg-search’
- 'https://esgf-node.ipsl.upmc.fr/esg-search'’
- 'https://esg-dnl.nsc.liu.se/esg-search’
- 'https://esgf.nci.org.au/esg-search’
- 'https://esgf.nccs.nasa.gov/esg-search'’
'https://esgdata.gfdl.noaa.gov/esg-search'
distrib: true
timeout: 120 # seconds
cache: '~/.esmvaltool/cache/pyesgf-search-results’
expire_after: 86400 # cache expires after 1 day

Note that by default the tool will try the ESGF index nodes in the order provided in the configuration file and use the
first one that is online. Some ESGF index nodes may return search results faster than others, so you may be able to
speed up the search for files by experimenting with placing different index nodes at the top of the list.

If you experience errors while searching, it sometimes helps to delete the cached results.

2.4.3 Download statistics

The tool will maintain statistics of how fast data can be downloaded from what host in the file ~/.esmvaltool/cache/esgf-
hosts.yml and automatically select hosts that are faster. There is no need to manually edit this file, though it can be
useful to delete it if you move your computer to a location that is very different from the place where you previously
downloaded data. An entry in the file might look like this:

esgf2.dkrz.de:
duration (s): 8
error: false
size (bytes): 69067460
speed (MB/s): 7.9

The tool only uses the duration and size to determine the download speed, the speed shown in the file is not used. If
error is set to true, the most recent download request to that host failed and the tool will automatically try this host
only as a last resort.

14 Chapter 2. Configuration files

https://esgf-pyclient.readthedocs.io/en/latest/api.html#pyesgf.search.connection.SearchConnection
https://esgf.llnl.gov/nodes.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

2.5 Developer configuration file

Most users and diagnostic developers will not need to change this file, but it may be useful to understand its content.
It will be installed along with ESMValCore and can also be viewed on GitHub: esmvalcore/config-developer.yml.
This configuration file describes the file system structure and CMOR tables for several key projects (CMIP6, CMIPS5,
obs4MIPs, OBS6, OBS) on several key machines (e.g. BADC, CP4CDS, DKRZ, ETHZ, SMHI, BSC), and for native
output data for some models (ICON, IPSL, ... see Configuring datasets in native format). CMIP data is stored as part
of the Earth System Grid Federation (ESGF) and the standards for file naming and paths to files are set out by CMOR
and DRS. For a detailed description of these standards and their adoption in ESMValCore, we refer the user to CMIP
data section where we relate these standards to the data retrieval mechanism of the ESMValCore.

By default, esmvaltool looks for it in the home directory, inside the ‘.esmvaltool’ folder.

Users can get a copy of this file with default values by running

esmvaltool config get-config-developer --path=${TARGET_FOLDER

If the option --path is omitted, the file will be created in ~ ${HOME}/.esmvaltool.

Note: Remember to change your config-user file if you want to use a custom config-developer.

Example of the CMIP6 project configuration:

CMIP6:
input_dir:
default: '/’
BADC: '{activity}/{institute}/{dataset}/{exp}/{ensemble}/{mip}/{short_name}/{grid}/
—{version}'
DKRZ: '{activity}/{institute}/{dataset}/{exp}/{ensemble}/{mip}/{short_name}/{grid}/
—{version}'
ETHZ: '{exp}/{mip}/{short_name}/{dataset}/{ensemble}/{grid}/'
input_file: '{short_name}_{mip}_{dataset}_{exp}_{ensemble}_{grid}*.nc'
output_file: '{project}_{dataset}_{mip}_{exp}_{ensemble}_{short_name}'
cmor_type: 'CMIP6'
cmor_strict: true

2.5.1 Input file paths

When looking for input files, the esmvaltool command provided by ESMValCore replaces the placeholders {item}
in input_dir and input_file with the values supplied in the recipe. ESMValCore will try to automatically fill in
the values for institute, frequency, and modeling_realm based on the information provided in the CMOR tables and/or
extra_facets when reading the recipe. If this fails for some reason, these values can be provided in the recipe too.

The data directory structure of the CMIP projects is set up differently at each site. As an example, the CMIP6 directory
path on BADC would be:

'{activity}/{institute}/{dataset}/{exp}/{ensemble}/{mip}/{short_name}/{grid}/{version}’

The resulting directory path would look something like this:

CMIP/MOHC/HadGEM3-GC31-LL/historical/r1ilp1£3/0Omon/tos/gn/latest

Please, bear in mind that input_dirs can also be a list for those cases in which may be needed:

2.5. Developer configuration file 15

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/config-developer.yml

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

- '"{exp}/{ensemble}/original/{mip}/{short_name}/{grid}/{version}’
- '"{exp}/{ensemble}/computed/{mip}/{short_name}/{grid}/{version}’'

In that case, the resultant directories will be:

historical/rlilplf3/original/Omon/tos/gn/latest
historical/r1ilplf3/computed/Omon/tos/gn/latest

For a more in-depth description of how to configure ESMValCore so it can find your data please see CMIP data.

2.5.2 Preprocessor output files

The filename to use for preprocessed data is configured in a similar manner using output_file. Note that the extension
.nc (and if applicable, a start and end time) will automatically be appended to the filename.

2.5.3 Project CMOR table configuration

ESMValCore comes bundled with several CMOR tables, which are stored in the directory esmvalcore/cmor/tables.
These are copies of the tables available from PCMDI.

For every project that can be used in the recipe, there are four settings related to CMOR table settings available:

e cmor_type: can be CMIPS5 if the CMOR table is in the same format as the CMIP5 table or CMIPG6 if the table is
in the same format as the CMIP6 table.

e cmor_strict: if this is set to false, the CMOR table will be extended with variables from the Custom CMOR
tables (by default loaded from the esmvalcore/cmor/tables/custom directory) and it is possible to use vari-
ables with a mip which is different from the MIP table in which they are defined.

» cmor_path: path to the CMOR table. Relative paths are with respect to esmvalcore/cmor/tables. Defaults to the
value provided in cmor_type written in lower case.

e cmor_default_table_prefix: Prefix that needs to be added to the mip to get the name of the file containing
the mip table. Defaults to the value provided in cmor_type.

2.5.4 Custom CMOR tables

As mentioned in the previous section, the CMOR tables of projects that use cmor_strict: false will be extended
with custom CMOR tables. By default, these are loaded from esmvalcore/cmor/tables/custom. However, by using the
special project custom in the config-developer.yml file with the option cmor_path, a custom location for these
custom CMOR tables can be specified:

custom:
cmor_path: ~/my/own/custom_tables

This path can be given as relative path (relative to esmvalcore/cmor/tables) or as absolute path. Other options given for
this special table will be ignored.

Custom tables in this directory need to follow the naming convention CMOR_{short_name}.dat and need to be given
in CMIP5 format.

Example for the file CMOR_asr.dat:

16 Chapter 2. Configuration files

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables
https://github.com/PCMDI
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/custom
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

SOURCE: CMIP5

standard_name:

units: W m-2

cell_methods: time: mean

cell_measures: area: areacella

long_name: Absorbed shortwave radiation

dimensions: longitude latitude time

type: real
positive: down

It is also possible to use a special coordinates file CMOR_coordinates.dat. If this is not present in the custom
directory, the one from the default directory (esmvalcore/cmor/tables/custom/CMOR _coordinates.dat) is used.

2.5.5 Filter preprocessor warnings

It is possible to ignore specific warnings of the preprocessor for a given project. This is particularly useful for native
datasets which do not follow the CMOR standard by default and consequently produce a lot of warnings when handled
by Iris. This can be configured in the config-developer.yml file for some steps of the preprocessing chain.

Currently supported preprocessor steps:
e load()

Here is an example on how to ignore specific warnings during the preprocessor step load for all datasets of project
EMAC (taken from the default config-developer.yml file):

ignore_warnings:

load:
- {message: 'Missing CF-netCDF formula term variable .*, referenced by netCDF._
—variable .*', module: iris}
- {message: 'Ignored formula of unrecognised type: .*', module: iris}

The keyword arguments specified in the list items are directly passed to warnings.filterwarnings() in addition
to action=ignore (may be overwritten in config-developer.yml).

2.5. Developer configuration file 17

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/custom/CMOR_coordinates.dat
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

2.5.6 Configuring datasets in native format

ESMValCore can be configured for handling native model output formats and specific reanalysis/observation datasets
without preliminary reformatting. These datasets can be either hosted under the native6 project (mostly native re-
analysis/observational datasets) or under a dedicated project, e.g., ICON (mostly native models).

Example:

native6:
cmor_strict: false
input_dir:
default: 'Tier{tier}/{dataset}/{version}/{frequency}/{short_name}'
input_file:
default: '*.nc'
output_file: '{project}_{dataset}_{type}_{version}_{mip}_{short_name}'
cmor_type: 'CMIP6'
cmor_default_table_prefix: 'CMIP6_'

ICON:
cmor_strict: false
input_dir:
default:
- '{exp}'
- '"{exp}/outdata’
input_file:
default: '{exp}_{var_type}*.nc'
output_file: '{project}_{dataset}_{exp}_{var_type}_{mip}_{short_name}'
cmor_type: 'CMIPG'
cmor_default_table_prefix: 'CMIP6_'

A detailed description on how to add support for further native datasets is given Zere.

Hint: When using native datasets, it might be helpful to specify a custom location for the Custom CMOR tables. This
allows reading arbitrary variables from native datasets. Note that this requires the option cmor_strict: false in
the project configuration used for the native model output.

2.6 References configuration file

The esmvaltool/config-references.yml file contains the list of ESMValTool diagnostic and recipe authors, references
and projects. Each author, project and reference referred to in the documentation section of a recipe needs to be in this
file in the relevant section.

For instance, the recipe recipe_ocean_example.yml file contains the following documentation section:

documentation:
authors:
- demo_1le

maintainer:
- demo_1le

(continues on next page)

18 Chapter 2. Configuration files

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

references:
- demora2018gmd

projects:
- ukesm

These four items here are named people, references and projects listed in the config-references.yml file.

2.7 Extra Facets

It can be useful to automatically add extra key-value pairs to variables or datasets in the recipe. These key-value pairs
can be used for finding data or for providing extra information to the functions that fix data before passing it on to the
preprocessor.

To support this, we provide the extra facets facilities. Facets are the key-value pairs described in Recipe section:
datasets. Extra facets allows for the addition of more details per project, dataset, mip table, and variable name.

More precisely, one can provide this information in an extra yaml file, named {project}-something.yml, where {project}
corresponds to the project as used by ESMValTool in Recipe section: datasets and “something” is arbitrary.

2.7.1 Format of the extra facets files

The extra facets are given in a yaml file, whose file name identifies the project. Inside the file there is a hierarchy of
nested dictionaries with the following levels. At the top there is the dataset facet, followed by the mip table, and finally
the short_name. The leaf dictionary placed here gives the extra facets that will be made available to data finder and the
fix infrastructure. The following example illustrates the concept.

Listing 1: Extra facet example file native6-era5.yml

ERAS:
Amon:
tas: {source_var_name: "t2m", cds_var_name: "2m_temperature"}

The three levels of keys in this mapping can contain Unix shell-style wildcards. The special characters used in shell-style
wildcards are:

Pattern Meaning

*

matches everything

? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

where seq can either be a sequence of characters or just a bunch of characters, for example [A-C] matches the characters
A, B, and C, while [AC] matches the characters A and C.

For example, this is used to automatically add product: outputl to any variable of any CMIP5 dataset that does not
have a product key yet:

2.7. Extra Facets 19

https://en.wikipedia.org/wiki/Glob_(programming)#Syntax

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Listing 2: Extra facet example file cmip5-product.yml

'*': {product: outputl}

2.7.2 Location of the extra facets files

Extra facets files can be placed in several different places. When we use them to support a particular use-case within the
ESM ValTool project, they will be provided in the sub-folder extra_facets inside the package esmvalcore.config. If
they are used from the user side, they can be either placed in ~/.esmvaltool/extra_facets or in any other directory of the
users choosing. In that case this directory must be added to the config-user.yml file under the extra_facets_dir setting,
which can take a single directory or a list of directories.

The order in which the directories are searched is
1. The internal directory esmvalcore.config/extra_facets
2. The default user directory ~/.esmvaltool/extra_facets
3. The custom user directories in the order in which they are given in config-user.yml.
The extra facets files within each of these directories are processed in lexicographical order according to their file name.

In all cases it is allowed to supersede information from earlier files in later files. This makes it possible for the user to
effectively override even internal default facets, for example to deal with local particularities in the data handling.

2.7.3 Use of extra facets

For extra facets to be useful, the information that they provide must be applied. There are fundamentally two places
where this comes into play. One is the datafinder, the other are fixes.

20 Chapter 2. Configuration files

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/config/extra_facets/cmip5-product.yml

CHAPTER
THREE

INPUT DATA

3.1 Overview

Data discovery and retrieval is the first step in any evaluation process; ESMValTool uses a semi-automated data finding
mechanism with inputs from both the user configuration file and the recipe file: this means that the user will have to
provide the tool with a set of parameters related to the data needed and once these parameters have been provided, the
tool will automatically find the right data. We will detail below the data finding and retrieval process and the input the
user needs to specify, giving examples on how to use the data finding routine under different scenarios.

3.2 Data types

3.2.1 CMIP data

CMIP data is widely available via the Earth System Grid Federation (ESGF) and is accessible to users either via
automatic download by esmvaltool or through the ESGF data nodes hosted by large computing facilities (like CEDA-
Jasmin, DKRZ, etc). This data adheres to, among other standards, the DRS and Controlled Vocabulary standard for
naming files and structured paths; the DRS ensures that files and paths to them are named according to a standardized
convention. Examples of this convention, also used by ESMValTool for file discovery and data retrieval, include:

e CMIP6file: {variable_short_name}_{mip}_{dataset_name}_{experiment}_{ensemble}_{grid}_{start-date}-{e
nc

e CMIP5file: {variable_short_name}_{mip}_{dataset_name}_{experiment}_{ensemble}_{start-date}-{end-date
nc

e OBSfile: {project}_{dataset_name}_{type}_{version}_{mip}_{short_name}_{start-date}-{end-date}.
nc

Similar standards exist for the standard paths (input directories); for the ESGF data nodes, these paths differ slightly,
for example:

e CMIP6 path for BADC: ROOT-BADC/{institute}/{dataset_name}/{experiment}/{ensemble}/
{mip}/ {variable_short_name}/{grid};

e CMIP6 path for ETHZ: ROOT-ETHZ/{experiment}/{mip}/{variable_short_name}/{dataset_name}/
{ensemble}/{grid}

From the ESMValTool user perspective the number of data input parameters is optimized to allow for ease of use. We
detail this procedure in the next section.

21

https://esgf.llnl.gov/
https://www.ecmwf.int/sites/default/files/elibrary/2014/13713-data-reference-syntax-governing-standards-within-climate-research-data-archived-esgf.pdf

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

3.2.2 Observational data

Part of observational data is retrieved in the same manner as CMIP data, for example using the OBS root path set to:

OBS: /gws/nopw/j04/esmeval/obsdata-v2

and the dataset:

- {dataset: ERA-Interim, project: OBS6, type: reanaly, version: 1, start_year:.
2014, end_year: 2015, tier: 3}

in recipe.yml in datasets or additional_datasets, the rules set in CMOR-DRS are used again and the file will
be automatically found:

/gws/nopw/j04/esmeval /obsdata-v2/Tier3/ERA-Interim/OBS_ERA-Interim_reanaly_1_Amon_ta_
—201401-201412.nc

Since observational data are organized in Tiers depending on their level of public availability, the default directory
must be structured accordingly with sub-directories TierX (Tierl, Tier2 or Tier3), even when drs: default.

3.2.3 Datasets in native format

Some datasets are supported in their native format (i.e., the data is not formatted according to a CMIP data request)
through the native6 project (mostly native reanalysis/observational datasets) or through a dedicated project, e.g., ICON
(mostly native models). A detailed description of how to include new native datasets is given here.

Hint: When using native datasets, it might be helpful to specify a custom location for the Custom CMOR tables. This
allows reading arbitrary variables from native datasets. Note that this requires the option cmor_strict: false in
the project configuration used for the native model output.

Supported native reanalysis/observational datasets

The following native reanalysis/observational datasets are supported under the native6 project. To use these datasets,
put the files containing the data in the directory that you have configured for the native6 project in your User configu-
ration file, in a subdirectory called Tier{tier}/{dataset}/{version}/{frequency}/{short_name}. Replace
the items in curly braces by the values used in the variable/dataset definition in the recipe. Below is a list of native
reanalysis/observational datasets currently supported.

ERA5

* Supported variables: c1, clt, evspsbl, evspsblpot, mrro, pr, prsn, ps, psl, ptype, rls, rlds, rsds,
rsdt, rss, uas, vas, tas, tasmax, tasmin, tdps, ts, tsn (Elhr/Amon), orog (£x)

e Tier: 3

22 Chapter 3. Input data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

MSWEP

 Supported variables: pr
 Supported frequencies: mon, day, 3hr.
* Tier: 3

For example for monthly data, place the files in the /Tier3/MSWEP/version/mon/pr subdirectory of your native6
project location.

Note: For monthly data (V220), the data must be postfixed with the date, i.e. rename global_monthly_050deg.nc
to global_monthly_050deg_197901-201710.nc

For more info: http://www.gloh20.0rg/

Data for the version V220 can be downloaded from: https://hydrology.princeton.edu/data/hylkeb/MSWEP_V220/.

Supported native models

The following models are natively supported by ESMValCore. In contrast to the native observational datasets listed
above, they use dedicated projects instead of the project native6.

CESM

ESMValTool is able to read native CESM model output.

Warning: The support for native CESM output is still experimental. Currently, only one variable (zas) is fully
supported. Other 2D variables might be supported by specifying appropriate facets in the recipe or extra facets files
(see text below). 3D variables (data that uses a vertical dimension) are not supported, yet.

The default naming conventions for input directories and files for CESM are
¢ input directories: 3 different types supported:
— / (run directory)
— {case}/{gcomp}/hist (short-term archiving)
— {case}/{gcomp}/proc/{tdir}/{tperiod} (post-processed data)
* input files: {case}.{scomp}.{type}.{string}*nc

as configured in the config-developer file (using the default DRS drs: default in the User configuration file). More
information about CESM naming conventions are given here.

Note: The {string} entry in the input file names above does not only correspond to the (optional) $string entry for
CESM model output files, but can also be used to read post-processed files. In the latter case, {string} corresponds
to the combination $SSTRING. $TSTRING.

Thus, example dataset entries could look like this:

3.2. Data types 23

http://www.gloh2o.org/
https://hydrology.princeton.edu/data/hylkeb/MSWEP_V220/
https://www.cesm.ucar.edu/
https://www.cesm.ucar.edu/models/cesm2/naming_conventions.html
https://www.cesm.ucar.edu/models/cesm2/naming_conventions.html#modelOutputFilenames
https://www.cesm.ucar.edu/models/cesm2/naming_conventions.html#ppDataFilenames

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

datasets:

- {project: CESM, dataset: CESM2, case: f.e21.FHIST_BGC.f09_£f09_mgl7.CMIP6-AMIP.001,..
—type: h0O, mip: Amon, short_name: tas, start_year: 2000, end_year: 2014}

- {project: CESM, dataset: CESM2, case: f.e21.F1850_BGC.f09_£f09_mgl7.CFMIP-hadsst-
—piForcing.001, type: hO, gcomp: atm, scomp: cam, mip: Amon, short_name: tas, start_
—year: 2000, end_year: 2014}

Variable-specific defaults for the facet gcomp and scomp are given in the extra facets (see next paragraph) for some
variables, but this can be overwritten in the recipe.

Similar to any other fix, the CESM fix allows the use of extra facets. By default, the file cesm-mappings.yml is used
for that purpose. Currently, this file only contains default facets for a single variable (fas); for other variables, these
entries need to be defined in the recipe. Supported keys for extra facets are:

Key Description Default value if not specified

gcomy Generic component-model name No default (needs to be specified in
extra facets or recipe if default DRS
is used)

raw_r Variable name of the variable in the raw input file CMOR variable name of the corre-
sponding variable

raw_t Units of the variable in the raw input file If specified, the value given by the

units attribute in the raw input file;
otherwise unknown

scomr Specific component-model name No default (needs to be specified in
extra facets or recipe if default DRS
is used)

strir Short string which is used to further identify the history file type '' (empty string)

(corresponds to $string or $SSTRING. $TSTRING in the CESM file
name conventions; see note above)

tdir Entry to distinguish time averages from time series from diagnostic ~'' (empty string)
plot sets (only used for post-processed data)
tperi Time period over which the data was processed (only used for post- '' (empty string)

processed data)

EMAC

ESMValTool is able to read native EMAC model output.
The default naming conventions for input directories and files for EMAC are
* input directories: {exp}/{channel}
* input files: {exp}*{channel}{postproc_£flag}.nc
as configured in the config-developer file (using the default DRS drs: default in the User configuration file).

Thus, example dataset entries could look like this:

datasets:

- {project: EMAC, dataset: EMAC, exp: historical, mip: Amon, short_name: tas, start_
—year: 2000, end_year: 2014}

- {project: EMAC, dataset: EMAC, exp: historical, mip: Omon, short_name: tos, postproc_
—flag: "-p-mm", start_year: 2000, end_year: 2014}

(continues on next page)

24 Chapter 3. Input data

https://www.dlr.de/pa/en/desktopdefault.aspx/tabid-8859/15306_read-37415/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

- {project: EMAC, dataset: EMAC, exp: historical, mip: Amon, short_name: ta, raw_name:.
—tml_p39_cav, start_year: 2000, end_year: 2014}

Please note the duplication of the name EMAC in project and dataset, which is necessary to comply with ESMVal-
Tool’s data finding and CMORizing functionalities. A variable-specific default for the facet channel is given in the
extra facets (see next paragraph) for many variables, but this can be overwritten in the recipe.

Similar to any other fix, the EMAC fix allows the use of extra facets. By default, the file emac-mappings.yml is used
for that purpose. For some variables, extra facets are necessary; otherwise ESMValTool cannot read them properly.
Supported keys for extra facets are:

Key Description Default value if not specified

channel Channel in which the desired vari- No default (needs to be specified in extra facets or recipe if de-
able is stored fault DRS is used)

postproc_£f Postprocessing flag of the data "' (empty string)

raw_name Variable name of the variable in CMOR variable name of the corresponding variable
the raw input file

raw_units Units of the variable in the raw in- If specified, the value given by the units attribute in the raw
put file input file; otherwise unknown

Note: raw_name can be given as str or 1ist. The latter is used to support multiple different variables names in
the input file. In this case, the prioritization is given by the order of the list; if possible, use the first entry, if this is
not present, use the second, etc. This is particularly useful for files in which regular averages (*_ave) or conditional
averages (*_cav) exist.

For 3D variables defined on pressure levels, only the pressure levels defined by the CMOR table (e.g., for Amon’s
ta: tml_p19_cav and tml_pl9_ave) are given in the default extra facets file. If other pressure levels are desired,
e.g., tml_p39_cav, this has to be explicitly specified in the recipe using raw_name: tml_p39_cav or raw_name:
[tml_pl19_cav, tml_p39_cav].

ICON

ESMValTool is able to read native ICON model output.
The default naming conventions for input directories and files for ICON are
* input directories: {exp} or {exp}/outdata
* input files: {exp}_{var_type}*.nc
as configured in the config-developer file (using the default DRS drs: default in the User configuration file).

Thus, example dataset entries could look like this:

datasets:
- {project: ICON, dataset: ICON, exp: icon-2.6.1_atm_amip_R2B5_rlilplfl,
mip: Amon, short_name: tas, start_year: 2000, end_year: 2014}
- {project: ICON, dataset: ICON, exp: historical, mip: Amon,
short_name: ta, var_type: atm_dyn_3d_ml, start_year: 2000,
end_year: 2014}

3.2. Data types 25

https://code.mpimet.mpg.de/projects/iconpublic

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Please note the duplication of the name ICON in project and dataset, which is necessary to comply with ESM-
ValTool’s data finding and CMORizing functionalities. A variable-specific default for the facet var_type is given
in the extra facets (see below) for many variables, but this can be overwritten in the recipe. This is necessary
if your ICON output is structured in one variable per file. For example, if your output is stored in files called
<exp>_<variable_name>_atm_2d_ml_YYYYMMDDThhmmss.nc, use var_type: <variable_name>_atm_2d_ml
in the recipe for this variable.

Usually, ICON reports aggregated values at the end of the corresponding time output intervals. For example, for
monthly output, ICON reports the month February as “1 March”. Thus, by default, ESMValCore shifts all time points
back by 1/2 of the output time interval so that the new time point corresponds to the center of the interval. This can be
disabled by using shift_time: falseintherecipe or the extra facets (see below). For point measurements (identified
by cell_methods = "time: point"), this is always disabled.

Warning: To get all desired time points, do not use start_year and end_year in the recipe, but rather
timerange with at least 8 digits. For example, to get data for the years 2000 and 2001, use timerange:
20000101/20020101 instead of timerange: 2000/2001 or start_year: 2000, end_year: 2001. See Time
ranges for more information on the timerange option.

Usually, ESMValCore will need the corresponding ICON grid file of your simulation to work properly (examples:
setting latitude/longitude coordinates if these are not yet present, UGRIDization [see below], etc.). This grid file can
either be specified as absolute or relative (to auxiliary_data_dir as defined in the User configuration file) path
with the facet horizontal_grid in the recipe or the extra facets (see below), or retrieved automatically from the
grid_file_uri attribute of the input files. In the latter case, the file is downloaded once and then cached. The cached file
is valid for 7 days.

ESMValCore can automatically make native ICON data UGRID-compliant when loading the data. The UGRID con-
ventions provide a standardized format to store data on unstructured grids, which is required by many software packages
or tools to work correctly. An example is the horizontal regridding of native ICON data to a regular grid. While the
built-in unstructured_nearest scheme can handle unstructured grids not in UGRID format, using more complex regrid-
ding algorithms (for example provided by the iris-esmf-regrid package through Generic regridding schemes) requires
the input data in UGRID format. The following code snippet provides a preprocessor that regrids native ICON data to
a 1°x1° grid using ESMF’s first-order conservative regridding algorithm:

preprocessors:
regrid_icon:
regrid:
target_grid: 1x1
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted

This automatic UGRIDization is enabled by default, but can be switched off with the facet ugrid: false in the recipe
or the extra facets (see below). This is useful for diagnostics that do not support input data in UGRID format (yet) like
the Psyplot diagnostic or if you want to use the built-in unstructured_nearest scheme regridding scheme.

For 3D ICON variables, ESMValCore tries to add the pressure level information (from the variables pfull and phalf)
and/or altitude information (from the variables zg and zghalf) to the preprocessed output files. If neither of these
variables are available in the input files, it is possible to specify the location of files that include the corresponding zg
or zghalf variables with the facets zg_file and/or zghalf_file in the recipe or the extra facets. The paths to these
files can be specified absolute or relative (to auxiliary_data_dir as defined in the User configuration file).

