
ESMValTool User’s and Developer’s
Guide

Release 2.7.0rc2.dev0+g71d34b38.d20221005

ESMValTool Development Team

Oct 05, 2022

ESMVALTOOL

I Getting started 1

1 Installation 3

2 Configuration files 7

3 Input data 19

4 Running 29

5 Output 33

II The recipe format 37

6 Overview 39

7 Preprocessor 49

III Diagnostic script interfaces 83

8 Provenance 87

9 Information provided by ESMValCore to the diagnostic script 89

10 Information provided by the diagnostic script to ESMValCore 91

IV Development 93

11 Preprocessor function 97

12 Fixing data 103

13 Deriving a variable 111

V Contributions are very welcome 113

14 Getting started 117

15 Checklist for pull requests 119

i

16 Scientific relevance 121

17 Pull request title and label 123

18 Code quality 125

19 Documentation 127

20 Tests 129

21 Backward compatibility 133

22 Dependencies 135

23 List of authors 137

24 Pull request checks 139

25 Making a release 141

VI ESMValCore API Reference 145

26 CMOR functions 149

27 Find and download files from ESGF 167

28 Exceptions 173

29 Iris helper functions 175

30 Preprocessor functions 177

31 Experimental API 207

VII Changelog 227

32 v2.7.0rc1 229

33 v2.6.0 231

34 v2.5.0 235

35 v2.4.0 239

36 v2.3.1 243

37 v2.3.0 245

38 v2.2.0 249

39 v2.1.0 253

40 v2.0.0 255

41 v2.0.0b9 259

ii

VIII Indices and tables 261

Python Module Index 265

Index 267

iii

iv

Part I

Getting started

1

CHAPTER

ONE

INSTALLATION

1.1 Conda installation

In order to install the Conda package, you will need to install Conda first. For a minimal conda installation (recom-
mended) go to https://conda.io/miniconda.html. It is recommended that you always use the latest version of conda, as
problems have been reported when trying to use older versions.

Once you have installed conda, you can install ESMValCore by running:

conda install -c conda-forge esmvalcore

It is also possible to create a new Conda environment and install ESMValCore into it with a single command:

conda create --name esmvalcore -c conda-forge esmvalcore 'python=3.10'

Don’t forget to activate the newly created environment after the installation:

conda activate esmvalcore

Of course it is also possible to choose a different name than esmvalcore for the environment.

Note: Creating a new Conda environment is often much faster and more reliable than trying to update an existing
Conda environment.

1.2 Pip installation

It is also possible to install ESMValCore from PyPI. However, this requires first installing dependencies that are not
available on PyPI in some other way. By far the easiest way to install these dependencies is to use conda. For a minimal
conda installation (recommended) go to https://conda.io/miniconda.html.

After installing Conda, download the file with the list of dependencies:

wget https://raw.githubusercontent.com/ESMValGroup/ESMValCore/main/environment.yml

and install these dependencies into a new conda environment with the command

conda env create --name esmvalcore --file environment.yml

Finally, activate the newly created environment

3

https://docs.conda.io
https://conda.io/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-environments
https://pypi.org/project/ESMValCore/
https://docs.conda.io
https://conda.io/miniconda.html
https://raw.githubusercontent.com/ESMValGroup/ESMValCore/main/environment.yml

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

conda activate esmvalcore

and install ESMValCore as well as any remaining dependencies with the command:

pip install esmvalcore

1.3 Docker installation

ESMValCore is also provided through DockerHub in the form of docker containers. See https://docs.docker.com for
more information about docker containers and how to run them.

You can get the latest release with

docker pull esmvalgroup/esmvalcore:stable

If you want to use the current main branch, use

docker pull esmvalgroup/esmvalcore:latest

To run a container using those images, use:

docker run esmvalgroup/esmvalcore:stable --help

Note that the container does not see the data or environmental variables available in the host by default. You can make
data available with -v /path:/path/in/container and environmental variables with -e VARNAME.

For example, the following command would run a recipe

docker run -e HOME -v "$HOME":"$HOME" -v /data:/data esmvalgroup/esmvalcore:stable -c ~/
→˓config-user.yml ~/recipes/recipe_example.yml

with the environmental variable $HOME available inside the container and the data in the directories $HOME and /data,
so these can be used to find the configuration file, recipe, and data.

It might be useful to define a bash alias or script to abbreviate the above command, for example

alias esmvaltool="docker run -e HOME -v $HOME:$HOME -v /data:/data esmvalgroup/
→˓esmvalcore:stable"

would allow using the esmvaltool command without even noticing that the tool is running inside a Docker container.

1.4 Singularity installation

Docker is usually forbidden in clusters due to security reasons. However, there is a more secure alternative to run
containers that is usually available on them: Singularity.

Singularity can use docker containers directly from DockerHub with the following command

singularity run docker://esmvalgroup/esmvalcore:stable -c ~/config-user.yml ~/recipes/
→˓recipe_example.yml

4 Chapter 1. Installation

https://hub.docker.com/u/esmvalgroup/
https://docs.docker.com
https://opensource.com/article/19/7/bash-aliases
https://sylabs.io/guides/3.0/user-guide/quick_start.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Note that the container does not see the data available in the host by default. You can make host data available with -B
/path:/path/in/container.

It might be useful to define a bash alias or script to abbreviate the above command, for example

alias esmvaltool="singularity run -B $HOME:$HOME -B /data:/data docker://esmvalgroup/
→˓esmvalcore:stable"

would allow using the esmvaltool command without even noticing that the tool is running inside a Singularity con-
tainer.

Some clusters may not allow to connect to external services, in those cases you can first create a singularity image
locally:

singularity build esmvalcore.sif docker://esmvalgroup/esmvalcore:stable

and then upload the image file esmvalcore.sif to the cluster. To run the container using the image file esmvalcore.
sif use:

singularity run esmvalcore.sif -c ~/config-user.yml ~/recipes/recipe_example.yml

1.5 Installation from source

Note: If you would like to install the development version of ESMValCore alongside ESMValTool, please have a look
at these instructions.

To install from source for development, follow these instructions.

• Download and install conda (this should be done even if the system in use already has a preinstalled version of
conda, as problems have been reported with using older versions of conda)

• To make the conda command available, add source <prefix>/etc/profile.d/conda.sh to your .bashrc
file and restart your shell. If using (t)csh shell, add source <prefix>/etc/profile.d/conda.csh to your
.cshrc/.tcshrc file instead.

• Update conda: conda update -y conda

• Clone the ESMValCore Git repository: git clone https://github.com/ESMValGroup/ESMValCore.git

• Go to the source code directory: cd ESMValCore

• Create the esmvalcore conda environment conda env create --name esmvalcore --file
environment.yml

• Activate the esmvalcore environment: conda activate esmvalcore

• Install in development mode: pip install -e '.[develop]'. If you are installing behind a proxy
that does not trust the usual pip-urls you can declare them with the option --trusted-host, e.g. pip
install --trusted-host=pypi.python.org --trusted-host=pypi.org --trusted-host=files.
pythonhosted.org -e .[develop]

• Test that your installation was successful by running esmvaltool -h.

1.5. Installation from source 5

https://opensource.com/article/19/7/bash-aliases
https://docs.esmvaltool.org/en/latest/quickstart/installation.html#esmvalcore-development-installation
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

1.6 Pre-installed versions on HPC clusters / other servers

If you would like to use pre-installed versions on HPC clusters (currently CEDA-JASMIN and DKRZ-Levante), and
other servers (currently Met Office Linux estate), please have a look at these instructions.

1.7 Installation from the conda lock file

A fast conda environment creation is possible using the provided conda lock files. This is a secure alternative to the
installation from source, whenever the conda environment can not be created for some reason. A conda lock file is
an explicit environment file that contains pointers to dependency packages as they are hosted on the Anaconda cloud;
these have frozen version numbers, build hashes, and channel names, parameters established at the time of the conda
lock file creation, so may be obsolete after a while, but they allow for a robust environment creation while they’re still
up-to-date. We regenerate these lock files every 10 days through automatic Pull Requests (or more frequently, since
the automatic generator runs on merges on the main branch too), so to minimize the risk of dependencies becoming
obsolete. Conda environment creation from a lock file is done just like with any other environment file:

conda create --name esmvaltool --file conda-linux-64.lock

The latest, most up-to-date file can always be downloaded directly from the source code repository, a direct download
link can be found here.

Note: pip and conda are NOT installed, so you will have to install them in the new environment: use conda-forge as
channel): conda install -c conda-forge pip at the very minimum so we can install esmvalcore afterwards.

1.8 Creating a conda lock file

We provide a conda lock file for Linux-based operating systems, but if you prefer to build a conda lock file yourself,
install the conda-lock package first:

conda install -c conda-forge conda-lock

then run

conda-lock lock --platform linux-64 -f environment.yml --mamba

(mamba activated for speed) to create a conda lock file for Linux platforms, or run

conda-lock lock --platform osx-64 -f environment.yml --mamba

to create a lock file for OSX platforms. Note however, that using conda lock files on OSX is still problematic!

6 Chapter 1. Installation

https://docs.esmvaltool.org/en/latest/quickstart/installation.html#install-on-hpc
https://raw.githubusercontent.com/ESMValGroup/ESMValCore/main/conda-linux-64.lock

CHAPTER

TWO

CONFIGURATION FILES

2.1 Overview

There are several configuration files in ESMValCore:

• config-user.yml: sets a number of user-specific options like desired graphical output format, root paths to
data, etc.;

• config-developer.yml: sets a number of standardized file-naming and paths to data formatting;

and one configuration file which is distributed with ESMValTool:

• config-references.yml: stores information on diagnostic and recipe authors and scientific journals refer-
ences;

2.2 User configuration file

The config-user.yml configuration file contains all the global level information needed by ESMValTool. It can
be reused as many times the user needs to before changing any of the options stored in it. This file is essentially the
gateway between the user and the machine-specific instructions to esmvaltool. By default, esmvaltool looks for it in
the home directory, inside the .esmvaltool folder.

Users can get a copy of this file with default values by running

esmvaltool config get-config-user --path=${TARGET_FOLDER}

If the option --path is omitted, the file will be created in ${HOME}/.esmvaltool

The following shows the default settings from the config-user.yml file with explanations in a commented line above
each option. If only certain values are allowed for an option, these are listed after ---. The option in square brackets
is the default value, i.e., the one that is used if this option is omitted in the file.

Destination directory where all output will be written
Includes log files and performance stats.
output_dir: ~/esmvaltool_output

Directory for storing downloaded climate data
download_dir: ~/climate_data

Disable automatic downloads --- [true]/false
Disable the automatic download of missing CMIP3, CMIP5, CMIP6, CORDEX,
and obs4MIPs data from ESGF by default. This is useful if you are working

(continues on next page)

7

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

on a computer without an internet connection.
offline: true

Auxiliary data directory
Used by some recipes to look for additional datasets.
auxiliary_data_dir: ~/auxiliary_data

Rootpaths to the data from different projects
This default setting will work if files have been downloaded by the
ESMValTool via ``offline=False``. Lists are also possible. For
site-specific entries, see the default ``config-user.yml`` file that can be
installed with the command ``esmvaltool config get_config_user``. For each
project, this can be either a single path or a list of paths. Comment out
these when using a site-specific path.
rootpath:
default: ~/climate_data

Directory structure for input data --- [default]/ESGF/BADC/DKRZ/ETHZ/etc.
This default setting will work if files have been downloaded by the
ESMValTool via ``offline=False``. See ``config-developer.yml`` for
definitions. Comment out/replace as per needed.
drs:
CMIP3: ESGF
CMIP5: ESGF
CMIP6: ESGF
CORDEX: ESGF
obs4MIPs: ESGF

Run at most this many tasks in parallel --- [null]/1/2/3/4/...
Set to ``null`` to use the number of available CPUs. If you run out of
memory, try setting max_parallel_tasks to ``1`` and check the amount of
memory you need for that by inspecting the file ``run/resource_usage.txt`` in
the output directory. Using the number there you can increase the number of
parallel tasks again to a reasonable number for the amount of memory
available in your system.
max_parallel_tasks: null

Log level of the console --- debug/[info]/warning/error
For much more information printed to screen set log_level to ``debug``.
log_level: info

Exit on warning --- true/[false]
Only used in NCL diagnostic scripts.
exit_on_warning: false

Plot file format --- [png]/pdf/ps/eps/epsi
output_file_type: png

Remove the ``preproc`` directory if the run was successful --- [true]/false
By default this option is set to ``true``, so all preprocessor output files
will be removed after a successful run. Set to ``false`` if you need those files.
remove_preproc_dir: true

(continues on next page)

8 Chapter 2. Configuration files

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

Use netCDF compression --- true/[false]
compress_netcdf: false

Save intermediary cubes in the preprocessor --- true/[false]
Setting this to ``true`` will save the output cube from each preprocessing
step. These files are numbered according to the preprocessing order.
save_intermediary_cubes: false

Use a profiling tool for the diagnostic run --- [false]/true
A profiler tells you which functions in your code take most time to run.
For this purpose we use ``vprof``, see below for notes. Only available for
Python diagnostics.
profile_diagnostic: false

Path to custom ``config-developer.yml`` file
This can be used to customise project configurations. See
``config-developer.yml`` for an example. Set to ``null`` to use the default.
config_developer_file: null

The offline setting can be used to disable or enable automatic downloads from ESGF. If offline is set to false,
the tool will automatically download any CMIP3, CMIP5, CMIP6, CORDEX, and obs4MIPs data that is required to
run a recipe but not available locally and store it in download_dir using the ESGF directory structure defined in the
Developer configuration file.

The auxiliary_data_dir setting is the path to place any required additional auxiliary data files. This is necessary
because certain Python toolkits, such as cartopy, will attempt to download data files at run time, typically geographic
data files such as coastlines or land surface maps. This can fail if the machine does not have access to the wider internet.
This location allows the user to specify where to find such files if they can not be downloaded at runtime. The example
user configuration file already contains two valid locations for auxiliary_data_dir directories on CEDA-JASMIN
and DKRZ, and a number of such maps and shapefiles (used by current diagnostics) are already there. You will need
esmeval group workspace membership to access the JASMIN one (see instructions how to gain access to the group
workspace.

Warning: This setting is not for model or observational datasets, rather it is for extra data files such as shapefiles
or other data sources needed by the diagnostics.

The profile_diagnostic setting triggers profiling of Python diagnostics, this will tell you which functions in the
diagnostic took most time to run. For this purpose we use vprof. For each diagnostic script in the recipe, the profiler
writes a .json file that can be used to plot a flame graph of the profiling information by running

vprof --input-file esmvaltool_output/recipe_output/run/diagnostic/script/profile.json

Note that it is also possible to use vprof to understand other resources used while running the diagnostic, including
execution time of different code blocks and memory usage.

A detailed explanation of the data finding-related sections of the config-user.yml (rootpath and drs) is presented
in the Data retrieval section. This section relates directly to the data finding capabilities of ESMValTool and are very
important to be understood by the user.

Note: You can choose your config-user.yml file at run time, so you could have several of them available with
different purposes. One for a formalised run, another for debugging, etc. You can even provide any config user value

2.2. User configuration file 9

https://help.jasmin.ac.uk/article/199-introduction-to-group-workspaces
https://github.com/nvdv/vprof
https://queue.acm.org/detail.cfm?id=2927301

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

as a run flag --argument_name argument_value

2.3 ESGF configuration

The esmvaltool run command can automatically download the files required to run a recipe from ESGF for the
projects CMIP3, CMIP5, CMIP6, CORDEX, and obs4MIPs. The downloaded files will be stored in the download_dir
specified in the User configuration file. To enable automatic downloads from ESGF, set offline: false in the User
configuration file or provide the command line argument --offline=False when running the recipe.

Note: When running a recipe that uses many or large datasets on a machine that does not have any data available
locally, the amount of data that will be downloaded can be in the range of a few hundred gigabyte to a few terrabyte.
See Obtaining input data for advice on getting access to machines with large datasets already available.

A log message will be displayed with the total amount of data that will be downloaded before starting the download.
If you see that this is more than you would like to download, stop the tool by pressing the Ctrl and C keys on your
keyboard simultaneously several times, edit the recipe so it contains fewer datasets and try again.

For downloading some files (e.g. those produced by the CORDEX project), you need to log in to be able to download
the data.

See the ESGF user guide for instructions on how to create an ESGF OpenID account if you do not have one yet. Note
that the OpenID account consists of 3 components instead of the usual two, in addition a username and password you
also need the hostname of the provider of the ID; for example esgf-data.dkrz.de. Even though the account is issued by
a particular host, the same OpenID account can be used to download data from all hosts in the ESGF.

Next, configure your system so the esmvaltool can use your credentials. This can be done using the keyring package
or they can be stored in a configuration file.

2.3.1 Storing credentials in keyring

First install the keyring package. Note that this requires a supported backend that may not be available on compute
clusters, see the keyring documentation for more information.

pip install keyring

Next, set your username and password by running the commands:

keyring set ESGF hostname
keyring set ESGF username
keyring set ESGF password

for example, if you created an account on the host esgf-data.dkrz.de with username ‘cookiemonster’ and password
‘Welcome01’, run the command

keyring set ESGF hostname

this will display the text

Password for 'hostname' in 'ESGF':

10 Chapter 2. Configuration files

https://docs.esmvaltool.org/en/latest/input.html#inputdata
https://esgf.github.io/esgf-user-support/user_guide.html
https://esgf-data.dkrz.de/user/add/?next=http://esgf-data.dkrz.de/projects/esgf-dkrz/
https://pypi.org/project/keyring
https://esgf-data.dkrz.de/user/add/?next=http://esgf-data.dkrz.de/projects/esgf-dkrz/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

type esgf-data.dkrz.de (the characters will not be shown) and press Enter. Repeat the same procedure with
keyring set ESGF username, type cookiemonster and press Enter and keyring set ESGF password, type
Welcome01 and press Enter.

To check that you entered your credentials correctly, run:

keyring get ESGF hostname
keyring get ESGF username
keyring get ESGF password

2.3.2 Configuration file

An optional configuration file can be created for configuring how the tool uses esgf-pyclient to find and download data.
The name of this file is ~/.esmvaltool/esgf-pyclient.yml.

Logon

In the logon section you can provide arguments that will be passed on to pyesgf.logon.LogonManager.logon().
For example, you can store the hostname, username, and password or your OpenID account in the file like this:

logon:
hostname: "your-hostname"
username: "your-username"
password: "your-password"

for example

logon:
hostname: "esgf-data.dkrz.de"
username: "cookiemonster"
password: "Welcome01"

if you created an account on the host esgf-data.dkrz.de with username ‘cookiemonster’ and password ‘Welcome01’.
Alternatively, you can configure an interactive log in:

logon:
interactive: true

Note that storing your password in plain text in the configuration file is less secure. On shared systems, make sure the
permissions of the file are set so only you and administrators can read it, i.e.

ls -l ~/.esmvaltool/esgf-pyclient.yml

shows permissions -rw-------.

2.3. ESGF configuration 11

https://esgf-pyclient.readthedocs.io
https://esgf-pyclient.readthedocs.io/en/latest/api.html#pyesgf.logon.LogonManager.logon
https://esgf-data.dkrz.de/user/add/?next=http://esgf-data.dkrz.de/projects/esgf-dkrz/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Search

Any arguments to pyesgf.search.connection.SearchConnection can be provided in the section
search_connection, for example:

search_connection:
expire_after: 2592000 # the number of seconds in a month

to keep cached search results for a month.

The default settings are:

urls:
- 'https://esgf-index1.ceda.ac.uk/esg-search'
- 'https://esgf-node.llnl.gov/esg-search'
- 'https://esgf-data.dkrz.de/esg-search'
- 'https://esgf-node.ipsl.upmc.fr/esg-search'
- 'https://esg-dn1.nsc.liu.se/esg-search'
- 'https://esgf.nci.org.au/esg-search'
- 'https://esgf.nccs.nasa.gov/esg-search'
- 'https://esgdata.gfdl.noaa.gov/esg-search'

distrib: true
timeout: 120 # seconds
cache: '~/.esmvaltool/cache/pyesgf-search-results'
expire_after: 86400 # cache expires after 1 day

Note that by default the tool will try the ESGF index nodes in the order provided in the configuration file and use the
first one that is online. Some ESGF index nodes may return search results faster than others, so you may be able to
speed up the search for files by experimenting with placing different index nodes at the top of the list.

If you experience errors while searching, it sometimes helps to delete the cached results.

2.3.3 Download statistics

The tool will maintain statistics of how fast data can be downloaded from what host in the file ~/.esmvaltool/cache/esgf-
hosts.yml and automatically select hosts that are faster. There is no need to manually edit this file, though it can be
useful to delete it if you move your computer to a location that is very different from the place where you previously
downloaded data. An entry in the file might look like this:

esgf2.dkrz.de:
duration (s): 8
error: false
size (bytes): 69067460
speed (MB/s): 7.9

The tool only uses the duration and size to determine the download speed, the speed shown in the file is not used. If
error is set to true, the most recent download request to that host failed and the tool will automatically try this host
only as a last resort.

12 Chapter 2. Configuration files

https://esgf-pyclient.readthedocs.io/en/latest/api.html#pyesgf.search.connection.SearchConnection
https://esgf.llnl.gov/nodes.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

2.4 Developer configuration file

Most users and diagnostic developers will not need to change this file, but it may be useful to understand its content.
It will be installed along with ESMValCore and can also be viewed on GitHub: esmvalcore/config-developer.yml.
This configuration file describes the file system structure and CMOR tables for several key projects (CMIP6, CMIP5,
obs4MIPs, OBS6, OBS) on several key machines (e.g. BADC, CP4CDS, DKRZ, ETHZ, SMHI, BSC), and for native
output data for some models (ICON, IPSL, . . . see Configuring datasets in native format). CMIP data is stored as part
of the Earth System Grid Federation (ESGF) and the standards for file naming and paths to files are set out by CMOR
and DRS. For a detailed description of these standards and their adoption in ESMValCore, we refer the user to CMIP
data section where we relate these standards to the data retrieval mechanism of the ESMValCore.

By default, esmvaltool looks for it in the home directory, inside the ‘.esmvaltool’ folder.

Users can get a copy of this file with default values by running

esmvaltool config get-config-developer --path=${TARGET_FOLDER}

If the option --path is omitted, the file will be created in `${HOME}/.esmvaltool.

Note: Remember to change your config-user file if you want to use a custom config-developer.

Example of the CMIP6 project configuration:

CMIP6:
input_dir:
default: '/'
BADC: '{activity}/{institute}/{dataset}/{exp}/{ensemble}/{mip}/{short_name}/{grid}/

→˓{latestversion}'
DKRZ: '{activity}/{institute}/{dataset}/{exp}/{ensemble}/{mip}/{short_name}/{grid}/

→˓{latestversion}'
ETHZ: '{exp}/{mip}/{short_name}/{dataset}/{ensemble}/{grid}/'

input_file: '{short_name}_{mip}_{dataset}_{exp}_{ensemble}_{grid}*.nc'
output_file: '{project}_{dataset}_{mip}_{exp}_{ensemble}_{short_name}'
cmor_type: 'CMIP6'
cmor_strict: true

2.4.1 Input file paths

When looking for input files, the esmvaltool command provided by ESMValCore replaces the placeholders {item}
in input_dir and input_file with the values supplied in the recipe. ESMValCore will try to automatically fill in
the values for institute, frequency, and modeling_realm based on the information provided in the CMOR tables and/or
extra_facets when reading the recipe. If this fails for some reason, these values can be provided in the recipe too.

The data directory structure of the CMIP projects is set up differently at each site. As an example, the CMIP6 directory
path on BADC would be:

'{activity}/{institute}/{dataset}/{exp}/{ensemble}/{mip}/{short_name}/{grid}/
→˓{latestversion}'

The resulting directory path would look something like this:

CMIP/MOHC/HadGEM3-GC31-LL/historical/r1i1p1f3/Omon/tos/gn/latest

2.4. Developer configuration file 13

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/config-developer.yml

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Please, bear in mind that input_dirs can also be a list for those cases in which may be needed:

- '{exp}/{ensemble}/original/{mip}/{short_name}/{grid}/{latestversion}'
- '{exp}/{ensemble}/computed/{mip}/{short_name}/{grid}/{latestversion}'

In that case, the resultant directories will be:

historical/r1i1p1f3/original/Omon/tos/gn/latest
historical/r1i1p1f3/computed/Omon/tos/gn/latest

For a more in-depth description of how to configure ESMValCore so it can find your data please see CMIP data.

2.4.2 Preprocessor output files

The filename to use for preprocessed data is configured in a similar manner using output_file. Note that the extension
.nc (and if applicable, a start and end time) will automatically be appended to the filename.

2.4.3 Project CMOR table configuration

ESMValCore comes bundled with several CMOR tables, which are stored in the directory esmvalcore/cmor/tables.
These are copies of the tables available from PCMDI.

For every project that can be used in the recipe, there are four settings related to CMOR table settings available:

• cmor_type: can be CMIP5 if the CMOR table is in the same format as the CMIP5 table or CMIP6 if the table is
in the same format as the CMIP6 table.

• cmor_strict: if this is set to false, the CMOR table will be extended with variables from the Custom CMOR
tables (by default loaded from the esmvalcore/cmor/tables/custom directory) and it is possible to use vari-
ables with a mip which is different from the MIP table in which they are defined.

• cmor_path: path to the CMOR table. Relative paths are with respect to esmvalcore/cmor/tables. Defaults to the
value provided in cmor_type written in lower case.

• cmor_default_table_prefix: Prefix that needs to be added to the mip to get the name of the file containing
the mip table. Defaults to the value provided in cmor_type.

2.4.4 Custom CMOR tables

As mentioned in the previous section, the CMOR tables of projects that use cmor_strict: false will be extended
with custom CMOR tables. By default, these are loaded from esmvalcore/cmor/tables/custom. However, by using the
special project custom in the config-developer.yml file with the option cmor_path, a custom location for these
custom CMOR tables can be specified:

custom:
cmor_path: ~/my/own/custom_tables

This path can be given as relative path (relative to esmvalcore/cmor/tables) or as absolute path. Other options given for
this special table will be ignored.

Custom tables in this directory need to follow the naming convention CMOR_{short_name}.dat and need to be given
in CMIP5 format.

Example for the file CMOR_asr.dat:

14 Chapter 2. Configuration files

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables
https://github.com/PCMDI
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/custom
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

SOURCE: CMIP5
!============
variable_entry: asr
!============
modeling_realm: atmos
!----------------------------------
! Variable attributes:
!----------------------------------
standard_name:
units: W m-2
cell_methods: time: mean
cell_measures: area: areacella
long_name: Absorbed shortwave radiation
!----------------------------------
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time
type: real
positive: down
!----------------------------------
!

It is also possible to use a special coordinates file CMOR_coordinates.dat. If this is not present in the custom
directory, the one from the default directory (esmvalcore/cmor/tables/custom/CMOR_coordinates.dat) is used.

2.4.5 Filter preprocessor warnings

It is possible to ignore specific warnings of the preprocessor for a given project. This is particularly useful for native
datasets which do not follow the CMOR standard by default and consequently produce a lot of warnings when handled
by Iris. This can be configured in the config-developer.yml file for some steps of the preprocessing chain.

Currently supported preprocessor steps:

• load()

Here is an example on how to ignore specific warnings during the preprocessor step load for all datasets of project
EMAC (taken from the default config-developer.yml file):

ignore_warnings:
load:
- {message: 'Missing CF-netCDF formula term variable .*, referenced by netCDF␣

→˓variable .*', module: iris}
- {message: 'Ignored formula of unrecognised type: .*', module: iris}

The keyword arguments specified in the list items are directly passed to warnings.filterwarnings() in addition
to action=ignore (may be overwritten in config-developer.yml).

2.4. Developer configuration file 15

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables/custom/CMOR_coordinates.dat
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

2.4.6 Configuring datasets in native format

ESMValCore can be configured for handling native model output formats and specific reanalysis/observation datasets
without preliminary reformatting. These datasets can be either hosted under the native6 project (mostly native re-
analysis/observational datasets) or under a dedicated project, e.g., ICON (mostly native models).

Example:

native6:
cmor_strict: false
input_dir:
default: 'Tier{tier}/{dataset}/{latestversion}/{frequency}/{short_name}'

input_file:
default: '*.nc'

output_file: '{project}_{dataset}_{type}_{version}_{mip}_{short_name}'
cmor_type: 'CMIP6'
cmor_default_table_prefix: 'CMIP6_'

ICON:
cmor_strict: false
input_dir:
default:
- '{exp}'
- '{exp}/outdata'

input_file:
default: '{exp}_{var_type}*.nc'

output_file: '{project}_{dataset}_{exp}_{var_type}_{mip}_{short_name}'
cmor_type: 'CMIP6'
cmor_default_table_prefix: 'CMIP6_'

A detailed description on how to add support for further native datasets is given here.

Hint: When using native datasets, it might be helpful to specify a custom location for the Custom CMOR tables. This
allows reading arbitrary variables from native datasets. Note that this requires the option cmor_strict: false in
the project configuration used for the native model output.

2.5 References configuration file

The esmvaltool/config-references.yml file contains the list of ESMValTool diagnostic and recipe authors, references
and projects. Each author, project and reference referred to in the documentation section of a recipe needs to be in this
file in the relevant section.

For instance, the recipe recipe_ocean_example.yml file contains the following documentation section:

documentation:
authors:
- demo_le

maintainer:
- demo_le

(continues on next page)

16 Chapter 2. Configuration files

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

references:
- demora2018gmd

projects:
- ukesm

These four items here are named people, references and projects listed in the config-references.yml file.

2.6 Extra Facets

It can be useful to automatically add extra key-value pairs to variables or datasets in the recipe. These key-value pairs
can be used for finding data or for providing extra information to the functions that fix data before passing it on to the
preprocessor.

To support this, we provide the extra facets facilities. Facets are the key-value pairs described in Recipe section:
datasets. Extra facets allows for the addition of more details per project, dataset, mip table, and variable name.

More precisely, one can provide this information in an extra yaml file, named {project}-something.yml, where {project}
corresponds to the project as used by ESMValTool in Recipe section: datasets and “something” is arbitrary.

2.6.1 Format of the extra facets files

The extra facets are given in a yaml file, whose file name identifies the project. Inside the file there is a hierarchy of
nested dictionaries with the following levels. At the top there is the dataset facet, followed by the mip table, and finally
the short_name. The leaf dictionary placed here gives the extra facets that will be made available to data finder and the
fix infrastructure. The following example illustrates the concept.

Listing 1: Extra facet example file native6-era5.yml

ERA5:
Amon:
tas: {source_var_name: "t2m", cds_var_name: "2m_temperature"}

The three levels of keys in this mapping can contain Unix shell-style wildcards. The special characters used in shell-style
wildcards are:

Pattern Meaning
* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

where seq can either be a sequence of characters or just a bunch of characters, for example [A-C]matches the characters
A, B, and C, while [AC] matches the characters A and C.

For example, this is used to automatically add product: output1 to any variable of any CMIP5 dataset that does
not have a product key yet:

2.6. Extra Facets 17

https://en.wikipedia.org/wiki/Glob_(programming)#Syntax

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Listing 2: Extra facet example file cmip5-product.yml

'*':
'*':
'*': {product: output1}

2.6.2 Location of the extra facets files

Extra facets files can be placed in several different places. When we use them to support a particular use-case within
the ESMValTool project, they will be provided in the sub-folder extra_facets inside the package esmvalcore._config. If
they are used from the user side, they can be either placed in ~/.esmvaltool/extra_facets or in any other directory of the
users choosing. In that case this directory must be added to the config-user.yml file under the extra_facets_dir setting,
which can take a single directory or a list of directories.

The order in which the directories are searched is

1. The internal directory esmvalcore._config/extra_facets

2. The default user directory ~/.esmvaltool/extra_facets

3. The custom user directories in the order in which they are given in config-user.yml.

The extra facets files within each of these directories are processed in lexicographical order according to their file name.

In all cases it is allowed to supersede information from earlier files in later files. This makes it possible for the user to
effectively override even internal default facets, for example to deal with local particularities in the data handling.

2.6.3 Use of extra facets

For extra facets to be useful, the information that they provide must be applied. There are fundamentally two places
where this comes into play. One is the datafinder, the other are fixes.

18 Chapter 2. Configuration files

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/_config/extra_facets/cmip5-product.yml

CHAPTER

THREE

INPUT DATA

3.1 Overview

Data discovery and retrieval is the first step in any evaluation process; ESMValTool uses a semi-automated data finding
mechanism with inputs from both the user configuration file and the recipe file: this means that the user will have to
provide the tool with a set of parameters related to the data needed and once these parameters have been provided, the
tool will automatically find the right data. We will detail below the data finding and retrieval process and the input the
user needs to specify, giving examples on how to use the data finding routine under different scenarios.

3.2 Data types

3.2.1 CMIP data

CMIP data is widely available via the Earth System Grid Federation (ESGF) and is accessible to users either via
automatic download by esmvaltool or through the ESGF data nodes hosted by large computing facilities (like CEDA-
Jasmin, DKRZ, etc). This data adheres to, among other standards, the DRS and Controlled Vocabulary standard for
naming files and structured paths; the DRS ensures that files and paths to them are named according to a standardized
convention. Examples of this convention, also used by ESMValTool for file discovery and data retrieval, include:

• CMIP6 file: [variable_short_name]_[mip]_[dataset_name]_[experiment]_[ensemble]_[grid]_[start-date]-[end-date].
nc

• CMIP5 file: [variable_short_name]_[mip]_[dataset_name]_[experiment]_[ensemble]_[start-date]-[end-date].
nc

• OBS file: [project]_[dataset_name]_[type]_[version]_[mip]_[short_name]_[start-date]-[end-date].
nc

Similar standards exist for the standard paths (input directories); for the ESGF data nodes, these paths differ slightly,
for example:

• CMIP6 path for BADC: ROOT-BADC/[institute]/[dataset_name]/[experiment]/[ensemble]/
[mip]/ [variable_short_name]/[grid];

• CMIP6 path for ETHZ: ROOT-ETHZ/[experiment]/[mip]/[variable_short_name]/[dataset_name]/
[ensemble]/[grid]

From the ESMValTool user perspective the number of data input parameters is optimized to allow for ease of use. We
detail this procedure in the next section.

19

https://esgf.llnl.gov/
https://www.ecmwf.int/sites/default/files/elibrary/2014/13713-data-reference-syntax-governing-standards-within-climate-research-data-archived-esgf.pdf

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

3.2.2 Observational data

Part of observational data is retrieved in the same manner as CMIP data, for example using the OBS root path set to:

OBS: /gws/nopw/j04/esmeval/obsdata-v2

and the dataset:

- {dataset: ERA-Interim, project: OBS6, type: reanaly, version: 1, start_year:␣
→˓2014, end_year: 2015, tier: 3}

in recipe.yml in datasets or additional_datasets, the rules set in CMOR-DRS are used again and the file will
be automatically found:

/gws/nopw/j04/esmeval/obsdata-v2/Tier3/ERA-Interim/OBS_ERA-Interim_reanaly_1_Amon_ta_
→˓201401-201412.nc

Since observational data are organized in Tiers depending on their level of public availability, the default directory
must be structured accordingly with sub-directories TierX (Tier1, Tier2 or Tier3), even when drs: default.

3.2.3 Datasets in native format

Some datasets are supported in their native format (i.e., the data is not formatted according to a CMIP data request)
through the native6 project (mostly native reanalysis/observational datasets) or through a dedicated project, e.g., ICON
(mostly native models). A detailed description of how to include new native datasets is given here.

Hint: When using native datasets, it might be helpful to specify a custom location for the Custom CMOR tables. This
allows reading arbitrary variables from native datasets. Note that this requires the option cmor_strict: false in
the project configuration used for the native model output.

Supported native reanalysis/observational datasets

The following native reanalysis/observational datasets are supported under the native6 project. To use these datasets,
put the files containing the data in the directory that you have configured for the native6 project in your User configu-
ration file, in a subdirectory called Tier{tier}/{dataset}/{version}/{frequency}/{short_name}. Replace
the items in curly braces by the values used in the variable/dataset definition in the recipe. Below is a list of native
reanalysis/observational datasets currently supported.

ERA5

• Supported variables: clt, evspsbl, evspsblpot, mrro, pr, prsn, ps, psl, ptype, rls, rlds, rsds, rsdt,
rss, uas, vas, tas, tasmax, tasmin, tdps, ts, tsn (E1hr/Amon), orog (fx)

• Tier: 3

20 Chapter 3. Input data

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

MSWEP

• Supported variables: pr

• Supported frequencies: mon, day, 3hr.

• Tier: 3

For example for monthly data, place the files in the /Tier3/MSWEP/latestversion/mon/pr subdirectory of your
native6 project location.

Note: For monthly data (V220), the data must be postfixed with the date, i.e. rename global_monthly_050deg.nc
to global_monthly_050deg_197901-201710.nc

For more info: http://www.gloh2o.org/

Data for the version V220 can be downloaded from: https://hydrology.princeton.edu/data/hylkeb/MSWEP_V220/.

Supported native models

The following models are natively supported by ESMValCore. In contrast to the native observational datasets listed
above, they use dedicated projects instead of the project native6.

CESM

ESMValTool is able to read native CESM model output.

Warning: The support for native CESM output is still experimental. Currently, only one variable (tas) is fully
supported. Other 2D variables might be supported by specifying appropriate facets in the recipe or extra facets files
(see text below). 3D variables (data that uses a vertical dimension) are not supported, yet.

The default naming conventions for input directories and files for CESM are

• input directories: 3 different types supported:

– / (run directory)

– [case]/[gcomp]/hist (short-term archiving)

– [case]/[gcomp]/proc/[tdir]/[tperiod] (post-processed data)

• input files: [case].[scomp].[type].[string]*nc

as configured in the config-developer file (using the default DRS drs: default in the User configuration file). More
information about CESM naming conventions are given here.

Note: The [string] entry in the input file names above does not only correspond to the (optional) $string entry for
CESM model output files, but can also be used to read post-processed files. In the latter case, [string] corresponds
to the combination $SSTRING.$TSTRING.