Hint: To use the extract_Ilevels () preprocessor on native ICON data, you need to specify the name of the vertical
coordinate (e.g., coordinate: air_pressure) since native [CON output usually provides a 3D air pressure field
instead of a simple 1D vertical coordinate. This also works if your files only contain altitude information (in this

26 Chapter 3. Input data

https://ugrid-conventions.github.io/ugrid-conventions/
https://iris-esmf-regrid.readthedocs.io/en/latest/index.html
https://earthsystemmodeling.org/regrid/#regridding-methods
https://docs.esmvaltool.org/en/latest/recipes/recipe_psyplot.html#recipes-psyplot-diag

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

case, the US standard atmosphere is used to convert between altitude and pressure levels; see Vertical interpolation for
details). Example:

preprocessors:
extract_500hPa_level_from_icon:
extract_levels:
levels: 50000
scheme: linear
coordinate: air_pressure

Similar to any other fix, the ICON fix allows the use of extra facets. By default, the file icon-mappings.yml is used
for that purpose. For some variables, extra facets are necessary; otherwise ESMValTool cannot read them properly.
Supported keys for extra facets are:

Key Description Default value if not specified
horizont Absolute or relative (to auxiliary_data_dir definedin If not given, use file attribute
the User configuration file) path to the ICON grid file grid_file_uri to retrieve ICON
grid file
latitude Standard name of the latitude coordinate in the raw input latitude
file
longitud Standard name of the longitude coordinate in the raw input longitude
file
raw_name Variable name of the variable in the raw input file CMOR variable name of the correspond-
ing variable
raw_unit Units of the variable in the raw input file If specified, the value given by the units
attribute in the raw input file; otherwise
unknown
shift_ti Shift time points back by 1/2 of the corresponding output True
time interval
ugrid Automatic UGRIDization of the input data True
var_type Variable type of the variable in the raw input file No default (needs to be specified in extra
facets or recipe if default DRS is used)
zg_file Absolute or relative (to auxiliary_data_dir defined in If possible, use zg variable provided by the
the User configuration file) path to the input file that con- raw input file
tains zg
zghalf_f Absolute or relative (to auxiliary_data_dir defined in If possible, use zghalf variable provided
the User configuration file) path to the input file that con- by the raw input file
tains zghalf
Hint: In order to read cell area files (areacella and areacello), one additional manual step is necessary: Copy

the ICON grid file (you can find a download link in the global attribute grid_file_uri of your ICON data) to your
ICON input directory and change its name in such a way that only the grid file is found when the cell area variables are
required. Make sure that this file is not found when other variables are loaded.

For example, you could use a new var_type, e.g., horizontalgrid for this file. Thus, an ICON grid file located in
2.6.1_atm_amip_R2B5_rlilplf1/2.6.1_atm_amip_R2B5_rlilplfl horizontalgrid.nc can be found using
var_type: horizontalgrid in the recipe (assuming the default naming conventions listed above). Make sure that
no other variable uses this var_type.

If you want to use the area_statistics() preprocessor on regridded ICON data, make sure to not use the cell area
files by using the skip: true syntax in the recipe as described in Supplementary variables (ancillary variables and
cell measures), e.g.,

3.2. Data types 27

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

datasets:
- {project: ICON, dataset: ICON, exp: amip,
supplementary_variables: [{short_name: areacella, skip: true}]}

IPSL-CM6

Both output formats (i.e. the Output and the Analyse / Time series formats) are supported, and should be con-
figured in recipes as e.g.:

datasets:
- {simulation: CM61-LR-hist-03.1950, exp: piControl, out: Analyse, freq: TS_MO,
account: p86caub, status: PROD, dataset: IPSL-ClM6, project: IPSLCl,
root: /thredds/tgcc/store}
- {simulation: CM61-LR-hist-03.1950, exp: historical, out: Output, freq: MO,
account: p86caub, status: PROD, dataset: IPSL-CM6, project: IPSLCHM,
root: /thredds/tgcc/store}

The Output format is an example of a case where variables are grouped in multi-variable files, which name cannot be
computed directly from datasets attributes alone but requires to use an extra_facets file, which principles are explained
in Extra Facets, and which content is available here. These multi-variable files must also undergo some data
selection.

3.3 Data retrieval

Data retrieval in ESMValTool has two main aspects from the user’s point of view:
* data can be found by the tool, subject to availability on disk or ESGF;
* it is the user’s responsibility to set the correct data retrieval parameters;

The first point is self-explanatory: if the user runs the tool on a machine that has access to a data repository or multiple
data repositories, then ESMValTool will look for and find the available data requested by the user. If the files are not
found locally, the tool can search the ESGF and download the missing files, provided that they are available.

The second point underlines the fact that the user has full control over what type and the amount of data is needed for
the analyses. Setting the data retrieval parameters is explained below.

3.3.1 Enabling automatic downloads from the ESGF

To enable automatic downloads from ESGF, set search_esgf: when_missing (use local files whenever possible) or
search_esgf: always (always search ESGF for latest version of files and only use local data if it is the latest version)
in the User configuration file, or provide the corresponding command line arguments --search_esgf=when_missing
or --search_esgf=always when running the recipe. The files will be stored in the download_dir set in the User
configuration file.

28 Chapter 3. Input data

https://esgf.llnl.gov/
https://esgf.llnl.gov/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

3.3.2 Setting the correct root paths

The first step towards providing ESMValTool the correct set of parameters for data retrieval is setting the root paths to
the data. This is done in the user configuration file config-user.yml. The two sections where the user will set the
paths are rootpath and drs. rootpath contains pointers to CMIP, OBS, default and RAWOBS root paths; drs sets
the type of directory structure the root paths are structured by. It is important to first discuss the drs parameter: as
we’ve seen in the previous section, the DRS as a standard is used for both file naming conventions and for directory
structures.

3.3.3 Synda

If the synda install command is used to download data, it maintains the directory structure as on ESGF. To find data
downloaded by synda, use the SYNDA drs parameter.

drs:
CMIP6: SYNDA
CMIP5: SYNDA

3.3.4 Explaining config-user/drs: CMIP5: or config-user/drs: CMIP6:

Whereas ESMValTool will always use the CMOR standard for file naming (please refer above), by setting the drs
parameter the user tells the tool what type of root paths they need the data from, e.g.:

drs:
CMIP6: BADC

will tell the tool that the user needs data from a repository structured according to the BADC DRS structure, i.e.:

ROOT/{institute}/{dataset_name}/{experiment}/{ensemble}/{mip}/{variable_short_name}/
{grid};
setting the ROOT parameter is explained below. This is a strictly-structured repository tree and if there are any sort of

irregularities (e.g. there is no {mip} directory) the data will not be found! BADC can be replaced with DKRZ or ETHZ
depending on the existing ROOT directory structure. The snippet

drs:
CMIP6: default

is another way to retrieve data from a ROOT directory that has no DRS-like structure; default indicates that the data
lies in a directory that contains all the files without any structure.

Note: When using CMIP6: default or CMIP5: default it is important to remember that all the needed files must
be in the same top-level directory set by default (see below how to set default).

3.3. Data retrieval 29

https://prodiguer.github.io/synda/sdt/user_guide.html#synda-install

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

3.3.5 Explaining config-user/rootpath:

rootpath identifies the root directory for different data types (ROOT as we used it above):

e CMIP e.g. CMIP5 or CMIP6: this is the root path(s) to where the CMIP files are stored; it can be a single path or

a list of paths; it can point to an ESGF node or it can point to a user private repository. Example for a CMIP5
root path pointing to the ESGF node on CEDA-Jasmin (formerly known as BADC):

CMIP5: /badc/cmip5/data/cmip5/outputl

Example for a CMIP6 root path pointing to the ESGF node on CEDA-Jasmin:

CMIP6: /badc/cmip6/data/CMIP6/CMIP

Example for a mix of CMIP6 root path pointing to the ESGF node on CEDA-Jasmin and a user-specific data
repository for extra data:

CMIP6: [/badc/cmip6/data/CMIP6/CMIP, /home/users/johndoe/cmip_data]

OBS: this is the root path(s) to where the observational datasets are stored; again, this could be a single path or
a list of paths, just like for CMIP data. Example for the OBS path for a large cache of observation datasets on
CEDA-Jasmin:

OBS: /gws/nopw/j04/esmeval/obsdata-v2

default: this is the roor path(s) where the tool will look for data from projects that do not have their own
rootpath set.

RAWOBS: this is the root path(s) to where the raw observational data files are stored; this is used by esmvaltool
data format.

3.3.6 Dataset definitions in recipe

Once the correct paths have been established, ESMValTool collects the information on the specific datasets that are
needed for the analysis. This information, together with the CMOR convention for naming files (see CMOR-DRS) will
allow the tool to search and find the right files. The specific datasets are listed in any recipe, under either the datasets
and/or additional_datasets sections, e.g.

datasets:

- {dataset: HadGEM2-CC, project: CMIP5, exp: historical, ensemble: rlilpl, start_year:.
2001, end_year: 2004}

- {dataset: UKESM1-0-LL, project: CMIP6, exp: historical, ensemble: rlilplf2, grid: gn,
—. start_year: 2004, end_year: 2014}

The data finding feature will use this information to find data for all the variables specified in diagnostics/
variables.

30

Chapter 3. Input data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

3.4 Recap and example

Let us look at a practical example for a recap of the information above: suppose you are using a config-user.yml
that has the following entries for data finding:

rootpath: # running on CEDA-Jasmin
CMIP6: /badc/cmip6/data/CMIP6/CMIP
drs:
CMIP6: BADC # since you are on CEDA-Jasmin

and the dataset you need is specified in your recipe.yml as:

- {dataset: UKESM1-0-LL, project: CMIP6, mip: Amon, exp: historical, grid: gn, ensemble:._
~rlilplf2, start_year: 2004, end_year: 2014}

for a variable, e.g.:

diagnostics:
some_diagnostic:
description: some_description
variables:
ta:
preprocessor: some_preprocessor

The tool will then use the root path /badc/cmip6/data/CMIP6/CMIP and the dataset information and will assemble
the full DRS path using information from CMOR-DRS and establish the path to the files as:

/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL/historical/r1ilp1£2/Amon

then look for variable ta and specifically the latest version of the data file:

/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL/historical/r1ilpl1f2/Amon/ta/gn/latest/

and finally, using the file naming definition from CMOR-DRS find the file:

/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL/historical/rl1ilplf2/Amon/ta/gn/latest/ta_
- Amon_UKESM1-0-LL_historical_rlilplf2_gn_195001-201412.nc

3.5 Data loading

Data loading is done using the data load functionality of iris; we will not go into too much detail about this since we
can point the user to the specific functionality here but we will underline that the initial loading is done by adhering to
the CF Conventions that iris operates by as well (see CF Conventions Document and the search page for CF standard
names).

3.4. Recap and example 31

https://scitools-iris.readthedocs.io/en/latest/userguide/loading_iris_cubes.html
http://cfconventions.org/cf-conventions/cf-conventions.html
http://cfconventions.org/standard-names.html
http://cfconventions.org/standard-names.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

3.6 Data concatenation from multiple sources

Oftentimes data retrieving results in assembling a continuous data stream from multiple files or even, multiple experi-
ments. The internal mechanism through which the assembly is done is via cube concatenation. One peculiarity of iris
concatenation (see iris cube concatenation) is that it doesn’t allow for concatenating time-overlapping cubes; this case
is rather frequent with data from models overlapping in time, and is accounted for by a function that performs a flexible
concatenation between two cubes, depending on the particular setup:

* cubes overlap in time: resulting cube is made up of the overlapping data plus left and right hand sides on each
side of the overlapping data; note that in the case of the cubes coming from different experiments the resulting
concatenated cube will have composite data made up from multiple experiments: assume [cubel: expl, cube2:
exp2] and cubel starts before cube2, and cube? finishes after cubel, then the concatenated cube will be made up
of cube2: exp2 plus the section of cubel: expl that contains data not provided in cube2: exp2;

* cubes don’t overlap in time: data from the two cubes is bolted together;

Note that two cube concatenation is the base operation of an iterative process of reducing multiple cubes from multiple
data segments via cube concatenation ie if there is no time-overlapping data, the cubes concatenation is performed in
one step.

3.7 Use of extra facets in the datafinder

Extra facets are a mechanism to provide additional information for certain kinds of data. The general approach is
described in Extra Facets. Here, we describe how they can be used to locate data files within the datafinder framework.
This is useful to build paths for directory structures and file names that require more information than what is provided
in the recipe. A common application is the location of variables in multi-variable files as often found in climate models’
native output formats.

Another use case is files that use different names for variables in their file name than for the netCDF4 variable name.

To apply the extra facets for this purpose, simply use the corresponding tag in the applicable DRS inside the config-
developer.yml file. For example, given the extra facets in Extra facet example file native6-era5.yml, one might write
the following.

Listing 1: Example drs use in config-developer.yml

native6:
input_file:
default: '{name_in_filename}*.nc

The same replacement mechanism can be employed everywhere where tags can be used, particularly in input_dir and
input_file.

32 Chapter 3. Input data

https://scitools-iris.readthedocs.io/en/latest/userguide/merge_and_concat.html

CHAPTER
FOUR

RUNNING

The ESMValCore package provides the esmvaltool command line tool, which can be used to run a recipe.

To list the available commands, run

esmvaltool --help

It is also possible to get help on specific commands, e.g.

esmvaltool run --help

will display the help message with all options for the run command.

To run a recipe, call esmvaltool run with the path to the desired recipe:

esmvaltool run recipe_example.yml

The esmvaltool run recipe_example.yml command will first look if recipe_example.yml is the path to an
existing file. If this is the case, it will run that recipe. If you have ESMValTool installed, it will look if the name
matches one of the recipes in your ESMValTool installation directory, in the subdirectory recipes and run that.

Note: There is no recipe_example.yml shipped with either ESMValCore or ESMValTool. If you would like
to try out the command above, replace recipe_example.yml with the path to an existing recipe, e.g. exam-
ples/recipe_python.yml if you have the ESMValTool package installed.

To work with installed recipes, the ESMValTool package provides the esmvaltool recipescommand, see Available
diagnostics and metrics.

If the configuration file is not in the default location ~/.esmvaltool/config-user.yml, you can pass its path ex-
plicitly:

esmvaltool run --config_file /path/to/config-user.yml recipe_example.yml

It is also possible to explicitly change values from the config file using flags:

esmvaltool run --argument_name argument_value recipe_example.yml

To automatically download the files required to run a recipe from ESGF, set search_esgf to when_missing (use
local files whenever possible) or always (always search ESGF for latest version of files and only use local data if it is
the latest version) in the User configuration file or run the tool with the corresponding commands

esmvaltool run --search_esgf=when_missing recipe_example.yml

or

33

https://docs.esmvaltool.org/en/latest/quickstart/installation.html#install
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://docs.esmvaltool.org/en/latest/quickstart/running.html#recipes-command
https://docs.esmvaltool.org/en/latest/quickstart/running.html#recipes-command

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

esmvaltool run --search_esgf=always recipe_example.yml

This feature is available for projects that are hosted on the ESGF, i.e. CMIP3, CMIP5, CMIP6, CORDEX, and
0obs4MIPs.

To control the strictness of the CMOR checker, use the flag --check_level:

esmvaltool run --check_level=relaxed recipe_example.yml

Possible values are:
* ignore: all errors will be reported as warnings
* relaxed: only fail if there are critical errors
* default: fail if there are any errors
* strict: fail if there are any warnings

To re-use pre-processed files from a previous run of the same recipe, you can use

esmvaltool run recipe_example.yml --resume_from ~/esmvaltool_output/recipe_python_
—20210930_123907

Multiple directories can be specified for re-use, make sure to quote them:

esmvaltool run recipe_example.yml --resume_from "~/esmvaltool_output/recipe_python_
20210930_101007 ~/esmvaltool_output/recipe_python_20210930_123907"
The first preprocessor directory containing the required data will be used.

This feature can be useful when developing new diagnostics, because it avoids the need to re-run the preprocessor.
Another potential use case is running the preprocessing part of a recipe on one or more machines that have access to a
lot of data and then running the diagnostics on a machine without access to data.

To run only the preprocessor tasks from a recipe, use

esmvaltool run recipe_example.yml --remove_preproc_dir=False --run_diagnostic=False

Note: Only preprocessing rasks that completed successfully can be re-used with the --resume_£from option. Prepro-
cessing tasks that completed successfully, contain a file called metadata.yml in their output directory.

To run a reduced version of the recipe, usually for testing purpose you can use

esmvaltool run --max_datasets=NDATASETS --max_years=NYEARS recipe_example.yml

In this case, the recipe will limit the number of datasets per variable to NDATASETS and the total amount of years
loaded to NYEARS. They can also be used separately. Note that diagnostics may require specific combinations of
available data, so use the above two flags at your own risk and for testing purposes only.

To run a recipe, even if some datasets are not available, use

esmvaltool run --skip_nonexistent=True recipe_example.yml

It is also possible to select only specific diagnostics to be run. To tun only one, just specify its name. To provide more
than one diagnostic to filter use the syntax ‘diagl diag2/scriptl’ or ‘(“‘diagl”, “diag2/scriptl”)’ and pay attention to the
quotes.

34 Chapter 4. Running

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

esmvaltool run --diagnostics=diagnosticl recipe_example.yml

Note: ESMValTool command line interface is created using the Fire python package. This package supports the
creation of completion scripts for the Bash and Fish shells. Go to https://google.github.io/python-fire/using-cli/
#python-fires-flags to learn how to set up them.

35

https://google.github.io/python-fire/using-cli/#python-fires-flags
https://google.github.io/python-fire/using-cli/#python-fires-flags

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

36 Chapter 4. Running

CHAPTER
FIVE

OUTPUT

ESMValTool automatically generates a new output directory with every run. The location is determined by
the output_dir option in the config-user.yml file, the recipe name, and the date and time, using the the format:
YYYYMMDD_HHMMSS.

For instance, a typical output location would be: output_directory/recipe_ocean_amoc_20190118_1027/
This is effectively produced by the combination: output_dir/recipe_name_YYYYMMDD_HHMMSS/
This directory will contain 4 further subdirectories:

1. Diagnostic output (work): A place for any diagnostic script results that are not plots, e.g. files in NetCDF format
(depends on the diagnostics).

2. Plots (plots): The location for all the plots, split by individual diagnostics and fields.

3. Run (run): This directory includes all log files, a copy of the recipe, a summary of the resource usage, and the
settings.yml interface files and temporary files created by the diagnostic scripts.

4. Preprocessed datasets (preproc): This directory contains all the preprocessed netcdfs data and the metadata.yml
interface files. Note that by default this directory will be deleted after each run, because most users will only
need the results from the diagnostic scripts.

A summary of the output is produced in the file: index.html

5.1 Preprocessed datasets

The preprocessed datasets will be stored to the preproc/ directory. Each variable in each diagnostic will have its own
the metadata.yml interface files saved in the preproc directory.

If the option save_intermediary_cubes is set to true in the config-user.yml file, then the intermediary cubes will
also be saved here. This option is set to false in the default config-user.yml file.

If the option remove_preproc_dir is set to true in the config-user.yml file, then the preproc directory will be deleted
after the run completes. This option is set to true in the default config-user.yml file.

37

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

5.2 Run

The log files in the run directory are automatically generated by ESMValTool and create a record of the output messages
produced by ESMValTool and they are saved in the run directory. They can be helpful for debugging or monitoring the
job, but also allow a record of the job output to screen after the job has been completed.

The run directory will also contain a copy of the recipe and the settings.yml file, described below. The run directory is
also where the diagnostics are executed, and may also contain several temporary files while diagnostics are running.

5.3 Diagnostic output

The work/ directory will contain all files that are output at the diagnostic stage. Ie, the model data is preprocessed by
ESM ValTool and stored in the preproc/ directory. These files are opened by the diagnostic script, then some processing
is applied. Once the diagnostic level processing has been applied, the results should be saved to the work directory.

5.4 Plots

The plots directory is where diagnostics save their output figures. These plots are saved in the format requested by the
option output_file_type in the config-user.yml file.

5.5 Settings.yml

The settings.yml file is automatically generated by ESMValTool. Each diagnostic will produce a unique settings.yml
file.

The settings.yml file passes several global level keys to diagnostic scripts. This includes several flags from the config-
user.yml file (such as ‘log_level’), several paths which are specific to the diagnostic being run (such as ‘plot_dir’ and
‘run_dir’) and the location on disk of the metadata.yml file (described below).

input_files:[[...]recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/
—metadata.yml]

log_level: debug

output_file_type: png

plot_dir: [...]recipe_ocean_bgc_20190118_134855/plots/diag_timeseries_scalars/Scalar_
—timeseries

profile_diagnostic: false

recipe: recipe_ocean_bgc.yml

run_dir: [...]recipe_ocean_bgc_20190118_134855/run/diag_timeseries_scalars/Scalar_

. timeseries

script: Scalar_timeseries

version: 2.0al

work_dir: [...]recipe_ocean_bgc_20190118_134855/work/diag_timeseries_scalars/Scalar_
—,timeseries

The first item in the settings file will be a list of Meradata.yml files. There is a metadata.yml file generated for each
field in each diagnostic.

38 Chapter 5. Output

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

5.6 Metadata.yml

The metadata.yml files is automatically generated by ESMValTool. Along with the settings.yml file, it passes all the
paths, boolean flags, and additional arguments that your diagnostic needs to know in order to run.

The metadata is loaded from cfg as a dictionairy object in python diagnostics.
Here is an example metadata.yml file:

?

[...]/recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/CMIP5_
—HadGEM2-ES_Omon_historical_rlilpl _TOOM_mfo_2002-2004.nc

: cmor_table: CMIPS

dataset: HadGEM2-ES

diagnostic: diag_timeseries_scalars

end_year: 2004

ensemble: rlilpl

exp: historical

field: TOOM

filename: [...]recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/
-.CMIP5_HadGEM2-ES_Omon_historical_rlilpl_TOOM_mfo_2002-2004.nc

frequency: mon

institute: [INPE, MOHC]

long_name: Sea Water Transport

mip: Omon

modeling_realm: [ocean]

preprocessor: prep_timeseries_scalar

project: CMIP5S

recipe_dataset_index: 0

short_name: mfo

standard_name: sea_water_transport_across_line

start_year: 2002

units: kg s-1

variable_group: mfo

As you can see, this is effectively a dictionary with several items including data paths, metadata and other information.

There are several tools available in python which are built to read and parse these files. The tools are available in the
shared directory in the diagnostics directory.

5.6. Metadata.yml 39

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

40 Chapter 5. Output

Part 11

Example notebooks

41

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Example notebooks are available in the notebooks folder and can also be viewed here. These notebooks demonstrate
the use of the Python API.

43

https://github.com/ESMValGroup/ESMValCore/tree/main/notebooks

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

44

CHAPTER
SIX

COMPOSING RECIPES

This notebooks shows how to fill the datasets section in a recipe.

[1]: from esmvalcore.config import CFG
from esmvalcore.dataset import Dataset, datasets_to_recipe
import yaml

Configure ESMValCore so it always searches the ESGF for data

[2]: CFG['search_esgf'] = 'always'

Here is a small example recipe, that uses the datasets_to_recipe function to convert a list of datasets to a recipe:

[3]: tas = Dataset(
short_name='tas',
mip="Amon",
project="CMIP6"',
dataset='CanESM5-1",
ensemble="r1lilplfl",
exp="historical',
grid="gn',
timerange="2000/2002",

)

tas['diagnostic'] = 'diagnostic_name'
pr = tas.copy(short_name='pr')

print (yaml.safe_dump(datasets_to_recipe([tas, prl)))

datasets:
- dataset: CanESM5-1
diagnostics:
diagnostic_name:
variables:
pr:
ensemble: rlilplfl
exp: historical
grid: gn
mip: Amon
project: CMIP6
timerange: 2000/2002
tas:

(continues on next page)

45

https://docs.esmvaltool.org/projects/esmvalcore/en/latest/recipe/overview.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

ensemble: rlilplfl
exp: historical
grid: gn

mip: Amon

project: CMIP6
timerange: 2000/2002

A more ambitious recipe might want to use all data that is available on ESGF. We can define a dataset template with a
facet value of * where any value can be used. This can then be expanded to a list of datasets using the from_files()
method.