Thus, example dataset entries could look like this:

3.2. Data types 21

http://www.gloh2o.org/
https://hydrology.princeton.edu/data/hylkeb/MSWEP_V220/
https://www.cesm.ucar.edu/
https://www.cesm.ucar.edu/models/cesm2/naming_conventions.html
https://www.cesm.ucar.edu/models/cesm2/naming_conventions.html#modelOutputFilenames
https://www.cesm.ucar.edu/models/cesm2/naming_conventions.html#ppDataFilenames

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

datasets:
- {project: CESM, dataset: CESM2, case: f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001,␣

→˓type: h0, mip: Amon, short_name: tas, start_year: 2000, end_year: 2014}
- {project: CESM, dataset: CESM2, case: f.e21.F1850_BGC.f09_f09_mg17.CFMIP-hadsst-

→˓piForcing.001, type: h0, gcomp: atm, scomp: cam, mip: Amon, short_name: tas, start_
→˓year: 2000, end_year: 2014}

Variable-specific defaults for the facet gcomp and scomp are given in the extra facets (see next paragraph) for some
variables, but this can be overwritten in the recipe.

Similar to any other fix, the CESM fix allows the use of extra facets. By default, the file cesm-mappings.yml is used
for that purpose. Currently, this file only contains default facets for a single variable (tas); for other variables, these
entries need to be defined in the recipe. Supported keys for extra facets are:

Key Description Default value if not specified
gcomp Generic component-model name No default (needs to be specified

in extra facets or recipe if default
DRS is used)

raw_nameVariable name of the variable in the raw input file CMOR variable name of the cor-
responding variable

scomp Specific component-model name No default (needs to be specified
in extra facets or recipe if default
DRS is used)

stringShort string which is used to further identify the history file type (cor-
responds to $string or $SSTRING.$TSTRING in the CESM file name
conventions; see note above)

'' (empty string)

tdir Entry to distinguish time averages from time series from diagnostic plot
sets (only used for post-processed data)

'' (empty string)

tperiodTime period over which the data was processed (only used for post-
processed data)

'' (empty string)

EMAC

ESMValTool is able to read native EMAC model output.

The default naming conventions for input directories and files for EMAC are

• input directories: [exp]/[channel]

• input files: [exp]*[channel][postproc_flag].nc

as configured in the config-developer file (using the default DRS drs: default in the User configuration file).

Thus, example dataset entries could look like this:

datasets:
- {project: EMAC, dataset: EMAC, exp: historical, mip: Amon, short_name: tas, start_

→˓year: 2000, end_year: 2014}
- {project: EMAC, dataset: EMAC, exp: historical, mip: Omon, short_name: tos, postproc_

→˓flag: "-p-mm", start_year: 2000, end_year: 2014}
- {project: EMAC, dataset: EMAC, exp: historical, mip: Amon, short_name: ta, raw_name:␣

→˓tm1_p39_cav, start_year: 2000, end_year: 2014}

Please note the duplication of the name EMAC in project and dataset, which is necessary to comply with ESMVal-
Tool’s data finding and CMORizing functionalities. A variable-specific default for the facet channel is given in the

22 Chapter 3. Input data

https://www.dlr.de/pa/en/desktopdefault.aspx/tabid-8859/15306_read-37415/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

extra facets (see next paragraph) for many variables, but this can be overwritten in the recipe.

Similar to any other fix, the EMAC fix allows the use of extra facets. By default, the file emac-mappings.yml is used
for that purpose. For some variables, extra facets are necessary; otherwise ESMValTool cannot read them properly.
Supported keys for extra facets are:

Key Description Default value if not specified
channel Channel in which the desired vari-

able is stored
No default (needs to be specified in extra facets or recipe if
default DRS is used)

postproc_flagPostprocessing flag of the data '' (empty string)
raw_name Variable name of the variable in the

raw input file
CMOR variable name of the corresponding variable

Note: raw_name can be given as str or list. The latter is used to support multiple different variables names in
the input file. In this case, the prioritization is given by the order of the list; if possible, use the first entry, if this is
not present, use the second, etc. This is particularly useful for files in which regular averages (*_ave) or conditional
averages (*_cav) exist.

For 3D variables defined on pressure levels, only the pressure levels defined by the CMOR table (e.g., for Amon’s
ta: tm1_p19_cav and tm1_p19_ave) are given in the default extra facets file. If other pressure levels are desired,
e.g., tm1_p39_cav, this has to be explicitly specified in the recipe using raw_name: tm1_p39_cav or raw_name:
[tm1_p19_cav, tm1_p39_cav].

ICON

ESMValTool is able to read native ICON model output.

The default naming conventions for input directories and files for ICON are

• input directories: [exp] or {exp}/outdata

• input files: [exp]_[var_type]*.nc

as configured in the config-developer file (using the default DRS drs: default in the User configuration file).

Thus, example dataset entries could look like this:

datasets:
- {project: ICON, dataset: ICON, exp: icon-2.6.1_atm_amip_R2B5_r1i1p1f1,
mip: Amon, short_name: tas, start_year: 2000, end_year: 2014}

- {project: ICON, dataset: ICON, exp: historical, mip: Amon,
short_name: ta, var_type: atm_dyn_3d_ml, start_year: 2000,
end_year: 2014}

Please note the duplication of the name ICON in project and dataset, which is necessary to comply with ESMVal-
Tool’s data finding and CMORizing functionalities. A variable-specific default for the facet var_type is given in the
extra facets (see next paragraph) for many variables, but this can be overwritten in the recipe.

Similar to any other fix, the ICON fix allows the use of extra facets. By default, the file icon-mappings.yml is used
for that purpose. For some variables, extra facets are necessary; otherwise ESMValTool cannot read them properly.
Supported keys for extra facets are:

3.2. Data types 23

https://code.mpimet.mpg.de/projects/iconpublic

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Key Description Default value if not specified
latitude Standard name of the latitude coordinate in

the raw input file
latitude

longitudeStandard name of the longitude coordinate
in the raw input file

longitude

raw_name Variable name of the variable in the raw in-
put file

CMOR variable name of the corresponding variable

var_type Variable type of the variable in the raw input
file

No default (needs to be specified in extra facets or recipe
if default DRS is used)

Hint: In order to read cell area files (areacella and areacello), one additional manual step is necessary: Copy
the ICON grid file (you can find a download link in the global attribute grid_file_uri of your ICON data) to your
ICON input directory and change its name in such a way that only the grid file is found when the cell area variables are
required. Make sure that this file is not found when other variables are loaded.

For example, you could use a new var_type, e.g., horizontalgrid for this file. Thus, an ICON grid file located in
2.6.1_atm_amip_R2B5_r1i1p1f1/2.6.1_atm_amip_R2B5_r1i1p1f1_horizontalgrid.nc can be found using
var_type: horizontalgrid in the recipe (assuming the default naming conventions listed above). Make sure that
no other variable uses this var_type.

IPSL-CM6

Both output formats (i.e. the Output and the Analyse / Time series formats) are supported, and should be con-
figured in recipes as e.g.:

datasets:
- {simulation: CM61-LR-hist-03.1950, exp: piControl, out: Analyse, freq: TS_MO,
account: p86caub, status: PROD, dataset: IPSL-CM6, project: IPSLCM,
root: /thredds/tgcc/store}

- {simulation: CM61-LR-hist-03.1950, exp: historical, out: Output, freq: MO,
account: p86caub, status: PROD, dataset: IPSL-CM6, project: IPSLCM,
root: /thredds/tgcc/store}

The Output format is an example of a case where variables are grouped in multi-variable files, which name cannot be
computed directly from datasets attributes alone but requires to use an extra_facets file, which principles are explained
in Extra Facets, and which content is available here. These multi-variable files must also undergo some data
selection.

3.3 Data retrieval

Data retrieval in ESMValTool has two main aspects from the user’s point of view:

• data can be found by the tool, subject to availability on disk or ESGF;

• it is the user’s responsibility to set the correct data retrieval parameters;

The first point is self-explanatory: if the user runs the tool on a machine that has access to a data repository or multiple
data repositories, then ESMValTool will look for and find the available data requested by the user. If the files are not
found locally, the tool can search the ESGF and download the missing files, provided that they are available.

24 Chapter 3. Input data

https://esgf.llnl.gov/
https://esgf.llnl.gov/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

The second point underlines the fact that the user has full control over what type and the amount of data is needed for
the analyses. Setting the data retrieval parameters is explained below.

3.3.1 Enabling automatic downloads from the ESGF

To enable automatic downloads from ESGF, set offline: false in the User configuration file or provide the com-
mand line argument --offline=False when running the recipe. The files will be stored in the download_dir set in
the User configuration file.

3.3.2 Setting the correct root paths

The first step towards providing ESMValTool the correct set of parameters for data retrieval is setting the root paths to
the data. This is done in the user configuration file config-user.yml. The two sections where the user will set the
paths are rootpath and drs. rootpath contains pointers to CMIP, OBS, default and RAWOBS root paths; drs sets
the type of directory structure the root paths are structured by. It is important to first discuss the drs parameter: as
we’ve seen in the previous section, the DRS as a standard is used for both file naming conventions and for directory
structures.

3.3.3 Synda

If the synda install command is used to download data, it maintains the directory structure as on ESGF. To find data
downloaded by synda, use the SYNDA drs parameter.

drs:
CMIP6: SYNDA
CMIP5: SYNDA

3.3.4 Explaining config-user/drs: CMIP5: or config-user/drs: CMIP6:

Whereas ESMValTool will always use the CMOR standard for file naming (please refer above), by setting the drs
parameter the user tells the tool what type of root paths they need the data from, e.g.:

drs:
CMIP6: BADC

will tell the tool that the user needs data from a repository structured according to the BADC DRS structure, i.e.:

ROOT/[institute]/[dataset_name]/[experiment]/[ensemble]/[mip]/[variable_short_name]/
[grid];

setting the ROOT parameter is explained below. This is a strictly-structured repository tree and if there are any sort of
irregularities (e.g. there is no [mip] directory) the data will not be found! BADC can be replaced with DKRZ or ETHZ
depending on the existing ROOT directory structure. The snippet

drs:
CMIP6: default

is another way to retrieve data from a ROOT directory that has no DRS-like structure; default indicates that the data
lies in a directory that contains all the files without any structure.

3.3. Data retrieval 25

https://prodiguer.github.io/synda/sdt/user_guide.html#synda-install

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Note: When using CMIP6: default or CMIP5: default it is important to remember that all the needed files
must be in the same top-level directory set by default (see below how to set default).

3.3.5 Explaining config-user/rootpath:

rootpath identifies the root directory for different data types (ROOT as we used it above):

• CMIP e.g. CMIP5 or CMIP6: this is the root path(s) to where the CMIP files are stored; it can be a single path or
a list of paths; it can point to an ESGF node or it can point to a user private repository. Example for a CMIP5
root path pointing to the ESGF node on CEDA-Jasmin (formerly known as BADC):

CMIP5: /badc/cmip5/data/cmip5/output1

Example for a CMIP6 root path pointing to the ESGF node on CEDA-Jasmin:

CMIP6: /badc/cmip6/data/CMIP6/CMIP

Example for a mix of CMIP6 root path pointing to the ESGF node on CEDA-Jasmin and a user-specific data
repository for extra data:

CMIP6: [/badc/cmip6/data/CMIP6/CMIP, /home/users/johndoe/cmip_data]

• OBS: this is the root path(s) to where the observational datasets are stored; again, this could be a single path or
a list of paths, just like for CMIP data. Example for the OBS path for a large cache of observation datasets on
CEDA-Jasmin:

OBS: /gws/nopw/j04/esmeval/obsdata-v2

• default: this is the root path(s) where the tool will look for data from projects that do not have their own
rootpath set.

• RAWOBS: this is the root path(s) to where the raw observational data files are stored; this is used by esmvaltool
data format.

3.3.6 Dataset definitions in recipe

Once the correct paths have been established, ESMValTool collects the information on the specific datasets that are
needed for the analysis. This information, together with the CMOR convention for naming files (see CMOR-DRS) will
allow the tool to search and find the right files. The specific datasets are listed in any recipe, under either the datasets
and/or additional_datasets sections, e.g.

datasets:
- {dataset: HadGEM2-CC, project: CMIP5, exp: historical, ensemble: r1i1p1, start_year:␣

→˓2001, end_year: 2004}
- {dataset: UKESM1-0-LL, project: CMIP6, exp: historical, ensemble: r1i1p1f2, grid: gn,

→˓ start_year: 2004, end_year: 2014}

_data_finder will use this information to find data for all the variables specified in diagnostics/variables.

26 Chapter 3. Input data

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

3.4 Recap and example

Let us look at a practical example for a recap of the information above: suppose you are using a config-user.yml
that has the following entries for data finding:

rootpath: # running on CEDA-Jasmin
CMIP6: /badc/cmip6/data/CMIP6/CMIP

drs:
CMIP6: BADC # since you are on CEDA-Jasmin

and the dataset you need is specified in your recipe.yml as:

- {dataset: UKESM1-0-LL, project: CMIP6, mip: Amon, exp: historical, grid: gn, ensemble:␣
→˓r1i1p1f2, start_year: 2004, end_year: 2014}

for a variable, e.g.:

diagnostics:
some_diagnostic:
description: some_description
variables:
ta:
preprocessor: some_preprocessor

The tool will then use the root path /badc/cmip6/data/CMIP6/CMIP and the dataset information and will assemble
the full DRS path using information from CMOR-DRS and establish the path to the files as:

/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL/historical/r1i1p1f2/Amon

then look for variable ta and specifically the latest version of the data file:

/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL/historical/r1i1p1f2/Amon/ta/gn/latest/

and finally, using the file naming definition from CMOR-DRS find the file:

/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL/historical/r1i1p1f2/Amon/ta/gn/latest/ta_
→˓Amon_UKESM1-0-LL_historical_r1i1p1f2_gn_195001-201412.nc

3.5 Data loading

Data loading is done using the data load functionality of iris; we will not go into too much detail about this since we
can point the user to the specific functionality here but we will underline that the initial loading is done by adhering to
the CF Conventions that iris operates by as well (see CF Conventions Document and the search page for CF standard
names).

3.4. Recap and example 27

https://scitools-iris.readthedocs.io/en/latest/userguide/loading_iris_cubes.html
http://cfconventions.org/cf-conventions/cf-conventions.html
http://cfconventions.org/standard-names.html
http://cfconventions.org/standard-names.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

3.6 Data concatenation from multiple sources

Oftentimes data retrieving results in assembling a continuous data stream from multiple files or even, multiple experi-
ments. The internal mechanism through which the assembly is done is via cube concatenation. One peculiarity of iris
concatenation (see iris cube concatenation) is that it doesn’t allow for concatenating time-overlapping cubes; this case
is rather frequent with data from models overlapping in time, and is accounted for by a function that performs a flexible
concatenation between two cubes, depending on the particular setup:

• cubes overlap in time: resulting cube is made up of the overlapping data plus left and right hand sides on each
side of the overlapping data; note that in the case of the cubes coming from different experiments the resulting
concatenated cube will have composite data made up from multiple experiments: assume [cube1: exp1, cube2:
exp2] and cube1 starts before cube2, and cube2 finishes after cube1, then the concatenated cube will be made up
of cube2: exp2 plus the section of cube1: exp1 that contains data not provided in cube2: exp2;

• cubes don’t overlap in time: data from the two cubes is bolted together;

Note that two cube concatenation is the base operation of an iterative process of reducing multiple cubes from multiple
data segments via cube concatenation ie if there is no time-overlapping data, the cubes concatenation is performed in
one step.

3.7 Use of extra facets in the datafinder

Extra facets are a mechanism to provide additional information for certain kinds of data. The general approach is
described in Extra Facets. Here, we describe how they can be used to locate data files within the datafinder framework.
This is useful to build paths for directory structures and file names that require more information than what is provided
in the recipe. A common application is the location of variables in multi-variable files as often found in climate models’
native output formats.

Another use case is files that use different names for variables in their file name than for the netCDF4 variable name.

To apply the extra facets for this purpose, simply use the corresponding tag in the applicable DRS inside the config-
developer.yml file. For example, given the extra facets in Extra facet example file native6-era5.yml, one might write
the following.

Listing 1: Example drs use in config-developer.yml

native6:
input_file:
default: '{name_in_filename}*.nc'

The same replacement mechanism can be employed everywhere where tags can be used, particularly in input_dir and
input_file.

28 Chapter 3. Input data

https://scitools-iris.readthedocs.io/en/latest/userguide/merge_and_concat.html

CHAPTER

FOUR

RUNNING

The ESMValCore package provides the esmvaltool command line tool, which can be used to run a recipe.

To list the available commands, run

esmvaltool --help

It is also possible to get help on specific commands, e.g.

esmvaltool run --help

will display the help message with all options for the run command.

To run a recipe, call esmvaltool run with the path to the desired recipe:

esmvaltool run recipe_example.yml

The esmvaltool run recipe_example.yml command will first look if recipe_example.yml is the path to an
existing file. If this is the case, it will run that recipe. If you have ESMValTool installed, it will look if the name
matches one of the recipes in your ESMValTool installation directory, in the subdirectory recipes and run that.

Note: There is no recipe_example.yml shipped with either ESMValCore or ESMValTool. If you would like
to try out the command above, replace recipe_example.yml with the path to an existing recipe, e.g. exam-
ples/recipe_python.yml if you have the ESMValTool package installed.

To work with installed recipes, the ESMValTool package provides the esmvaltool recipes command, see Available
diagnostics and metrics.

If the configuration file is not in the default location ~/.esmvaltool/config-user.yml, you can pass its path ex-
plicitly:

esmvaltool run --config_file /path/to/config-user.yml recipe_example.yml

It is also possible to explicitly change values from the config file using flags:

esmvaltool run --argument_name argument_value recipe_example.yml

To automatically download the files required to run a recipe from ESGF, set offline to false in the User configuration
file or run the tool with the command

esmvaltool run --offline=False recipe_example.yml

This feature is available for projects that are hosted on the ESGF, i.e. CMIP3, CMIP5, CMIP6, CORDEX, and
obs4MIPs.

29

https://docs.esmvaltool.org/en/latest/quickstart/installation.html#install
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/recipes/examples/recipe_python.yml
https://docs.esmvaltool.org/en/latest/quickstart/running.html#recipes-command
https://docs.esmvaltool.org/en/latest/quickstart/running.html#recipes-command

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

To control the strictness of the CMOR checker, use the flag --check_level:

esmvaltool run --check_level=relaxed recipe_example.yml

Possible values are:

• ignore: all errors will be reported as warnings

• relaxed: only fail if there are critical errors

• default: fail if there are any errors

• strict: fail if there are any warnings

To re-use pre-processed files from a previous run of the same recipe, you can use

esmvaltool run recipe_example.yml --resume_from ~/esmvaltool_output/recipe_python_
→˓20210930_123907

Multiple directories can be specified for re-use, make sure to quote them:

esmvaltool run recipe_example.yml --resume_from "~/esmvaltool_output/recipe_python_
→˓20210930_101007 ~/esmvaltool_output/recipe_python_20210930_123907"

The first preprocessor directory containing the required data will be used.

This feature can be useful when developing new diagnostics, because it avoids the need to re-run the preprocessor.
Another potential use case is running the preprocessing part of a recipe on one or more machines that have access to a
lot of data and then running the diagnostics on a machine without access to data.

To run only the preprocessor tasks from a recipe, use

esmvaltool run recipe_example.yml --remove_preproc_dir=False --run_diagnostic=False

Note: Only preprocessing tasks that completed successfully can be re-used with the --resume_from option. Prepro-
cessing tasks that completed successfully, contain a file called metadata.yml in their output directory.

To run a reduced version of the recipe, usually for testing purpose you can use

esmvaltool run --max_datasets=NDATASETS --max_years=NYEARS recipe_example.yml

In this case, the recipe will limit the number of datasets per variable to NDATASETS and the total amount of years
loaded to NYEARS. They can also be used separately. Note that diagnostics may require specific combinations of
available data, so use the above two flags at your own risk and for testing purposes only.

To run a recipe, even if some datasets are not available, use

esmvaltool run --skip_nonexistent=True recipe_example.yml

It is also possible to select only specific diagnostics to be run. To tun only one, just specify its name. To provide more
than one diagnostic to filter use the syntax ‘diag1 diag2/script1’ or ‘(“diag1”, “diag2/script1”)’ and pay attention to the
quotes.

esmvaltool run --diagnostics=diagnostic1 recipe_example.yml

30 Chapter 4. Running

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Note: ESMValTool command line interface is created using the Fire python package. This package supports the
creation of completion scripts for the Bash and Fish shells. Go to https://google.github.io/python-fire/using-cli/
#python-fires-flags to learn how to set up them.

31

https://google.github.io/python-fire/using-cli/#python-fires-flags
https://google.github.io/python-fire/using-cli/#python-fires-flags

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

32 Chapter 4. Running

CHAPTER

FIVE

OUTPUT

ESMValTool automatically generates a new output directory with every run. The location is determined by
the output_dir option in the config-user.yml file, the recipe name, and the date and time, using the the format:
YYYYMMDD_HHMMSS.

For instance, a typical output location would be: output_directory/recipe_ocean_amoc_20190118_1027/

This is effectively produced by the combination: output_dir/recipe_name_YYYYMMDD_HHMMSS/

This directory will contain 4 further subdirectories:

1. Diagnostic output (work): A place for any diagnostic script results that are not plots, e.g. files in NetCDF format
(depends on the diagnostics).

2. Plots (plots): The location for all the plots, split by individual diagnostics and fields.

3. Run (run): This directory includes all log files, a copy of the recipe, a summary of the resource usage, and the
settings.yml interface files and temporary files created by the diagnostic scripts.

4. Preprocessed datasets (preproc): This directory contains all the preprocessed netcdfs data and the metadata.yml
interface files. Note that by default this directory will be deleted after each run, because most users will only
need the results from the diagnostic scripts.

A summary of the output is produced in the file: index.html

5.1 Preprocessed datasets

The preprocessed datasets will be stored to the preproc/ directory. Each variable in each diagnostic will have its own
the metadata.yml interface files saved in the preproc directory.

If the option save_intermediary_cubes is set to true in the config-user.yml file, then the intermediary cubes will
also be saved here. This option is set to false in the default config-user.yml file.

If the option remove_preproc_dir is set to true in the config-user.yml file, then the preproc directory will be deleted
after the run completes. This option is set to true in the default config-user.yml file.

33

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

5.2 Run

The log files in the run directory are automatically generated by ESMValTool and create a record of the output messages
produced by ESMValTool and they are saved in the run directory. They can be helpful for debugging or monitoring the
job, but also allow a record of the job output to screen after the job has been completed.

The run directory will also contain a copy of the recipe and the settings.yml file, described below. The run directory is
also where the diagnostics are executed, and may also contain several temporary files while diagnostics are running.

5.3 Diagnostic output

The work/ directory will contain all files that are output at the diagnostic stage. Ie, the model data is preprocessed by
ESMValTool and stored in the preproc/ directory. These files are opened by the diagnostic script, then some processing
is applied. Once the diagnostic level processing has been applied, the results should be saved to the work directory.

5.4 Plots

The plots directory is where diagnostics save their output figures. These plots are saved in the format requested by the
option output_file_type in the config-user.yml file.

5.5 Settings.yml

The settings.yml file is automatically generated by ESMValTool. Each diagnostic will produce a unique settings.yml
file.

The settings.yml file passes several global level keys to diagnostic scripts. This includes several flags from the config-
user.yml file (such as ‘log_level’), several paths which are specific to the diagnostic being run (such as ‘plot_dir’ and
‘run_dir’) and the location on disk of the metadata.yml file (described below).

input_files:[[...]recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/
→˓metadata.yml]
log_level: debug
output_file_type: png
plot_dir: [...]recipe_ocean_bgc_20190118_134855/plots/diag_timeseries_scalars/Scalar_
→˓timeseries
profile_diagnostic: false
recipe: recipe_ocean_bgc.yml
run_dir: [...]recipe_ocean_bgc_20190118_134855/run/diag_timeseries_scalars/Scalar_
→˓timeseries
script: Scalar_timeseries
version: 2.0a1
work_dir: [...]recipe_ocean_bgc_20190118_134855/work/diag_timeseries_scalars/Scalar_
→˓timeseries

The first item in the settings file will be a list of Metadata.yml files. There is a metadata.yml file generated for each
field in each diagnostic.

34 Chapter 5. Output

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

5.6 Metadata.yml

The metadata.yml files is automatically generated by ESMValTool. Along with the settings.yml file, it passes all the
paths, boolean flags, and additional arguments that your diagnostic needs to know in order to run.

The metadata is loaded from cfg as a dictionairy object in python diagnostics.

Here is an example metadata.yml file:

?
[...]/recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/CMIP5_

→˓HadGEM2-ES_Omon_historical_r1i1p1_TO0M_mfo_2002-2004.nc
: cmor_table: CMIP5
dataset: HadGEM2-ES
diagnostic: diag_timeseries_scalars
end_year: 2004
ensemble: r1i1p1
exp: historical
field: TO0M
filename: [...]recipe_ocean_bgc_20190118_134855/preproc/diag_timeseries_scalars/mfo/

→˓CMIP5_HadGEM2-ES_Omon_historical_r1i1p1_TO0M_mfo_2002-2004.nc
frequency: mon
institute: [INPE, MOHC]
long_name: Sea Water Transport
mip: Omon
modeling_realm: [ocean]
preprocessor: prep_timeseries_scalar
project: CMIP5
recipe_dataset_index: 0
short_name: mfo
standard_name: sea_water_transport_across_line
start_year: 2002
units: kg s-1
variable_group: mfo

As you can see, this is effectively a dictionary with several items including data paths, metadata and other information.

There are several tools available in python which are built to read and parse these files. The tools are available in the
shared directory in the diagnostics directory.

5.6. Metadata.yml 35

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

36 Chapter 5. Output

Part II

The recipe format

37

CHAPTER

SIX

OVERVIEW

After config-user.yml, the recipe.yml is the second file the user needs to pass to esmvaltool as command line
option, at each run time point. Recipes contain the data and data analysis information and instructions needed to run
the diagnostic(s), as well as specific diagnostic-related instructions.

Broadly, recipes contain a general section summarizing the provenance and functionality of the diagnostics, the datasets
which need to be run, the preprocessors that need to be applied, and the diagnostics which need to be run over the
preprocessed data. This information is provided to ESMValTool in four main recipe sections: Documentation, Datasets,
Preprocessors, and Diagnostics, respectively.

6.1 Recipe section: documentation

The documentation section includes:

• The recipe’s author’s user name (authors, matching the definitions in the References configuration file)

• The recipe’s maintainer’s user name (maintainer, matching the definitions in the References configuration file)

• The title of the recipe (title)

• A description of the recipe (description, written in MarkDown format)

• A list of scientific references (references, matching the definitions in the References configuration file)

• the project or projects associated with the recipe (projects, matching the definitions in the References config-
uration file)

For example, the documentation section of recipes/recipe_ocean_amoc.yml is the following:

documentation:
title: Atlantic Meridional Overturning Circulation (AMOC) and the drake passage current
description: |

Recipe to produce time series figures of the derived variable, the
Atlantic meridional overturning circulation (AMOC).
This recipe also produces transect figures of the stream functions for
the years 2001-2004.

authors:
- demo_le

maintainer:
- demo_le

references:
(continues on next page)

39

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

- demora2018gmd

projects:
- ukesm

Note: Note that all authors, projects, and references mentioned in the description section of the recipe need to be
included in the (locally installed copy of the) file esmvaltool/config-references.yml, see References configuration file.
The author name uses the format: surname_name. For instance, John Doe would be: doe_john. This information can
be omitted by new users whose name is not yet included in config-references.yml.

6.2 Recipe section: datasets

The datasets section includes dictionaries that, via key-value pairs, define standardized data specifications:

• dataset name (key dataset, value e.g. MPI-ESM-LR or UKESM1-0-LL).

• project (key project, value CMIP5 or CMIP6 for CMIP data, OBS for observational data, ana4mips for ana4mips
data, obs4MIPs for obs4MIPs data, ICON for ICON data).

• experiment (key exp, value e.g. historical, amip, piControl, rcp85).

• mip (for CMIP data, key mip, value e.g. Amon, Omon, LImon).

• ensemble member (key ensemble, value e.g. r1i1p1, r1i1p1f1).

• sub-experiment id (key sub_experiment, value e.g. s2000, s(2000:2002), for DCPP data only).

• time range (e.g. key-value start_year: 1982, end_year: 1990). Please note that yaml interprets numbers
with a leading 0 as octal numbers, so we recommend to avoid them. For example, use 128 to specify the year 128
instead of 0128. Alternatively, the time range can be specified in ISO 8601 format, for both dates and periods.
In addition, wildcards ('*') are accepted, which allow the selection of the first available year for each individual
dataset (when used as a starting point) or the last available year (when used as an ending point). The starting
point and end point must be separated with / (e.g. key-value timerange: '1982/1990'). More examples
are given here.

• model grid (native grid grid: gn or regridded grid grid: gr, for CMIP6 data only).

For example, a datasets section could be:

datasets:
- {dataset: CanESM2, project: CMIP5, exp: historical, ensemble: r1i1p1, start_year:␣

→˓2001, end_year: 2004}
- {dataset: UKESM1-0-LL, project: CMIP6, exp: historical, ensemble: r1i1p1f2, start_

→˓year: 2001, end_year: 2004, grid: gn}
- {dataset: ACCESS-CM2, project: CMIP6, exp: historical, ensemble: r1i1p1f2,␣

→˓timerange: 'P5Y/*', grid: gn}
- {dataset: EC-EARTH3, alias: custom_alias, project: CMIP6, exp: historical, ensemble:␣

→˓r1i1p1f1, start_year: 2001, end_year: 2004, grid: gn}
- {dataset: CMCC-CM2-SR5, project: CMIP6, exp: historical, ensemble: r1i1p1f1,␣

→˓timerange: '2001/P10Y', grid: gn}
- {dataset: HadGEM3-GC31-MM, project: CMIP6, exp: dcppA-hindcast, ensemble: r1i1p1f1,␣

→˓sub_experiment: s2000, grid: gn, start_year: 2000, end_year, 2002}
(continues on next page)

40 Chapter 6. Overview

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml
https://yaml.org/refcard.html
https://en.wikipedia.org/wiki/ISO_8601

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

- {dataset: BCC-CSM2-MR, project: CMIP6, exp: dcppA-hindcast, ensemble: r1i1p1f1, sub_
→˓experiment: s2000, grid: gn, timerange: '*'}

It is possible to define the experiment as a list to concatenate two experiments. Here it is an example concatenating the
historical experiment with rcp85

datasets:
- {dataset: CanESM2, project: CMIP5, exp: [historical, rcp85], ensemble: r1i1p1, start_

→˓year: 2001, end_year: 2004}

It is also possible to define the ensemble as a list when the two experiments have different ensemble names. In this
case, the specified datasets are concatenated into a single cube:

datasets:
- {dataset: CanESM2, project: CMIP5, exp: [historical, rcp85], ensemble: [r1i1p1,␣

→˓r1i2p1], start_year: 2001, end_year: 2004}

ESMValTool also supports a simplified syntax to add multiple ensemble members from the same dataset. In the ensem-
ble key, any element in the form (x:y) will be replaced with all numbers from x to y (both inclusive), adding a dataset
entry for each replacement. For example, to add ensemble members r1i1p1 to r10i1p1 you can use the following
abbreviated syntax:

datasets:
- {dataset: CanESM2, project: CMIP5, exp: historical, ensemble: "r(1:10)i1p1", start_

→˓year: 2001, end_year: 2004}

It can be included multiple times in one definition. For example, to generate the datasets definitions for the ensemble
members r1i1p1 to r5i1p1 and from r1i2p1 to r5i1p1 you can use:

datasets:
- {dataset: CanESM2, project: CMIP5, exp: historical, ensemble: "r(1:5)i(1:2)p1",␣

→˓start_year: 2001, end_year: 2004}

Please, bear in mind that this syntax can only be used in the ensemble tag. Also, note that the combination of multiple
experiments and ensembles, like exp: [historical, rcp85], ensemble: [r1i1p1, “r(2:3)i1p1”] is not supported and will
raise an error.

The same simplified syntax can be used to add multiple sub-experiment ids:

datasets:
- {dataset: MIROC6, project: CMIP6, exp: dcppA-hindcast, ensemble: r1i1p1f1, sub_

→˓experiment: s(2000:2002), grid: gn, start_year: 2003, end_year: 2004}

When using the timerange tag to specify the start and end points, possible values can be as follows:

• A start and end point specified with a resolution up to seconds (YYYYMMDDThhmmss) * timerange:
'1980/1982'. Spans from 01/01/1980 to 31/12/1980. * timerange: '198002/198205'. Spans from
01/02/1980 to 31/05/1982. * timerange: '19800302/19820403'. Spans from 02/03/1980 to 03/04/1982.
* timerange: '19800504T100000/19800504T110000'. Spans from 04/05/1980 at 10h to 11h.

• A start point or end point, and a relative period with a resolution up to second (P[n]Y[n]M[n]DT[n]H[n]M[n]S).
* timerange: '1980/P5Y'. Starting from 01/01/1980, spans 5 years. * timerange: 'P2Y5M/198202.
Ending at 28/02/1982, spans 2 years and 5 months.

• A wildcard to load all available years, the first available start point or the last available end point. * timerange:
'*'. Finds all available years. * timerange: '*/1982. Finds first available point, spans to 31/12/1982. *

6.2. Recipe section: datasets 41

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

timerange: '*/P6Y. Finds first available point, spans 6 years from it. * timerange: '198003/*. Starting
from 01/03/1980, spans until the last available point. * timerange: 'P5M/*. Finds last available point, spans
5 months backwards from it.

Note: Please make sure to use a consistent number of digits for the start and end point when using timerange, e.g.,
instead of 198005/2000, use 198005/200012. Otherwise, it might happen that ESMValTool does not find your data
even though the corresponding years are available. This also applies to wildcards: Wildcards are usually resolved
using the timerange in the file name. If this is given in the form YYYYMM, then the other time point in timerange
needs to be in the same format, e.g., use */200012 instead of */2000 in this case. If you use wildcards and get an
unexpected error about missing data, have a look at the resolved timerange in the error message (ERROR No input
files found for variable {'timerange': '197901/2000', ...}) and make sure that the number of digits
in it is consistent.

Note that this section is not required, as datasets can also be provided in the Diagnostics section.

6.3 Recipe section: preprocessors

The preprocessor section of the recipe includes one or more preprocessors, each of which may call the execution of
one or several preprocessor functions.

Each preprocessor section includes:

• A preprocessor name (any name, under preprocessors);

• A list of preprocessor steps to be executed (choose from the API);

• Any or none arguments given to the preprocessor steps;

• The order that the preprocessor steps are applied can also be specified using the custom_order preprocessor
function.

The following snippet is an example of a preprocessor named prep_map that contains multiple preprocessing steps
(Horizontal regridding with two arguments, Time manipulation with no arguments (i.e., calculating the average over
the time dimension) and Multi-model statistics with two arguments):

preprocessors:
prep_map:
regrid:
target_grid: 1x1
scheme: linear

climate_statistics:
operator: mean

multi_model_statistics:
span: overlap
statistics: [mean]

Note: In this case no preprocessors section is needed the workflow will apply a default preprocessor consisting
of only basic operations like: loading data, applying CMOR checks and fixes (CMORization and dataset-specific fixes)
and saving the data to disk.

Preprocessor operations will be applied using the default order as listed in Preprocessor functions. Preprocessor tasks
can be set to run in the order they are listed in the recipe by adding custom_order: true to the preprocessor
definition.

42 Chapter 6. Overview

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

6.4 Recipe section: diagnostics

The diagnostics section includes one or more diagnostics. Each diagnostic section will include:

• the variable(s) to preprocess, including the preprocessor to be applied to each variable;

• the diagnostic script(s) to be run;

• a description of the diagnostic and lists of themes and realms that it applies to;

• an optional additional_datasets section.

• an optional title and description, used to generate the title and description of the index.html output file.

6.4.1 The diagnostics section defines tasks

The diagnostic section(s) define the tasks that will be executed when running the recipe. For each variable a preprocess-
ing task will be defined and for each diagnostic script a diagnostic task will be defined. If variables need to be derived
from other variables, a preprocessing task for each of the variables needed to derive that variable will be defined as
well. These tasks can be viewed in the main_log_debug.txt file that is produced every run. Each task has a unique name
that defines the subdirectory where the results of that task are stored. Task names start with the name of the diagnostic
section followed by a ‘/’ and then the name of the variable section for a preprocessing task or the name of the diagnostic
script section for a diagnostic task.

A (simplified) example diagnostics section could look like

diagnostics:
diagnostic_name:
title: Air temperature tutorial diagnostic
description: A longer description can be added here.
themes:
- phys

realms:
- atmos

variables:
variable_name:
short_name: ta
preprocessor: preprocessor_name
mip: Amon

scripts:
script_name:
script: examples/diagnostic.py

Note that the example recipe above contains a single diagnostic section called diagnostic_name and will result in
two tasks:

• a preprocessing task called diagnostic_name/variable_name that will preprocess air temperature data for
each dataset in the Datasets section of the recipe (not shown).

• a diagnostic task called diagnostic_name/script_name

The path to the script provided in the script option should be either the absolute path to the script, or the path relative
to the esmvaltool/diag_scripts directory.

Depending on the installation configuration, you may get an error of “file does not exist” when the system tries to run
the diagnostic script using relative paths. If this happens, use an absolute path instead.

6.4. Recipe section: diagnostics 43

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Note that the script should either have the extension for a supported language, i.e. .py, .R, .ncl, or .jl for Python,
R, NCL, and Julia diagnostics respectively, or be executable if it is written in any other language.

6.4.2 Ancestor tasks

Some tasks require the result of other tasks to be ready before they can start, e.g. a diagnostic script needs the prepro-
cessed variable data to start. Thus each tasks has zero or more ancestor tasks. By default, each diagnostic task in a
diagnostic section has all variable preprocessing tasks in that same section as ancestors. However, this can be changed
using the ancestors keyword. Note that wildcard expansion can be used to define ancestors.

diagnostics:
diagnostic_1:
variables:
airtemp:
short_name: ta
preprocessor: preprocessor_name
mip: Amon

scripts:
script_a:
script: diagnostic_a.py

diagnostic_2:
variables:
precip:
short_name: pr
preprocessor: preprocessor_name
mip: Amon

scripts:
script_b:
script: diagnostic_b.py
ancestors: [diagnostic_1/script_a, precip]

The example recipe above will result in four tasks:

• a preprocessing task called diagnostic_1/airtemp

• a diagnostic task called diagnostic_1/script_a

• a preprocessing task called diagnostic_2/precip

• a diagnostic task called diagnostic_2/script_b

the preprocessing tasks do not have any ancestors, while the diagnostic_a.py script will receive the preprocessed air
temperature data (has ancestor diagnostic_1/airtemp) and the diagnostic_b.py script will receive the results of di-
agnostic_a.py and the preprocessed precipitation data (has ancestors diagnostic_1/script_a and diagnostic_2/
precip).