[4]: dataset_template = Dataset(
short_name="tas',
mip="Amon',
project="CMIP6"',
exp="historical',
dataset=""*",
institute="*",
ensemble="*",
grid="*",

)
datasets = list(dataset_template.from_files())
len(datasets)

[4]: 778

This results in the following recipe:

[5]: for dataset in datasets:
dataset. facets['diagnostic'] = 'diagnostic_name'
print (yaml.safe_dump(datasets_to_recipe(datasets)))

datasets:

- dataset: TaiESM1
ensemble: r(1:2)ilplfl
grid: gn
institute: AS-RCEC

- dataset: AWI-CM-1-1-MR
ensemble: r(1:5)ilplfl
grid: gn
institute: AWI

- dataset: AWI-ESM-1-1-LR
ensemble: rlilplfl
grid: gn
institute: AWI

- dataset: BCC-CSM2-MR
ensemble: r(1:3)ilplfl
grid: gn
institute: BCC

- dataset: BCC-ESM1
ensemble: r(1:3)ilplfl
grid: gn

(continues on next page)

46 Chapter 6. Composing recipes

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

institute: BCC
dataset: CAMS-CSM1-0
ensemble: rlilplf2
grid: gn

institute: CAMS
dataset: CAMS-CSM1-0
ensemble: r(1:2)ilplfl
grid: gn

institute: CAMS
dataset: CAS-ESM2-0
ensemble: r(1:4)ilplfl
grid: gn

institute: CAS
dataset: FGOALS-£f3-L
ensemble: r(1:3)ilplfl
grid: gr

institute: CAS
dataset: FGOALS-g3
ensemble: r(1:6)ilplfl
grid: gn

institute: CAS
dataset: IITM-ESM
ensemble: rlilplfl
grid: gn

institute: CCCR-IITM
dataset: CanESM5-1
ensemble: r(1:20)ilplfl
grid: gn

institute: CCCma
dataset: CanESM5-1
ensemble: r(1:25)ilp2fl
grid: gn

institute: CCCma
dataset: CanESM5-1
ensemble: r22ilplfl
grid: gn

institute: CCCma
dataset: CanESM5-1
ensemble: r(24:39)ilplfl
grid: gn

institute: CCCma
dataset: CanESM5-1
ensemble: r(41:50)ilplfl
grid: gn

institute: CCCma
dataset: CanESM5-CanOE
ensemble: r(1:3)ilp2fl
grid: gn

institute: CCCma
dataset: CanESM5
ensemble: r(1:25)ilplfl
grid: gn

(continued from previous page)

(continues on next page)

47

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

institute: CCCma
- dataset: CanESM5
ensemble: r(1:40)ilp2fl
grid: gn
institute: CCCma
- dataset: CMCC-CM2-HR4
ensemble: rlilplfl
grid: gn
institute: CMCC
- dataset: CMCC-CM2-SR5
ensemble: rlilplfl
grid: gn
institute: CMCC
- dataset: CMCC-CM2-SR5
ensemble: r(2:11)ilp2fl
grid: gn
institute: CMCC
- dataset: CMCC-ESM2
ensemble: rlilplfl
grid: gn
institute: CMCC
- dataset: CNRM-CM6-1-HR
ensemble: rlilplf2
grid: gr
institute: CNRM-CERFACS
- dataset: CNRM-CM6-1
ensemble: r(1:30)ilplf2
grid: gr
institute: CNRM-CERFACS
- dataset: CNRM-ESM2-1
ensemble: r(1:11)ilplf2
grid: gr
institute: CNRM-CERFACS
- dataset: ACCESS-CM2
ensemble: r(1:10)ilplfl
grid: gn
institute: CSIRO-ARCCSS
- dataset: ACCESS-ESM1-5
ensemble: r(1:40)ilplfl
grid: gn
institute: CSIRO
- dataset: E3SM-1-0
ensemble: r(1:5)ilplfl
grid: gr
institute: E3SM-Project
- dataset: E3SM-1-1-ECA
ensemble: rlilplfl
grid: gr
institute: E3SM-Project
- dataset: E3SM-1-1
ensemble: rlilplfl
grid: gr

(continues on next page)

48 Chapter 6. Composing recipes

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

institute: E3SM-Project
dataset: E3SM-2-0

ensemble: r(1:5)ilplfl

grid: gr

institute: E3SM-Project
dataset: EC-Earth3-AerChem
ensemble: rlilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-AerChem
ensemble: r(3:4)ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-CC
ensemble: rlilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-CC
ensemble: r4ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-CC
ensemble: r(6:13)ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-Veg-LR
ensemble: r(1:3)ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-Veg
ensemble: r(1:6)ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-Veg
ensemble: r10ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-Veg
ensemble: r12ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3-Veg
ensemble: r14ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3

ensemble: r(1:7)ilplfl

grid: gr

institute: EC-Earth-Consortium
dataset: EC-Earth3

ensemble: r(9:25)ilplfl

grid: gr

(continued from previous page)

(continues on next page)

49

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

institute: EC-Earth-Consortium

- dataset: EC-Earth3
ensemble: r(101:150)ilplfl
grid: gr
institute: EC-Earth-Consortium

- dataset: FIO-ESM-2-0
ensemble: r(1:3)ilplfl
grid: gn
institute: FIO-QLNM

- dataset: MPI-ESM-1-2-HAM
ensemble: r(1:3)ilplfl
grid: gn
institute: HAMMOZ-Consortium

- dataset: INM-CM4-8
ensemble: rlilplfl
grid: grl
institute: INM

- dataset: INM-CM5-0
ensemble: r(1:10)ilplfl
grid: grl
institute: INM

- dataset: IPSL-CMS5A2-INCA
ensemble: rlilplfl
grid: gr
institute: IPSL

- dataset: IPSL-CM6A-LR-INCA
ensemble: rlilplfl
grid: gr
institute: IPSL

- dataset: IPSL-CM6A-LR
ensemble: r(1:33)ilplfl
grid: gr
institute: IPSL

- dataset: KIOST-ESM
ensemble: rlilplfl
grid: grl
institute: KIOST

- dataset: MIROC-ES2H
ensemble: rlilp(1:3)£f2
grid: gn
institute: MIROC

- dataset: MIROC-ES2H
ensemble: r(1:3)ilp4f2
grid: gn
institute: MIROC

- dataset: MIROC-ES2L
ensemble: r1il000plf2
grid: gn
institute: MIROC

- dataset: MIROC-ES2L
ensemble: r(1:30)ilplf2
grid: gn

(continues on next page)

50 Chapter 6. Composing recipes

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

institute: MIROC
dataset: MIROC6
ensemble: r(1:50)ilplfl
grid: gn

institute: MIROC
dataset: HadGEM3-GC31-LL
ensemble: r(1:5)ilplf3
grid: gn

institute: MOHC
dataset: HadGEM3-GC31-MM
ensemble: r(1:4)ilplf3
grid: gn

institute: MOHC
dataset: UKESM1-0-LL
ensemble: r(1:4)ilplf2
grid: gn

institute: MOHC
dataset: UKESM1-0-LL
ensemble: r(5:7)ilplf3
grid: gn

institute: MOHC
dataset: UKESM1-0-LL
ensemble: r(8:12)ilplf2
grid: gn

institute: MOHC
dataset: UKESM1-0-LL
ensemble: r(16:19)ilplf2
grid: gn

institute: MOHC
dataset: UKESM1-1-LL
ensemble: rlilplf2
grid: gn

institute: MOHC
dataset: ICON-ESM-LR
ensemble: r(1:5)ilplfl
grid: gn

institute: MPI-M
dataset: MPI-ESM1-2-HR
ensemble: r(1:10)ilplfl
grid: gn

institute: MPI-M
dataset: MPI-ESM1-2-LR
ensemble: r1i2000plfl
grid: gn

institute: MPI-M
dataset: MPI-ESM1-2-LR
ensemble: r(1:30)ilplfl
grid: gn

institute: MPI-M
dataset: MRI-ESM2-0
ensemble: rli2plfl
grid: gn

(continued from previous page)

(continues on next page)

51

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

institute: MRI

- dataset: MRI-ESM2-0
ensemble: r1il000plfl
grid: gn
institute: MRI

- dataset: MRI-ESM2-0
ensemble: r(1:10)ilplfl
grid: gn
institute: MRI

- dataset: GISS-E2-1-G-CC
ensemble: rlilplfl
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(1:4)ilp5f1
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(1:5)ilplf3
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(1:10)ilplfl
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(1:10)ilp3fl
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(1:11)ilplf2
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(6:10)ilp5f1
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-G
ensemble: r(101:102)ilplfl
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-H
ensemble: r(1:5)ilplf2
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-H
ensemble: r(1:5)ilp3fl
grid: gn
institute: NASA-GISS

- dataset: GISS-E2-1-H
ensemble: r(1:5)ilp5f1
grid: gn

(continues on next page)

52 Chapter 6. Composing recipes

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

institute: NASA-GISS
dataset: GISS-E2-1-H
ensemble: r(1:10)ilplfl
grid: gn

institute: NASA-GISS
dataset: GISS-E2-2-G
ensemble: r(1:5)ilp3fl
grid: gn

institute: NASA-GISS
dataset: GISS-E2-2-G
ensemble: r(1:6)ilplfl
grid: gn

institute: NASA-GISS
dataset: GISS-E2-2-H
ensemble: r(1:5)ilplfl
grid: gn

institute: NASA-GISS
dataset: CESM2-FV2
ensemble: rli2p2fl
grid: gn

institute: NCAR
dataset: CESM2-FV2
ensemble: r(1:3)ilplfl
grid: gn

institute: NCAR
dataset: CESM2-WACCM-FV2
ensemble: r(1:3)ilplfl
grid: gn

institute: NCAR
dataset: CESM2-WACCM
ensemble: r(1:3)ilplfl
grid: gn

institute: NCAR
dataset: CESM2
ensemble: r(1:11)ilplfl
grid: gn

institute: NCAR
dataset: NorCPM1
ensemble: r(1:30)ilplfl
grid: gn

institute: NCC
dataset: NorESM2-LM
ensemble: r(1:3)ilplfl
grid: gn

institute: NCC
dataset: NorESM2-MM
ensemble: r(1:3)ilplfl
grid: gn

institute: NCC
dataset: KACE-1-0-G
ensemble: r(1:3)ilplfl
grid: gr

(continued from previous page)

(continues on next page)

53

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

institute: NIMS-KMA
- dataset: UKESM1-0-LL
ensemble: r(13:15)ilplf2
grid: gn
institute: NIMS-KMA
- dataset: GFDL-CM4
ensemble: rlilplfl
grid: grl
institute: NOAA-GFDL
- dataset: GFDL-ESM4
ensemble: r(1:3)ilplfl
grid: grl
institute: NOAA-GFDL
- dataset: NESM3
ensemble: r(1:5)ilplfl
grid: gn
institute: NUIST
- dataset: SAMO-UNICON
ensemble: rlilplfl
grid: gn
institute: SNU
- dataset: CIESM
ensemble: r(1:3)ilplfl
grid: gr
institute: THU
- dataset: MCM-UA-1-0
ensemble: rlilplf(1:2)
grid: gn
institute: UA
diagnostics:
diagnostic_name:
variables:
tas:
exp: historical
mip: Amon
project: CMIP6

54 Chapter 6. Composing recipes

[17:

[2]:

[3]:

[4]:

[4]:

CHAPTER
SEVEN

DISCOVERING DATA

This notebook shows how to find out what data is available locally as well as on ESGF. It also shows how to download
the data from ESGF.

from esmvalcore.config import CFG

from esmvalcore.dataset import Dataset, datasets_to_recipe
from esmvalcore.esgf import download

import yaml

Configure ESMValCore so it always searches the ESGF for data

CFG['search_esgf'] = 'always'

We define a dataset template to search for all CMIP6 datasets that provide surface air temperature (tas) on a monthly
resolution for the historical experiment. Note that ESMValCore uses its own names for the facets for a more uniform
naming across different CMIP phases and other projects. The mapping to the facet names used on ESGF can be found
in esmvalcore.esgf.facets. FACETS.

dataset_template = Dataset(
short_name='tas',
mip="Amon"',
project="CMIPG"',
exp="historical',
dataset=""%",
institute="*",
ensemble="*",
grid="*",

Next, we use the Dataset.from_files method to build a list of datasets from the available files. This may take a
while as searching the ESGF for many files is a bit slow. Because the search results are cached for a configurable
duration, subsequent searches will be faster.

datasets = list(dataset_template.from_files())
print(f"Found {len(datasets)} datasets, showing the first 10:")
datasets[:10]

Found 778 datasets, showing the first 10:

[Dataset:

{'dataset': 'TaiESM1',
'project': 'CMIP6',
'mip': 'Amon',

(continues on next page)

55

https://docs.esmvaltool.org/projects/esmvalcore/en/latest/api/esmvalcore.esgf.html#esmvalcore.esgf.facets.FACETS
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/quickstart/configure.html#esgf-configuration
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/quickstart/configure.html#esgf-configuration

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

'short_name': 'tas',

'ensemble': 'rlilplfl',

'exp': 'historical',

'grid': 'gn',

'institute': 'AS-RCEC'},
Dataset:

{'dataset': 'TaiESM1',
'project': 'CMIP6G',

'mip': 'Amon',

'short_name': 'tas',

'ensemble': 'r2ilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'AS-RCEC'},
Dataset:

{'dataset': 'AWI-CM-1-1-MR',
'project': 'CMIP6',

'mip': 'Amon',

'short_name': 'tas',

'ensemble’': 'rlilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'AWI'},
Dataset:

{'dataset': 'AWI-CM-1-1-MR',
'project': 'CMIP6',

'mip': 'Amon',

'short_name': 'tas',

'ensemble': 'r2ilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'AWI'},
Dataset:

{'dataset': 'AWI-CM-1-1-MR',
'project': 'CMIP6G',

'mip': 'Amon',

'short_name': 'tas',

'ensemble': 'r3ilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'AWI'},
Dataset:

{'dataset': 'AWI-CM-1-1-MR',
'project': 'CMIP6',

'mip': 'Amon',

'short_name': 'tas',

'ensemble’': 'r4ilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'AWI'},
Dataset:

{'dataset': 'AWI-CM-1-1-MR',

(continued from previous page)

(continues on next page)

56

Chapter 7. Discovering data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

'project': 'CMIP6',

'mip': 'Amon',

'short_name': 'tas',

'ensemble’': 'r5ilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'AWI'},
Dataset:

{'dataset': 'AWI-ESM-1-1-IR',
'project': 'CMIP6',

'mip': 'Amon',

'short_name': 'tas',

'ensemble': 'rlilplfl',

'exp': 'historical',

'grid': 'gn',

'institute': 'AWI'},
Dataset:

{'dataset': 'BCC-CSM2-MR',
'project': 'CMIP6',

'mip': 'Amon',

'short_name': 'tas',

'ensemble': 'rlilplfl’,

'exp': 'historical',

'grid': 'gn',

'institute': 'BCC'},
Dataset:

{'dataset': 'BCC-CSM2-MR',
'project': 'CMIP6',
'mip': 'Amon',
'short_name': 'tas',
'ensemble’': 'r2ilplfl’,
'exp': 'historical',
'grid': 'gn',
'institute': 'BCC'}]

Let’s look at the first dataset in more detail. We can print the facets describing the dataset:

[5]: dataset = datasets[0]
dataset

[5]: Dataset:

{'dataset': 'TaiESM1',
'project': 'CMIPG',
'mip': 'Amon',
'short_name': 'tas',
'ensemble': 'rlilplfl',
'exp': 'historical',
'grid': 'gn',
'institute': "'AS-RCEC'}

and see what files are available:

[6]: dataset.files

57

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

[6]: [ESGFFile:CMIP6/CMIP/AS-RCEC/TaiESM1/historical/r1ilpl1fl/Amon/tas/gn/v20200623/tas_Amon_
—TaiESM1_historical_rlilplfl _gn_185001-201412.nc on hosts ['esgf-datal.llnl.gov', 'esgf.
—ceda.ac.uk', 'esgf.rcec.sinica.edu.tw', 'esgf3.dkrz.de', 'esgf-data®4.diasjp.net’,
—'esgf.nci.org.au', 'esgf3.dkrz.de']]

A single file can be downloaded using its download method:

[7]: dataset.files[0].download(CFG['download_dir'])
[7]: LocalFile('~/climate_data/CMIP6/CMIP/AS-RCEC/TaiESM1/historical/r1ilpl1fl/Amon/tas/gn/
—v20200623/tas_Amon_TaiESM1_historical_rlilplfl_gn_185001-201412.nc")

For downloading many files, the esmvalcore.esgf.download function is recommended because it will download the files
in parallel. The ESMValCore will try to guess the fastest host and download from there. If it is not available for some
reason, it will automatically fall back to the next host.

[8]: download(dataset.files, CFG['download_dir'])

58 Chapter 7. Discovering data

https://docs.esmvaltool.org/projects/esmvalcore/en/latest/api/esmvalcore.esgf.html#esmvalcore.esgf.download

[1]:

[2]:

[3]:

[3]:

CHAPTER
EIGHT

LOADING, PROCESSING, AND VISUALIZING DATA

This notebook shows how to load a dataset, use the preprocessor functions, and visualize the result. In this notebook
we will plot the annual mean temperature from 1850 till 2100 from one model.

%matplotlib inline

import matplotlib.pyplot as plt
import iris.quickplot

from esmvalcore.config import CFG

from esmvalcore.dataset import Dataset

from esmvalcore.esgf import download, ESGFFile

from esmvalcore.preprocessor import area_statistics, annual_statistics

Configure ESMValCore so it searches the ESGF for data

CFG['search_esgf'] = 'when_missing'

Define the dataset we are going to use. In this case surface air temperature (tas).

tas = Dataset(
short_name="tas"',
mip="Amon",
project="CMIP5"',
dataset="MPI-ESM-MR',
ensemble="rlilpl",
exp="historical',
timerange="1850/2000",

)

tas

Dataset:

{'dataset': 'MPI-ESM-MR',
'project': 'CMIPS',
'mip': 'Amon',
'short_name': 'tas',
'ensemble’': 'rlilpl',
'exp': 'historical',
"timerange': '1850/2000'}

In order to compute the area average later on, we add the cell areas (areacella) as a supplementary dataset. This will
append a new dataset to the list of supplementary datasets. Its facets are copied from the tas dataset and updated with
the provided facets:

59

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

[4]: tas.add_supplementary(short_name='areacella', mip="£fx', ensemble='r0i0p0')
tas.supplementaries

[4]: [Dataset:
{'dataset': '"MPI-ESM-MR',
'project': 'CMIPS',

'mip': 'fx',

'short_name': 'areacella',
'ensemble’': 'r@i®pd',
'exp': 'historical',

'timerange': '1850/2000'}]

ESMValCore can automatically add extra facets based on the project, mip, short_name, and dataset. These extra
facets are automatically added and used when searching for input files.

[5]: tas.augment_facets()
tas

[5]: Dataset:
{'dataset': 'MPI-ESM-MR',
'project': 'CMIPS',
'mip': 'Amon',
'short_name': 'tas',
'ensemble’': 'rlilpl',
'exp': 'historical',
'frequency': 'mon',
'institute': ['MPI-M'],
'long_name': 'Near-Surface Air Temperature',
'modeling_realm': ['atmos'],
'original_short_name': 'tas',
'product': ['outputl', 'output2'],
'standard_name': 'air_temperature',
'timerange': '1850/2000',
'units': 'K'}
supplementaries:
{'dataset': "MPI-ESM-MR',
'project': 'CMIPS',
'mip': 'fx',
'short_name': 'areacella',
'ensemble’': 'r@i®pd',
'exp': 'historical',
'frequency': 'fx',
'institute': ['MPI-M'],
'long_name': 'Atmosphere Grid-Cell Area',
'modeling_realm': ['atmos', 'land'],
'original_short_name': 'areacella',
'product': ['outputl', 'output2'],
'standard_name': 'cell_area',
'units': 'm2'}
session: 'session-686367c0-001c-4864-839d-c20887cf7415_20230301_160531"

Use the find_files method to find the files corresponding to the dataset.

[6]: tas.find_files()

(continues on next page)

60 Chapter 8. Loading, processing, and visualizing data

[77:

[8]:

[8]:

[9]:

[9]:

[10]:

[11]:

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

print(tas.files)
for supplementary_ds in tas.supplementaries:
print (supplementary_ds.files)

[ESGFFile:cmip5/outputl/MPI-M/MPI-ESM-MR/historical/mon/atmos/Amon/r1ilpl/v20120503/tas_
—Amon_MPI-ESM-MR_historical_rlilpl_185001-200512.nc on hosts ['aims3.1llnl.gov', 'esgf.
—ceda.ac.uk', 'esgf.nci.org.au', 'esgfl.dkrz.de']]
[ESGFFile:cmip5/outputl/MPI-M/MPI-ESM-MR/historical/fx/atmos/£fx/r0i0p0/v20120503/
—.areacella_fx_MPI-ESM-MR_historical _r®i®p0®.nc on hosts ['aims3.1llnl.gov', 'esgf.ceda.ac.
—uk', 'esgf.nci.org.au', 'esgfl.dkrz.de']]

If the files are not available locally, ESMValCore can download them for us.

files = list(tas.files)

for supplementary_ds in tas.supplementaries:
files.extend(supplementary_ds.files)

files = [file for file in files if isinstance(file, ESGFFile)]

download(files, CFG['download_dir'])

tas.find_files()

print(tas.files)

for supplementary_ds in tas.supplementaries:
print (supplementary_ds.files)

[LocalFile('~/climate_data/cmip5/outputl/MPI-M/MPI-ESM-MR/historical/mon/atmos/Amon/
~rlilpl/v20120503/tas_Amon_MPI-ESM-MR_historical_rlilpl_185001-200512.nc')]
[LocalFile('~/climate_data/cmip5/outputl/MPI-M/MPI-ESM-MR/historical/fx/atmos/£fx/r0i0p0/
—v20120503/areacella_fx_ MPI-ESM-MR_historical_r0i®p0.nc')]

The data in the files can be loaded into an iris.cube.Cube. ESMValCore will automatically check for and fix problems
with the data formatting and attach the cell area.

cube = tas.load()
cube

<iris 'Cube' of air_temperature / (K) (time: 1812; latitude: 96; longitude: 192)>
cell_area = cube.cell_measures()[0]

cell_area

<CellMeasure: cell_area / (m2) <lazy> shape(96, 192)>

This code shows how to use some esmvalcore.preprocessor functions to compute the global annual mean temperature
in degrees Celsius:

cube = area_statistics(cube, operator='mean')
cube = annual_statistics(cube, operator='mean')
cube.convert_units('degrees_C')

The iris.quickplot module has useful functions for quickly plotting the results:

iris.quickplot.plot(cube)
plt.show()

61

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/api/esmvalcore.preprocessor.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/quickplot.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Air temperature

13.8 ~

Alr temperature / degrees C
=
=]
1

13.6 ~

13.4 ~

T T T T
1850 1900 1950 2000
Time

62 Chapter 8. Loading, processing, and visualizing data

Part 111

The recipe format

63

CHAPTER
NINE

OVERVIEW

After config-user.yml, the recipe.yml is the second file the user needs to pass to esmvaltool as command line
option, at each run time point. Recipes contain the data and data analysis information and instructions needed to run
the diagnostic(s), as well as specific diagnostic-related instructions.

Broadly, recipes contain a general section summarizing the provenance and functionality of the diagnostics, the datasets
which need to be run, the preprocessors that need to be applied, and the diagnostics which need to be run over the
preprocessed data. This information is provided to ESM ValTool in four main recipe sections: Documentation, Datasets,
Preprocessors, and Diagnostics, respectively.

9.1 Recipe section: documentation

The documentation section includes:
* The recipe’s author’s user name (authors, matching the definitions in the References configuration file)
* The recipe’s maintainer’s user name (maintainer, matching the definitions in the References configuration file)
¢ The title of the recipe (title)
* A description of the recipe (description, written in MarkDown format)
* A list of scientific references (references, matching the definitions in the References configuration file)

* the project or projects associated with the recipe (projects, matching the definitions in the References config-
uration file)

For example, the documentation section of recipes/recipe_ocean_amoc.yml is the following:

documentation:
title: Atlantic Meridional Overturning Circulation (AMOC) and the drake passage current
description: |

authors:
- demo_1le

maintainer:
- demo_1le

references:
(continues on next page)

65

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

- demora2018gmd

projects:
- ukesm

Note: Note that all authors, projects, and references mentioned in the description section of the recipe need to be
included in the (locally installed copy of the) file esmvaltool/config-references.yml, see References configuration file.
The author name uses the format: surname_name. For instance, John Doe would be: doe_john. This information can
be omitted by new users whose name is not yet included in config-references.yml.

9.2 Recipe section: datasets

The datasets section includes dictionaries that, via key-value pairs or “facets”, define standardized data specifications:
 dataset name (key dataset, value e.g. MPI-ESM-LR or UKESM1-0-LL).

* project (key project, value CMIP5 or CMIP6 for CMIP data, OBS for observational data, ana4mips for ana4mips
data, obs4MIPs for obs4MIPs data, ICON for ICON data).

* experiment (key exp, value e.g. historical, amip, piControl, rcp85).

* mip (for CMIP data, key mip, value e.g. Amon, Omon, LImon).

* ensemble member (key ensemble, value e.g. r1ilpl, r1ilpl£1).

* sub-experiment id (key sub_experiment, value e.g. s2000, s(2000:2002), for DCPP data only).

e time range (e.g. key-value start_year: 1982, end_year: 1990). Please note that yaml interprets numbers
with a leading 0 as octal numbers, so we recommend to avoid them. For example, use 128 to specify the year 128
instead of 0128. Alternatively, the time range can be specified in ISO 8601 format, for both dates and periods.
In addition, wildcards (' * ") are accepted, which allow the selection of the first available year for each individual
dataset (when used as a starting point) or the last available year (when used as an ending point). The starting
point and end point must be separated with / (e.g. key-value timerange: '1982/1990'). More examples are
given here.

* model grid (native grid grid: gn or regridded grid grid: gr, for CMIP6 data only).

For example, a datasets section could be:

datasets:

- {dataset: CanESM2, project: CMIP5, exp: historical, ensemble: rlilpl, start_year:.
2001, end_year: 2004}

- {dataset: UKESM1-0-LL, project: CMIP6, exp: historical, ensemble: rililplf2, start_
—year: 2001, end_year: 2004, grid: gn}

- {dataset: ACCESS-CM2, project: ClMIP6, exp: historical, ensemble: rlilplf2, timerange:
— 'P5Y/*', grid: gn}

- {dataset: EC-EARTH3, alias: custom_alias, project: CMIP6, exp: historical, ensemble:.
—rlilplfl, start_year: 2001, end_year: 2004, grid: gn}

- {dataset: CMCC-CM2-SRS5, project: CMIP6, exp: historical, ensemble: rlilplfl,.
—timerange: '2001/P10Y', grid: gn}

- {dataset: HadGEM3-GC31-lMM, project: CMIP6, exp: dcppA-hindcast, ensemble: rlilplfl,.
—.sub_experiment: s2000, grid: gn, start_year: 2000, end_year, 2002}

(continues on next page)

66 Chapter 9. Overview

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml
https://yaml.org/refcard.html
https://en.wikipedia.org/wiki/ISO_8601

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

- {dataset: BCC-CSM2-MR, project: CMIP6, exp: dcppA-hindcast, ensemble: rlilplfl, sub_
—experiment: s2000, grid: gn, timerange: '*'}

9.2.1 Automatically populating a recipe with all available datasets

It is possible to use glob patterns or wildcards for certain facet values, to make it easy to find all available datasets
locally and/or on ESGF. Note that project cannot be a wildcard.

The facet values for local files are retrieved from the directory tree where the directories represent the facets values.
Reading facet values from file names is not yet supported. See CMIP data for more information on this kind of file
organization.

When (some) files are available locally, the tool will not automatically look for more files on ESGF. To populate a
recipe with all available datasets from ESGF, search_esgf should be set to always in the user configuration file.

For more control over which datasets are selected, it is recommended to use a Python script or Jupyter notebook to
compose the recipe. See Composing recipes for an example. This is particularly useful when specific relations are
required between datasets, e.g. when a dataset needs to be available for multiple variables or experiments.

An example recipe that will use all CMIP6 datasets and all ensemble members which have a "historical' experiment
could look like this:

datasets:

- project: CMIP6
exp: historical
dataset: '*'
institute: '*'
ensemble: '*'
grid: '*'

After running the recipe, a copy specifying exactly which datasets were used is available in the output directory in the
run subdirectory. The filename of this recipe will end with _filled.yml.

For the timerange facet, special syntax is available. See Time ranges for more information.

If populating a recipe using wildcards does not work, this is because there were either no files found that match those
facets, or the facets could not be read from the directory name or ESGF.

9.2.2 Defining supplementary variables (ancillary variables and cell measures)

Itis common practice to store ancillary variables (e.g. land/sea/ice masks) and cell measures (e.g. cell area, cell volume)
in separate datasets that are described by slightly different facets. In ESMValCore, we call ancillary variables and cell
measures ‘“‘supplementary variables”. Some preprocessor functions need this information to work. For example, the
area_statistics preprocessor function needs to know area of each grid cell in order to compute a correctly weighted
statistic.

To attach these variables to a dataset, the supplementary_variables keyword can be used. For example, to add cell
area to a dataset, it can be specified as follows:

datasets:

- dataset: BCC-ESM1
project: CMIP6
exp: historical
ensemble: rlilplfl

(continues on next page)

9.2. Recipe section: datasets 67

https://docs.python.org/3/library/glob.html#module-glob
https://jupyter.org/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)
grid: gn
supplementary_variables:
- short_name: areacella
mip: fx
exp: 1lpctCO02

Note that the supplementary variable will inherit the facet values from the main dataset, so only those facet values that
differ need to be specified.