44 Chapter 6. Overview

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

6.4.3 Task priority

Tasks are assigned a priority, with tasks appearing earlier on in the recipe getting higher priority. The tasks will be
executed sequentially or in parellel, depending on the setting of max_parallel_tasks in the User configuration file.
When there are fewer than max_parallel_tasks running, tasks will be started according to their priority. For obvious
reasons, only tasks that are not waiting for ancestor tasks can be started. This feature makes it possible to reduce the
processing time of recipes with many tasks, by placing tasks that take relatively long near the top of the recipe. Of
course this only works when settings max_parallel_tasks to a value larger than 1. The current priority and run
time of individual tasks can be seen in the log messages shown when running the tool (a lower number means higher
priority).

6.4.4 Variable and dataset definitions

To define a variable/dataset combination that corresponds to an actual variable from a dataset, the keys in each variable
section are combined with the keys of each dataset definition. If two versions of the same key are provided, then the key
in the datasets section will take precedence over the keys in variables section. For many recipes it makes more sense
to define the start_year and end_year items in the variable section, because the diagnostic script assumes that all
the data has the same time range.

Variable short names usually do not change between datasets supported by ESMValCore, as they are usually changed
to match CMIP. Nevertheless, there are small changes in variable names in CMIP6 with respect to CMIP5 (i.e. sea
ice concentration changed from sic to siconc). ESMValCore is aware of some of them and can do the automatic
translation when needed. It will even do the translation in the preprocessed file so the diagnostic does not have to deal
with this complexity, setting the short name in all files to match the one used by the recipe. For example, if sic is
requested, ESMValCore will find sic or siconc depending on the project, but all preprocessed files while use sic as
their short_name. If the recipe requested siconc, the preprocessed files will be identical except that they will use the
short_name siconc instead.

6.4.5 Diagnostic and variable specific datasets

The additional_datasets option can be used to add datasets beyond those listed in the Datasets section. This is
useful if specific datasets need to be used only by a specific diagnostic or variable, i.e. it can be added both at diagnostic
level, where it will apply to all variables in that diagnostic section or at individual variable level. For example, this can
be a good way to add observational datasets, which are usually variable-specific.

6.4.6 Running a simple diagnostic

The following example, taken from recipe_ocean_example.yml, shows a diagnostic named diag_map, which loads
the temperature at the ocean surface between the years 2001 and 2003 and then passes it to the prep_map preprocessor.
The result of this process is then passed to the ocean diagnostic map script, ocean/diagnostic_maps.py.

diagnostics:

diag_map:
title: Global Ocean Surface regridded temperature map
description: Add a longer description here.
variables:
tos: # Temperature at the ocean surface
preprocessor: prep_map
start_year: 2001
end_year: 2003

(continues on next page)

6.4. Recipe section: diagnostics 45

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

scripts:
Global_Ocean_Surface_regrid_map:
script: ocean/diagnostic_maps.py

6.4.7 Passing arguments to a diagnostic script

The diagnostic script section(s) may include custom arguments that can be used by the diagnostic script; these argu-
ments are stored at runtime in a dictionary that is then made available to the diagnostic script via the interface link,
independent of the language the diagnostic script is written in. Here is an example of such groups of arguments:

scripts:
autoassess_strato_test_1: &autoassess_strato_test_1_settings
script: autoassess/autoassess_area_base.py
title: "Autoassess Stratosphere Diagnostic Metric MPI-MPI"
area: stratosphere
control_model: MPI-ESM-LR
exp_model: MPI-ESM-MR
obs_models: [ERA-Interim] # list to hold models that are NOT for metrics but for␣

→˓obs operations
additional_metrics: [ERA-Interim, inmcm4] # list to hold additional datasets for␣

→˓metrics

In this example, apart from specifying the diagnostic script script: autoassess/autoassess_area_base.py,
we pass a suite of parameters to be used by the script (area, control_model etc). These parameters are stored in
key-value pairs in the diagnostic configuration file, an interface file that can be used by importing the run_diagnostic
utility:

from esmvaltool.diag_scripts.shared import run_diagnostic

write the diagnostic code here e.g.
def run_some_diagnostic(my_area, my_control_model, my_exp_model):

"""Diagnostic to be run."""
if my_area == 'stratosphere':

diag = my_control_model / my_exp_model
return diag

def main(cfg):
"""Main diagnostic run function."""
my_area = cfg['area']
my_control_model = cfg['control_model']
my_exp_model = cfg['exp_model']
run_some_diagnostic(my_area, my_control_model, my_exp_model)

if __name__ == '__main__':

with run_diagnostic() as config:
main(config)

This way a lot of the optional arguments necessary to a diagnostic are at the user’s control via the recipe.

46 Chapter 6. Overview

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

6.4.8 Running your own diagnostic

If the user wants to test a newly-developed my_first_diagnostic.py which is not yet part of the ESMValTool
diagnostics library, he/she do it by passing the absolute path to the diagnostic:

diagnostics:

myFirstDiag:
title: Let's do some science!
description: John Doe wrote a funny diagnostic
variables:
tos: # Temperature at the ocean surface
preprocessor: prep_map
start_year: 2001
end_year: 2003

scripts:
JoeDiagFunny:
script: /home/users/john_doe/esmvaltool_testing/my_first_diagnostic.py

This way the user may test a new diagnostic thoroughly before committing to the GitHub repository and including it in
the ESMValTool diagnostics library.

6.4.9 Re-using parameters from one script to another

Due to yaml features it is possible to recycle entire diagnostics sections for use with other diagnostics. Here is an
example:

scripts:
cycle: &cycle_settings
script: perfmetrics/main.ncl
plot_type: cycle
time_avg: monthlyclim

grading: &grading_settings
<<: *cycle_settings
plot_type: cycle_latlon
calc_grading: true
normalization: [centered_median, none]

In this example the hook &cycle_settings can be used to pass the cycle: parameters to grading: via the shortcut
<<: *cycle_settings.

6.4. Recipe section: diagnostics 47

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

48 Chapter 6. Overview

CHAPTER

SEVEN

PREPROCESSOR

In this section, each of the preprocessor modules is described, roughly following the default order in which preprocessor
functions are applied:

• Variable derivation

• CMORization and dataset-specific fixes

• Fx variables as cell measures or ancillary variables

• Vertical interpolation

• Weighting

• Land-sea masking

• Horizontal regridding

• Missing values masks

• Ensemble statistics

• Multi-model statistics

• Time manipulation

• Area manipulation

• Volume manipulation

• Cycles

• Trend

• Detrend

• Rolling window statistics

• Unit conversion

• Bias

• Other

See Preprocessor functions for implementation details and the exact default order.

49

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.1 Overview

The ESMValTool preprocessor can be used to perform a broad range of operations on the input data before diagnostics
or metrics are applied. The preprocessor performs these operations in a centralized, documented and efficient way, thus
reducing the data processing load on the diagnostics side. For an overview of the preprocessor structure see the Recipe
section: preprocessors.

Each of the preprocessor operations is written in a dedicated python module and all of them receive and return an
instance of iris.cube.Cube, working sequentially on the data with no interactions between them. The order in
which the preprocessor operations is applied is set by default to minimize the loss of information due to, for example,
temporal and spatial subsetting or multi-model averaging. Nevertheless, the user is free to change such order to address
specific scientific requirements, but keeping in mind that some operations must be necessarily performed in a specific
order. This is the case, for instance, for multi-model statistics, which required the model to be on a common grid and
therefore has to be called after the regridding module.

7.2 Variable derivation

The variable derivation module allows to derive variables which are not in the CMIP standard data request using
standard variables as input. The typical use case of this operation is the evaluation of a variable which is only available
in an observational dataset but not in the models. In this case a derivation function is provided by the ESMValTool in
order to calculate the variable and perform the comparison. For example, several observational datasets deliver total
column ozone as observed variable (toz), but CMIP models only provide the ozone 3D field. In this case, a derivation
function is provided to vertically integrate the ozone and obtain total column ozone for direct comparison with the
observations.

To contribute a new derived variable, it is also necessary to define a name for it and to provide the corresponding
CMOR table. This is to guarantee the proper metadata definition is attached to the derived data. Such custom CMOR
tables are collected as part of the ESMValCore package. By default, the variable derivation will be applied only if the
variable is not already available in the input data, but the derivation can be forced by setting the appropriate flag.

variables:
toz:
derive: true
force_derivation: false

The required arguments for this module are two boolean switches:

• derive: activate variable derivation

• force_derivation: force variable derivation even if the variable is directly available in the input data.

See also esmvalcore.preprocessor.derive(). To get an overview on derivation scripts and how to implement
new ones, please go to Deriving a variable.

50 Chapter 7. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://github.com/ESMValGroup/ESMValCore

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.3 CMORization and dataset-specific fixes

7.3.1 Data checking

Data preprocessed by ESMValTool is automatically checked against its cmor definition. To reduce the impact of this
check while maintaining it as reliable as possible, it is split in two parts: one will check the metadata and will be done
just after loading and concatenating the data and the other one will check the data itself and will be applied after all
extracting operations are applied to reduce the amount of data to process.

Checks include, but are not limited to:

• Requested coordinates are present and comply with their definition.

• Correctness of variable names, units and other metadata.

• Compliance with the valid minimum and maximum values allowed if defined.

The most relevant (i.e. a missing coordinate) will raise an error while others (i.e an incorrect long name) will be
reported as a warning.

Some of those issues will be fixed automatically by the tool, including the following:

• Incorrect standard or long names.

• Incorrect units, if they can be converted to the correct ones.

• Direction of coordinates.

• Automatic clipping of longitude to 0 - 360 interval.

• Minute differences between the required and actual vertical coordinate values

7.3.2 Dataset specific fixes

Sometimes, the checker will detect errors that it can not fix by itself. ESMValTool deals with those issues by applying
specific fixes for those datasets that require them. Fixes are applied at three different preprocessor steps:

• fix_file: apply fixes directly to a copy of the file. Copying the files is costly, so only errors that prevent Iris to
load the file are fixed here. See esmvalcore.preprocessor.fix_file()

• fix_metadata: metadata fixes are done just before concatenating the cubes loaded from different files in
the final one. Automatic metadata fixes are also applied at this step. See esmvalcore.preprocessor.
fix_metadata()

• fix_data: data fixes are applied before starting any operation that will alter the data itself. Automatic data fixes
are also applied at this step. See esmvalcore.preprocessor.fix_data()

To get an overview on data fixes and how to implement new ones, please go to Fixing data.

7.3. CMORization and dataset-specific fixes 51

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.4 Fx variables as cell measures or ancillary variables

The following preprocessors may require the use of fx_variables to be able to perform the computations:

Preprocessor Default fx variables
area_statistics areacella, areacello
mask_landsea sftlf, sftof
mask_landseaice sftgif
volume_statistics volcello
weighting_landsea_fraction sftlf, sftof

If the option fx_variables is not explicitly specified for these preprocessors, the default fx variables in the second
column are automatically used. If given, the fx_variables argument specifies the fx variables that the user wishes
to input to the corresponding preprocessor function. The user may specify these by simply adding the names of the
variables, e.g.,

fx_variables:
areacello:
volcello:

or by additionally specifying further keys that are used to define the fx datasets, e.g.,

fx_variables:
areacello:
mip: Ofx
exp: piControl

volcello:
mip: Omon

This might be useful to select fx files from a specific mip table or from a specific exp in case not all experiments provide
the fx variable.

Alternatively, the fx_variables argument can also be specified as a list:

fx_variables: ['areacello', 'volcello']

or as a list of dictionaries:

fx_variables: [{'short_name': 'areacello', 'mip': 'Ofx', 'exp': 'piControl'}, {'short_
→˓name': 'volcello', 'mip': 'Omon'}]

The recipe parser will automatically find the data files that are associated with these variables and pass them to the
function for loading and processing.

If mip is not given, ESMValTool will search for the fx variable in all available tables of the specified project.

Warning: Some fx variables exist in more than one table (e.g., volcello exists in CMIP6’s Odec, Ofx, Omon,
and Oyr tables; sftgif exists in CMIP6’s fx, IyrAnt and IyrGre, and LImon tables). If (for a given dataset) fx
files are found in more than one table, mip needs to be specified, otherwise an error is raised.

Note: To explicitly not use any fx variables in a preprocessor, use fx_variables: null. While some of the
preprocessors mentioned above do work without fx variables (e.g., area_statistics or mask_landseawith datasets

52 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

that have regular latitude/longitude grids), using this option is not recommended.

Internally, the required fx_variables are automatically loaded by the preprocessor step add_fx_variables which
also checks them against CMOR standards and adds them either as cell_measure (see CF conventions on cell mea-
sures and iris.coords.CellMeasure) or ancillary_variable (see CF conventions on ancillary variables and
iris.coords.AncillaryVariable) inside the cube data. This ensures that the defined preprocessor chain is ap-
plied to both variables and fx_variables.

Note that when calling steps that require fx_variables inside diagnostic scripts, the variables are expected to contain
the required cell_measures or ancillary_variables. If missing, they can be added using the following functions:

from esmvalcore.preprocessor import (add_cell_measure, add_ancillary_variable)

cube_with_area_measure = add_cell_measure(cube, area_cube, 'area')

cube_with_volume_measure = add_cell_measure(cube, volume_cube, 'volume)

cube_with_ancillary_sftlf = add_ancillary_variable(cube, sftlf_cube)

cube_with_ancillary_sftgif = add_ancillary_variable(cube, sftgif_cube)

Details on the arguments needed for each step can be found in the following sections.

7.5 Vertical interpolation

Vertical level selection is an important aspect of data preprocessing since it allows the scientist to perform a number of
metrics specific to certain levels (whether it be air pressure or depth, e.g. the Quasi-Biennial-Oscillation (QBO) u30
is computed at 30 hPa). Dataset native vertical grids may not come with the desired set of levels, so an interpolation
operation will be needed to regrid the data vertically. ESMValTool can perform this vertical interpolation via the
extract_levels preprocessor. Level extraction may be done in a number of ways.

Level extraction can be done at specific values passed to extract_levels as levels: with its value a list of levels
(note that the units are CMOR-standard, Pascals (Pa)):

preprocessors:
preproc_select_levels_from_list:
extract_levels:
levels: [100000., 50000., 3000., 1000.]
scheme: linear

It is also possible to extract the CMIP-specific, CMOR levels as they appear in the CMOR table, e.g. plev10 or plev17
or plev19 etc:

preprocessors:
preproc_select_levels_from_cmip_table:
extract_levels:
levels: {cmor_table: CMIP6, coordinate: plev10}
scheme: nearest

Of good use is also the level extraction with values specific to a certain dataset, without the user actually polling the
dataset of interest to find out the specific levels: e.g. in the example below we offer two alternatives to extract the levels
and vertically regrid onto the vertical levels of ERA-Interim:

7.5. Vertical interpolation 53

https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures
https://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coords.html#iris.coords.CellMeasure
https://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coords.html#iris.coords.AncillaryVariable

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

preprocessors:
preproc_select_levels_from_dataset:
extract_levels:
levels: ERA-Interim
This also works, but allows specifying the pressure coordinate name
levels: {dataset: ERA-Interim, coordinate: air_pressure}
scheme: linear_extrapolate

By default, vertical interpolation is performed in the dimension coordinate of the z axis. If you want to explicitly
declare the z axis coordinate to use (for example, air_pressure’ in variables that are provided in model levels and
not pressure levels) you can override that automatic choice by providing the name of the desired coordinate:

preprocessors:
preproc_select_levels_from_dataset:
extract_levels:
levels: ERA-Interim
scheme: linear_extrapolate
coordinate: air_pressure

If coordinate is specified, pressure levels (if present) can be converted to height levels and vice versa using the
US standard atmosphere. E.g. coordinate = altitude will convert existing pressure levels (air_pressure) to
height levels (altitude); coordinate = air_pressure will convert existing height levels (altitude) to pressure levels
(air_pressure).

If the requested levels are very close to the values in the input data, the function will just select the available levels
instead of interpolating. The meaning of ‘very close’ can be changed by providing the parameters:

• rtol
Relative tolerance for comparing the levels in the input data to the requested levels. If the levels are suffi-
ciently close, the requested levels will be assigned to the vertical coordinate and no interpolation will take
place. The default value is 10^-7.

• atol
Absolute tolerance for comparing the levels in the input data to the requested levels. If the levels are
sufficiently close, the requested levels will be assigned to the vertical coordinate and no interpolation will
take place. By default, atol will be set to 10^-7 times the mean value of of the available levels.

7.5.1 Schemes for vertical interpolation and extrapolation

The vertical interpolation currently supports the following schemes:

• linear: Linear interpolation without extrapolation, i.e., extrapolation points will be masked even if the source
data is not a masked array.

• linear_extrapolate: Linear interpolation with nearest-neighbour extrapolation, i.e., extrapolation points
will take their value from the nearest source point.

• nearest: Nearest-neighbour interpolation without extrapolation, i.e., extrapolation points will be masked even
if the source data is not a masked array.

• nearest_extrapolate: Nearest-neighbour interpolation with nearest-neighbour extrapolation, i.e., extrapola-
tion points will take their value from the nearest source point.

Note: Previous versions of ESMValCore (<2.5.0) supported the schemes
linear_horizontal_extrapolate_vertical and nearest_horizontal_extrapolate_vertical. These

54 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

schemes have been renamed to linear_extrapolate and nearest_extrapolate, respectively, in version 2.5.0
and are identical to the new schemes. Support for the old names will be removed in version 2.7.0.

• See also esmvalcore.preprocessor.extract_levels().

• See also esmvalcore.preprocessor.get_cmor_levels().

Note: Controlling the extrapolation mode allows us to avoid situations where extrapolating values makes little physical
sense (e.g. extrapolating beyond the last data point).

7.6 Weighting

7.6.1 Land/sea fraction weighting

This preprocessor allows weighting of data by land or sea fractions. In other words, this function multiplies the given
input field by a fraction in the range 0-1 to account for the fact that not all grid points are completely land- or sea-covered.

The application of this preprocessor is very important for most carbon cycle variables (and other land surface outputs),
which are e.g. reported in units of 𝑘𝑔𝐶 𝑚−2. Here, the surface unit actually refers to ‘square meter of land/sea’ and
NOT ‘square meter of gridbox’. In order to integrate these globally or regionally one has to weight by both the surface
quantity and the land/sea fraction.

For example, to weight an input field with the land fraction, the following preprocessor can be used:

preprocessors:
preproc_weighting:
weighting_landsea_fraction:
area_type: land
exclude: ['CanESM2', 'reference_dataset']

Allowed arguments for the keyword area_type are land (fraction is 1 for grid cells with only land surface, 0 for grid
cells with only sea surface and values in between 0 and 1 for coastal regions) and sea (1 for sea, 0 for land, in between
for coastal regions). The optional argument exclude allows to exclude specific datasets from this preprocessor, which
is for example useful for climate models which do not offer land/sea fraction files. This arguments also accepts the
special dataset specifiers reference_dataset and alternative_dataset.