9.2.3 Automatically selecting the supplementary dataset

When using many datasets, it may be quite a bit of work to find out which facet values are required to find the corre-
sponding supplementary data. The tool can automatically guess the best matching supplementary dataset. To use this
feature, the supplementary dataset can be specified as:

datasets:
- dataset: BCC-ESM1
project: CMIP6
exp: historical
ensemble: rlilplfl
grid: gn
supplementary_variables:
- short_name: areacella
mip: fx
exp: '*'
activity: '*'
ensemble: '*'

With this syntax, the tool will search all available values of exp, activity, and ensemble and use the supplementary
dataset that shares the most facet values with the main dataset. Note that this behaviour is different from using wildcards
in the main dataset, where they will be expanded to generate all matching datasets. The available datasets are shown
in the debug log messages when running a recipe with wildcards, so if a different supplementary dataset is preferred,
these messages can be used to see what facet values are available. The facet values for local files are retrieved from
the directory tree where the directories represent the facets values. Reading facet values from file names is not yet
supported. If wildcard expansion fails, this is because there were either no files found that match those facets, or the
facets could not be read from the directory name or ESGF.

9.2.4 Automatic definition of supplementary variables

If an ancillary variable or cell measure is needed by a preprocessor function, but it is not specified in the recipe, the
tool will automatically make a best guess using the syntax above. Usually this will work fine, but if it does not, it is
recommended to explicitly define the supplementary variables in the recipe.

To disable this automatic addition, define the supplementary variable as usual, but add the special facet skip with
value true. See Supplementary variables (ancillary variables and cell measures) for an example recipe.

68 Chapter 9. Overview

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

9.2.5 Saving ancillary variables and cell measures

By default, ancillary variables and cell measures will be removed from the main variable before saving it to file because
they can be as big as the main variable. To keep the supplementary variables, disable the preprocessor function that
removes them by setting remove_supplementary_variables: false in the preprocessor profile in the recipe.

9.2.6 Concatenating data corresponding to multiple facets

It is possible to define the experiment as a list to concatenate two experiments. Here it is an example concatenating the
historical experiment with rcp85

datasets:
- {dataset: CanESM2, project: CMIP5, exp: [historical, rcp85], ensemble: rlilpl, start_
—year: 2001, end_year: 2004}

It is also possible to define the ensemble as a list when the two experiments have different ensemble names. In this
case, the specified datasets are concatenated into a single cube:

datasets:
- {dataset: CanESM2, project: CMIP5, exp: [historical, rcp85], ensemble: [rlilpl,.
—rli2pl], start_year: 2001, end_year: 2004}

9.2.7 Short notation of ensemble members and sub-experiments

ESM ValTool also supports a simplified syntax to add multiple ensemble members from the same dataset. In the ensem-
ble key, any element in the form (x:y) will be replaced with all numbers from x to y (both inclusive), adding a dataset
entry for each replacement. For example, to add ensemble members rlilpl to r10ilpl you can use the following
abbreviated syntax:

datasets:
- {dataset: CanESM2, project: CMIP5, exp: historical, ensemble: "r(1:10)ilpl", start_
—year: 2001, end_year: 2004}

It can be included multiple times in one definition. For example, to generate the datasets definitions for the ensemble
members rlilpl to r5ilpl and from rli2pl to r5ilpl you can use:

datasets:
- {dataset: CanESM2, project: CMIPS5, exp: historical, ensemble: "r(1:5)i(1:2)pl",.
—start_year: 2001, end_year: 2004}

Please, bear in mind that this syntax can only be used in the ensemble tag. Also, note that the combination of multiple
experiments and ensembles, like exp: [historical, rcp85], ensemble: [rlilpl, “r(2:3)ilp1”’] is not supported and will
raise an error.

The same simplified syntax can be used to add multiple sub-experiments:

datasets:
- {dataset: MIROC6, project: CMIP6, exp: dcppA-hindcast, ensemble: rlilplfl, sub_
—,experiment: s(2000:2002), grid: gn, start_year: 2003, end_year: 2004}

9.2. Recipe section: datasets 69

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

9.2.8 Time ranges

When using the timerange tag to specify the start and end points, possible values can be as follows:

timerange effect

'1980/1982" Spans from 01/01/1980 to 31/12/1982

'198002/198205' Spans from 01/02/1980 to 31/05/1982
'19800302/19820403" Spans from 02/03/1980 to 03/04/1982
'19800504T100000,/19800504T110000"' Spans from 04/05/1980 at 10h to 11h

'1980/P5Y" Starting from 01/01/1980, spans 5 years

'P2Y5M/198202 Ending at 28/02/1982, spans 2 years and 5 months

vl Finds all available years

'*/1982 Finds first available point, spans to 31/12/1982

'*/P6Y Finds first available point, spans 6 years from it

'198003/* Starting from 01/03/1980, spans until the last available point
'"P5M/* Finds last available point, spans 5 months backwards from it

Note: Please make sure to use a consistent number of digits for the start and end point when using timerange, e.g.,
instead of 198005/2000, use 198005/200012. Otherwise, it might happen that ESMValTool does not find your data
even though the corresponding years are available. This also applies to wildcards: Wildcards are usually resolved
using the timerange in the file name. If this is given in the form YYYYMM, then the other time point in timerange
needs to be in the same format, e.g., use */200012 instead of */2000 in this case. If you use wildcards and get an
unexpected error about missing data, have a look at the resolved timerange in the error message (ERROR No input
files found for variable {'timerange': '197901/2000', ...}) and make sure that the number of digits
in it is consistent.

Note that this section is not required, as datasets can also be provided in the Diagnostics section.

9.3 Recipe section: preprocessors

The preprocessor section of the recipe includes one or more preprocessors, each of which may call the execution of
one or several preprocessor functions.

Each preprocessor section includes:
* A preprocessor name (any name, under preprocessors);
* A list of preprocessor steps to be executed (choose from the API);
¢ Any or none arguments given to the preprocessor steps;

* The order that the preprocessor steps are applied can also be specified using the custom_order preprocessor
function.

The following snippet is an example of a preprocessor named prep_map that contains multiple preprocessing steps
(Horizontal regridding with two arguments, Time manipulation with no arguments (i.e., calculating the average over
the time dimension) and Multi-model statistics with two arguments):

preprocessors:
prep_map:
regrid:
target_grid: 1x1
(continues on next page)

70 Chapter 9. Overview

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

scheme: linear
climate_statistics:
operator: mean
multi_model_statistics:
span: overlap
statistics: [mean]

Note: In this case no preprocessors section is needed the workflow will apply a default preprocessor consisting
of only basic operations like: loading data, applying CMOR checks and fixes (CMORization and dataset-specific fixes)
and saving the data to disk.

Preprocessor operations will be applied using the default order as listed in Preprocessor functions. Preprocessor tasks
can be set to run in the order they are listed in the recipe by adding custom_order: true to the preprocessor definition.

9.4 Recipe section: diagnostics

The diagnostics section includes one or more diagnostics. Each diagnostic section will include:
* the variable(s) to preprocess, including the preprocessor to be applied to each variable;
* the diagnostic script(s) to be run;
* adescription of the diagnostic and lists of themes and realms that it applies to;
* an optional additional_datasets section.

 an optional title and description, used to generate the title and description in the index.html output file.

9.4.1 The diagnostics section defines tasks

The diagnostic section(s) define the tasks that will be executed when running the recipe. For each variable a prepro-
cessing task will be defined and for each diagnostic script a diagnostic task will be defined. These tasks can be viewed
in the main_log_debug.txt file that is produced every run. Each task has a unique name that defines the subdirectory
where the results of that task are stored. Task names start with the name of the diagnostic section followed by a “/’
and then the name of the variable section for a preprocessing task or the name of the diagnostic script section for a
diagnostic task.

A (simplified) example diagnostics section could look like

diagnostics:
diagnostic_name:
title: Air temperature tutorial diagnostic
description: A longer description can be added here.
themes:
- phys
realms:
- atmos
variables:
variable_name:
short_name: ta
preprocessor: preprocessor_name

(continues on next page)

9.4. Recipe section: diagnostics 71

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)
mip: Amon
scripts:
script_name:
script: examples/diagnostic.py

Note that the example recipe above contains a single diagnostic section called diagnostic_name and will result in
two tasks:

* a preprocessing task called diagnostic_name/variable_name that will preprocess air temperature data for
each dataset in the Datasets section of the recipe (not shown).

* adiagnostic task called diagnostic_name/script_name

The path to the script provided in the script option should be either the absolute path to the script, or the path relative
to the esmvaltool/diag_scripts directory.

Depending on the installation configuration, you may get an error of “file does not exist” when the system tries to run
the diagnostic script using relative paths. If this happens, use an absolute path instead.

Note that the script should either have the extension for a supported language, i.e. .py, .R, .ncl, or . jl1 for Python,
R, NCL, and Julia diagnostics respectively, or be executable if it is written in any other language.

9.4.2 Ancestor tasks

Some tasks require the result of other tasks to be ready before they can start, e.g. a diagnostic script needs the prepro-
cessed variable data to start. Thus each tasks has zero or more ancestor tasks. By default, each diagnostic task in a
diagnostic section has all variable preprocessing tasks in that same section as ancestors. However, this can be changed
using the ancestors keyword. Note that wildcard expansion can be used to define ancestors.

diagnostics:
diagnostic_1:
variables:
airtemp:
short_name: ta
preprocessor: preprocessor_name

mip: Amon
scripts:
script_a:

script: diagnostic_a.py
diagnostic_2:
variables:
precip:
short_name: pr
preprocessor: preprocessor_name

mip: Amon
scripts:
script_b:

script: diagnostic_b.py
ancestors: [diagnostic_1/script_a, precip]
The example recipe above will result in four tasks:
* apreprocessing task called diagnostic_1/airtemp

* adiagnostic task called diagnostic_1/script_a

72 Chapter 9. Overview

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

* apreprocessing task called diagnostic_2/precip
 adiagnostic task called diagnostic_2/script_b

the preprocessing tasks do not have any ancestors, while the diagnostic_a.py script will receive the preprocessed air
temperature data (has ancestor diagnostic_1/airtemp) and the diagnostic_b.py script will receive the results of di-
agnostic_a.py and the preprocessed precipitation data (has ancestors diagnostic_1/script_a and diagnostic_2/
precip).

9.4.3 Task priority

Tasks are assigned a priority, with tasks appearing earlier on in the recipe getting higher priority. The tasks will be
executed sequentially or in parallel, depending on the setting of max_parallel_tasks in the User configuration file.
When there are fewer than max_parallel_tasks running, tasks will be started according to their priority. For obvious
reasons, only tasks that are not waiting for ancestor tasks can be started. This feature makes it possible to reduce the
processing time of recipes with many tasks, by placing tasks that take relatively long near the top of the recipe. Of
course this only works when settings max_parallel_tasks to a value larger than 1. The current priority and run
time of individual tasks can be seen in the log messages shown when running the tool (a lower number means higher
priority).

9.4.4 Variable and dataset definitions

To define a variable/dataset combination that corresponds to an actual variable from a dataset, the keys in each variable
section are combined with the keys of each dataset definition. If two versions of the same key are provided, then the key
in the datasets section will take precedence over the keys in variables section. For many recipes it makes more sense
to define the start_year and end_year items in the variable section, because the diagnostic script assumes that all
the data has the same time range.

Variable short names usually do not change between datasets supported by ESMValCore, as they are usually changed
to match CMIP. Nevertheless, there are small changes in variable names in CMIP6 with respect to CMIPS5 (i.e. sea
ice concentration changed from sic to siconc). ESMValCore is aware of some of them and can do the automatic
translation when needed. It will even do the translation in the preprocessed file so the diagnostic does not have to deal
with this complexity, setting the short name in all files to match the one used by the recipe. For example, if sic is
requested, ESMValCore will find sic or siconc depending on the project, but all preprocessed files while use sic as
their short_name. If the recipe requested siconc, the preprocessed files will be identical except that they will use the
short_name siconc instead.

9.4.5 Diagnostic and variable specific datasets

The additional_datasets option can be used to add datasets beyond those listed in the Darasets section. This is
useful if specific datasets need to be used only by a specific diagnostic or variable, i.e. it can be added both at diagnostic
level, where it will apply to all variables in that diagnostic section or at individual variable level. For example, this can
be a good way to add observational datasets, which are usually variable-specific.

9.4. Recipe section: diagnostics 73

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

9.4.6 Running a simple diagnostic

The following example, taken from recipe_ocean_example.yml, shows a diagnostic named diag_map, which loads
the temperature at the ocean surface between the years 2001 and 2003 and then passes it to the prep_map preprocessor.
The result of this process is then passed to the ocean diagnostic map script, ocean/diagnostic_maps.py.

diagnostics:

diag_map:
title: Global Ocean Surface regridded temperature map
description: Add a longer description here.
variables:
tos: # Temperature at the ocean surface
preprocessor: prep_map
start_year: 2001
end_year: 2003
scripts:
Global_Ocean_Surface_regrid_map:
script: ocean/diagnostic_maps.py

9.4.7 Passing arguments to a diagnostic script

The diagnostic script section(s) may include custom arguments that can be used by the diagnostic script; these argu-
ments are stored at runtime in a dictionary that is then made available to the diagnostic script via the interface link,
independent of the language the diagnostic script is written in. Here is an example of such groups of arguments:

scripts:
autoassess_strato_test_1: &autoassess_strato_test_l_settings

script: autoassess/autoassess_area_base.py

title: "Autoassess Stratosphere Diagnostic Metric MPI-MPI"

area: stratosphere

control_model: MPI-ESM-LR

exp_model: MPI-ESM-MR

obs_models: [ERA-Interim] # list to hold models that are NOT for metrics but for.
—obs operations

additional_metrics: [ERA-Interim, inmcm4] # 1list to hold additional datasets for.
—metrics

In this example, apart from specifying the diagnostic script script: autoassess/autoassess_area_base.py,
we pass a suite of parameters to be used by the script (area, control_model etc). These parameters are stored in
key-value pairs in the diagnostic configuration file, an interface file that can be used by importing the run_diagnostic
utility:

from esmvaltool.diag_scripts.shared import run_diagnostic

write the diagnostic code here e.g.
def run_some_diagnostic(my_area, my_control_model, my_exp_model):
Diagnostic to be run."""
if my_area == 'stratosphere':
diag = my_control_model / my_exp_model
return diag

e

(continues on next page)

74 Chapter 9. Overview

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

def main(cfg):
"""Main diagnostic run function.
my_area = cfg['area']
my_control_model = cfg['control_model']
my_exp_model = cfg['exp_model']
run_some_diagnostic(my_area, my_control_model, my_exp_model)

mirn

if __name__ == '__main__"':

with run_diagnostic() as config:
main(config)

This way a lot of the optional arguments necessary to a diagnostic are at the user’s control via the recipe.

9.4.8 Running your own diagnostic

If the user wants to test a newly-developed my_first_diagnostic.py which is not yet part of the ESMValTool
diagnostics library, he/she do it by passing the absolute path to the diagnostic:

diagnostics:

myFirstDiag:
title: Let's do some science!
description: John Doe wrote a funny diagnostic
variables:
tos: # Temperature at the ocean surface
preprocessor: prep_map
start_year: 2001
end_year: 2003
scripts:
JoeDiagFunny:
script: /home/users/john_doe/esmvaltool_testing/my_first_diagnostic.py

This way the user may test a new diagnostic thoroughly before committing to the GitHub repository and including it in
the ESM ValTool diagnostics library.

9.4.9 Re-using parameters from one script to another

Due to yaml features it is possible to recycle entire diagnostics sections for use with other diagnostics. Here is an
example:

scripts:

cycle: &cycle_settings
script: perfmetrics/main.ncl
plot_type: cycle
time_avg: monthlyclim

grading: &grading_settings
<<: *cycle_settings
plot_type: cycle_latlon
calc_grading: true
normalization: [centered_median, none]

9.4. Recipe section: diagnostics 75

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

In this example the hook &cycle_settings can be used to pass the cycle: parameters to grading: via the shortcut
<<: *cycle_settings.

76 Chapter 9. Overview

CHAPTER
TEN

PREPROCESSOR

In this section, each of the preprocessor modules is described, roughly following the default order in which preprocessor
functions are applied:

See Preprocessor functions for implementation details and the exact default order.

Variable derivation

CMOR:ization and dataset-specific fixes

Supplementary variables (ancillary variables and cell measures)

Vertical interpolation
Weighting

Land-sea masking
Horizontal regridding
Missing values masks
Ensemble statistics
Multi-model statistics
Time manipulation
Area manipulation
Volume manipulation
Cycles

Trend

Detrend

Rolling window statistics

Unit conversion
Bias

Other

77

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.1 Overview

The ESMValCore preprocessor can be used to perform a broad range of operations on the input data before diagnostics
or metrics are applied. The preprocessor performs these operations in a centralized, documented and efficient way, thus
reducing the data processing load on the diagnostics side. For an overview of the preprocessor structure see the Recipe
section: preprocessors.

Each of the preprocessor operations is written in a dedicated python module and all of them receive and return an
instance of iris.cube.Cube, working sequentially on the data with no interactions between them. The order in
which the preprocessor operations is applied is set by default to minimize the loss of information due to, for example,
temporal and spatial subsetting or multi-model averaging. Nevertheless, the user is free to change such order to address
specific scientific requirements, but keeping in mind that some operations must be necessarily performed in a specific
order. This is the case, for instance, for multi-model statistics, which required the model to be on a common grid and
therefore has to be called after the regridding module.

10.2 Variable derivation

The variable derivation module allows to derive variables which are not in the CMIP standard data request using
standard variables as input. The typical use case of this operation is the evaluation of a variable which is only available
in an observational dataset but not in the models. In this case a derivation function is provided by the ESMValCore in
order to calculate the variable and perform the comparison. For example, several observational datasets deliver total
column ozone as observed variable (toz), but CMIP models only provide the ozone 3D field. In this case, a derivation
function is provided to vertically integrate the ozone and obtain total column ozone for direct comparison with the
observations.

To contribute a new derived variable, it is also necessary to define a name for it and to provide the corresponding
CMOR table. This is to guarantee the proper metadata definition is attached to the derived data. Such custom CMOR
tables are collected as part of the ESMValCore package. By default, the variable derivation will be applied only if the
variable is not already available in the input data, but the derivation can be forced by setting the appropriate flag.

variables:
toz:
derive: true
force_derivation: false
The required arguments for this module are two boolean switches:
e derive: activate variable derivation

e force_derivation: force variable derivation even if the variable is directly available in the input data.

See also esmvalcore.preprocessor.derive(). To get an overview on derivation scripts and how to implement
new ones, please go to Deriving a variable.

78 Chapter 10. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube
https://github.com/ESMValGroup/ESMValCore

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.3 CMORization and dataset-specific fixes

10.3.1 Data checking

Data preprocessed by ESMValCore is automatically checked against its CMOR definition. To reduce the impact of this
check while maintaining it as reliable as possible, it is split in two parts: one will check the metadata and will be done
just after loading and concatenating the data and the other one will check the data itself and will be applied after all
extracting operations are applied to reduce the amount of data to process.

Checks include, but are not limited to:
* Requested coordinates are present and comply with their definition.
¢ Correctness of variable names, units and other metadata.
* Compliance with the valid minimum and maximum values allowed if defined.

The most relevant (i.e. a missing coordinate) will raise an error while others (i.e an incorrect long name) will be
reported as a warning.

Some of those issues will be fixed automatically by the tool, including the following:
¢ Incorrect standard or long names.
* Incorrect units, if they can be converted to the correct ones.
¢ Direction of coordinates.
* Automatic clipping of longitude to O - 360 interval.

* Minute differences between the required and actual vertical coordinate values

10.3.2 Dataset specific fixes

Sometimes, the checker will detect errors that it can not fix by itself. ESMValCore deals with those issues by applying
specific fixes for those datasets that require them. Fixes are applied at three different preprocessor steps:

« fix_file: apply fixes directly to a copy of the file. Copying the files is costly, so only errors that prevent Iris to
load the file are fixed here. See esmvalcore.preprocessor. fix_file()

» fix_metadata: metadata fixes are done just before concatenating the cubes loaded from different files in
the final one. Automatic metadata fixes are also applied at this step. See esmvalcore.preprocessor.
fix_metadata()

 fix_data: data fixes are applied before starting any operation that will alter the data itself. Automatic data fixes
are also applied at this step. See esmvalcore.preprocessor. fix_data()

To get an overview on data fixes and how to implement new ones, please go to Fixing data.

10.3. CMORization and dataset-specific fixes 79

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.4 Supplementary variables (ancillary variables and cell measures)

The following preprocessor functions either require or prefer using an ancillary variable or cell measure to perform
their computations. In ESMValCore we call both types of variables “supplementary variables”.

Preprocessor Variable short name Variable standard name
area_statistics areacella, areacello cell_area

mask_landsea sftlf, sftof land_area_fraction, sea_area_fraction
mask_landseaice sftgif land_ice_area_fraction
volume_statistics volcello ocean_volume
weighting_landsea_fraction sftlf, sftof land_area_fraction, sea_area_fraction

Only one of the listed variables is required. Supplementary variables can be defined in the recipe as described in
Defining supplementary variables (ancillary variables and cell measures). In some cases, preprocessor functions may
work without supplementary variables, this is documented case by case in the preprocessor function definition. If a
preprocessor function requiring supplementary variables is used without specifying these in the recipe, these will be
automatically added. If the automatic selection does not give the desired result, specify the supplementary variables in
the recipe as described in Defining supplementary variables (ancillary variables and cell measures).

By default, supplementary variables will be removed from the variable before saving it to file because
they can be as big as the main variable. To keep the supplementary variables, disable the preproces-
sor function esmvalcore.preprocessor.remove_supplementary_variables() that removes them by setting
remove_supplementary_variables: false in the preprocessor in the recipe.

10.4.1 Examples

Compute the global mean surface air temperature, while automatically selecting the best matching supplementary
dataset:

datasets:

- dataset: BCC-ESM1
project: CMIP6
ensemble: rlilplfl
grid: gn

- dataset: MPI-ESM-MR
project: CMIP5S
ensemble: rlilpl,

preprocessors:
global_mean:

area_statistics:

operator: mean

diagnostics:
example_diagnostic:
description: Global mean temperature.
variables:
tas:

mip: Amon
preprocessor: global_mean
exp: historical

(continues on next page)

80 Chapter 10. Preprocessor

https://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data
https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

timerange: '1990/2000'
supplementary_variables:
- short_name: areacella
mip: fx
exp: '*'
activity: '*'
ensemble: '*'
scripts: null

(continued from previous page)

Attach the land area fraction as an ancillary variable to surface air temperature and store both in the same file:

datasets:
- dataset: BCC-ESM1
ensemble: rlilplfl
grid: gn

preprocessors:
keep_land_area_fraction:
remove_supplementary_variables: false

diagnostics:
example_diagnostic:
description: Attach land area fraction.
variables:
tas:
mip: Amon
project: CMIP6
preprocessor: keep_land_area_fraction
exp: historical
timerange: '1990/2000'
supplementary_variables:
- short_name: sftlf
mip: fx
exp: 1lpctC02
scripts: null

Automatically define the required ancillary variable (sft1f in this case) and cell measure (areacella), but do not

use areacella for dataset BCC-ESM1:

datasets:

- dataset: BCC-ESM1
project: CMIP6
ensemble: rlilplfl
grid: gn
supplementary_variables:

- short_name: areacella
skip: true

- dataset: MPI-ESM-MR
project: CMIPS
ensemble: rlilpl

preprocessors:

(continues on next page)

10.4. Supplementary variables (ancillary variables and cell measures)

81

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

global_land_mean:
mask_landsea:
mask_out: sea
area_statistics:
operator: mean

diagnostics:
example_diagnostic:
description: Global mean temperature.
variables:
tas:

mip: Amon
preprocessor: global_land_mean
exp: historical
timerange: '1990/2000'

scripts: null

10.4.2 Legacy method of specifying supplementary variables

Deprecated since version 2.8.0: The legacy method of specifying supplementary variables is deprecated and will be re-
moved in version 2.10.0. To upgrade, remove all occurrences of £x_variables from your recipes and rely on automati-
cally defining the supplementary variables based on the requirement of the preprocessor functions or specify them using
the methods described above. To keep using the legacy behaviour until v2.10.0, set use_legacy_supplementaries:
true in the User configuration file or run the tool with the flag --use-legacy-supplementaries=True.

Prior to version 2.8.0 of the tool, the supplementary variables could not be defined at the variable or dataset level in the
recipe, but could only be defined in the preprocessor function that uses them using the £x_variables argument. This
does not work well because in practice different datasets store their supplementary variables under different facets. For
example, one dataset might only provide the areacella variable under the 1pctC02 experiment while another one
might only provide it for the historical experiment. This forced the user to define a preprocessor per dataset, which
was inconvenient.

Preprocessor Default fx variables
area_statistics areacella, areacello
mask_landsea sftlf, sftof
mask_landseaice sftgif
volume_statistics volcello

weighting_landsea_fraction sftlf, sftof

If the option fx_variables is not explicitly specified for these preprocessors, the default fx variables in the second
column are automatically used. If given, the fx_variables argument specifies the fx variables that the user wishes
to input to the corresponding preprocessor function. The user may specify these by simply adding the names of the
variables, e.g.,

fx_variables:
areacello:
volcello:

or by additionally specifying further keys that are used to define the fx datasets, e.g.,

82 Chapter 10. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

fx_variables:
areacello:
mip: Ofx
exp: piControl
volcello:
mip: Omon

This might be useful to select fx files from a specific mip table or from a specific exp in case not all experiments provide
the fx variable.

Alternatively, the £x_variables argument can also be specified as a list:

fx_variables: ['areacello', 'volcello']

or as a list of dictionaries:

fx_variables: [{'short_name': 'areacello', 'mip': 'Ofx', 'exp': 'piControl'}, {'short_
—name': 'volcello', 'mip': 'Omon'}]

The recipe parser will automatically find the data files that are associated with these variables and pass them to the
function for loading and processing.

If mip is not given, ESMValCore will search for the fx variable in all available tables of the specified project.

Warning: Some fx variables exist in more than one table (e.g., volcello exists in CMIP6’s Odec, 0fx, Omon,
and Oyr tables; sftgif exists in CMIP6’s £x, IyrAnt and IyrGre, and LImon tables). If (for a given dataset) fx
files are found in more than one table, mip needs to be specified, otherwise an error is raised.

Note: To explicitly not use any fx variables in a preprocessor, use £x_variables: null. While some of the
preprocessors mentioned above do work without fx variables (e.g., area_statistics ormask_landsea with datasets
that have regular latitude/longitude grids), using this option is not recommended.

Internally, the required £x_variables are automatically loaded by the preprocessor step add_fx_variables which
also checks them against CMOR standards and adds them either as cel1l_measure (see CF conventions on cell mea-
sures and iris.coords.CellMeasure) or ancillary_variable (see CF conventions on ancillary variables and
iris.coords.AncillaryVariable) inside the cube data. This ensures that the defined preprocessor chain is ap-
plied to both variables and £fx_variables.

Note that when calling steps that require £x_variables inside diagnostic scripts, the variables are expected to contain
the required cell_measures or Fx variables as cell measures or ancillary variables. If missing, they
can be added using the following functions:

from esmvalcore.preprocessor import (add_cell_measure, add_ancillary_variable)
cube_with_area_measure = add_cell_measure(cube, area_cube, 'area')
cube_with_volume_measure = add_cell_measure(cube, volume_cube, 'volume)
cube_with_ancillary_sftlf = add_ancillary_variable(cube, sftlf_cube)

cube_with_ancillary_sftgif = add_ancillary_variable(cube, sftgif_cube)

(continues on next page)

10.4. Supplementary variables (ancillary variables and cell measures) 83

https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures
https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.coords.html#iris.coords.CellMeasure
https://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.coords.html#iris.coords.AncillaryVariable

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

Details on the arguments needed for each step can be found in the following sections.