Optionally you can specify your own custom fx variable to be used in cases when e.g. a certain experiment is preferred
for fx data retrieval:

preprocessors:
preproc_weighting:
weighting_landsea_fraction:
area_type: land
exclude: ['CanESM2', 'reference_dataset']
fx_variables:
sftlf:
exp: piControl

sftof:
exp: piControl

or alternatively:

7.6. Weighting 55

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

preprocessors:
preproc_weighting:
weighting_landsea_fraction:
area_type: land
exclude: ['CanESM2', 'reference_dataset']
fx_variables: [
{'short_name': 'sftlf', 'exp': 'piControl'},
{'short_name': 'sftof', 'exp': 'piControl'}
]

More details on the argument fx_variables and its default values are given in Fx variables as cell measures or
ancillary variables.

See also esmvalcore.preprocessor.weighting_landsea_fraction().

7.7 Masking

7.7.1 Introduction to masking

Certain metrics and diagnostics need to be computed and performed on specific domains on the globe. The ESMValTool
preprocessor supports filtering the input data on continents, oceans/seas and ice. This is achieved by masking the model
data and keeping only the values associated with grid points that correspond to, e.g., land, ocean or ice surfaces, as
specified by the user. Where possible, the masking is realized using the standard mask files provided together with the
model data as part of the CMIP data request (the so-called fx variable). In the absence of these files, the Natural Earth
masks are used: although these are not model-specific, they represent a good approximation since they have a much
higher resolution than most of the models and they are regularly updated with changing geographical features.

7.7.2 Land-sea masking

In ESMValTool, land-sea-ice masking can be done in two places: in the preprocessor, to apply a mask on the data
before any subsequent preprocessing step and before running the diagnostic, or in the diagnostic scripts themselves.
We present both these implementations below.

To mask out a certain domain (e.g., sea) in the preprocessor, mask_landsea can be used:

preprocessors:
preproc_mask:
mask_landsea:
mask_out: sea

and requires only one argument: mask_out: either land or sea.

Optionally you can specify your own custom fx variable to be used in cases when e.g. a certain experiment is preferred
for fx data retrieval. Note that it is possible to specify as many tags for the fx variable as required:

preprocessors:
landmask:
mask_landsea:
mask_out: sea
fx_variables:
sftlf:
exp: piControl

(continues on next page)

56 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

sftof:
exp: piControl
ensemble: r2i1p1f1

or alternatively:

preprocessors:
landmask:
mask_landsea:
mask_out: sea
fx_variables: [
{'short_name': 'sftlf', 'exp': 'piControl'},
{'short_name': 'sftof', 'exp': 'piControl', 'ensemble': 'r2i1p1f1'}
]

More details on the argument fx_variables and its default values are given in Fx variables as cell measures or
ancillary variables.

If the corresponding fx file is not found (which is the case for some models and almost all observational datasets),
the preprocessor attempts to mask the data using Natural Earth mask files (that are vectorized rasters). As mentioned
above, the spatial resolution of the the Natural Earth masks are much higher than any typical global model (10m for
land and glaciated areas and 50m for ocean masks).

See also esmvalcore.preprocessor.mask_landsea().

7.7.3 Ice masking

Note that for masking out ice sheets, the preprocessor uses a different function, to ensure that both land and sea or ice
can be masked out without losing generality. To mask ice out, mask_landseaice can be used:

preprocessors:
preproc_mask:
mask_landseaice:
mask_out: ice

and requires only one argument: mask_out: either landsea or ice.

Optionally you can specify your own custom fx variable to be used in cases when e.g. a certain experiment is preferred
for fx data retrieval:

preprocessors:
landseaicemask:
mask_landseaice:
mask_out: sea
fx_variables:
sftgif:
exp: piControl

or alternatively:

preprocessors:
landseaicemask:
mask_landseaice:

(continues on next page)

7.7. Masking 57

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

mask_out: sea
fx_variables: [{'short_name': 'sftgif', 'exp': 'piControl'}]

More details on the argument fx_variables and its default values are given in Fx variables as cell measures or
ancillary variables.

See also esmvalcore.preprocessor.mask_landseaice().

7.7.4 Glaciated masking

For masking out glaciated areas a Natural Earth shapefile is used. To mask glaciated areas out, mask_glaciated can
be used:

preprocessors:
preproc_mask:
mask_glaciated:
mask_out: glaciated

and it requires only one argument: mask_out: only glaciated.

See also esmvalcore.preprocessor.mask_landseaice().

7.7.5 Missing values masks

Missing (masked) values can be a nuisance especially when dealing with multi-model ensembles and having to compute
multi-model statistics; different numbers of missing data from dataset to dataset may introduce biases and artificially
assign more weight to the datasets that have less missing data. This is handled in ESMValTool via the missing values
masks: two types of such masks are available, one for the multi-model case and another for the single model case.

The multi-model missing values mask (mask_fillvalues) is a preprocessor step that usually comes after all the
single-model steps (regridding, area selection etc) have been performed; in a nutshell, it combines missing values
masks from individual models into a multi-model missing values mask; the individual model masks are built according
to common criteria: the user chooses a time window in which missing data points are counted, and if the number of
missing data points relative to the number of total data points in a window is less than a chosen fractional threshold,
the window is discarded i.e. all the points in the window are masked (set to missing).

preprocessors:
missing_values_preprocessor:
mask_fillvalues:
threshold_fraction: 0.95
min_value: 19.0
time_window: 10.0

In the example above, the fractional threshold for missing data vs. total data is set to 95% and the time window is set
to 10.0 (units of the time coordinate units). Optionally, a minimum value threshold can be applied, in this case it is set
to 19.0 (in units of the variable units).

See also esmvalcore.preprocessor.mask_fillvalues().

58 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.7.6 Common mask for multiple models

To create a combined multi-model mask (all the masks from all the analyzed datasets combined into a single mask using
a logical OR), the preprocessor mask_multimodel can be used. In contrast to mask_fillvalues, mask_multimodel
does not expect that the datasets have a time coordinate, but works on datasets with arbitrary (but identical) coordinates.
After mask_multimodel, all involved datasets have an identical mask.

See also esmvalcore.preprocessor.mask_multimodel().

7.7.7 Minimum, maximum and interval masking

Thresholding on minimum and maximum accepted data values can also be performed: masks are constructed based on
the results of thresholding; inside and outside interval thresholding and masking can also be performed. These functions
are mask_above_threshold, mask_below_threshold, mask_inside_range, and mask_outside_range.

These functions always take a cube as first argument and either threshold for threshold masking or the pair minimum,
maximum for interval masking.

See also esmvalcore.preprocessor.mask_above_threshold() and related functions.

7.8 Horizontal regridding

Regridding is necessary when various datasets are available on a variety of lat-lon grids and they need to be brought to-
gether on a common grid (for various statistical operations e.g. multi-model statistics or for e.g. direct inter-comparison
or comparison with observational datasets). Regridding is conceptually a very similar process to interpolation (in fact,
the regridder engine uses interpolation and extrapolation, with various schemes). The primary difference is that inter-
polation is based on sample data points, while regridding is based on the horizontal grid of another cube (the reference
grid). If the horizontal grids of a cube and its reference grid are sufficiently the same, regridding is automatically and
silently skipped for performance reasons.

The underlying regridding mechanism in ESMValTool uses iris.cube.Cube.regrid from Iris.

The use of the horizontal regridding functionality is flexible depending on what type of reference grid and what inter-
polation scheme is preferred. Below we show a few examples.

7.8.1 Regridding on a reference dataset grid

The example below shows how to regrid on the reference dataset ERA-Interim (observational data, but just as well
CMIP, obs4MIPs, or ana4mips datasets can be used); in this case the scheme is linear.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: ERA-Interim
scheme: linear

7.8. Horizontal regridding 59

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube.regrid

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.8.2 Regridding on an MxN grid specification

The example below shows how to regrid on a reference grid with a cell specification of 2.5x2.5 degrees. This is
similar to regridding on reference datasets, but in the previous case the reference dataset grid cell specifications are not
necessarily known a priori. Regridding on an MxN cell specification is oftentimes used when operating on localized
data.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme: nearest

In this case the NearestNeighbour interpolation scheme is used (see below for scheme definitions).

When using a MxN type of grid it is possible to offset the grid cell centrepoints using the lat_offset and lon_offset
arguments:

• lat_offset: offsets the grid centers of the latitude coordinate w.r.t. the pole by half a grid step;

• lon_offset: offsets the grid centers of the longitude coordinate w.r.t. Greenwich meridian by half a grid step.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
lon_offset: True
lat_offset: True
scheme: nearest

7.8.3 Regridding to a regional target grid specification

This example shows how to regrid to a regional target grid specification. This is useful if both a regrid and
extract_region step are necessary.

preprocessors:
regrid_preprocessor:
regrid:
target_grid:
start_longitude: 40
end_longitude: 60
step_longitude: 2
start_latitude: -10
end_latitude: 30
step_latitude: 2

scheme: nearest

This defines a grid ranging from 40° to 60° longitude with 2° steps, and -10° to 30° latitude with 2° steps. If
end_longitude or end_latitude do not fall on the grid (e.g., end_longitude: 61), it cuts off at the nearest
previous value (e.g. 60).

The longitude coordinates will wrap around the globe if necessary, i.e. start_longitude: 350, end_longitude:
370 is valid input.

The arguments are defined below:

60 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• start_latitude: Latitude value of the first grid cell center (start point). The grid includes this value.

• end_latitude: Latitude value of the last grid cell center (end point). The grid includes this value only if it falls
on a grid point. Otherwise, it cuts off at the previous value.

• step_latitude: Latitude distance between the centers of two neighbouring cells.

• start_longitude: Latitude value of the first grid cell center (start point). The grid includes this value.

• end_longitude: Longitude value of the last grid cell center (end point). The grid includes this value only if it
falls on a grid point. Otherwise, it cuts off at the previous value.

• step_longitude: Longitude distance between the centers of two neighbouring cells.

7.8.4 Regridding (interpolation, extrapolation) schemes

ESMValTool has a number of built-in regridding schemes, which are presented in Built-in regridding schemes. Addi-
tionally, it is also possible to use third party regridding schemes designed for use with Iris. This is explained in Generic
regridding schemes.

Built-in regridding schemes

The schemes used for the interpolation and extrapolation operations needed by the horizontal regridding functionality
directly map to their corresponding implementations in iris:

• linear: Linear interpolation without extrapolation, i.e., extrapolation points will be masked even if the source
data is not a masked array (uses Linear(extrapolation_mode='mask'), see iris.analysis.Linear).

• linear_extrapolate: Linear interpolation with extrapolation, i.e., extrapolation points will be calculated by
extending the gradient of the closest two points (uses Linear(extrapolation_mode='extrapolate'), see
iris.analysis.Linear).

• nearest: Nearest-neighbour interpolation without extrapolation, i.e., extrapolation points will be masked even if
the source data is not a masked array (uses Nearest(extrapolation_mode='mask'), see iris.analysis.
Nearest).

• area_weighted: Area-weighted regridding (uses AreaWeighted(), see iris.analysis.AreaWeighted).

• unstructured_nearest: Nearest-neighbour interpolation for unstructured grids (uses
UnstructuredNearest(), see iris.analysis.UnstructuredNearest).

See also esmvalcore.preprocessor.regrid()

Note: Controlling the extrapolation mode allows us to avoid situations where extrapolating values makes little physical
sense (e.g. extrapolating beyond the last data point).

Note: The regridding mechanism is (at the moment) done with fully realized data in memory, so depending on how
fine the target grid is, it may use a rather large amount of memory. Empirically target grids of up to 0.5x0.5 degrees
should not produce any memory-related issues, but be advised that for resolutions of < 0.5 degrees the regridding
becomes very slow and will use a lot of memory.

7.8. Horizontal regridding 61

https://scitools-iris.readthedocs.io/en/latest/index.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.Linear
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.Linear
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.Nearest
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.Nearest
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.AreaWeighted
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.UnstructuredNearest

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Generic regridding schemes

Iris’ regridding is based around the flexible use of so-called regridding schemes. These are classes that know how to
transform a source cube with a given grid into the grid defined by a given target cube. Iris itself provides a number
of useful schemes, but they are largely limited to work with simple, regular grids. Other schemes can be provided
independently. This is interesting when special regridding-needs arise or when more involved grids and meshes need
to be considered. Furthermore, it may be desirable to have finer control over the parameters of the scheme than is
afforded by the built-in schemes described above.

To facilitate this, the regrid() preprocessor allows the use of any scheme designed for Iris. The scheme must be
installed and importable. To use this feature, the scheme key passed to the preprocessor must be a dictionary instead
of a simple string that contains all necessary information. That includes a reference to the desired scheme itself, as
well as any arguments that should be passed through to the scheme. For example, the following shows the use of the
built-in scheme iris.analysis.AreaWeighted with a custom threshold for missing data tolerance.

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme:
reference: iris.analysis:AreaWeighted
mdtol: 0.7

The value of the reference key has two parts that are separated by a : with no surrounding spaces. The first part is
an importable Python module, the second refers to the scheme, i.e. some callable that will be called with the remaining
entries of the scheme dictionary passed as keyword arguments.

One package that aims to capitalize on the support for unstructured meshes introduced in Iris 3.2 is iris-esmf-regrid. It
aims to provide lazy regridding for structured regular and irregular grids, as well as unstructured meshes. An example
of its usage in an ESMValTool preprocessor is:

preprocessors:
regrid_preprocessor:
regrid:
target_grid: 2.5x2.5
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted
mdtol: 0.7

Warning: Just as the mesh support in Iris itself, this new regridding package is still considered experimental.

7.9 Ensemble statistics

For certain use cases it may be desirable to compute ensemble statistics. For example to prevent models with many
ensemble members getting excessive weight in the multi-model statistics functions.

Theoretically, ensemble statistics are a special case (grouped) multi-model statistics. This grouping is performed taking
into account the dataset tags project, dataset, experiment, and (if present) sub_experiment. However, they should
typically be computed earlier in the workflow. Moreover, because multiple ensemble members of the same model are
typically more consistent/homogeneous than datasets from different models, the implementation is more straigtforward
and can benefit from lazy evaluation and more efficient computation.

The preprocessor takes a list of statistics as input:

62 Chapter 7. Preprocessor

https://scitools-iris.readthedocs.io/en/latest/userguide/interpolation_and_regridding.html#interpolation-and-regridding
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.AreaWeighted
https://scitools-iris.readthedocs.io/en/latest/further_topics/ugrid/index.html#ugrid
https://iris-esmf-regrid.readthedocs.io/en/latest/index.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

preprocessors:
example_preprocessor:
ensemble_statistics:
statistics: [mean, median]

This preprocessor function exposes the iris analysis package, and works with all (capitalized) statistics from the iris.
analysis package that can be executed without additional arguments (e.g. percentiles are not supported because it
requires additional keywords: percentile.).

Note that ensemble_statistics will not return the single model and ensemble files, only the requested ensemble
statistics results.

In case of wanting to save both individual ensemble members as well as the statistic results, the preprocessor chains
could be defined as:

preprocessors:
everything_else: &everything_else
area_statistics: ...
regrid_time: ...

multimodel:
<<: *everything_else
ensemble_statistics:

variables:
tas_datasets:
short_name: tas
preprocessor: everything_else
...

tas_multimodel:
short_name: tas
preprocessor: multimodel
...

See also esmvalcore.preprocessor.ensemble_statistics().

7.10 Multi-model statistics

Computing multi-model statistics is an integral part of model analysis and evaluation: individual models display a
variety of biases depending on model set-up, initial conditions, forcings and implementation; comparing model data
to observational data, these biases have a significantly lower statistical impact when using a multi-model ensemble.
ESMValTool has the capability of computing a number of multi-model statistical measures: using the preprocessor
module multi_model_statistics will enable the user to ask for either a multi-model mean, median, max, min,
std_dev, and / or pXX.YY with a set of argument parameters passed to multi_model_statistics. Percentiles can
be specified like p1.5 or p95. The decimal point will be replaced by a dash in the output file.

Restrictive computation is also available by excluding any set of models that the user will not want to include in the
statistics (by setting exclude: [excluded models list] argument). The implementation has a few restrictions
that apply to the input data: model datasets must have consistent shapes, apart from the time dimension; and cubes
with more than four dimensions (time, vertical axis, two horizontal axes) are not supported.

Input datasets may have different time coordinates. Statistics can be computed across overlapping times only (span:
overlap) or across the full time span of the combined models (span: full). The preprocessor sets a common time
coordinate on all datasets. As the number of days in a year may vary between calendars, (sub-)daily data with different
calendars are not supported. The preprocessor saves both the input single model files as well as the multi-model results.

7.10. Multi-model statistics 63

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#module-iris.analysis
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#module-iris.analysis

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

In case you do not want to keep the single model files, set the parameter keep_input_datasets to false (default
value is true).

preprocessors:
multi_model_save_input:
multi_model_statistics:
span: overlap
statistics: [mean, median]
exclude: [NCEP]

multi_model_without_saving_input:
multi_model_statistics:
span: overlap
statistics: [mean, median]
exclude: [NCEP]
keep_input_datasets: false

Input datasets may have different time coordinates. The multi-model statistics preprocessor sets a common time coor-
dinate on all datasets. As the number of days in a year may vary between calendars, (sub-)daily data are not supported.

Multi-model statistics also supports a groupby argument. You can group by any dataset key (project, experiment,
etc.) or a combination of keys in a list. You can also add an arbitrary tag to a dataset definition and then group
by that tag. When using this preprocessor in conjunction with ensemble statistics preprocessor, you can group by
ensemble_statistics as well. For example:

datasets:
- {dataset: CanESM2, exp: historical, ensemble: "r(1:2)i1p1"}
- {dataset: CCSM4, exp: historical, ensemble: "r(1:2)i1p1"}

preprocessors:
example_preprocessor:
ensemble_statistics:
statistics: [median, mean]

multi_model_statistics:
span: overlap
statistics: [min, max]
groupby: [ensemble_statistics]
exclude: [NCEP]

This will first compute ensemble mean and median, and then compute the multi-model min and max separately for the
ensemble means and medians. Note that this combination will not save the individual ensemble members, only the
ensemble and multimodel statistics results.

When grouping by a tag not defined in all datasets, the datasets missing the tag will be grouped together. In the example
below, datasets UKESM and ERA5 would belong to the same group, while the other datasets would belong to either
group1 or group2

datasets:
- {dataset: CanESM2, exp: historical, ensemble: "r(1:2)i1p1", tag: 'group1'}
- {dataset: CanESM5, exp: historical, ensemble: "r(1:2)i1p1", tag: 'group2'}
- {dataset: CCSM4, exp: historical, ensemble: "r(1:2)i1p1", tag: 'group2'}
- {dataset: UKESM, exp: historical, ensemble: "r(1:2)i1p1"}
- {dataset: ERA5}

preprocessors:
example_preprocessor:

(continues on next page)

64 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

multi_model_statistics:
span: overlap
statistics: [min, max]
groupby: [tag]

Note that those datasets can be excluded if listed in the exclude option.

See also esmvalcore.preprocessor.multi_model_statistics().

Note: The multi-model array operations can be rather memory-intensive (since they are not performed lazily as yet).
The Section on Information on maximum memory required details the memory intake for different run scenarios, but
as a thumb rule, for the multi-model preprocessor, the expected maximum memory intake could be approximated as
the number of datasets multiplied by the average size in memory for one dataset.

7.11 Time manipulation

The _time.py module contains the following preprocessor functions:

• extract_time: Extract a time range from a cube.