10.5 Vertical interpolation

Vertical level selection is an important aspect of data preprocessing since it allows the scientist to perform a number of
metrics specific to certain levels (whether it be air pressure or depth, e.g. the Quasi-Biennial-Oscillation (QBO) u30
is computed at 30 hPa). Dataset native vertical grids may not come with the desired set of levels, so an interpolation
operation will be needed to regrid the data vertically. ESMValCore can perform this vertical interpolation via the
extract_levels preprocessor. Level extraction may be done in a number of ways.

Level extraction can be done at specific values passed to extract_levels as levels: with its value a list of levels
(note that the units are CMOR-standard, Pascals (Pa)):

preprocessors:
preproc_select_levels_from_list:
extract_levels:
levels: [100000., 50000., 3000., 1000.]
scheme: linear

Itis also possible to extract the CMIP-specific, CMOR levels as they appear in the CMOR table, e.g. plev10® or plevl?7
or plev19 etc:

preprocessors:
preproc_select_levels_from_cmip_table:
extract_levels:
levels: {cmor_table: CMIP6, coordinate: plevi10}
scheme: nearest

Of good use is also the level extraction with values specific to a certain dataset, without the user actually polling the
dataset of interest to find out the specific levels: e.g. in the example below we offer two alternatives to extract the levels
and vertically regrid onto the vertical levels of ERA-Interim:

preprocessors:
preproc_select_levels_from_dataset:
extract_levels:
levels: ERA-Interim
This also works, but allows specifying the pressure coordinate name
levels: {dataset: ERA-Interim, coordinate: air_pressure}
scheme: linear_extrapolate

By default, vertical interpolation is performed in the dimension coordinate of the z axis. If you want to explicitly
declare the z axis coordinate to use (for example, air_pressure’ in variables that are provided in model levels and
not pressure levels) you can override that automatic choice by providing the name of the desired coordinate:

preprocessors:
preproc_select_levels_from_dataset:
extract_levels:
levels: ERA-Interim
scheme: linear_extrapolate
coordinate: air_pressure

84 Chapter 10. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

If coordinate is specified, pressure levels (if present) can be converted to height levels and vice versa using the
US standard atmosphere. E.g. coordinate = altitude will convert existing pressure levels (air_pressure) to
height levels (altitude); coordinate = air_pressure will convert existing height levels (altitude) to pressure levels
(air_pressure).

If the requested levels are very close to the values in the input data, the function will just select the available levels
instead of interpolating. The meaning of ‘very close’ can be changed by providing the parameters:

* rtol
Relative tolerance for comparing the levels in the input data to the requested levels. If the levels are suffi-
ciently close, the requested levels will be assigned to the vertical coordinate and no interpolation will take
place. The default value is 107-7.

* atol
Absolute tolerance for comparing the levels in the input data to the requested levels. If the levels are
sufficiently close, the requested levels will be assigned to the vertical coordinate and no interpolation will
take place. By default, arol will be set to 10”-7 times the mean value of of the available levels.

10.5.1 Schemes for vertical interpolation and extrapolation

The vertical interpolation currently supports the following schemes:

e linear: Linear interpolation without extrapolation, i.e., extrapolation points will be masked even if the source
data is not a masked array.

e linear_extrapolate: Linear interpolation with nearest-neighbour extrapolation, i.e., extrapolation points
will take their value from the nearest source point.

* nearest: Nearest-neighbour interpolation without extrapolation, i.e., extrapolation points will be masked even
if the source data is not a masked array.

* nearest_extrapolate: Nearest-neighbour interpolation with nearest-neighbour extrapolation, i.e., extrapola-
tion points will take their value from the nearest source point.

e See also esmvalcore.preprocessor.extract_levels().

* See also esmvalcore.preprocessor.get_cmor_levels().

Note: Controlling the extrapolation mode allows us to avoid situations where extrapolating values makes little physical
sense (e.g. extrapolating beyond the last data point).

10.6 Weighting

10.6.1 Land/sea fraction weighting

This preprocessor allows weighting of data by land or sea fractions. In other words, this function multiplies the given
input field by a fraction in the range 0-1 to account for the fact that not all grid points are completely land- or sea-covered.

The application of this preprocessor is very important for most carbon cycle variables (and other land surface outputs),
which are e.g. reported in units of kgC' m~2. Here, the surface unit actually refers to ‘square meter of land/sea’ and
NOT ‘square meter of gridbox’. In order to integrate these globally or regionally one has to weight by both the surface
quantity and the land/sea fraction.

For example, to weight an input field with the land fraction, the following preprocessor can be used:

10.6. Weighting 85

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

preprocessors:
preproc_weighting:
weighting_landsea_fraction:
area_type: land
exclude: ['CanESM2', 'reference_dataset']

Allowed arguments for the keyword area_type are land (fraction is 1 for grid cells with only land surface, O for grid
cells with only sea surface and values in between 0 and 1 for coastal regions) and sea (1 for sea, O for land, in between
for coastal regions). The optional argument exclude allows to exclude specific datasets from this preprocessor, which
is for example useful for climate models which do not offer land/sea fraction files. This arguments also accepts the
special dataset specifiers reference_dataset and alternative_dataset.

This function requires a land or sea area fraction ancillary variable. This supplementary variable, either sft1f or
sftof, should be attached to the main dataset as described in Defining supplementary variables (ancillary variables
and cell measures).

Deprecated since version 2.8.0: The optional £x_variables argument specifies the fx variables that the user wishes
to input to the function. More details on this are given in Legacy method of specifying supplementary variables.

See also esmvalcore.preprocessor.weighting_landsea_fraction().

10.7 Masking

10.7.1 Introduction to masking

Certain metrics and diagnostics need to be computed and performed on specific domains on the globe. The preprocessor
supports filtering the input data on continents, oceans/seas and ice. This is achieved by masking the model data and
keeping only the values associated with grid points that correspond to, e.g., land, ocean or ice surfaces, as specified
by the user. Where possible, the masking is realized using the standard mask files provided together with the model
data as part of the CMIP data request (the so-called ancillary variable). In the absence of these files, the Natural Earth
masks are used: although these are not model-specific, they represent a good approximation since they have a much
higher resolution than most of the models and they are regularly updated with changing geographical features.

10.7.2 Land-sea masking

To mask out a certain domain (e.g., sea) in the preprocessor, mask_landsea can be used:

preprocessors:
preproc_mask:
mask_landsea:
mask_out: sea

and requires only one argument: mask_out: either land or sea.

This function prefers using a land or sea area fraction ancillary variable, but if it is not available it will compute a mask
based on Natural Earth shapefiles. This supplementary variable, either sft1f or sftof, can be attached to the main
dataset as described in Defining supplementary variables (ancillary variables and cell measures).

Deprecated since version 2.8.0: The optional £x_variables argument specifies the fx variables that the user wishes
to input to the function. More details on this are given in Legacy method of specifying supplementary variables.

If the corresponding ancillary variable is not available (which is the case for some models and almost all observational
datasets), the preprocessor attempts to mask the data using Natural Earth mask files (that are vectorized rasters). As

86 Chapter 10. Preprocessor

https://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data
https://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data
https://www.naturalearthdata.com

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

mentioned above, the spatial resolution of the the Natural Earth masks are much higher than any typical global model
(10m for land and glaciated areas and S0m for ocean masks).

See also esmvalcore.preprocessor.mask_landsea().

10.7.3 Ice masking

For masking out ice sheets, the preprocessor uses a different function, to ensure that both land and sea or ice can be
masked out without losing generality. To mask ice out, mask_landseaice can be used:

preprocessors:
preproc_mask:
mask_landseaice:
mask_out: ice

and requires only one argument: mask_out: either landsea or ice.

This function requires a land ice area fraction ancillary variable. This supplementary variable sftgif should be
attached to the main dataset as described in Defining supplementary variables (ancillary variables and cell measures).

Deprecated since version 2.8.0: The optional £x_variables argument specifies the fx variables that the user wishes
to input to the function. More details on this are given in Legacy method of specifying supplementary variables.

See also esmvalcore.preprocessor.mask_landseaice().

10.7.4 Glaciated masking

For masking out glaciated areas a Natural Earth shapefile is used. To mask glaciated areas out, mask_glaciated can
be used:

preprocessors:
preproc_mask:
mask_glaciated:
mask_out: glaciated

and it requires only one argument: mask_out: only glaciated.

See also esmvalcore.preprocessor.mask_landseaice().

10.7.5 Missing values masks

Missing (masked) values can be a nuisance especially when dealing with multi-model ensembles and having to compute
multi-model statistics; different numbers of missing data from dataset to dataset may introduce biases and artificially
assign more weight to the datasets that have less missing data. This is handled via the missing values masks: two types
of such masks are available, one for the multi-model case and another for the single model case.

The multi-model missing values mask (mask_fillvalues) is a preprocessor step that usually comes after all the
single-model steps (regridding, area selection etc) have been performed; in a nutshell, it combines missing values
masks from individual models into a multi-model missing values mask; the individual model masks are built according
to common criteria: the user chooses a time window in which missing data points are counted, and if the number of
missing data points relative to the number of total data points in a window is less than a chosen fractional threshold,
the window is discarded i.e. all the points in the window are masked (set to missing).

10.7. Masking 87

https://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

preprocessors:
missing_values_preprocessor:
mask_fillvalues:
threshold_fraction: 0.95
min_value: 19.0
time_window: 10.0

In the example above, the fractional threshold for missing data vs. total data is set to 95% and the time window is set
to 10.0 (units of the time coordinate units). Optionally, a minimum value threshold can be applied, in this case it is set
to 19.0 (in units of the variable units).

See also esmvalcore.preprocessor.mask_fillvalues().

10.7.6 Common mask for multiple models

To create a combined multi-model mask (all the masks from all the analyzed datasets combined into a single mask using
alogical OR), the preprocessor mask_multimodel can be used. In contrast tomask_fillvalues,mask_multimodel
does not expect that the datasets have a time coordinate, but works on datasets with arbitrary (but identical) coordinates.
After mask_multimodel, all involved datasets have an identical mask.

See also esmvalcore.preprocessor.mask_multimodel ().

10.7.7 Minimum, maximum and interval masking

Thresholding on minimum and maximum accepted data values can also be performed: masks are constructed based on
the results of thresholding; inside and outside interval thresholding and masking can also be performed. These functions
are mask_above_threshold, mask_below_threshold, mask_inside_range, and mask_outside_range.

These functions always take a cube as first argument and either threshold for threshold masking or the pair minimum,
maximum for interval masking.

See also esmvalcore.preprocessor.mask_above_threshold() and related functions.

10.8 Horizontal regridding

Regridding is necessary when various datasets are available on a variety of lat-lon grids and they need to be brought to-
gether on a common grid (for various statistical operations e.g. multi-model statistics or for e.g. direct inter-comparison
or comparison with observational datasets). Regridding is conceptually a very similar process to interpolation (in fact,
the regridder engine uses interpolation and extrapolation, with various schemes). The primary difference is that inter-
polation is based on sample data points, while regridding is based on the horizontal grid of another cube (the reference
grid). If the horizontal grids of a cube and its reference grid are sufficiently the same, regridding is automatically and
silently skipped for performance reasons.

The underlying regridding mechanism in ESMValCore uses iris.cube.Cube.regrid from Iris.

The use of the horizontal regridding functionality is flexible depending on what type of reference grid and what inter-
polation scheme is preferred. Below we show a few examples.

88 Chapter 10. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube.regrid

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.8.1 Regridding on a reference dataset grid

The example below shows how to regrid on the reference dataset ERA-Interim (observational data, but just as well
CMIP, obs4MIPs, or ana4mips datasets can be used); in this case the scheme is linear.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: ERA-Interim
scheme: linear

10.8.2 Regridding on an MxN grid specification

The example below shows how to regrid on a reference grid with a cell specification of 2.5x2.5 degrees. This is
similar to regridding on reference datasets, but in the previous case the reference dataset grid cell specifications are not
necessarily known a priori. Regridding on an MxN cell specification is oftentimes used when operating on localized
data.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme: nearest

In this case the NearestNeighbour interpolation scheme is used (see below for scheme definitions).

When using a MxN type of grid it is possible to offset the grid cell centrepoints using the lat_offset and lon_offset
arguments:

* lat_offset: offsets the grid centers of the latitude coordinate w.r.t. the pole by half a grid step;

* lon_offset: offsets the grid centers of the longitude coordinate w.r.t. Greenwich meridian by half a grid step.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
lon_offset: True
lat_offset: True
scheme: nearest

10.8.3 Regridding to a regional target grid specification

This example shows how to regrid to a regional target grid specification. This is useful if both a regrid and
extract_region step are necessary.

preprocessors:
regrid_preprocessor:
regrid:
target_grid:
start_longitude: 40
end_longitude: 60
step_longitude: 2
(continues on next page)

10.8. Horizontal regridding 89

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

start_latitude: -10

end_latitude: 30

step_latitude: 2
scheme: nearest

This defines a grid ranging from 40° to 60° longitude with 2° steps, and -10° to 30° latitude with 2° steps. If
end_longitude or end_latitude do not fall on the grid (e.g., end_longitude: 61), it cuts off at the nearest
previous value (e.g. 60).

The longitude coordinates will wrap around the globe if necessary, i.e. start_longitude: 350, end_longitude:
370 is valid input.

The arguments are defined below:
e start_latitude: Latitude value of the first grid cell center (start point). The grid includes this value.

* end_latitude: Latitude value of the last grid cell center (end point). The grid includes this value only if it falls
on a grid point. Otherwise, it cuts off at the previous value.

* step_latitude: Latitude distance between the centers of two neighbouring cells.
e start_longitude: Latitude value of the first grid cell center (start point). The grid includes this value.

* end_longitude: Longitude value of the last grid cell center (end point). The grid includes this value only if it
falls on a grid point. Otherwise, it cuts off at the previous value.

* step_longitude: Longitude distance between the centers of two neighbouring cells.

10.8.4 Regridding (interpolation, extrapolation) schemes

ESMValCore has a number of built-in regridding schemes, which are presented in Built-in regridding schemes. Addi-
tionally, it is also possible to use third party regridding schemes designed for use with Iris. This is explained in Generic
regridding schemes.

Built-in regridding schemes
The schemes used for the interpolation and extrapolation operations needed by the horizontal regridding functionality
directly map to their corresponding implementations in iris:

e linear: Linear interpolation without extrapolation, i.e., extrapolation points will be masked even if the source
data is not a masked array (uses Linear (extrapolation_mode='mask'), see iris.analysis.Linear).

* linear_extrapolate: Linear interpolation with extrapolation, i.e., extrapolation points will be calculated by
extending the gradient of the closest two points (uses Linear (extrapolation_mode='extrapolate'), see
iris.analysis.Linear).

* nearest: Nearest-neighbour interpolation without extrapolation, i.e., extrapolation points will be masked even if
the source data is not a masked array (uses Nearest (extrapolation_mode="'mask'), see iris.analysis.
Nearest).

* area_weighted: Area-weighted regridding (uses AreaWeighted(), see iris.analysis.Arealieighted).

e unstructured_nearest: Nearest-neighbour interpolation for unstructured grids (uses
UnstructuredNearest(), see iris.analysis.UnstructuredNearest).

See also esmvalcore.preprocessor.regrid()

90 Chapter 10. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/index.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.Linear
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.Linear
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.Nearest
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.Nearest
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.AreaWeighted
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.UnstructuredNearest

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Note: Controlling the extrapolation mode allows us to avoid situations where extrapolating values makes little physical
sense (e.g. extrapolating beyond the last data point).

Note: The regridding mechanism is (at the moment) done with fully realized data in memory, so depending on how
fine the target grid is, it may use a rather large amount of memory. Empirically target grids of up to 8.5x0.5 degrees
should not produce any memory-related issues, but be advised that for resolutions of < 0.5 degrees the regridding
becomes very slow and will use a lot of memory.

Generic regridding schemes

Iris” regridding is based around the flexible use of so-called regridding schemes. These are classes that know how to
transform a source cube with a given grid into the grid defined by a given target cube. Iris itself provides a number
of useful schemes, but they are largely limited to work with simple, regular grids. Other schemes can be provided
independently. This is interesting when special regridding-needs arise or when more involved grids and meshes need
to be considered. Furthermore, it may be desirable to have finer control over the parameters of the scheme than is
afforded by the built-in schemes described above.

To facilitate this, the regrid() preprocessor allows the use of any scheme designed for Iris. The scheme must be
installed and importable. To use this feature, the scheme key passed to the preprocessor must be a dictionary instead
of a simple string that contains all necessary information. That includes a reference to the desired scheme itself, as
well as any arguments that should be passed through to the scheme. For example, the following shows the use of the
built-in scheme iris.analysis.Arealleighted with a custom threshold for missing data tolerance.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme:
reference: iris.analysis:AreaWeighted
mdtol: 0.7

The value of the reference key has two parts that are separated by a : with no surrounding spaces. The first part is an
importable Python module, the second refers to the scheme, i.e. some callable that will be called with the remaining
entries of the scheme dictionary passed as keyword arguments.

One package that aims to capitalize on the support for unstructured meshes introduced in Iris 3.2 is iris-esmf-regrid. It
aims to provide lazy regridding for structured regular and irregular grids, as well as unstructured meshes. An example
of its usage in a preprocessor is:

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted
mdtol: 0.7

Additionally, the use of generic schemes that take source and target grid cubes as arguments is also supported. The call
function for such schemes must be defined as (src_cube, grid_cube, **kwargs) and they must return iris.cube.Cube
objects. The regrid module will automatically pass the source and grid cubes as inputs of the scheme. An example of
this usage is the regrid_rectilinear_to_rectilinear() scheme available in iris-esmf-regrid:

10.8. Horizontal regridding 91

https://scitools-iris.readthedocs.io/en/latest/userguide/interpolation_and_regridding.html#interpolation-and-regridding
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#iris.analysis.AreaWeighted
https://scitools-iris.readthedocs.io/en/latest/further_topics/ugrid/index.html#ugrid
https://iris-esmf-regrid.readthedocs.io/en/latest/index.html
https://iris-esmf-regrid.readthedocs.io/en/latest/_api_generated/esmf_regrid.schemes.html#esmf_regrid.schemes.regrid_rectilinear_to_rectilinear
https://iris-esmf-regrid.readthedocs.io/en/latest/index.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme:
reference: esmf_regrid.schemes:regrid_rectilinear_to_rectilinear
mdtol: 0.7

10.9 Ensemble statistics

For certain use cases it may be desirable to compute ensemble statistics. For example to prevent models with many
ensemble members getting excessive weight in the multi-model statistics functions.

Theoretically, ensemble statistics are a special case (grouped) multi-model statistics. This grouping is performed taking
into account the dataset tags project, dataset, experiment, and (if present) sub_experiment. However, they should
typically be computed earlier in the workflow. Moreover, because multiple ensemble members of the same model are
typically more consistent/homogeneous than datasets from different models, the implementation is more straigtforward
and can benefit from lazy evaluation and more efficient computation.

The preprocessor takes a list of statistics as input:

preprocessors:
example_preprocessor:
ensemble_statistics:
statistics: [mean, median]

This preprocessor function exposes the iris analysis package, and works with all (capitalized) statistics from the iris.
analysis package that can be executed without additional arguments (e.g. percentiles are not supported because it
requires additional keywords: percentile.).

Note that ensemble_statistics will not return the single model and ensemble files, only the requested ensemble
statistics results.

In case of wanting to save both individual ensemble members as well as the statistic results, the preprocessor chains
could be defined as:

preprocessors:
everything_else: &everything_else
area_statistics:
regrid_time:
multimodel:
<<: *everything_else
ensemble_statistics:

variables:
tas_datasets:
short_name: tas
preprocessor: everything_else

tas_multimodel:
short_name: tas
preprocessor: multimodel

92 Chapter 10. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#module-iris.analysis
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.analysis.html#module-iris.analysis

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

See also esmvalcore.preprocessor.ensemble_statistics().

10.10 Multi-model statistics

Computing multi-model statistics is an integral part of model analysis and evaluation: individual models display a
variety of biases depending on model set-up, initial conditions, forcings and implementation; comparing model data
to observational data, these biases have a significantly lower statistical impact when using a multi-model ensemble.
ESMValCore has the capability of computing a number of multi-model statistical measures: using the preprocessor
module multi_model_statistics will enable the user to ask for either a multi-model mean, median, max, min,
std_dev, and / or pXX.YY with a set of argument parameters passed to multi_model_statistics. Percentiles can
be specified like p1.5 or p95. The decimal point will be replaced by a dash in the output file.

Restrictive computation is also available by excluding any set of models that the user will not want to include in the
statistics (by setting exclude: [excluded models list] argument).

Input datasets may have different time coordinates. Apart from that, all dimensions must match. Statistics can be com-
puted across overlapping times only (span: overlap) or across the full time span of the combined models (span:
full). The preprocessor sets a common time coordinate on all datasets. As the number of days in a year may vary
between calendars, (sub-)daily data with different calendars are not supported. The preprocessor saves both the input
single model files as well as the multi-model results. In case you do not want to keep the single model files, set the pa-
rameter keep_input_datasets to false (default value is true). To remove scalar coordinates before merging input
datasets into the multi-dataset cube, use the option ignore_scalar_coords: true. The resulting multi-dataset cube
will not have scalar coordinates in this case. This ensures that differences in scalar coordinates in the input datasets are
ignored, which is helpful if you encounter a ValueError: Multi-model statistics failed to merge input
cubes into a single array with Coordinates in cube.aux_coords (scalar) differ. Some special
scalar coordinates which are expected to differ across cubes (p0 and ptop) are always removed.

preprocessors:
multi_model_save_input:
multi_model_statistics:
span: overlap
statistics: [mean, median]
exclude: [NCEP-NCAR-R1]
multi_model_without_saving_input:
multi_model_statistics:
span: overlap
statistics: [mean, median]
exclude: [NCEP-NCAR-R1]
keep_input_datasets: false
ignore_scalar_coords: true

Multi-model statistics also supports a groupby argument. You can group by any dataset key (project, experiment,
etc.) or a combination of keys in a list. You can also add an arbitrary tag to a dataset definition and then group
by that tag. When using this preprocessor in conjunction with ensemble statistics preprocessor, you can group by
ensemble_statistics as well. For example:

datasets:
- {dataset: CanESM2, exp: historical, ensemble: "r(1:2)ilpl1"}
- {dataset: CCSM4, exp: historical, ensemble: "r(1:2)ilpl"}

preprocessors:
example_preprocessor:
ensemble_statistics:

(continues on next page)

10.10. Multi-model statistics 93

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

statistics: [median, mean]
multi_model_statistics:

span: overlap

statistics: [min, max]

groupby: [ensemble_statistics]

exclude: [NCEP-NCAR-R1]

This will first compute ensemble mean and median, and then compute the multi-model min and max separately for the
ensemble means and medians. Note that this combination will not save the individual ensemble members, only the
ensemble and multimodel statistics results.

When grouping by a tag not defined in all datasets, the datasets missing the tag will be grouped together. In the example
below, datasets UKESM and ERAS5 would belong to the same group, while the other datasets would belong to either
groupl or group2

datasets:

- {dataset: CanESM2, exp: historical, ensemble: "r(1:2)ilpl", tag: 'groupl'}
{dataset: CanESM5, exp: historical, ensemble: "r(1:2)ilpl", tag: 'group2'}
{dataset: CCSM4, exp: historical, ensemble: "r(1:2)ilpl", tag: 'group2'}
{dataset: UKESM, exp: historical, ensemble: "r(1:2)ilpl"}

- {dataset: ERAS5}

preprocessors:
example_preprocessor:
multi_model_statistics:
span: overlap
statistics: [min, max]
groupby: [tag]

Note that those datasets can be excluded if listed in the exclude option.

See also esmvalcore.preprocessor.multi_model_statistics().

Note: The multi-model array operations can be rather memory-intensive (since they are not performed lazily as yet).
The Section on Information on maximum memory required details the memory intake for different run scenarios, but
as a thumb rule, for the multi-model preprocessor, the expected maximum memory intake could be approximated as
the number of datasets multiplied by the average size in memory for one dataset.

10.11 Time manipulation

The _time.py module contains the following preprocessor functions:
e extract_time: Extract a time range from a cube.
e extract_season: Extract only the times that occur within a specific season.
* extract_month: Extract only the times that occur within a specific month.
* hourly_statistics: Compute intra-day statistics
* daily_statistics: Compute statistics for each day

» monthly_statistics: Compute statistics for each month

94 Chapter 10. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

* seasonal_statistics: Compute statistics for each season

* annual_statistics: Compute statistics for each year

* decadal_statistics: Compute statistics for each decade

e climate_statistics: Compute statistics for the full period

e resample_time: Resample data

* resample_hours: Convert between N-hourly frequencies by resampling

* anomalies: Compute (standardized) anomalies

* regrid_time: Aligns the time axis of each dataset to have common time points and calendars.
o timeseries_filter: Allows application of a filter to the time-series data.

Statistics functions are applied by default in the order they appear in the list. For example, the following example
applied to hourly data will retrieve the minimum values for the full period (by season) of the monthly mean of the daily
maximum of any given variable.

daily_statistics:
operator: max

monthly_statistics:
operator: mean

climate_statistics:
operator: min
period: season

10.11.1 extract_time
This function subsets a dataset between two points in times. It removes all times in the dataset before the first time and
after the last time point. The required arguments are relatively self explanatory:

e start_year

e start_month

e start_day

e end_year

e end_month

¢ end_day

These start and end points are set using the datasets native calendar. All six arguments should be given as integers -
the named month string will not be accepted.

See also esmvalcore.preprocessor.extract_time().

10.11. Time manipulation 95

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.11.2 extract_season

Extract only the times that occur within a specific season.

This function only has one argument: season. This is the named season to extract, i.e. DJIF, MAM, JJA, SON, but
also all other sequentially correct combinations, e.g. JJAS.

Note that this function does not change the time resolution. If your original data is in monthly time resolution, then
this function will return three monthly datapoints per year.

If you want the seasonal average, then this function needs to be combined with the seasonal_mean function, below.

See also esmvalcore.preprocessor.extract_season().

10.11.3 extract_month
The function extracts the times that occur within a specific month. This function only has one argument: month. This
value should be an integer between 1 and 12 as the named month string will not be accepted.

See also esmvalcore.preprocessor.extract_month().

10.11.4 hourly_statistics

This function produces statistics at a x-hourly frequency.
Parameters:
» every_n_hours: frequency to use to compute the statistics. Must be a divisor of 24.

* operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’ and ‘sum’.
Default is ‘mean’

See also esmvalcore.preprocessor.hourly_statistics().

10.11.5 daily_statistics

This function produces statistics for each day in the dataset.
Parameters:

e operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.daily_statistics().

10.11.6 monthly_statistics

This function produces statistics for each month in the dataset.
Parameters:

* operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.monthly_statistics().

96 Chapter 10. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.11.7 seasonal_statistics

This function produces statistics for each season (default: [DJF, MAM, JJA, SON] or custom seasons e.g. [JJAS,
ONDJFMAM]) in the dataset. Note that this function will not check for missing time points. For instance, if you are
looking at the DJF field, but your datasets starts on January 1st, the first DJF field will only contain data from January
and February.

We recommend using the extract_time to start the dataset from the following December and remove such biased initial
datapoints.

Parameters:

* operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

* seasons: seasons to build statistics. Default is ‘[DJF, MAM, JJA, SON]’

See also esmvalcore.preprocessor.seasonal_statistics().

10.11.8 annual_statistics

This function produces statistics for each year.
Parameters:

 operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.annual_statistics().

10.11.9 decadal_statistics

This function produces statistics for each decade.
Parameters:

e operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.decadal_statistics().

10.11.10 climate_statistics

This function produces statistics for the whole dataset. It can produce scalars (if the full period is chosen) or hourly,
daily, monthly or seasonal statistics.

Parameters:

* operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

e period: define the granularity of the statistics: get values for the full period, for each month, day of year
or hour of day. Available periods: ‘full’, ‘season’, ‘seasonal’, ‘monthly’, ‘month’, ‘mon’, ‘daily’, ‘day’,
‘hourly’, ‘hour’, ‘hr’. Default is ‘full’

* seasons: if period ‘seasonal’ or ‘season’ allows to set custom seasons. Default is ‘[DJF, MAM, JJA, SON]’
Examples:

* Monthly climatology:

10.11. Time manipulation 97

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

climate_statistics:
operator: mean
period: month

* Daily maximum for the full period:

climate_statistics:
operator: max
period: day

* Minimum value in the period:

climate_statistics:
operator: min
period: full

See also esmvalcore.preprocessor.climate_statistics().

10.11.11 resample_time
This function changes the frequency of the data in the cube by extracting the timesteps that meet the criteria. It is
important to note that it is mainly meant to be used with instantaneous data.
Parameters:
* month: Extract only timesteps from the given month or do nothing if None. Default is None
» day: Extract only timesteps from the given day of month or do nothing if None. Default is None
e hour: Extract only timesteps from the given hour or do nothing if None. Default is None
Examples:

* Hourly data to daily:

resample_time:
hour: 12

* Hourly data to monthly:

resample_time:
hour: 12
day: 15

* Daily data to monthly:

resample_time:
day: 15

See also esmvalcore.preprocessor.resample_time().

resample_hours:

98 Chapter 10. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.11.12 resample_hours
This function changes the frequency of the data in the cube by extracting the timesteps that belongs to the desired
frequency. It is important to note that it is mainly mean to be used with instantaneous data
Parameters:
¢ interval: New frequency of the data. Must be a divisor of 24
* offset: First desired hour. Default 0. Must be lower than the interval
Examples:

* Convert to 12-hourly, by getting timesteps at 0:00 and 12:00:

resample_hours:
hours: 12

e Convert to 12-hourly, by getting timesteps at 6:00 and 18:00:

resample_hours:
hours: 12
offset: 6

See also esmvalcore.preprocessor.resample_hours().

10.11.13 anomalies

This function computes the anomalies for the whole dataset. It can compute anomalies from the full, seasonal, monthly,
daily and hourly climatologies. Optionally standardized anomalies can be calculated.

Parameters:

 period: define the granularity of the climatology to use: full period, seasonal, monthly, daily or hourly.
Available periods: ‘full’, ‘season’, ‘seasonal’, ‘monthly’, ‘month’, ‘mon’, ‘daily’, ‘day’, ‘hourly’, ‘hour’,
‘hr’. Default is ‘full’

« reference: Time slice to use as the reference to compute the climatology on. Can be ‘null’ to use the full
cube or a dictionary with the parameters from extract_time. Default is null

¢ standardize: if true calculate standardized anomalies (default: false)
* seasons: if period ‘seasonal’ or ‘season’ allows to set custom seasons. Default is ‘[DJF, MAM, JJA, SON]’
Examples:

* Anomalies from the full period climatology:

anomalies:

* Anomalies from the full period monthly climatology:

anomalies:
period: month

» Standardized anomalies from the full period climatology:

anomalies:
standardized: true

10.11. Time manipulation 99

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

 Standardized Anomalies from the 1979-2000 monthly climatology:

anomalies:

period: month

reference:
start_year: 1979
start_month: 1
start_day: 1
end_year: 2000
end_month: 12
end_day: 31

standardize: true

See also esmvalcore.preprocessor.anomalies().

10.11.14 regrid_time

This function aligns the time points of each component dataset so that the Iris cubes from different datasets can be sub-
tracted. The operation makes the datasets time points common,; it also resets the time bounds and auxiliary coordinates
to reflect the artificially shifted time points. Current implementation for monthly and daily data; the frequency is set
automatically from the variable CMOR table unless a custom frequency is set manually by the user in recipe.

See also esmvalcore.preprocessor.regrid_time().

10.11.15 timeseries_filter

This function allows the user to apply a filter to the timeseries data. This filter may be of the user’s choice (currently only
the low-pass Lanczos filter is implemented); the implementation is inspired by this iris example and uses aggregation
viairis.cube.Cube.rolling_window.

Parameters:
» window: the length of the filter window (in units of cube time coordinate).

¢ span: period (number of months/days, depending on data frequency) on which weights should be computed
e.g. for 2-yearly: span = 24 (2 x 12 months). Make sure span has the same units as the data cube time
coordinate.

« filter_type: the type of filter to be applied; default ‘lowpass’. Available types: ‘lowpass’.

« filter_stats: the type of statistic to aggregate on the rolling window; default ‘sum’. Available operators:

k)

‘mean’, ‘median’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’.
Examples:

* Lowpass filter with a monthly mean as operator:

timeseries_filter:
window: 3 # 3-monthly filter window
span: 12 # weights computed on the first year
filter_type: lowpass # low-pass filter
filter_stats: mean # 3-monthly mean lowpass filter

See also esmvalcore.preprocessor.timeseries_filter().

100 Chapter 10. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/generated/gallery/general/plot_SOI_filtering.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.cube.html#iris.cube.Cube.rolling_window

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.12 Area manipulation

The area manipulation module contains the following preprocessor functions:
* extract_coordinate_points: Extract a point with arbitrary coordinates given an interpolation scheme.
e extract_region: Extract a region from a cube based on 1lat/lon corners.
* extract_named_regions: Extract a specific region from in the region coordinate.
e extract_shape: Extract a region defined by a shapefile.
* extract_point: Extract a single point (with interpolation)
e extract_location: Extract a single point by its location (with interpolation)
* zonal_statistics: Compute zonal statistics.
* meridional_statistics: Compute meridional statistics.

* area_statistics: Compute area statistics.

10.12.1 extract_coordinate_points

This function extracts points with given coordinates, following either a 1inear or a nearest interpolation scheme.
The resulting point cube will match the respective coordinates to those of the input coordinates. If the input coordinate
is a scalar, the dimension will be a scalar in the output cube.

If the point to be extracted has at least one of the coordinate point values outside the interval of the cube’s same
coordinate values, then no extrapolation will be performed, and the resulting extracted cube will have fully masked
data.

Examples:

 Extract a point from coordinate grid_latitude with given coordinate value 26.0:

extract_coordinate_points:
definition:
grid_latitude: 26.
scheme: nearest

See also esmvalcore.preprocessor.extract_coordinate_points().

10.12.2 extract_region
This function returns a subset of the data on the rectangular region requested. The boundaries of the region are provided
as latitude and longitude coordinates in the arguments:

e start_longitude

¢ end_longitude

e start_latitude

* end_latitude

Note that this function can only be used to extract a rectangular region. Use extract_shape to extract any other
shaped region from a shapefile.

If the grid is irregular, the returned region retains the original coordinates, but is cropped to a rectangular bounding
box defined by the start/end coordinates. The deselected area inside the region is masked.

10.12. Area manipulation 101

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

See also esmvalcore.preprocessor.extract_region().

10.12.3 extract_named_regions

This function extracts a specific named region from the data. This function takes the following argument: regions
which is either a string or a list of strings of named regions. Note that the dataset must have a region coordinate which
includes a list of strings as values. This function then matches the named regions against the requested string.

See also esmvalcore.preprocessor.extract_named_regions().

10.12.4 extract_shape

Extract a shape or a representative point for this shape from the data.

Parameters:

Examples:

shapefile: path to the shapefile containing the geometry of the region to be extracted. If the file con-
tains multiple shapes behaviour depends on the decomposed parameter. This path can be relative to
auxiliary_data_dir defined in the User configuration file or relative to esmvalcore/preprocessor/
shapefiles (in that priority order). Alternatively, a string (see “Shapefile name” below) can be given to
load one of the following shapefiles that are shipped with ESMValCore:

Shapefile Description Reference

name

ar6 IPCC WG reference regions (v4) used in Assess- https://doi.org/10.5281/zenodo.
ment Report 6 5176260

method: the method to select the region, selecting either all points contained by the shape or a single
representative point. Choose either ‘contains’ or ‘representative’. If not a single grid point is contained in
the shape, a representative point will be selected.

crop: by default extract_region will be used to crop the data to a minimal rectangular region containing
the shape. Set to false to only mask data outside the shape. Data on irregular grids will not be cropped.

decomposed: by default false; in this case the union of all the regions in the shapefile is masked out.
If set to true, the regions in the shapefiles are masked out separately and the output cube will have an
additional dimension shape_id describing the requested regions.

ids: Shapes to be read from the shapefile. Can be given as:

— list: IDs are assigned from the attributes name, NAME, Name, id, or ID (in that priority order; the
first one available is used). If none of these attributes are available in the shapefile, assume that the
given ids correspond to the reading order of the individual shapes. So, for example, if a file has both
name and id attributes, the ids will be assigned from name. If the file only has the id attribute, it
will be taken from it and if no name nor id attributes are present, an integer ID starting from 0 will
be assigned automatically when reading the shapes. We discourage to rely on this last behaviour as
we can not assure that the reading order will be the same on different platforms, so we encourage you
to specify a custom attribute using a dict (see below) instead. Note: An empty list is interpreted as
ids=None (see below).

— dict: IDs (dictionary value; 1ist of str) are assigned from attribute given as dictionary key (str).
Only dictionaries with length 1 are supported. Example: ids={"'Acronym': ['GIC', 'WNA']}.

— None: select all available regions from the shapefile.

102

Chapter 10. Preprocessor

https://doi.org/10.5281/zenodo.5176260
https://doi.org/10.5281/zenodo.5176260
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

 Extract the shape of the river Elbe from a shapefile:

extract_shape:
shapefile: Elbe.shp
method: contains

» Extract the shape of several countries:

extract_shape:
shapefile: NaturalEarth/Countries/ne_110m_admin_0_countries.shp
decomposed: True
method: contains
ids:
- Spain
- France
- Italy
United Kingdom
- Taiwan

» Extract European ARG regions:

extract_shape:
shapefile: ar6
method: contains

ids:
Acronym:
- NEU
- WCE
- MED

See also esmvalcore.preprocessor.extract_shape().

10.12.5 extract_point

Extract a single point from the data. This is done using either nearest or linear interpolation.
Returns a cube with the extracted point(s), and with adjusted latitude and longitude coordinates (see below).

Multiple points can also be extracted, by supplying an array of latitude and/or longitude coordinates. The resulting
point cube will match the respective latitude and longitude coordinate to those of the input coordinates. If the input
coordinate is a scalar, the dimension will be missing in the output cube (that is, it will be a scalar).

If the point to be extracted has at least one of the coordinate point values outside the interval of the cube’s same
coordinate values, then no extrapolation will be performed, and the resulting extracted cube will have fully masked
data.

Parameters:
* cube: the input dataset cube.

* latitude, longitude: coordinates (as floating point values) of the point to be extracted. Either (or both)
can also be an array of floating point values.

¢ scheme: interpolation scheme: either 'linear' or 'nearest'. There is no default.

See also esmvalcore.preprocessor.extract_point().

10.12. Area manipulation 103

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.12.6 extract_location

Extract a single point using a location name, with interpolation (either linear or nearest). This preprocessor extracts
a single location point from a cube, according to the given interpolation scheme scheme. The function retrieves the
coordinates of the location and then calls the esmvalcore.preprocessor.extract_point () preprocessor. It can
be used to locate cities and villages, but also mountains or other geographical locations.

Note: Note that this function’s geolocator application needs a working internet connection.

Parameters
e cube: the input dataset cube to extract a point from.

* location: the reference location. Examples: ‘mount everest’, ‘romania’, ‘new york, usa’. Raises ValueEr-
ror if none supplied.

* scheme : interpolation scheme. 'linear’' or 'nearest'. There is no default, raises ValueError if none
supplied.

See also esmvalcore.preprocessor.extract_location().

10.12.7 zonal_statistics

The function calculates the zonal statistics by applying an operator along the longitude coordinate. This function takes
one argument:

* operator: Which operation to apply: mean, std_dev, median, min, max, sum or rms.

See also esmvalcore.preprocessor.zonal_means().

10.12.8 meridional_statistics
The function calculates the meridional statistics by applying an operator along the latitude coordinate. This function
takes one argument:

* operator: Which operation to apply: mean, std_dev, median, min, max, sum or rms.

See also esmvalcore.preprocessor.meridional_means().

10.12.9 area_statistics

This function calculates the average value over a region - weighted by the cell areas of the region. This function takes
the argument, operator: the name of the operation to apply.

This function can be used to apply several different operations in the horizontal plane: mean, standard deviation,
median, variance, minimum, maximum and root mean square.

Note that this function is applied over the entire dataset. If only a specific region, depth layer or time period is required,
then those regions need to be removed using other preprocessor operations in advance.

This function requires a cell area cell measure, unless the coordinates of the input data are regular 1D latitude and
longitude coordinates so the cell areas can be computed. The required supplementary variable, either areacella for
atmospheric variables or areacello for ocean variables, can be attached to the main dataset as described in Defining
supplementary variables (ancillary variables and cell measures).

104 Chapter 10. Preprocessor

https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Deprecated since version 2.8.0: The optional £x_variables argument specifies the fx variables that the user wishes
to input to the function. More details on this are given in Legacy method of specifying supplementary variables.

See also esmvalcore.preprocessor.area_statistics().

10.13 Volume manipulation

The _volume.py module contains the following preprocessor functions:
e axis_statistics: Perform operations along a given axis.
e extract_volume: Extract a specific depth range from a cube.
* volume_statistics: Calculate the volume-weighted average.
e depth_integration: Integrate over the depth dimension.
* extract_transect: Extract data along a line of constant latitude or longitude.

e extract_trajectory: Extract data along a specified trajectory.

10.13.1 extract_volume

Extract a specific range in the z-direction from a cube. The range is given as an interval that can be:

e open (z_min, z_max), in which the extracted range does not include z_min nor z_max.

e closed [z_min, z_max], in which the extracted includes both z_min and z_max.

e left closed [z_min, z_max), in which the extracted range includes z_min but not z_max.

e right closed (z_min, z_max], in which the extracted range includes z_max but not z_min.
The extraction is performed by applying a constraint on the coordinate values, without any kind of interpolation.
This function takes four arguments:

e z_min to define the minimum value of the range to extract in the z-direction.

e z_max to define the maximum value of the range to extract in the z-direction.

¢ interval_bounds to define whether the bounds of the interval are open, closed,
left_closed or right_closed. Default is open.

¢ nearest_value to extract a range taking into account the values of the z-coordinate that
are closest to z_min and z_max. Default is False.

As the coordinate points are likely to vary depending on the dataset, sometimes it might be useful to adjust the given
z_min and z_max values to the values of the coordinate points before performing an extraction. This behaviour can be
achieved by setting the nearest_value argument to True.

For example, in a cube with z_coord = [0., 1.5, 2.6., 3.8., 5.4], the preprocessor below:

preprocessors:
extract_volume:
z_min: 1.
Z_max: 5.
interval_bounds: 'closed'

10.13. Volume manipulation 105

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

would return a cube with a z_coord defined as z_coord = [1.5, 2.6., 3.8.], since these are the values that
strictly fall into the range given by [z_min=1, z_max=5].

Whereas setting earest_value: True:

preprocessors:
extract_volume:
z_min: 1.
Z_max: 5.
interval_bounds: 'closed'
nearest_value: True

would return a cube with a z_coord defined as z_coord = [1.5, 2.6., 3.8., 5.4],since z_max = 5 is closest
to the coordinate point z = 5.4 thanitistoz = 3.8.

Note that this preprocessor requires the requested z-coordinate range to be the same sign as the Iris cube. That is, if the
cube has z-coordinate as negative, then z_min and z_max need to be negative numbers.

See also esmvalcore.preprocessor.extract_volume().

10.13.2 volume_statistics

This function calculates the volume-weighted average across three dimensions, but maintains the time dimension.
This function takes the argument: operator, which defines the operation to apply over the volume.

This function requires a cell volume cell measure, unless the coordinates of the input data are regular 1D latitude and
longitude coordinates so the cell volumes can be computed. The required supplementary variable volcello can be
attached to the main dataset as described in Defining supplementary variables (ancillary variables and cell measures).

No depth coordinate is required as this is determined by Iris.

Deprecated since version 2.8.0: The optional £x_variables argument specifies the fx variables that the user wishes
to input to the function. More details on this are given in Legacy method of specifying supplementary variables.

See also esmvalcore.preprocessor.volume_statistics().

10.13.3 axis_statistics

This function operates over a given axis, and removes it from the output cube.

Takes arguments:

Cg? 6,0 60 ¢

* axis: direction over which the statistics will be performed. Possible values for the axis are ‘x’, ‘y’, ‘z’, ‘t.

* operator: defines the operation to apply over the axis. Available operator are ‘mean’, ‘median’, ‘std_dev’,

b}

‘sum’, ‘variance’, ‘min’, ‘max’, ‘rms’.

Note: The coordinate associated to the axis over which the operation will be performed must be one-dimensional, as
multidimensional coordinates are not supported in this preprocessor.

See also esmvalcore.preprocessor.axis_statistics().

106 Chapter 10. Preprocessor

https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.13.4 depth_integration
This function integrates over the depth dimension. This function does a weighted sum along the z-coordinate, and
removes the z direction of the output cube. This preprocessor takes no arguments.

See also esmvalcore.preprocessor.depth_integration().

10.13.5 extract_transect

This function extracts data along a line of constant latitude or longitude. This function takes two arguments, although
only one is strictly required. The two arguments are latitude and longitude. One of these arguments needs to be
set to a float, and the other can then be either ignored or set to a minimum or maximum value.

For example, if we set latitude to O N and leave longitude blank, it would produce a cube along the Equator. On the
other hand, if we set latitude to 0 and then set longitude to [40., 100.] this will produce a transect of the Equator in
the Indian Ocean.

See also esmvalcore.preprocessor.extract_transect().

10.13.6 extract_trajectory
This function extract data along a specified trajectory. The three arguments are: latitudes, longitudes and number
of point needed for extrapolation number_points.

If two points are provided, the number_points argument is used to set a the number of places to extract between the
two end points.

If more than two points are provided, then extract_trajectory will produce a cube which has extrapolated the data
of the cube to those points, and number_points is not needed.

Note that this function uses the expensive interpolate method from Iris.analysis.trajectory, but it may be
necessary for irregular grids.

See also esmvalcore.preprocessor.extract_trajectory().

10.14 Cycles

The _cycles.py module contains the following preprocessor functions:

» amplitude: Extract the peak-to-peak amplitude of a cycle aggregated over specified coordinates.

10.14.1 amplitude

This function extracts the peak-to-peak amplitude (maximum value minus minimum value) of a field aggregated over
specified coordinates. Its only argument is coords, which can either be a single coordinate (given as str) or multi-
ple coordinates (given as 1ist of str). Usually, these coordinates refer to temporal categorised coordinates iris.
coord_categorisation like year, month, day of year, etc. For example, to extract the amplitude of the annual cycle
for every single year in the data, use coords: year; to extract the amplitude of the diurnal cycle for every single day
in the data, use coords: [year, day_of_year].

See also esmvalcore.preprocessor.amplitude().

10.14. Cycles 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.coord_categorisation.html#module-iris.coord_categorisation
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.coord_categorisation.html#module-iris.coord_categorisation

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

10.15 Trend

The trend module contains the following preprocessor functions:
e linear_trend: Calculate linear trend along a specified coordinate.

e linear_trend_stderr: Calculate standard error of linear trend along a specified coordinate.

10.15.1 linear_trend
This function calculates the linear trend of a dataset (defined as slope of an ordinary linear regression) along a specified
coordinate. The only argument of this preprocessor is coordinate (given as str; default value is 'time").

See also esmvalcore.preprocessor.linear_trend().

10.15.2 linear_trend_stderr

This function calculates the standard error of the linear trend of a dataset (defined as the standard error of the slope
in an ordinary linear regression) along a specified coordinate. The only argument of this preprocessor is coordinate
(given as str; default value is 'time"). Note that the standard error is not identical to a confidence interval.

See also esmvalcore.preprocessor.linear_trend_stderr().

10.16 Detrend

ESMValCore also supports detrending along any dimension using the preprocessor function ‘detrend’. This function
has two parameters:

e dimension: dimension to apply detrend on. Default: “time”
e method: It can be linear or constant. Default: 1inear

If method is linear, detrend will calculate the linear trend along the selected axis and subtract it to the data. For
example, this can be used to remove the linear trend caused by climate change on some variables is selected dimension
is time.

If method is constant, detrend will compute the mean along that dimension and subtract it from the data

See also esmvalcore.preprocessor.detrend().

10.17 Rolling window statistics

One can calculate rolling window statistics using the preprocessor function rolling_window_statistics. This
function takes three parameters:

* coordinate: coordinate over which the rolling-window statistics is calculated.
* operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’ and ‘sum’.
* window_length: size of the rolling window to use (number of points).

This example applied on daily precipitation data calculates two-day rolling precipitation sum.

108 Chapter 10. Preprocessor

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

preprocessors:
preproc_rolling_window:
coordinate: time
operator: sum
window_length: 2

See also esmvalcore.preprocessor.rolling _window_statistics().

10.18 Unit conversion

10.18.1 convert_units

Converting units is also supported. This is particularly useful in cases where different datasets might have different units,
for example when comparing CMIP5 and CMIP6 variables where the units have changed or in case of observational
datasets that are delivered in different units.

In these cases, having a unit conversion at the end of the processing will guarantee homogeneous input for the diag-
nostics.

Conversion is only supported between compatible units! In other words, converting temperature units from degC to
Kelvin works fine, while changing units from kg to m will not work.

However, there are some well-defined exceptions from this rule in order to transform one quantity to another (physically
related) quantity. These quantities are identified via their standard_name and their units (units convertible to the
ones defined are also supported). For example, this enables conversions between precipitation fluxes measured in kg
m-2 s-1 and precipitation rates measured in mm day-1 (and vice versa). Currently, the following special conversions
are supported:

e precipitation_flux (kg m-2 s-1)- lwe_precipitation_rate (mm day-1)

Hint: Names in the list correspond to standard_names of the input data. Conversions are allowed from each quantity
to any other quantity given in a bullet point. The corresponding target quantity is inferred from the desired target units.
In addition, any other units convertible to the ones given are also supported (e.g., instead of mm day-1,m s-1is also
supported).

Note: For the transformation between the different precipitation variables, a water density of 1000 kg m-3 is as-
sumed.

See also esmvalcore.preprocessor.convert_units().

10.18.2 accumulate_coordinate

This function can be used to weight data using the bounds from a given coordinate. The resulting cube will then have
units given by cube_units * coordinate_units.

For instance, if a variable has units such as X s-1, using accumulate_coordinate on the time coordinate would
result on a cube where the data would be multiplied by the time bounds and the resulting units for the variable would
be converted to X. In this case, weighting the data with the time coordinate would allow to cancel the time units in the
variable.

10.18. Unit conversion 109

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Note: The coordinate used to weight the data must be one-dimensional, as multidimensional coordinates are not
supported in this preprocessor.

See also esmvalcore.preprocessor.accumulate_coordinate. ()

10.19 Bias

The bias module contains the following preprocessor functions:

* bias: Calculate absolute or relative biases with respect to a reference dataset

10.19.1 bias

This function calculates biases with respect to a given reference dataset. For this, exactly one input dataset needs to be
declared as reference_for_bias: true in the recipe, e.g.,

datasets:

{dataset: CanESM5, project: CMIP6, ensemble: rlilplfl, grid: gn}
{dataset: CESM2, project: CMIP6, ensemble: rlilplfl, grid: gn}

- {dataset: MIROC6, project: CMIP6, ensemble: rlilplfl, grid: gn}
{dataset: ERA-Interim, project: OBS6, tier: 3, type: reanaly, version: 1,
reference_for_bias: true}

In the example above, ERA-Interim is used as reference dataset for the bias calculation. For this preprocessor, all
input datasets need to have identical dimensional coordinates. This can for example be ensured with the preprocessors
esmvalcore.preprocessor.regrid() and/or esmvalcore.preprocessor.regrid_time().

The bias preprocessor supports 4 optional arguments:

e bias_type (str, default: 'absolute’'): Bias type that is calculated. Can be 'absolute’ (i.e., calculate bias

for dataset X and reference R as X — R) or relative (i.e, calculate bias as < };R).

¢ denominator_mask_threshold (float, default: 1le-3): Threshold to mask values close to zero in the de-
nominator (i.e., the reference dataset) during the calculation of relative biases. All values in the reference dataset
with absolute value less than the given threshold are masked out. This setting is ignored when bias_type is set
to 'absolute'. Please note that for some variables with very small absolute values (e.g., carbon cycle fluxes,
which are usually < 1076 kg m ~2 s ~!) it is absolutely essential to change the default value in order to get
reasonable results.

* keep_reference_dataset (bool, default: False): If True, keep the reference dataset in the output. If False,
drop the reference dataset.

e exclude (list of str): Exclude specific datasets from this preprocessor. Note that this option is only available
in the recipe, not when using esmvalcore.preprocessor.bias() directly (e.g., in another python script). If
the reference dataset has been excluded, an error is raised.

Example:

preprocessors:
preproc_bias:
bias:
bias_type: relative
denominator_mask_threshold: 1e-8

(continues on next page)

110 Chapter 10. Preprocessor

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)
keep_reference_dataset: true
exclude: [CanESNM2]

See also esmvalcore.preprocessor.bias().

10.20 Information on maximum memory required

In the most general case, we can set upper limits on the maximum memory the analysis will require:

Ms = (R + N) x F_eff - F_eff - when no multi-model analysis is performed;

Mm = (2R + N) x F_eff - 2F_eff - when multi-model analysis is performed;
where

e Ms: maximum memory for non-multimodel module

e Mm: maximum memory for multi-model module

* R: computational efficiency of module; R is typically 2-3

¢ N: number of datasets

e F_eff: average size of data per dataset where F_eff = e x f x F where e is the factor that describes how
lazy the datais (e = 1 for fully realized data) and £ describes how much the data was shrunk by the immediately
previous module, e.g. time extraction, area selection or level extraction; note that for fix_data £ relates only to
the time extraction, if data is exact in time (no time selection) £ = 1 for fix_data so for cases when we deal with
alot of datasets R + N \approx N, data is fully realized, assuming an average size of 1.5GB for 10 years of 3D
netCDF data, N datasets will require:

Ms =1.5x (N - 1)GB
Mn = 1.5 x (N - 2) GB

As a rule of thumb, the maximum required memory at a certain time for multi-model analysis could be estimated by
multiplying the number of datasets by the average file size of all the datasets; this memory intake is high but also
assumes that all data is fully realized in memory; this aspect will gradually change and the amount of realized data will
decrease with the increase of dask use.