• extract_season: Extract only the times that occur within a specific season.

• extract_month: Extract only the times that occur within a specific month.

• hourly_statistics: Compute intra-day statistics

• daily_statistics: Compute statistics for each day

• monthly_statistics: Compute statistics for each month

• seasonal_statistics: Compute statistics for each season

• annual_statistics: Compute statistics for each year

• decadal_statistics: Compute statistics for each decade

• climate_statistics: Compute statistics for the full period

• resample_time: Resample data

• resample_hours: Convert between N-hourly frequencies by resampling

• anomalies: Compute (standardized) anomalies

• regrid_time: Aligns the time axis of each dataset to have common time points and calendars.

• timeseries_filter: Allows application of a filter to the time-series data.

Statistics functions are applied by default in the order they appear in the list. For example, the following example
applied to hourly data will retrieve the minimum values for the full period (by season) of the monthly mean of the daily
maximum of any given variable.

daily_statistics:
operator: max

monthly_statistics:
operator: mean

(continues on next page)

7.11. Time manipulation 65

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

climate_statistics:
operator: min
period: season

7.11.1 extract_time

This function subsets a dataset between two points in times. It removes all times in the dataset before the first time and
after the last time point. The required arguments are relatively self explanatory:

• start_year

• start_month

• start_day

• end_year

• end_month

• end_day

These start and end points are set using the datasets native calendar. All six arguments should be given as integers -
the named month string will not be accepted.

See also esmvalcore.preprocessor.extract_time().

7.11.2 extract_season

Extract only the times that occur within a specific season.

This function only has one argument: season. This is the named season to extract, i.e. DJF, MAM, JJA, SON, but
also all other sequentially correct combinations, e.g. JJAS.

Note that this function does not change the time resolution. If your original data is in monthly time resolution, then
this function will return three monthly datapoints per year.

If you want the seasonal average, then this function needs to be combined with the seasonal_mean function, below.

See also esmvalcore.preprocessor.extract_season().

7.11.3 extract_month

The function extracts the times that occur within a specific month. This function only has one argument: month. This
value should be an integer between 1 and 12 as the named month string will not be accepted.

See also esmvalcore.preprocessor.extract_month().

66 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.11.4 hourly_statistics

This function produces statistics at a x-hourly frequency.

Parameters:

• every_n_hours: frequency to use to compute the statistics. Must be a divisor of 24.

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’ and ‘sum’.
Default is ‘mean’

See also esmvalcore.preprocessor.daily_statistics().

7.11.5 daily_statistics

This function produces statistics for each day in the dataset.

Parameters:

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.daily_statistics().

7.11.6 monthly_statistics

This function produces statistics for each month in the dataset.

Parameters:

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.monthly_statistics().

7.11.7 seasonal_statistics

This function produces statistics for each season (default: [DJF, MAM, JJA, SON] or custom seasons e.g. [JJAS,
ONDJFMAM]) in the dataset. Note that this function will not check for missing time points. For instance, if you are
looking at the DJF field, but your datasets starts on January 1st, the first DJF field will only contain data from January
and February.

We recommend using the extract_time to start the dataset from the following December and remove such biased initial
datapoints.

Parameters:

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

• seasons: seasons to build statistics. Default is ‘[DJF, MAM, JJA, SON]’

See also esmvalcore.preprocessor.seasonal_statistics().

7.11. Time manipulation 67

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.11.8 annual_statistics

This function produces statistics for each year.

Parameters:

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.annual_statistics().

7.11.9 decadal_statistics

This function produces statistics for each decade.

Parameters:

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

See also esmvalcore.preprocessor.decadal_statistics().

7.11.10 climate_statistics

This function produces statistics for the whole dataset. It can produce scalars (if the full period is chosen) or daily,
monthly or seasonal statistics.

Parameters:

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’, ‘sum’ and
‘rms’. Default is ‘mean’

• period: define the granularity of the statistics: get values for the full period, for each month or day of year.
Available periods: ‘full’, ‘season’, ‘seasonal’, ‘monthly’, ‘month’, ‘mon’, ‘daily’, ‘day’. Default is ‘full’

• seasons: if period ‘seasonal’ or ‘season’ allows to set custom seasons. Default is ‘[DJF, MAM, JJA, SON]’

Examples:

• Monthly climatology:

climate_statistics:
operator: mean
period: month

• Daily maximum for the full period:

climate_statistics:
operator: max
period: day

• Minimum value in the period:

climate_statistics:
operator: min
period: full

See also esmvalcore.preprocessor.climate_statistics().

68 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.11.11 resample_time

This function changes the frequency of the data in the cube by extracting the timesteps that meet the criteria. It is
important to note that it is mainly meant to be used with instantaneous data.

Parameters:

• month: Extract only timesteps from the given month or do nothing if None. Default is None

• day: Extract only timesteps from the given day of month or do nothing if None. Default is None

• hour: Extract only timesteps from the given hour or do nothing if None. Default is None

Examples:

• Hourly data to daily:

resample_time:
hour: 12

• Hourly data to monthly:

resample_time:
hour: 12
day: 15

• Daily data to monthly:

resample_time:
day: 15

See also esmvalcore.preprocessor.resample_time().

resample_hours:

7.11.12 resample_hours

This function changes the frequency of the data in the cube by extracting the timesteps that belongs to the desired
frequency. It is important to note that it is mainly mean to be used with instantaneous data

Parameters:

• interval: New frequency of the data. Must be a divisor of 24

• offset: First desired hour. Default 0. Must be lower than the interval

Examples:

• Convert to 12-hourly, by getting timesteps at 0:00 and 12:00:

resample_hours:
hours: 12

• Convert to 12-hourly, by getting timesteps at 6:00 and 18:00:

resample_hours:
hours: 12
offset: 6

See also esmvalcore.preprocessor.resample_hours().

7.11. Time manipulation 69

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.11.13 anomalies

This function computes the anomalies for the whole dataset. It can compute anomalies from the full, seasonal, monthly
and daily climatologies. Optionally standardized anomalies can be calculated.

Parameters:

• period: define the granularity of the climatology to use: full period, seasonal, monthly or daily. Available
periods: ‘full’, ‘season’, ‘seasonal’, ‘monthly’, ‘month’, ‘mon’, ‘daily’, ‘day’. Default is ‘full’

• reference: Time slice to use as the reference to compute the climatology on. Can be ‘null’ to use the full
cube or a dictionary with the parameters from extract_time. Default is null

• standardize: if true calculate standardized anomalies (default: false)

• seasons: if period ‘seasonal’ or ‘season’ allows to set custom seasons. Default is ‘[DJF, MAM, JJA, SON]’

Examples:

• Anomalies from the full period climatology:

anomalies:

• Anomalies from the full period monthly climatology:

anomalies:
period: month

• Standardized anomalies from the full period climatology:

anomalies:
standardized: true

• Standardized Anomalies from the 1979-2000 monthly climatology:

anomalies:
period: month
reference:
start_year: 1979
start_month: 1
start_day: 1
end_year: 2000
end_month: 12
end_day: 31

standardize: true

See also esmvalcore.preprocessor.anomalies().

70 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.11.14 regrid_time

This function aligns the time points of each component dataset so that the Iris cubes from different datasets can be sub-
tracted. The operation makes the datasets time points common; it also resets the time bounds and auxiliary coordinates
to reflect the artificially shifted time points. Current implementation for monthly and daily data; the frequency is set
automatically from the variable CMOR table unless a custom frequency is set manually by the user in recipe.

See also esmvalcore.preprocessor.regrid_time().

7.11.15 timeseries_filter

This function allows the user to apply a filter to the timeseries data. This filter may be of the user’s choice (currently only
the low-pass Lanczos filter is implemented); the implementation is inspired by this iris example and uses aggregation
via iris.cube.Cube.rolling_window.

Parameters:

• window: the length of the filter window (in units of cube time coordinate).

• span: period (number of months/days, depending on data frequency) on which weights should be computed
e.g. for 2-yearly: span = 24 (2 x 12 months). Make sure span has the same units as the data cube time
coordinate.

• filter_type: the type of filter to be applied; default ‘lowpass’. Available types: ‘lowpass’.

• filter_stats: the type of statistic to aggregate on the rolling window; default ‘sum’. Available operators:
‘mean’, ‘median’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’.

Examples:

• Lowpass filter with a monthly mean as operator:

timeseries_filter:
window: 3 # 3-monthly filter window
span: 12 # weights computed on the first year
filter_type: lowpass # low-pass filter
filter_stats: mean # 3-monthly mean lowpass filter

See also esmvalcore.preprocessor.timeseries_filter().

7.12 Area manipulation

The area manipulation module contains the following preprocessor functions:

• extract_coordinate_points: Extract a point with arbitrary coordinates given an interpolation scheme.

• extract_region: Extract a region from a cube based on lat/lon corners.

• extract_named_regions: Extract a specific region from in the region coordinate.

• extract_shape: Extract a region defined by a shapefile.

• extract_point: Extract a single point (with interpolation)

• extract_location: Extract a single point by its location (with interpolation)

• zonal_statistics: Compute zonal statistics.

• meridional_statistics: Compute meridional statistics.

7.12. Area manipulation 71

https://scitools-iris.readthedocs.io/en/latest/generated/gallery/general/plot_SOI_filtering.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube.rolling_window

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• area_statistics: Compute area statistics.

7.12.1 extract_coordinate_points

This function extracts points with given coordinates, following either a linear or a nearest interpolation scheme.
The resulting point cube will match the respective coordinates to those of the input coordinates. If the input coordinate
is a scalar, the dimension will be a scalar in the output cube.

If the point to be extracted has at least one of the coordinate point values outside the interval of the cube’s same
coordinate values, then no extrapolation will be performed, and the resulting extracted cube will have fully masked
data.

Examples:

• Extract a point from coordinate grid_latitude with given coordinate value 26.0:

extract_coordinate_points:
definition:
grid_latitude: 26.

scheme: nearest

See also esmvalcore.preprocessor.extract_coordinate_points().

7.12.2 extract_region

This function returns a subset of the data on the rectangular region requested. The boundaries of the region are provided
as latitude and longitude coordinates in the arguments:

• start_longitude

• end_longitude

• start_latitude

• end_latitude

Note that this function can only be used to extract a rectangular region. Use extract_shape to extract any other
shaped region from a shapefile.

If the grid is irregular, the returned region retains the original coordinates, but is cropped to a rectangular bounding
box defined by the start/end coordinates. The deselected area inside the region is masked.

See also esmvalcore.preprocessor.extract_region().

7.12.3 extract_named_regions

This function extracts a specific named region from the data. This function takes the following argument: regions
which is either a string or a list of strings of named regions. Note that the dataset must have a region coordinate which
includes a list of strings as values. This function then matches the named regions against the requested string.

See also esmvalcore.preprocessor.extract_named_regions().

72 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.12.4 extract_shape

Extract a shape or a representative point for this shape from the data.

Parameters:

• shapefile: path to the shapefile containing the geometry of the region to be extracted. If the file con-
tains multiple shapes behaviour depends on the decomposed parameter. This path can be relative to
auxiliary_data_dir defined in the User configuration file.

• method: the method to select the region, selecting either all points
contained by the shape or a single representative point. Choose either ‘contains’ or ‘representative’. If
not a single grid point is contained in the shape, a representative point will be selected.

• crop: by default extract_region will be used to crop the data to a
minimal rectangular region containing the shape. Set to false to only mask data outside the shape.
Data on irregular grids will not be cropped.

• decomposed: by default false, in this case the union of all the regions in the shape file is masked out.
If true, the regions in the shapefiles are masked out separately, generating an auxiliary dimension for the
cube for this.

• ids: by default, [], in this case all the shapes in the file will be used. If a list of IDs is provided, only the
shapes matching them will be used. The IDs are assigned from the name or id attributes (in that order of
priority) if present in the file or from the reading order if otherwise not present. So, for example, if a file
has both `name and id attributes, the ids will be assigned from name. If the file only has the id attribute,
it will be taken from it and if no name nor id attributes are present, an integer id starting from 1 will be
assigned automatically when reading the shapes. We discourage to rely on this last behaviour as we can
not assure that the reading order will be the same in different platforms, so we encourage you to modify the
file to add a proper id attribute. If the file has an id attribute with a name that is not supported, please open
an issue so we can add support for it.

Examples:

• Extract the shape of the river Elbe from a shapefile:

extract_shape:
shapefile: Elbe.shp
method: contains

• Extract the shape of several countries:

extract_shape:
shapefile: NaturalEarth/Countries/ne_110m_admin_0_countries.shp
decomposed: True
method: contains
ids:
- Spain
- France
- Italy
- United Kingdom
- Taiwan

See also esmvalcore.preprocessor.extract_shape().

7.12. Area manipulation 73

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.12.5 extract_point

Extract a single point from the data. This is done using either nearest or linear interpolation.

Returns a cube with the extracted point(s), and with adjusted latitude and longitude coordinates (see below).

Multiple points can also be extracted, by supplying an array of latitude and/or longitude coordinates. The resulting
point cube will match the respective latitude and longitude coordinate to those of the input coordinates. If the input
coordinate is a scalar, the dimension will be missing in the output cube (that is, it will be a scalar).

If the point to be extracted has at least one of the coordinate point values outside the interval of the cube’s same
coordinate values, then no extrapolation will be performed, and the resulting extracted cube will have fully masked
data.

Parameters:

• cube: the input dataset cube.

• latitude, longitude: coordinates (as floating point values) of the point to be extracted. Either (or both)
can also be an array of floating point values.

• scheme: interpolation scheme: either 'linear' or 'nearest'. There is no default.

See also esmvalcore.preprocessor.extract_point().

7.12.6 extract_location

Extract a single point using a location name, with interpolation (either linear or nearest). This preprocessor extracts
a single location point from a cube, according to the given interpolation scheme scheme. The function retrieves the
coordinates of the location and then calls the esmvalcore.preprocessor.extract_point() preprocessor. It can
be used to locate cities and villages, but also mountains or other geographical locations.

Note: Note that this function’s geolocator application needs a working internet connection.

Parameters

• cube: the input dataset cube to extract a point from.

• location: the reference location. Examples: ‘mount everest’, ‘romania’, ‘new york, usa’. Raises ValueEr-
ror if none supplied.

• scheme : interpolation scheme. 'linear' or 'nearest'. There is no default, raises ValueError if none
supplied.

See also esmvalcore.preprocessor.extract_location().

7.12.7 zonal_statistics

The function calculates the zonal statistics by applying an operator along the longitude coordinate. This function takes
one argument:

• operator: Which operation to apply: mean, std_dev, median, min, max, sum or rms.

See also esmvalcore.preprocessor.zonal_means().

74 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.12.8 meridional_statistics

The function calculates the meridional statistics by applying an operator along the latitude coordinate. This function
takes one argument:

• operator: Which operation to apply: mean, std_dev, median, min, max, sum or rms.

See also esmvalcore.preprocessor.meridional_means().

7.12.9 area_statistics

This function calculates the average value over a region - weighted by the cell areas of the region. This function takes
the argument, operator: the name of the operation to apply.

This function can be used to apply several different operations in the horizontal plane: mean, standard deviation,
median, variance, minimum, maximum and root mean square.

Note that this function is applied over the entire dataset. If only a specific region, depth layer or time period is required,
then those regions need to be removed using other preprocessor operations in advance.

The optional fx_variables argument specifies the fx variables that the user wishes to input to the function. More
details on this are given in Fx variables as cell measures or ancillary variables.

See also esmvalcore.preprocessor.area_statistics().

7.13 Volume manipulation

The _volume.py module contains the following preprocessor functions:

• axis_statistics: Perform operations along a given axis.

• extract_volume: Extract a specific depth range from a cube.

• volume_statistics: Calculate the volume-weighted average.

• depth_integration: Integrate over the depth dimension.

• extract_transect: Extract data along a line of constant latitude or longitude.

• extract_trajectory: Extract data along a specified trajectory.

7.13.1 extract_volume

Extract a specific range in the z-direction from a cube. This function takes two arguments, a minimum and a maximum
(z_min and z_max, respectively) in the z-direction.

Note that this requires the requested z-coordinate range to be the same sign as the Iris cube. That is, if the cube has
z-coordinate as negative, then z_min and z_max need to be negative numbers.

See also esmvalcore.preprocessor.extract_volume().

7.13. Volume manipulation 75

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.13.2 volume_statistics

This function calculates the volume-weighted average across three dimensions, but maintains the time dimension.

This function takes the argument: operator, which defines the operation to apply over the volume.

No depth coordinate is required as this is determined by Iris. This function works best when the fx_variables provide
the cell volume. The optional fx_variables argument specifies the fx variables that the user wishes to input to the
function. More details on this are given in Fx variables as cell measures or ancillary variables.

See also esmvalcore.preprocessor.volume_statistics().

7.13.3 axis_statistics

This function operates over a given axis, and removes it from the output cube.

Takes arguments:

• axis: direction over which the statistics will be performed. Possible values for the axis are ‘x’, ‘y’, ‘z’, ‘t’.

• operator: defines the operation to apply over the axis. Available operator are ‘mean’, ‘median’, ‘std_dev’,
‘sum’, ‘variance’, ‘min’, ‘max’, ‘rms’.

Note: The coordinate associated to the axis over which the operation will be performed must be one-dimensional, as
multidimensional coordinates are not supported in this preprocessor.

See also esmvalcore.preprocessor.axis_statistics().

7.13.4 depth_integration

This function integrates over the depth dimension. This function does a weighted sum along the z-coordinate, and
removes the z direction of the output cube. This preprocessor takes no arguments.

See also esmvalcore.preprocessor.depth_integration().

7.13.5 extract_transect

This function extracts data along a line of constant latitude or longitude. This function takes two arguments, although
only one is strictly required. The two arguments are latitude and longitude. One of these arguments needs to be
set to a float, and the other can then be either ignored or set to a minimum or maximum value.

For example, if we set latitude to 0 N and leave longitude blank, it would produce a cube along the Equator. On the
other hand, if we set latitude to 0 and then set longitude to [40., 100.] this will produce a transect of the Equator in
the Indian Ocean.

See also esmvalcore.preprocessor.extract_transect().

76 Chapter 7. Preprocessor

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.13.6 extract_trajectory

This function extract data along a specified trajectory. The three arguments are: latitudes, longitudes and number
of point needed for extrapolation number_points.

If two points are provided, the number_points argument is used to set a the number of places to extract between the
two end points.

If more than two points are provided, then extract_trajectory will produce a cube which has extrapolated the data
of the cube to those points, and number_points is not needed.

Note that this function uses the expensive interpolate method from Iris.analysis.trajectory, but it may be
necessary for irregular grids.

See also esmvalcore.preprocessor.extract_trajectory().

7.14 Cycles

The _cycles.py module contains the following preprocessor functions:

• amplitude: Extract the peak-to-peak amplitude of a cycle aggregated over specified coordinates.

7.14.1 amplitude

This function extracts the peak-to-peak amplitude (maximum value minus minimum value) of a field aggregated over
specified coordinates. Its only argument is coords, which can either be a single coordinate (given as str) or multi-
ple coordinates (given as list of str). Usually, these coordinates refer to temporal categorised coordinates iris.
coord_categorisation like year, month, day of year, etc. For example, to extract the amplitude of the annual cycle
for every single year in the data, use coords: year; to extract the amplitude of the diurnal cycle for every single day
in the data, use coords: [year, day_of_year].