10.21 Other

Miscellaneous functions that do not belong to any of the other categories.

10.21.1 Clip

This function clips data values to a certain minimum, maximum or range. The function takes two arguments:
e minimum: Lower bound of range. Default: None
* maximum: Upper bound of range. Default: None

The example below shows how to set all values below zero to zero.

10.20. Information on maximum memory required 111

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

preprocessors:
clip:
minimum: 0
maximum: null

112 Chapter 10. Preprocessor

Part IV

Diagnostic script interfaces

113

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

In order to communicate with diagnostic scripts, ESMValCore uses YAML files. The YAML files provided by ESM-
ValCore to the diagnostic script tell the diagnostic script the settings that were provided in the recipe and where to find
the pre-processed input data. On the other hand, the YAML file provided by the diagnostic script to ESMValCore tells
ESMValCore which pre-processed data was used to create what plots. The latter is optional, but needed for recording
provenance.

115

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

116

CHAPTER
ELEVEN

PROVENANCE

When ESMValCore (the esmvaltool command) runs a recipe, it will first find all data and run the default preprocessor
steps plus any additional preprocessing steps defined in the recipe. Next it will run the diagnostic script defined in the
recipe and finally it will store provenance information. Provenance information is stored in the W3C PROV XML
format. To read in and extract information, or to plot these files, the prov Python package can be used. In addition to
provenance information, a caption is also added to the plots.

117

https://www.w3.org/TR/prov-xml/
https://www.w3.org/TR/prov-xml/
https://prov.readthedocs.io

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

118 Chapter 11. Provenance

CHAPTER
TWELVE

INFORMATION PROVIDED BY ESMVALCORE TO THE DIAGNOSTIC
SCRIPT

To provide the diagnostic script with the information it needs to run (e.g. location of input data, various settings),
the ESMValCore creates a YAML file called settings.yml and provides the path to this file as the first command line
argument to the diagnostic script.

The most interesting settings provided in this file are

run_dir: /path/to/recipe_output/run/diagnostic_name/script_name
work_dir: /path/to/recipe_output/work/diagnostic_name/script_name
plot_dir: /path/to/recipe_output/plots/diagnostic_name/script_name
input_files:
- /path/to/recipe_output/preproc/diagnostic_name/ta/metadata.yml
- /path/to/recipe_output/preproc/diagnostic_name/pr/metadata.yml

Custom settings in the script section of the recipe will also be made available in this file.
There are three directories defined:
e run_dir use this for storing temporary files
* work_dir use this for storing NetCDF files containing the data used to make a plot
* plot_dir use this for storing plots

Finally input_£files is a list of YAML files, containing a description of the preprocessed data. Each entry in these
YAML files is a path to a preprocessed file in NetCDF format, with a list of various attributes. An example preprocessor
metadata.yml file could look like this:

? /path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_historical_
—rlilpl_T2Ms_pr_2000-2002.nc
: alias: GFDL-ESM2G

cmor_table: CMIPS

dataset: GFDL-ESM2G

diagnostic: diagnostic_name

end_year: 2002

ensemble: rlilpl

exp: historical

filename: /path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_
—historical_rlilpl T2Ms_pr_2000-2002.nc

frequency: mon

institute: [NOAA-GFDL]

long_name: Precipitation

mip: Amon

(continues on next page)

119

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

modeling_realm: [atmos]
preprocessor: preprocessor_name
project: CMIP5S
recipe_dataset_index: 1
reference_dataset: MPI-ESM-LR
short_name: pr
standard_name: precipitation_flux
start_year: 2000
units: kg m-2 s-1
variable_group: pr
? /path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_MPI-ESM-LR_Amon_historical_
—rlilpl_T2Ms_pr_2000-2002.nc
: alias: MPI-ESM-LR
cmor_table: CMIPS
dataset: MPI-ESM-LR
diagnostic: diagnostic_name
end_year: 2002
ensemble: rlilpl
exp: historical
filename: /path/to/recipe_output/preproc/diagnosticl/pr/CMIP5_MPI-ESM-LR_Amon_
—historical _rlilpl_T2Ms_pr_2000-2002.nc
frequency: mon
institute: [MPI-M]
long_name: Precipitation
mip: Amon
modeling_realm: [atmos]
preprocessor: preprocessor_name
project: CMIPS
recipe_dataset_index: 2
reference_dataset: MPI-ESM-LR
short_name: pr
standard_name: precipitation_flux
start_year: 2000
units: kg m-2 s-1
variable_group: pr

120 Chapter 12. Information provided by ESMValCore to the diagnostic script

CHAPTER
THIRTEEN

INFORMATION PROVIDED BY THE DIAGNOSTIC SCRIPT TO
ESMVALCORE

After the diagnostic script has finished running, ESMValCore will try to store provenance information. In order to link
the produced files to input data, the diagnostic script needs to store a YAML file called diagnostic_provenance.yml
in its run_dir.

For every output file (netCDF files, plot files, etc.) produced by the diagnostic script, there should be an entry in the
diagnostic_provenance.yml file. The name of each entry should be the path to the file. Each output file entry
should at least contain the following items:

* ancestors a list of input files used to create the plot.
» caption a caption text for the plot.

Each file entry can also contain items from the categories defined in the file esmvaltool/config_references.yml.
The short entries will automatically be replaced by their longer equivalent in the final provenance records. It is possible
to add custom provenance information by adding custom items to entries.

An example diagnostic_provenance.yml file could look like this

? /path/to/recipe_output/work/diagnostic_name/script_name/CMIP5_GFDL-ESM2G_Amon_
—historical_rlilpl_pr_2000-2002_mean.nc
: ancestors:[/path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_
—historical_rlilpl_pr_2000-2002.nc]

authors: [andela_bouwe, righi_mattial]

caption: Average Precipitation between 2000 and 2002 according to GFDL-ESM2G.

domains: [global]

plot_types: [zonal]

references: [acknow_project]

statistics: [mean]

? /path/to/recipe_output/plots/diagnostic_name/script_name/CMIP5_GFDL-ESM2G_Amon_
—historical_rlilpl_pr_2000-2002_mean.png
: ancestors: [/path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_
—historical_rlilpl_pr_2000-2002.nc]

authors: [andela_bouwe, righi_mattial]

caption: Average Precipitation between 2000 and 2002 according to GFDL-ESM2G.

domains: [global]

plot_types: ['zonal']

references: [acknow_project]

statistics: [mean]

You can check whether your diagnostic script successfully provided the provenance information to the ESMValCore
by checking the following points:

121

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

* for each output file in the work_dir and plot_dir, a file with the same name, but ending with _provenance.
xml is created

* the output file is shown on the index.html page
* there were no warning messages in the log related to provenance

See Recording provenance for more extensive usage notes.

122 Chapter 13. Information provided by the diagnostic script to ESMValCore

https://docs.esmvaltool.org/en/latest/community/diagnostic.html#recording-provenance

Part V

Development

123

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

To get started developing, have a look at our contribution guidelines. This chapter describes how to implement the
most commonly contributed new features.

125

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

126

CHAPTER
FOURTEEN

PREPROCESSOR FUNCTION

Preprocessor functions are located in esmvalcore.preprocessor. To add a new preprocessor function, start by
finding a likely looking file to add your function to in esmvalcore/preprocessor. Create a new file in that directory if
you cannot find a suitable place.

The function should look like this:

def example_preprocessor_function(
cube,
example_argument,
example_optional_argument=5,

i

Compute an example quantity.

A more extensive explanation of the computation can be added here. Add
references to scientific literature if available.

Parameters
cube: iris.cube.Cube
Input cube.

example_argument: str
Example argument, the value of this argument can be provided in the
recipe. Describe what valid values are here. In this case, a valid
argument is the name of a dimension of the input cube.

example_optional_argument: int, optional
Another example argument, the value of this argument can optionally
be provided in the recipe. Describe what valid values are here.

Returns

iris.cube.Cube
The result of the example computation.

e

Replace this with your own computation
cube = cube.collapsed(example_argument, iris.analysis.MEAN)

return cube

The above function needs to be imported in the file esmvalcore/preprocessor/__init__.py:

127

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/preprocessor
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/preprocessor/__init__.py

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

from ._example_module import example_preprocessor_function

all__ = [

'example_preprocessor_function',

]

The location in the __all__ list above determines the default order in which preprocessor functions are applied, so
carefully consider where you put it and ask for advice if needed.

The preprocessor function above can then be used from the Recipe section: preprocessors like this:

preprocessors:
example_preprocessor:
example_preprocessor_function:
example_argument: median
example_optional_argument: 6

The optional argument (in this example: example_optional_argument) can be omitted in the recipe.

14.1 Lazy and real data

Preprocessor functions should support both real and lazy data. This is vital for supporting the large datasets that are
typically used with the ESMValCore. If the data of the incoming cube has been realized (i.e. cube.has_lazy_data()
returns False so cube. core_data() is a NumPy array), the returned cube should also have realized data. Conversely,
if the incoming cube has lazy data (i.e. cube.has_lazy_data() returns True so cube.core_data() is a Dask
array), the returned cube should also have lazy data. Note that NumPy functions will often call their Dask equivalent
if it exists and if their input array is a Dask array, and vice versa.

Note that preprocessor functions should preferably be small and just call the relevant iris code. Code that is more
involved, e.g. lots of work with Numpy and Dask arrays, and more broadly applicable, should be implemented in iris
instead.

14.2 Metadata

Preprocessor functions may change the metadata of datasets. An obvious example is convert_units(), which
changes units. If cube metadata is changed in a preprocessor function, the metadata.yml file is automatically updated
with this information. The following attributes are taken into account:

Attribute in metadata.yml file Updated from

standard_name iris.cube.Cube.standard_name

long_name iris.cube.Cube.long_name

short_name iris.cube.Cube.var_name

units iris.cube.Cube.units

frequency iris.cube.Cube.attributes['frequency']

If a given cube property is None, the corresponding attribute is updated with an empty string (' '). If a cube property
is not given, the corresponding attribute is not updated.

128 Chapter 14. Preprocessor function

https://scitools-iris.readthedocs.io/en/latest/userguide/real_and_lazy_data.html#real-and-lazy-data
https://numpy.org/
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/array.html
https://scitools-iris.readthedocs.io/en/latest/index.html#iris-docs

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

14.3 Documentation

The documentation in the function docstring will be shown in the Preprocessor functions chapter. In addition, you
should add documentation on how to use the new preprocessor function from the recipe in doc/recipe/preprocessor.rst
so it is shown in the Preprocessor chapter. See the introduction to Documentation for more information on how to best
write documentation.

14.4 Tests

Tests are should be implemented for new or modified preprocessor functions. For an introduction to the topic, see Tests.

14.4.1 Unit tests

To add a unit test for the preprocessor function from the example above, create a file called tests/unit/
preprocessor/_example_module/test_example_preprocessor_function.py and add the following content:

e o

Test function ‘esmvalcore.preprocessor.example_preprocessor_function’.
import cf_units

import dask.array as da

import iris

import numpy as np

import pytest

from esmvalcore.preprocessor import example_preprocessor_function

@pytest.mark.parametrize('lazy', [True, False])
def test_example_preprocessor_function(lazy):
"""Test that the computed result is as expected."""

Construct the input cube
data = np.array([1, 2], dtype=np.float32)
if lazy:

data = da.asarray(data, chunks=(1,))
cube = iris.cube.Cube(

data,
var_name='tas',
units='K",

)
cube.add_dim_coord(
iris.coords.DimCoord(
np.array([0.5, 1.5], dtype=np.float64),
bounds=np.array([[0, 1], [1, 2]], dtype=np.float64),
standard_name="time',
units=cf_units.Unit('days since 1950-01-01 00:00:00',
calendar="gregorian'),

(continues on next page)

14.3. Documentation 129

https://github.com/ESMValGroup/ESMValCore/tree/main/doc/recipe/preprocessor.rst

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

Compute the result
result = example_preprocessor_function(cube, example_argument='time')

Check that lazy data is returned if and only if the input is lazy
assert result.has_lazy_data() is lazy

Construct the expected result cube
expected = iris.cube.Cube(
np.array(l.5, dtype=np.float32),
var_name="tas',
units='K",
)
expected.add_aux_coord(
iris.coords.AuxCoord(
np.array([1], dtype=np.float64),
bounds=np.array([[0, 2]], dtype=np.float64),
standard_name="time',
units=cf_units.Unit('days since 1950-01-01 00:00:00"',
calendar="'gregorian'),
D))
expected.add_cell_method(
iris.coords.CellMethod(method="'mean', coords=('time',)))

Compare the result of the computation with the expected result

print('result:', result)
print('expected result:', expected)
assert result == expected

In this test we used the decorator pytest.mark.parametrize to test two scenarios, with both lazy and realized data, with
a single test.

14.4.2 Sample data tests

The idea of adding sample data tests is to check that preprocessor functions work with realistic data. This also provides
an easy way to add regression tests, though these should preferably be implemented as unit tests instead, because using
the sample data for this purpose is slow. To add a test using the sample data, create a file tests/sample_data/
preprocessor/example_preprocessor_function/test_example_preprocessor_function.py and add the
following content:

i i

Test function ‘esmvalcore.preprocessor.example_preprocessor_function’.
from pathlib import Path

import esmvaltool_sample_data
import iris
import pytest

from esmvalcore.preprocessor import example_preprocessor_function
@pytest.mark.use_sample_data

def test_example_preprocessor_function():

(continues on next page)

130 Chapter 14. Preprocessor function

https://docs.pytest.org/en/stable/parametrize.html

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

"""Regression test to check that the computed result is as expected."""
Load an example input cube
cube = esmvaltool_sample_data.load_timeseries_cubes(mip_table="Amon") [0]

Compute the result
result = example_preprocessor_function(cube, example_argument='time')

filename = Path(__file) .with_name('example_preprocessor_function.nc')
if not filename.exists():
Create the file the expected result if it doesn't exist
iris.save(result, target=str(filename))
raise FileNotFoundError(
f'Reference data was missing, wrote new copy to {filename}')

Load the expected result cube
expected = iris.load_cube(str(filename))

Compare the result of the computation with the expected result

print('result:', result)
print('expected result:', expected)
assert result == expected

This will use a file from the sample data repository as input. The first time you run the test, the com-
puted result will be stored in the file tests/sample_data/preprocessor/example_preprocessor_function/
example_preprocessor_function.nc Any subsequent runs will re-load the data from file and check that it did not
change. Make sure the stored results are small, i.e. smaller than 100 kilobytes, to keep the size of the ESMValCore
repository small.

14.5 Using multiple datasets as input

The name of the first argument of the preprocessor function should in almost all cases be cube. Only when
implementing a preprocessor function that uses all datasets as input, the name of the first argument should be
products. If you would like to implement this type of preprocessor function, start by having a look at the exist-
ing functions, e.g. esmvalcore.preprocessor.multi_model_statistics() or esmvalcore.preprocessor.
mask_fillvalues().

14.5. Using multiple datasets as input 131

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

132 Chapter 14. Preprocessor function

CHAPTER
FIFTEEN

FIXING DATA

The baseline case for ESMValCore input data is CMOR fully compliant data that is read using Iris’ iris.load_raw().
ESMValCore also allows for some departures from compliance (see Customizing checker strictness). Beyond that
situation, some datasets (either model or observations) contain (known) errors that would normally prevent them from
being processed. The issues can be in the metadata describing the dataset and/or in the actual data. Typical examples
of such errors are missing or wrong attributes (e.g. attribute “’units” says 1e-9 but data are actually in 1e-6), missing or
mislabeled coordinates (e.g. ’lev” instead of “’plev’” or missing coordinate bounds like “’lat_bnds”) or problems with
the actual data (e.g. cloud liquid water only instead of sum of liquid + ice as specified by the CMIP data request). As
an extreme case, some data sources simply are not NetCDF files and must go through some other data load function.
ESMValCore can apply on-the-fly fixes to such datasets when issues can be fixed automatically.

In addition, some datasets are supported in their native (i.e., non CMOR-compliant) format through fixes. This is
implemented for a set of Datasets in native format. A detailed description of how to include new native datasets is
given below.

The following sections provide details on how to design such fixes.

Note: CMORIizer scripts. Support for many observational and reanalysis datasets is also possible through a priori
reformatting by CMORizer scripts in the ESMValTool, which are rather relevant for datasets of small volume

15.1 Fix structure

Fixes are Python classes stored in esmvalcore/cmor/_fixes/[PROJECT]/[DATASET].py that derive from
esmvalcore.cmor._fixes.fix.Fix and are named after the short name of the variable they fix. You can also
use the names of mip tables (e.g., Amon, Lmon, Omon, etc.) if you want the fix to be applied to all variables of that table
in the dataset or Al11Vars if you want the fix to be applied to the whole dataset.

Warning: Be careful to replace any - with _ in your dataset name. We need this replacement to have proper
python module names.

The fixes are automatically loaded and applied when the dataset is preprocessed. They are a special type of pre-
processor function, called by the preprocessor functions esmvalcore.preprocessor. fix_file(), esmvalcore.
preprocessor. fix_metadata(), and esmvalcore.preprocessor.fix_data().

The Fix class provides the following attributes:
e Fix.vardef: VariableInfo object that corresponds to the variable fixed by the fix.

* Fix.extra_facets: dict that contains all facets of the corresponding dataset fixed by the fix (see
esmvalcore.dataset.Dataset. facets).

133

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.load_raw
https://docs.esmvaltool.org/en/latest/community/dataset.html#new-dataset
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

* Fix.session: Session object that includes configuration and directory information.

15.2 Fixing a dataset

To illustrate the process of creating a fix we are going to construct a new one from scratch for a fictional dataset. We
need to fix a CMIPX model called PERFECT-MODEL that is reporting a missing latitude coordinate for variable tas.

15.2.1 Check the output

Next to the error message, you should see some info about the iris cube: size, coordinates. In our example it looks like
this:

air_temperature/ (K) (time: 312; altitude: 90; longitude: 180)
Dimension coordinates:
time X - -
altitude - X -
longitude
Auxiliary coordinates:
day_of_month
day_of_year
month_number
year
Attributes:
{'cmor_table': 'CMIPX', 'mip': 'Amon', 'short_name': 'tas',

Lol B
1
1

'frequency': 'mon'})

So now the mistake is clear: the latitude coordinate is badly named and the fix should just rename it.

15.2.2 Create the fix

We start by creating the module file. In our example the path will be esmvalcore/cmor/_fixes/CMIPX/
PERFECT_MODEL.py. If it already exists just add the class to the file, there is no limit in the number of fixes we
can have in any given file.

Then we have to create the class for the fix deriving from esmvalcore.cmor._fixes.Fix

"""Fixes for PERFECT-MODEL."""
from esmvalcore.cmor.fix import Fix

class tas(Fix):
"""Fixes for tas variable.

mirn

Next we must choose the method to use between the ones offered by the Fix class:

o fix_file: should be used only to fix errors that prevent data loading. As a rule of thumb, you should only use
it if the execution halts before reaching the checks.

e fix_metadata: you want to change something in the cube that is not the data (e.g variable or coordinate names,
data units).

o fix_data: you need to fix the data. Beware: coordinates data values are part of the metadata.

In our case we need to rename the coordinate altitude to latitude, so we will implement the fix_metadata
method:

134 Chapter 15. Fixing data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

"""Fixes for PERFECT-MODEL."""
from esmvalcore.cmor.fix import Fix

class tas(Fix):
"""Fixes for tas variable.

mirn

def fix_metadata(self, cubes):

i

Fix metadata for tas.

Fix the name of the latitude coordinate, which is called altitude
in the original file.

Sometimes Iris will interpret the data as multiple cubes.

Good CMOR datasets will only show one but we support the

multiple cubes case to be able to fix the errors that are

leading to that extra cubes.

In our case this means that we can safely assume that the

tas cube is the first one

tas_cube = cubes[0]

latitude = tas_cube.coord('altitude')

Fix the names. Latitude values, units and

latitude.short_name = 'lat'
latitude.standard_name = 'latitude’
latitude.long_name = 'latitude'’

return cubes

This will fix the error. The next time you run ESMValTool you will find that the error is fixed on the fly and, hopefully,
your recipe will run free of errors. The cubes argument to the fix_metadata method will contain all cubes loaded
from a single input file. Some care may need to be taken that the right cube is selected and fixed in case multiple cubes
are created. Usually this happens when a coordinate is mistakenly loaded as a cube, because the input data does not
follow the CF Conventions.

Sometimes other errors can appear after you fix the first one because they were hidden by it. In our case, the latitude
coordinate could have bad units or values outside the valid range for example. Just extend your fix to address those
errors.

15.2.3 Finishing

Chances are that you are not the only one that wants to use that dataset and variable. Other users could take advantage
of your fixes as soon as possible. Please, create a separated pull request for the fix and submit it.

It will also be very helpful if you just scan a couple of other variables from the same dataset and check if they share
this error. In case that you find that it is a general one, you can change the fix name to the corresponding mip table
name (e.g., Amon, Lmon, Omon, etc.) so it gets executed for all variables in that table in the dataset or to A11Vars so it
gets executed for all variables in the dataset. If you find that this is shared only by a handful of similar vars you can just
make the fix for those new vars derive from the one you just created:

"""Fixes for PERFECT-MODEL."""
from esmvalcore.cmor.fix import Fix

class tas(Fix):

(continues on next page)

15.2. Fixing a dataset 135

https://cfconventions.org/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

(continued from previous page)

e mirn

Fixes for tas variable.

def fix_metadata(self, cubes):

i

Fix metadata for tas.

Fix the name of the latitude coordinate, which is called altitude
in the original file.

Sometimes Iris will interpret the data as multiple cubes.

Good CMOR datasets will only show one but we support the

multiple cubes case to be able to fix the errors that are

leading to that extra cubes.

In our case this means that we can safely assume that the

tas cube is the first one

tas_cube = cubes[0]

latitude = tas_cube.coord('altitude')

Fix the names. Latitude values, units and

latitude.short_name = 'lat'
latitude.standard_name = 'latitude’
latitude.long_name = 'latitude’

return cubes

class ps(tas):
"""Fixes for ps variable.

i

15.3 Common errors

The above example covers one of the most common cases: variables / coordinates that have names that do not match
the expected. But there are some others that use to appear frequently. This section describes the most common cases.

15.3.1 Bad units declared

It is quite common that a variable declares to be using some units but the data is stored in another. This can be solved
by overwriting the units attribute with the actual data units.

def fix_metadata(self, cubes):
cube.units = 'real_units'

Detecting this error can be tricky if the units are similar enough. It also has a good chance of going undetected until
you notice strange results in your diagnostic.

For the above example, it can be useful to access the variable definition and associated coordinate definitions as provided
by the CMOR table. For example:

def fix_metadata(self, cubes):
cube.units = self.vardef.units

136 Chapter 15. Fixing data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

To learn more about what is available in these definitions, see: esmvalcore.cmor.table.VariableInfo and
esmvalcore.cmor.table.CoordinateInfo.

15.3.2 Coordinates missing

Another common error is to have missing coordinates. Usually it just means that the file does not follow the CF-
conventions and Iris can therefore not interpret it.

If this is the case, you should see a warning from the ESMValTool about discarding some cubes in the fix metadata
step. Just before that warning you should see the full list of cubes as read by Iris. If that list contains your missing
coordinate you can create a fix for this model:

def fix_metadata(self, cubes):

coord_cube = cubes.extract_strict('COORDINATE_NAME")

Usually this will correspond to an auxiliary coordinate

because the most common error is to forget adding it to the

coordinates attribute

coord = iris.coords.AuxCoord(
coord_cube.data,
var_name=coord_cube.var_name,
standard_name=coord_cube.standard_name,
long_name=coord_cube.long_name,
units=coord_cube.units,

}

It may also have bounds as another cube
coord.bounds = cubes.extract_strict('BOUNDS_NAME').data

data_cube = cubes.extract_strict('VAR_NAME")
data_cube.add_aux_coord(coord, DIMENSIONS_INDEX_TUPLE)
return [data_cube]

15.4 Customizing checker strictness

The data checker classifies its issues using four different levels of severity. From highest to lowest:
e CRITICAL: issues that most of the time will have severe consequences.
* ERROR: issues that usually lead to unexpected errors, but can be safely ignored sometimes.
* WARNING: something is not up to the standard but is unlikely to have consequences later.

* DEBUG: any info that the checker wants to communicate. Regardless of checker strictness, those will always be
reported as debug messages.

Users can have control about which levels of issues are interpreted as errors, and therefore make the checker fail or
warnings or debug messages. For this purpose there is an optional command line option —check-level that can take a
number of values, listed below from the lowest level of strictness to the highest:

e ignore: all issues, regardless of severity, will be reported as warnings. Checker will never fail. Use this at your
own risk.

* relaxed: only CRITICAL issues are treated as errors. We recommend not to rely on this mode, although it can
be useful if there are errors preventing the run that you are sure you can manage on the diagnostics or that will
not affect you.

15.4. Customizing checker strictness 137

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

* default: fail if there are any CRITICAL or ERROR issues (DEFAULT); Provides a good measure of safety.

e strict: fail if there are any warnings, this is the highest level of strictness. Mostly useful for checking datasets
that you have produced, to be sure that future users will not be distracted by inoffensive warnings.

15.5 Add support for new native datasets

This section describes how to add support for additional native datasets. You can choose to host this new data source
either under a dedicated project or under project native6.

15.5.1 Configuration

An example of a configuration in config-developer.yml for projects used for native datasets is given /rere. Make
sure to use the option cmor_strict: false for these projects if you want to make use of Custom CMOR tables. This
allows reading arbitrary variables from native datasets.

15.5.2 Locate data

To allow ESMValCore to locate the data files, use the following steps:

* If you want to use the native6 project (recommended for datasets whose input files can be easily moved to the
usual native6 directory structure given by the rootpath in your User configuration file; this is usually the case
for native reanalysis/observational datasets):

The entry native6 of config-developer.yml should be complemented with sub-entries for input_dir and
input_file that go under a new key representing the data organization (such as MY_DATA_ORG), and these
sub-entries can use an arbitrary list of {placeholders}. Example :

native6:

input_dir:
default: 'Tier{tier}/{dataset}/{version}/{frequency}/{short_name}'
MY_DATA_ORG: '{dataset}/{exp}/{simulation}/{version}/{type}'
input_file:
default: '*.nc'
MY_DATA_ORG: '{simulation}_*.nc'

To find your native data (e.g., called MYDATA) that is for example located in {rootpath}/MYDATA/amip/runl/
42-0/atm/runl_1979.nc ({rootpath} is ESMValTool’s rootpath for the project native6 defined in your
User configuration file), use the following dataset entry in your recipe

datasets:
- {project: native6, dataset: MYDATA, exp: amip, simulation: runl, version: 42-0,.
—type: atm}

and make sure to use the following DRS for the project native6 in your User configuration file:

drs:
native6: MY_DATA_ORG

138 Chapter 15. Fixing data

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

* If you want to use a dedicated project for your native dataset (recommended for datasets for which you cannot
control the location of the input files; this is usually the case for native model output):

A new entry for the project needs to be added to config-developer.yml. For example, for the ICON model,
create a new project ICON:

ICON:

input_dir:
default:
- '{exp}'
- "{exp}/outdata'’
input_file:
default: '{exp}_{var_type}*.nc'

To find your ICON data that is for example located in files like {rootpath}/amip/
amip_atm_2d_ml_20000101TO00000Z.nc ({rootpath} is ESMValTool rootpath for the project ICON
defined in your User configuration file), use the following dataset entry in your recipe:

datasets:
- {project: ICON, dataset: ICON, exp: amip}

Please note the duplication of the name ICON in project and dataset, which is necessary to comply with
ESMValTool’s data finding and CMORIizing functionalities. For other native models, dataset could also refer
to a subversion of the model. Note that it is possible to predefine facets in an extra facets file. In this ICON
example, the facet var_type is predefined for many variables.

15.5.3 Fix native data

To ensure that the native dataset has the correct metadata and data (i.e., that it is CMOR-compliant), use dataset fixes.
This is where the actual CMORization takes place. For example, a native6 dataset fix for ERAS is located here, and
the ICON fix is located here.

ESMValTool also provides a base class NativeDatasetFix that provides convenient functions useful for all native
dataset fixes. An example for its usage can be found here.

15.5.4 Extra facets for native datasets

If necessary, provide a so-called extra facets file which allows to cope e.g. with variable naming issues for
finding files or additional information that is required for the fixes. See Extra Facets and Use of extra facets in fixes for
more details on this. An example of such a file for IPSL-CMG6 is given here.

15.6 Use of extra facets in fixes

Extra facets are a mechanism to provide additional information for certain kinds of data. The general approach is
described in Extra Facets. Here, we describe how they can be used in fixes to mold data into the form required by the
applicable standard. For example, if the input data is part of an observational product that delivers surface temperature
with a variable name of t2m inside a file named 2m_temperature_1950_monthly.nc, but the same variable is called tas
in the applicable standard, a fix can be created that reads the original variable from the correct file, and provides a
renamed variable to the rest of the processing chain.

15.6. Use of extra facets in fixes 139

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/cmor/_fixes/native6/era5.py
https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/cmor/_fixes/icon/icon.py
https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/cmor/_fixes/icon/_base_fixes.py

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Normally, the applicable standard for variables is CMIP6.

For more details, refer to existing uses of this feature as examples, as e.g. for IPSL-CMG6.

140 Chapter 15. Fixing data

CHAPTER
SIXTEEN

e

e

Derivation of variable ‘dummy’.

from ._baseclass import DerivedVariableBase

class DerivedVariable(DerivedVariableBase) :

e

"""Derivation of variable ‘dummy".

@staticmethod
def required(project):
"""Declare the variables needed for derivation.

mirn

mip = 'fx'
if project == 'CMIP6':
mip = 'Ofx'
required = [
{'short_name': 'var_a'},
{'short_name': 'var_b', 'mip': mip, 'optional':
1

return required

@staticmethod
def calculate(cubes):

N onn

"""Compute ‘dummy’.

DERIVING A VARIABLE

The variable derivation preprocessor module allows to derive variables which are not in the CMIP standard data request
using standard variables as input. This is a special type of preprocessor function. All derivation scripts are located in
esmvalcore/preprocessor/_derive/. A typical example looks like this:

True},

‘cubes® is a CubelList containing all required variables.

cube = do_something_with(cubes)

Return single cube at the end
return cube

The static function required(project) returns a list of dict containing all required variables for deriving the
derived variable. Its only argument is the project of the specific dataset. In this particular example script, the derived
variable dummy is derived from var_a and var_b. Itis possible to specify arbitrary attributes for each required variable,
e.g. var_b uses the mip fx (or Ofx in the case of CMIP6) instead of the original one of dummy. Note that you
can also declare a required variable as optional=True, which allows the skipping of this particular variable during
data extraction. For example, this is useful for fx variables which are often not available for observational datasets.
Otherwise, the tool will fail if not all required variables are available for all datasets.

The actual derivation takes place in the static function calculate(cubes) which returns a single cube containing

141

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/preprocessor/_derive

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

the derived variable. Its only argument cubes is a CubeList containing all required variables.

142 Chapter 16. Deriving a variable

Part VI

Contributions are very welcome

143

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

We greatly value contributions of any kind. Contributions could include, but are not limited to documentation im-
provements, bug reports, new or improved code, scientific and technical code reviews, infrastructure improvements,
mailing list and chat participation, community help/building, education and outreach. We value the time you invest in
contributing and strive to make the process as easy as possible. If you have suggestions for improving the process of
contributing, please do not hesitate to propose them.

If you have a bug or other issue to report or just need help, please open an issue on the issues tab on the ESMValCore
github repository.

If you would like to contribute a new preprocessor function, derived variable, fix for a dataset, or another new feature,
please discuss your idea with the development team before getting started, to avoid double work and/or disappointment
later. A good way to do this is to open an issue on GitHub.

145

https://github.com/ESMValGroup/ESMValCore/issues
https://github.com/ESMValGroup/ESMValCore/issues
https://github.com/ESMValGroup/ESMValCore/issues

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

146

CHAPTER
SEVENTEEN

GETTING STARTED

See Installation from source for instructions on how to set up a development installation.

New development should preferably be done in the ESM ValCore GitHub repository. The default git branch ismain. Use
this branch to create a new feature branch from and make a pull request against. This page offers a good introduction to
git branches, but it was written for BitBucket while we use GitHub, so replace the word BitBucket by GitHub whenever
you read it.

It is recommended that you open a draft pull request early, as this will cause CircleCI to run the unit tests, Codacy to
analyse your code, and readthedocs to build the documentation. It’s also easier to get help from other developers if
your code is visible in a pull request.

Make small pull requests, the ideal pull requests changes just a few files and adds/changes no more than 100 lines of
production code. The amount of test code added can be more extensive, but changes to existing test code should be
made sparingly.

17.1 Design considerations

When making changes, try to respect the current structure of the program. If you need to make major changes to the
structure of program to add a feature, chances are that you have either not come up with the most optimal design or the
feature is not a very good fit for the tool. Discuss your feature with the @ ESM ValGroup/esmvaltool-coreteam in an
issue to find a solution.

Please keep the following considerations in mind when programming:
* Changes should preferably be backward compatible.

* Apply changes gradually and change no more than a few files in a single pull request, but do make sure every
pull request in itself brings a meaningful improvement. This reduces the risk of breaking existing functionality
and making backward incompatible changes, because it helps you as well as the reviewers of your pull request
to better understand what exactly is being changed.

* Preprocessor functions are Python functions (and not classes) so they are easy to understand and implement for
scientific contributors.

¢ No additional CMOR checks should be implemented inside preprocessor functions. The input cube is fixed and
confirmed to follow the specification in esmvalcore/cmor/tables before applying any other preprocessor functions.
This design helps to keep the preprocessor functions and diagnostics scripts that use the preprocessed data from
the tool simple and reliable. See Project CMOR table configuration for the mapping from project in the recipe
to the relevant CMOR table.

¢ The ESMValCore package is based on iris. Preprocessor functions should preferably be small and just call the
relevant iris code. Code that is more involved and more broadly applicable than just in the ESMValCore, should
be implemented in iris instead.

147

https://github.com/ESMValGroup/ESMValCore
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://docs.esmvaltool.org/en/latest/community/review.html#easy-review
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/ESMValGroup/ESMValCore/issues
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables
https://scitools-iris.readthedocs.io/en/latest/index.html#iris-docs

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

Any settings in the recipe that can be checked before loading the data should be checked at the task creation
stage. This avoids that users run a recipe for several hours before finding out they made a mistake in the recipe.
No data should be processed or files written while creating the tasks.

CMOR checks should provide a good balance between reliability of the tool and ease of use. Several levels of
strictness of the checks are available to facilitate this.

Keep your code short and simple: we would like to make contributing as easy as possible. For example, avoid
implementing complicated class inheritance structures and boilerplate code.

If you find yourself copy-pasting a piece of code and making minor changes to every copy, instead put the repeated
bit of code in a function that you can re-use, and provide the changed bits as function arguments.

Be careful when changing existing unit tests to make your new feature work. You might be breaking existing
features if you have to change existing tests.

Finally, if you would like to improve the design of the tool, discuss your plans with the @ ESMValGroup/esmvaltool-
coreteam to make sure you understand the current functionality and you all agree on the new design.

148

Chapter 17. Getting started

https://stackoverflow.com/questions/3992199/what-is-boilerplate-code
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

CHAPTER
EIGHTEEN

CHECKLIST FOR PULL REQUESTS

To clearly communicate up front what is expected from a pull request, we have the following checklist. Please try
to do everything on the list before requesting a review. If you are unsure about something on the list, please ask the
@ESM ValGroup/tech-reviewers or @ ESM ValGroup/science-reviewers for help by commenting on your (draft) pull
request or by starting a new discussion.

In the ESM ValTool community we use pull request reviews to ensure all code and documentation contributions are of
good quality. The icons indicate whether the item will be checked during the Technical review or Scientific review.

The new functionality is relevant and scientifically sound

The pull request has a descriptive title and labels

Code is written according to the code quality guidelines

and Documentation is available

Unit fests have been added

Changes are backward compatible

Changed dependencies have been added or removed correctly
The list of authors is up to date

The checks shown below the pull request are successful

Pull requests introducing a change that causes a recipe to no longer run successfully (breaking change), or which results
in scientifically significant changes in results (science change) require additional items to be reviewed defined in the
backward compatibility policy. These include in particular:

Instructions for the release notes to assist recipe developers to adapt their recipe in light of the backward-
incompatible change available.

General instructions for recipe developers working on user recipes to enable them to adapt their code related to
backward-incompatible changes available (see ESMValTool_Tutorial: issue #263).

Core development team tagged to notify them of the backward-incompatible change, and give at least 2 weeks
for objections to be raised before merging to the main branch. If a strong objection is raised the backward-
incompatible change should not be merged until the objection is resolved.

Information required for the “backward-incompatible changes” section in the PR that introduces the backward-
incompatible change available.

149

https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/science-reviewers
https://github.com/ESMValGroup/ESMValTool/discussions
https://docs.esmvaltool.org/en/latest/community/review.html#reviewing
https://docs.esmvaltool.org/en/latest/community/review.html#technical-review
https://docs.esmvaltool.org/en/latest/community/review.html#scientific-review
https://docs.esmvaltool.org/en/latest/community/backward_compatibility.html#backward-compatibility-policy
https://github.com/ESMValGroup/ESMValTool_Tutorial/issues/263

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

150 Chapter 18. Checklist for pull requests

CHAPTER
NINETEEN

SCIENTIFIC RELEVANCE

The proposed changes should be relevant for the larger scientific community. The implementation of new features
should be scientifically sound; e.g. the formulas used in new preprocesssor functions should be accompanied by the
relevant references and checked for correctness by the scientific reviewer. The CF Conventions as well as additional
standards imposed by CMIP should be followed whenever possible.

151

https://cfconventions.org/
https://www.wcrp-climate.org/wgcm-cmip

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

152 Chapter 19. Scientific relevance

CHAPTER
TWENTY

PULL REQUEST TITLE AND LABEL

The title of a pull request should clearly describe what the pull request changes. If you need more text to describe what
the pull request does, please add it in the description. Add one or more labels to your pull request to indicate the type
of change. At least one of the following labels should be used: bug, deprecated feature, fix for dataset, preprocessor,
cmor, api, testing, documentation or enhancement.

The titles and labels of pull requests are used to compile the Changelog, therefore it is important that they are easy to
understand for people who are not familiar with the code or people in the project. Descriptive pull request titles also
makes it easier to find back what was changed when, which is useful in case a bug was introduced.

153

https://docs.github.com/en/github/managing-your-work-on-github/managing-labels#applying-labels-to-issues-and-pull-requests
https://github.com/ESMValGroup/ESMValCore/labels

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

154 Chapter 20. Pull request title and label

CHAPTER
TWENTYONE

CODE QUALITY

To increase the readability and maintainability or the ESMValCore source code, we aim to adhere to best practices and
coding standards.

We include checks for Python and yaml files, most of which are described in more detail in the sections below. This
includes checks for invalid syntax and formatting errors. Pre-commit is a handy tool that can run all of these checks
automatically just before you commit your code. It knows knows which tool to run for each filetype, and therefore
provides a convenient way to check your code.

21.1 Python

The standard document on best practices for Python code is PEPS and there is PEP257 for code documentation. We
make use of numpy style docstrings to document Python functions that are visible on readthedocs.

To check if your code adheres to the standard, go to the directory where the repository is cloned, e.g. cd ESMValCore,
and run prospector

prospector esmvalcore/preprocessor/_regrid.py

In addition to prospector, we use flake8 to automatically check for bugs and formatting mistakes and mypy for checking
that type hints are correct. Note that type hints are completely optional, but if you do choose to add them, they should
be correct.

When you make a pull request, adherence to the Python development best practices is checked in two ways:
1. As part of the unit tests, flake8 and mypy are run by CircleCl, see the section on 7ests for more information.

2. Codacy is a service that runs prospector (and other code quality tools) on changed files and reports the results.
Click the ‘Details’ link behind the Codacy check entry and then click ‘View more details on Codacy Production’
to see the results of the static code analysis done by Codacy. If you need to log in, you can do so using your
GitHub account.

The automatic code quality checks by prospector are really helpful to improve the quality of your code, but they are
not flawless. If you suspect prospector or Codacy may be wrong, please ask the @ ESM ValGroup/tech-reviewers by
commenting on your pull request.

Note that running prospector locally will give you quicker and sometimes more accurate results than waiting for Codacy.

Most formatting issues in Python code can be fixed automatically by running the commands

isort some_file.py

to sort the imports in the standard way using isort and

155

https://docs.esmvaltool.org/en/latest/utils.html#pre-commit
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.esmvaltool.org
http://prospector.landscape.io/
https://flake8.pycqa.org/en/latest/
https://mypy.readthedocs.io
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://flake8.pycqa.org/en/latest/
https://mypy.readthedocs.io
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.codacy.com/gh/ESMValGroup/ESMValCore/pullRequests
https://app.codacy.com/gh/ESMValGroup/ESMValCore/pullRequests
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://www.python.org/dev/peps/pep-0008/#imports
https://pycqa.github.io/isort/

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

yapf -i some_file.py

to add/remove whitespace as required by the standard using yapf,

docformatter -i some_file.py

to run docformatter which helps formatting the docstrings (such as line length, spaces).

21.2 YAML

Please use yamllint to check that your YAML files do not contain mistakes. yamllint checks for valid syntax, common
mistakes like key repetition and cosmetic problems such as line length, trailing spaces, wrong indentation, etc.

21.3 Any text file

A generic tool to check for common spelling mistakes is codespell.

156 Chapter 21. Code quality

https://github.com/google/yapf
https://github.com/myint/docformatter
https://yamllint.readthedocs.io
https://pypi.org/project/codespell/

CHAPTER
TWENTYTWO

DOCUMENTATION

The documentation lives on docs.esmvaltool.org.

22.1 Adding documentation

The documentation is built by readthedocs using Sphinx. There are two main ways of adding documentation:

1. As written text in the directory doc. When writing reStructuredText (.rst) files, please try to limit the line
length to 80 characters and always start a sentence on a new line. This makes it easier to review changes to
documentation on GitHub.

2. As docstrings or comments in code. For Python code, only the docstrings of Python modules, classes, and
functions that are mentioned in doc/api are used to generate the online documentation. This results in the ES-
MValCore API Reference. The standard document with best practices on writing docstrings is PEP257. For the
API documentation, we make use of numpy style docstrings.

22.2 What should be documented

Functionality that is visible to users should be documented. Any documentation that is visible on readthedocs should
be well written and adhere to the standards for documentation. Examples of this include:

e The recipe
* Preprocessor functions and their use from the recipe
» Configuration options
e Installation
* Qutput files
* Command line interface
* Diagnostic script interfaces
o The experimental Python interface
Note that:

* For functions that compute scientific results, comments with references to papers and/or other resources as well
as formula numbers should be included.

* When making changes to/introducing a new preprocessor function, also update the preprocessor documentation.

157

https://docs.esmvaltool.org
https://docs.esmvaltool.org
https://www.sphinx-doc.org
https://github.com/ESMValGroup/ESMValCore/tree/main/doc/
https://www.sphinx-doc.org/en/main/usage/restructuredtext/basics.html
https://www.python.org/dev/peps/pep-0257/
https://github.com/ESMValGroup/ESMValCore/tree/main/doc/api
https://www.python.org/dev/peps/pep-0257/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.esmvaltool.org

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

 There is no need to write complete numpy style documentation for functions that are not visible in the ESM-
ValCore API Reference chapter on readthedocs. However, adding a docstring describing what a function does is
always a good idea. For short functions, a one-line docstring is usually sufficient, but more complex functions
might require slightly more extensive documentation.

When reviewing a pull request, always check that documentation is easy to understand and available in all expected
places.

22.3 How to build and view the documentation

Whenever you make a pull request or push new commits to an existing pull request, readthedocs will automatically
build the documentation. The link to the documentation will be shown in the list of checks below your pull request.
Click ‘Details’ behind the check docs/readthedocs.org:esmvalcore to preview the documentation. If all checks
were successful, you may need to click ‘Show all checks’ to see the individual checks.

To build the documentation on your own computer, go to the directory where the repository was cloned and run

sphinx-build doc doc/build

or

sphinx-build -Ea doc doc/build

to build it from scratch.

Make sure that your newly added documentation builds without warnings or errors and looks correctly formatted.
CircleCI will build the documentation with the command:

sphinx-build -W doc doc/build

This will catch mistakes that can be detected automatically.
The configuration file for Sphinx is doc/shinx/source/conf.py.

See Integration with the ESMValCore documentation for information on how the ESMValCore documentation is inte-
grated into the complete ESM ValTool project documentation on readthedocs.

When reviewing a pull request, always check that the documentation checks shown below the pull request were suc-
cessful.

158 Chapter 22. Documentation

https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://www.sphinx-doc.org
https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/conf.py
https://docs.esmvaltool.org/en/latest/community/code_documentation.html#esmvalcore-documentation-integration

CHAPTER
TWENTYTHREE

TESTS

To check that the code works correctly, there tests available in the tests directory. We use pytest to write and run our
tests.

Contributions to ESMValCore should be covered by unit tests. Have a look at the existing tests in the tests direc-
tory for inspiration on how to write your own tests. If you do not know how to start with writing unit tests, ask the
@ESM ValGroup/tech-reviewers for help by commenting on the pull request and they will try to help you. It is also
recommended that you have a look at the pytest documentation at some point when you start writing your own tests.

23.1 Running tests

To run the tests on your own computer, go to the directory where the repository is cloned and run the command

pytest

Optionally you can skip tests which require additional dependencies for supported diagnostic script languages by adding
-m 'not installation' to the previous command. To only run tests from a single file, run the command

pytest tests/unit/test_some_file.py

If you would like to avoid loading the default pytest configuration from setup.cfg because this can be a bit slow for
running just a few tests, use

pytest -c /dev/null tests/unit/test_some_file.py

Use

pytest --help

for more information on the available commands.

Whenever you make a pull request or push new commits to an existing pull request, the tests in the tests directory of
the branch associated with the pull request will be run automatically on CircleCI. The results appear at the bottom of
the pull request. Click on ‘Details’ for more information on a specific test job.

When reviewing a pull request, always check that all test jobs on CircleCI were successful.

159

https://github.com/ESMValGroup/ESMValCore/tree/main/tests
https://docs.pytest.org
https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html#aim-to-have-a-good-code-coverage
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://docs.pytest.org
https://github.com/ESMValGroup/ESMValCore/blob/main/setup.cfg
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

23.2 Test coverage

To check which parts of your code are covered by unit tests, open the file test-reports/coverage_html/index.
html (available after running a pytest command) and browse to the relevant file.

CircleCI will upload the coverage results from running the tests to codecov and Codacy. codecov is a service that will
comment on pull requests with a summary of the test coverage. If codecov reports that the coverage has decreased,
check the report and add additional tests. Alternatively, it is also possible to view code coverage on Codacy (click the
Files tab) and CircleCI (open the tests job and click the ARTIFACTS tab). To see some of the results on CircleClI,
Codacy, or codecov, you may need to log in; you can do so using your GitHub account.

When reviewing a pull request, always check that new code is covered by unit tests and codecov reports an increased
coverage.

23.3 Sample data

New or modified preprocessor functions should preferably also be tested using the sample data. These tests are
located in tests/sample_data. Please mark new tests that use the sample data with the decorator @pytest.mark.
use_sample_data.

The ESMValTool_sample_data repository contains samples of CMIP6 data for testing ESM ValCore. The ESM ValTool-
sample-data package is installed as part of the developer dependencies. The size of the package is relatively small (~
100 MB), so it can be easily downloaded and distributed.

Preprocessing the sample data can be time-consuming, so some intermediate results are cached by pytest to make the
tests run faster. If you suspect the tests are failing because the cache is invalid, clear it by running

pytest --cache-clear

To avoid running the time consuming tests that use sample data altogether, run

pytest -m "not use_sample_data"

23.4 Automated testing

Whenever you make a pull request or push new commits to an existing pull request, the tests in the tests of the branch
associated with the pull request will be run automatically on CircleCI.

Every night, more extensive tests are run to make sure that problems with the installation of the tool are discovered by
the development team before users encounter them. These nightly tests have been designed to follow the installation
procedures described in the documentation, e.g. in the /nstallation chapter. The nightly tests are run using both CircleCI
and GitHub Actions. The result of the tests ran by CircleCI can be seen on the CircleCI project page and the result of the
tests ran by GitHub Actions can be viewed on the Actions tab of the repository (to learn more about the Github-hosted
runners, please have a look the documentation).

When opening a pull request, if you wish to run the Github Actions Test test, you can activate it via a simple comment
containing the @runGAtests tag (e.g. “@runGAtests” or “@runGAtests please run” - in effect, tagging the runGAtests
bot that will start the test automatically). This is useful to check if a certain feature that you included in the Pull Request,
and can be tested for via the test suite, works across the supported Python versions, and both on Linux and OSX. The
test is currently deactivated, so before triggering the test via comment, make sure you activate the test in the main
Actions page (click on Test via PR Comment and activate it); also and be sure to deactivate it afterwards (the Github
API still needs a bit more development, and currently it triggers the test for each comment irrespective of PR, that’s
why this needs to be activated/decativated).

160 Chapter 23. Tests

https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html#aim-to-have-a-good-code-coverage
https://app.codecov.io/gh/ESMValGroup/ESMValCore/pulls
https://app.codecov.io/gh/ESMValGroup/ESMValCore/pulls
https://app.codacy.com/gh/ESMValGroup/ESMValCore/pullRequests
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.codecov.io/gh/ESMValGroup/ESMValCore/pulls
https://github.com/ESMValGroup/ESMValCore/tree/main/tests/sample_data
https://docs.python.org/3/glossary.html#term-decorator
https://github.com/ESMValGroup/ESMValTool_sample_data
https://pypi.org/project/ESMValTool-sample-data/
https://pypi.org/project/ESMValTool-sample-data/
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore?branch=main
https://github.com/ESMValGroup/ESMValCore/actions
https://docs.github.com/en/actions/using-github-hosted-runners
https://github.com/ESMValGroup/ESMValCore/actions/workflows/run-tests.yml
https://github.com/ESMValGroup/ESMValCore/actions

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

The configuration of the tests run by CircleCI can be found in the directory .circleci, while the configuration of the tests
run by GitHub Actions can be found in the directory .github/workflows.

23.4. Automated testing 161

https://github.com/ESMValGroup/ESMValCore/blob/main/.circleci
https://github.com/ESMValGroup/ESMValCore/blob/main/.github/workflows

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

162 Chapter 23. Tests

CHAPTER
TWENTYFOUR

BACKWARD COMPATIBILITY

The ESMValCore package is used by many people to run their recipes. Many of these recipes are maintained in the
public ESM ValTool repository, but there are also users who choose not to share their work there. While our commitment
is first and foremost to users who do share their recipes in the ESM ValTool repository, we still try to be nice to all of
the ESMValCore users.

Note: The backward compatibility policy outlines the key principles on backward compatibility and additional guid-
ance on handling backward-incompatible changes. This policy applies to both, ESMValCore and ESM ValTool.

When making changes, e.g. to the recipe format, the diagnostic script interface, the public Python API, or the config-
uration file format, keep in mind that this may affect many users. To keep the tool user friendly, try to avoid making
changes that are not backward compatible, i.e. changes that require users to change their existing recipes, diagnostics,
configuration files, or scripts.

If you really must change the public interfaces of the tool, always discuss this with the @ ESM ValGroup/esmvaltool-
coreteam. Try to deprecate the feature first by issuing an ESMValCoreDeprecationiarning using the warnings
module and schedule it for removal two minor versions from the upcoming release. For example, when you deprecate
a feature in a pull request that will be included in version 2.5, that feature should be removed in version 2.7:

import warnings
from esmvalcore.exceptions import ESMValCoreDeprecationWarning
Other code

def func(x, deprecated_option=None):
"""Deprecate deprecated_option.
if deprecated_option is not None:
deprecation_msg = (
"The option " “deprecated_option = has been deprecated in
"ESMValCore version 2.5 and is scheduled for removal in
"version 2.7. Add additional text (e.g., description of "
"alternatives) here.")
warnings.warn(deprecation_msg, ESMValCoreDeprecationWarning)

mirn

Other code

Mention the version in which the feature will be removed in the deprecation message. Label the pull request with the
deprecated feature label. When deprecating a feature, please follow up by actually removing the feature in due course.

If you must make backward incompatible changes, you need to update the available recipes in ESMValTool and link the
ESM ValTool pull request(s) in the ESM ValCore pull request description. You can ask the @ ESM ValGroup/esmvaltool-

163

https://github.com/ESMValGroup/ESMValTool
https://docs.esmvaltool.org/en/latest/community/backward_compatibility.html#backward-compatibility-policy
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://docs.python.org/3/library/warnings.html#module-warnings
https://semver.org/
https://github.com/ESMValGroup/ESMValCore/labels/deprecated%20feature
https://github.com/orgs/ESMValGroup/teams/esmvaltool-recipe-maintainers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-recipe-maintainers

ESMValTool User’s and Developer’s Guide, Release 2.10.0.dev0+g991f9697.d20230704

recipe-maintainers for help with updating existing recipes, but please be considerate of their time. You should tag the
@ESM ValGroup/esmvaltool-coreteam to notify them of the backward-incompatible change, and give at least 2 weeks
for objections to be raised before merging to the main branch. If a strong objection is raised the backwards-incompatible
change should not be merged until the objection is resolved.

When reviewing a pull request, always check for backward incompatible changes and make sure they are needed and
have been discussed with the @ ESM ValGroup/esmvaltool-coreteam. Also, make sure the author of the pull request has
created the accompanyi