See also esmvalcore.preprocessor.amplitude().

7.15 Trend

The trend module contains the following preprocessor functions:

• linear_trend: Calculate linear trend along a specified coordinate.

• linear_trend_stderr: Calculate standard error of linear trend along a specified coordinate.

7.15.1 linear_trend

This function calculates the linear trend of a dataset (defined as slope of an ordinary linear regression) along a specified
coordinate. The only argument of this preprocessor is coordinate (given as str; default value is 'time').

See also esmvalcore.preprocessor.linear_trend().

7.14. Cycles 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coord_categorisation.html#module-iris.coord_categorisation
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coord_categorisation.html#module-iris.coord_categorisation
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.15.2 linear_trend_stderr

This function calculates the standard error of the linear trend of a dataset (defined as the standard error of the slope
in an ordinary linear regression) along a specified coordinate. The only argument of this preprocessor is coordinate
(given as str; default value is 'time'). Note that the standard error is not identical to a confidence interval.

See also esmvalcore.preprocessor.linear_trend_stderr().

7.16 Detrend

ESMValTool also supports detrending along any dimension using the preprocessor function ‘detrend’. This function
has two parameters:

• dimension: dimension to apply detrend on. Default: “time”

• method: It can be linear or constant. Default: linear

If method is linear, detrend will calculate the linear trend along the selected axis and subtract it to the data. For
example, this can be used to remove the linear trend caused by climate change on some variables is selected dimension
is time.

If method is constant, detrend will compute the mean along that dimension and subtract it from the data

See also esmvalcore.preprocessor.detrend().

7.17 Rolling window statistics

One can calculate rolling window statistics using the preprocessor function rolling_window_statistics. This
function takes three parameters:

• coordinate: coordinate over which the rolling-window statistics is calculated.

• operator: operation to apply. Accepted values are ‘mean’, ‘median’, ‘std_dev’, ‘min’, ‘max’ and ‘sum’.

• window_length: size of the rolling window to use (number of points).

This example applied on daily precipitation data calculates two-day rolling precipitation sum.

preprocessors:
preproc_rolling_window:
coordinate: time
operator: sum
window_length: 2

See also esmvalcore.preprocessor.rolling_window_statistics().

78 Chapter 7. Preprocessor

https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.18 Unit conversion

7.18.1 convert_units

Converting units is also supported. This is particularly useful in cases where different datasets might have different units,
for example when comparing CMIP5 and CMIP6 variables where the units have changed or in case of observational
datasets that are delivered in different units.

In these cases, having a unit conversion at the end of the processing will guarantee homogeneous input for the diag-
nostics.

Conversion is only supported between compatible units! In other words, converting temperature units from degC to
Kelvin works fine, while changing units from kg to m will not work.

However, there are some well-defined exceptions from this rule in order to transform one quantity to another (physically
related) quantity. These quantities are identified via their standard_name and their units (units convertible to the
ones defined are also supported). For example, this enables conversions between precipitation fluxes measured in kg
m-2 s-1 and precipitation rates measured in mm day-1 (and vice versa). Currently, the following special conversions
are supported:

• precipitation_flux (kg m-2 s-1) – lwe_precipitation_rate (mm day-1)

Hint: Names in the list correspond to standard_names of the input data. Conversions are allowed from each quantity
to any other quantity given in a bullet point. The corresponding target quantity is inferred from the desired target units.
In addition, any other units convertible to the ones given are also supported (e.g., instead of mm day-1, m s-1 is also
supported).

Note: For the transformation between the different precipitation variables, a water density of 1000 kg m-3 is as-
sumed.

See also esmvalcore.preprocessor.convert_units().

7.18.2 accumulate_coordinate

This function can be used to weight data using the bounds from a given coordinate. The resulting cube will then have
units given by cube_units * coordinate_units.

For instance, if a variable has units such as X s-1, using accumulate_coordinate on the time coordinate would
result on a cube where the data would be multiplied by the time bounds and the resulting units for the variable would
be converted to X. In this case, weighting the data with the time coordinate would allow to cancel the time units in the
variable.

Note: The coordinate used to weight the data must be one-dimensional, as multidimensional coordinates are not
supported in this preprocessor.

See also esmvalcore.preprocessor.accumulate_coordinate.()

7.18. Unit conversion 79

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.19 Bias

The bias module contains the following preprocessor functions:

• bias: Calculate absolute or relative biases with respect to a reference dataset

7.19.1 bias

This function calculates biases with respect to a given reference dataset. For this, exactly one input dataset needs to be
declared as reference_for_bias: true in the recipe, e.g.,

datasets:
- {dataset: CanESM5, project: CMIP6, ensemble: r1i1p1f1, grid: gn}
- {dataset: CESM2, project: CMIP6, ensemble: r1i1p1f1, grid: gn}
- {dataset: MIROC6, project: CMIP6, ensemble: r1i1p1f1, grid: gn}
- {dataset: ERA-Interim, project: OBS6, tier: 3, type: reanaly, version: 1,
reference_for_bias: true}

In the example above, ERA-Interim is used as reference dataset for the bias calculation. For this preprocessor, all
input datasets need to have identical dimensional coordinates. This can for example be ensured with the preprocessors
esmvalcore.preprocessor.regrid() and/or esmvalcore.preprocessor.regrid_time().

The bias preprocessor supports 4 optional arguments:

• bias_type (str, default: 'absolute'): Bias type that is calculated. Can be 'absolute' (i.e., calculate bias
for dataset 𝑋 and reference 𝑅 as 𝑋 −𝑅) or relative (i.e, calculate bias as 𝑋−𝑅

𝑅).

• denominator_mask_threshold (float, default: 1e-3): Threshold to mask values close to zero in the de-
nominator (i.e., the reference dataset) during the calculation of relative biases. All values in the reference dataset
with absolute value less than the given threshold are masked out. This setting is ignored when bias_type is set
to 'absolute'. Please note that for some variables with very small absolute values (e.g., carbon cycle fluxes,
which are usually < 10−6 kg m −2 s −1) it is absolutely essential to change the default value in order to get
reasonable results.

• keep_reference_dataset (bool, default: False): If True, keep the reference dataset in the output. If False,
drop the reference dataset.

• exclude (list of str): Exclude specific datasets from this preprocessor. Note that this option is only available
in the recipe, not when using esmvalcore.preprocessor.bias() directly (e.g., in another python script). If
the reference dataset has been excluded, an error is raised.

Example:

preprocessors:
preproc_bias:
bias:
bias_type: relative
denominator_mask_threshold: 1e-8
keep_reference_dataset: true
exclude: [CanESM2]

See also esmvalcore.preprocessor.bias().

80 Chapter 7. Preprocessor

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

7.20 Information on maximum memory required

In the most general case, we can set upper limits on the maximum memory the analysis will require:

Ms = (R + N) x F_eff - F_eff - when no multi-model analysis is performed;

Mm = (2R + N) x F_eff - 2F_eff - when multi-model analysis is performed;

where

• Ms: maximum memory for non-multimodel module

• Mm: maximum memory for multi-model module

• R: computational efficiency of module; R is typically 2-3

• N: number of datasets

• F_eff: average size of data per dataset where F_eff = e x f x F where e is the factor that describes how
lazy the data is (e = 1 for fully realized data) and f describes how much the data was shrunk by the immediately
previous module, e.g. time extraction, area selection or level extraction; note that for fix_data f relates only to
the time extraction, if data is exact in time (no time selection) f = 1 for fix_data so for cases when we deal with
a lot of datasets R + N \approx N, data is fully realized, assuming an average size of 1.5GB for 10 years of 3D
netCDF data, N datasets will require:

Ms = 1.5 x (N - 1) GB

Mm = 1.5 x (N - 2) GB

As a rule of thumb, the maximum required memory at a certain time for multi-model analysis could be estimated by
multiplying the number of datasets by the average file size of all the datasets; this memory intake is high but also
assumes that all data is fully realized in memory; this aspect will gradually change and the amount of realized data will
decrease with the increase of dask use.

7.21 Other

Miscellaneous functions that do not belong to any of the other categories.

7.21.1 Clip

This function clips data values to a certain minimum, maximum or range. The function takes two arguments:

• minimum: Lower bound of range. Default: None

• maximum: Upper bound of range. Default: None

The example below shows how to set all values below zero to zero.

preprocessors:
clip:
minimum: 0
maximum: null

7.20. Information on maximum memory required 81

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

82 Chapter 7. Preprocessor

Part III

Diagnostic script interfaces

83

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

In order to communicate with diagnostic scripts, ESMValCore uses YAML files. The YAML files provided by ESM-
ValCore to the diagnostic script tell the diagnostic script the settings that were provided in the recipe and where to find
the pre-processed input data. On the other hand, the YAML file provided by the diagnostic script to ESMValCore tells
ESMValCore which pre-processed data was used to create what plots. The latter is optional, but needed for recording
provenance.

85

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

86

CHAPTER

EIGHT

PROVENANCE

When ESMValCore (the esmvaltool command) runs a recipe, it will first find all data and run the default preprocessor
steps plus any additional preprocessing steps defined in the recipe. Next it will run the diagnostic script defined in the
recipe and finally it will store provenance information. Provenance information is stored in the W3C PROV XML
format. To read in and extract information, or to plot these files, the prov Python package can be used. In addition to
provenance information, a caption is also added to the plots.

87

https://www.w3.org/TR/prov-xml/
https://www.w3.org/TR/prov-xml/
https://prov.readthedocs.io

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

88 Chapter 8. Provenance

CHAPTER

NINE

INFORMATION PROVIDED BY ESMVALCORE TO THE DIAGNOSTIC
SCRIPT

To provide the diagnostic script with the information it needs to run (e.g. location of input data, various settings),
the ESMValCore creates a YAML file called settings.yml and provides the path to this file as the first command line
argument to the diagnostic script.

The most interesting settings provided in this file are

run_dir: /path/to/recipe_output/run/diagnostic_name/script_name
work_dir: /path/to/recipe_output/work/diagnostic_name/script_name
plot_dir: /path/to/recipe_output/plots/diagnostic_name/script_name
input_files:
- /path/to/recipe_output/preproc/diagnostic_name/ta/metadata.yml
- /path/to/recipe_output/preproc/diagnostic_name/pr/metadata.yml

Custom settings in the script section of the recipe will also be made available in this file.

There are three directories defined:

• run_dir use this for storing temporary files

• work_dir use this for storing NetCDF files containing the data used to make a plot

• plot_dir use this for storing plots

Finally input_files is a list of YAML files, containing a description of the preprocessed data. Each entry in these
YAML files is a path to a preprocessed file in NetCDF format, with a list of various attributes. An example preprocessor
metadata.yml file could look like this:

? /path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_historical_
→˓r1i1p1_T2Ms_pr_2000-2002.nc
: alias: GFDL-ESM2G
cmor_table: CMIP5
dataset: GFDL-ESM2G
diagnostic: diagnostic_name
end_year: 2002
ensemble: r1i1p1
exp: historical
filename: /path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_

→˓historical_r1i1p1_T2Ms_pr_2000-2002.nc
frequency: mon
institute: [NOAA-GFDL]
long_name: Precipitation
mip: Amon

(continues on next page)

89

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

modeling_realm: [atmos]
preprocessor: preprocessor_name
project: CMIP5
recipe_dataset_index: 1
reference_dataset: MPI-ESM-LR
short_name: pr
standard_name: precipitation_flux
start_year: 2000
units: kg m-2 s-1
variable_group: pr

? /path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_MPI-ESM-LR_Amon_historical_
→˓r1i1p1_T2Ms_pr_2000-2002.nc
: alias: MPI-ESM-LR
cmor_table: CMIP5
dataset: MPI-ESM-LR
diagnostic: diagnostic_name
end_year: 2002
ensemble: r1i1p1
exp: historical
filename: /path/to/recipe_output/preproc/diagnostic1/pr/CMIP5_MPI-ESM-LR_Amon_

→˓historical_r1i1p1_T2Ms_pr_2000-2002.nc
frequency: mon
institute: [MPI-M]
long_name: Precipitation
mip: Amon
modeling_realm: [atmos]
preprocessor: preprocessor_name
project: CMIP5
recipe_dataset_index: 2
reference_dataset: MPI-ESM-LR
short_name: pr
standard_name: precipitation_flux
start_year: 2000
units: kg m-2 s-1
variable_group: pr

90 Chapter 9. Information provided by ESMValCore to the diagnostic script

CHAPTER

TEN

INFORMATION PROVIDED BY THE DIAGNOSTIC SCRIPT TO
ESMVALCORE

After the diagnostic script has finished running, ESMValCore will try to store provenance information. In order to link
the produced files to input data, the diagnostic script needs to store a YAML file called diagnostic_provenance.yml
in its run_dir.

For every output file (netCDF files, plot files, etc.) produced by the diagnostic script, there should be an entry in the
diagnostic_provenance.yml file. The name of each entry should be the path to the file. Each output file entry
should at least contain the following items:

• ancestors a list of input files used to create the plot.

• caption a caption text for the plot.

Each file entry can also contain items from the categories defined in the file esmvaltool/config_references.yml.
The short entries will automatically be replaced by their longer equivalent in the final provenance records. It is possible
to add custom provenance information by adding custom items to entries.

An example diagnostic_provenance.yml file could look like this

? /path/to/recipe_output/work/diagnostic_name/script_name/CMIP5_GFDL-ESM2G_Amon_
→˓historical_r1i1p1_pr_2000-2002_mean.nc
: ancestors:[/path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_
→˓historical_r1i1p1_pr_2000-2002.nc]
authors: [andela_bouwe, righi_mattia]
caption: Average Precipitation between 2000 and 2002 according to GFDL-ESM2G.
domains: [global]
plot_types: [zonal]
references: [acknow_project]
statistics: [mean]

? /path/to/recipe_output/plots/diagnostic_name/script_name/CMIP5_GFDL-ESM2G_Amon_
→˓historical_r1i1p1_pr_2000-2002_mean.png
: ancestors:[/path/to/recipe_output/preproc/diagnostic_name/pr/CMIP5_GFDL-ESM2G_Amon_
→˓historical_r1i1p1_pr_2000-2002.nc]
authors: [andela_bouwe, righi_mattia]
caption: Average Precipitation between 2000 and 2002 according to GFDL-ESM2G.
domains: [global]
plot_types: ['zonal']
references: [acknow_project]
statistics: [mean]

You can check whether your diagnostic script successfully provided the provenance information to the ESMValCore
by checking the following points:

91

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• for each output file in the work_dir and plot_dir, a file with the same name, but ending with _provenance.
xml is created

• the output file is shown on the index.html page

• there were no warning messages in the log related to provenance

See Recording provenance for more extensive usage notes.

92 Chapter 10. Information provided by the diagnostic script to ESMValCore

https://docs.esmvaltool.org/en/latest/community/diagnostic.html#recording-provenance

Part IV

Development

93

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

To get started developing, have a look at our contribution guidelines. This chapter describes how to implement the
most commonly contributed new features.

95

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

96

CHAPTER

ELEVEN

PREPROCESSOR FUNCTION

Preprocessor functions are located in esmvalcore.preprocessor. To add a new preprocessor function, start by
finding a likely looking file to add your function to in esmvalcore/preprocessor. Create a new file in that directory if
you cannot find a suitable place.

The function should look like this:

def example_preprocessor_function(
cube,
example_argument,
example_optional_argument=5,

):
"""Compute an example quantity.

A more extensive explanation of the computation can be added here. Add
references to scientific literature if available.

Parameters

cube: iris.cube.Cube
Input cube.

example_argument: str
Example argument, the value of this argument can be provided in the
recipe. Describe what valid values are here. In this case, a valid
argument is the name of a dimension of the input cube.

example_optional_argument: int, optional
Another example argument, the value of this argument can optionally
be provided in the recipe. Describe what valid values are here.

Returns

iris.cube.Cube
The result of the example computation.

"""

Replace this with your own computation
cube = cube.collapsed(example_argument, iris.analysis.MEAN)

return cube

The above function needs to be imported in the file esmvalcore/preprocessor/__init__.py:

97

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/preprocessor
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/preprocessor/__init__.py

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

from ._example_module import example_preprocessor_function

__all__ = [
...
'example_preprocessor_function',
...
]

The location in the __all__ list above determines the default order in which preprocessor functions are applied, so
carefully consider where you put it and ask for advice if needed.

The preprocessor function above can then be used from the Recipe section: preprocessors like this:

preprocessors:
example_preprocessor:
example_preprocessor_function:
example_argument: median
example_optional_argument: 6

The optional argument (in this example: example_optional_argument) can be omitted in the recipe.

11.1 Lazy and real data

Preprocessor functions should support both real and lazy data. This is vital for supporting the large datasets that are
typically used with the ESMValCore. If the data of the incoming cube has been realized (i.e. cube.has_lazy_data()
returns False so cube.core_data() is a NumPy array), the returned cube should also have realized data. Conversely,
if the incoming cube has lazy data (i.e. cube.has_lazy_data() returns True so cube.core_data() is a Dask
array), the returned cube should also have lazy data. Note that NumPy functions will often call their Dask equivalent
if it exists and if their input array is a Dask array, and vice versa.

Note that preprocessor functions should preferably be small and just call the relevant iris code. Code that is more
involved, e.g. lots of work with Numpy and Dask arrays, and more broadly applicable, should be implemented in iris
instead.

11.2 Documentation

The documentation in the function docstring will be shown in the Preprocessor functions chapter. In addition, you
should add documentation on how to use the new preprocessor function from the recipe in doc/recipe/preprocessor.rst
so it is shown in the Preprocessor chapter. See the introduction to Documentation for more information on how to best
write documentation.

98 Chapter 11. Preprocessor function

https://scitools-iris.readthedocs.io/en/latest/userguide/real_and_lazy_data.html#real-and-lazy-data
https://numpy.org/
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/array.html
https://scitools-iris.readthedocs.io/en/latest/index.html#iris-docs
https://github.com/ESMValGroup/ESMValCore/tree/main/doc/recipe/preprocessor.rst

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

11.3 Tests

Tests are should be implemented for new or modified preprocessor functions. For an introduction to the topic, see Tests.

11.3.1 Unit tests

To add a unit test for the preprocessor function from the example above, create a file called tests/unit/
preprocessor/_example_module/test_example_preprocessor_function.py and add the following content:

"""Test function `esmvalcore.preprocessor.example_preprocessor_function`."""
import cf_units
import dask.array as da
import iris
import numpy as np
import pytest

from esmvalcore.preprocessor import example_preprocessor_function

@pytest.mark.parametrize('lazy', [True, False])
def test_example_preprocessor_function(lazy):

"""Test that the computed result is as expected."""

Construct the input cube
data = np.array([1, 2], dtype=np.float32)
if lazy:

data = da.asarray(data, chunks=(1,))
cube = iris.cube.Cube(

data,
var_name='tas',
units='K',

)
cube.add_dim_coord(

iris.coords.DimCoord(
np.array([0.5, 1.5], dtype=np.float64),
bounds=np.array([[0, 1], [1, 2]], dtype=np.float64),
standard_name='time',
units=cf_units.Unit('days since 1950-01-01 00:00:00',

calendar='gregorian'),
),
0,

)

Compute the result
result = example_preprocessor_function(cube, example_argument='time')

Check that lazy data is returned if and only if the input is lazy
assert result.has_lazy_data() is lazy

Construct the expected result cube
expected = iris.cube.Cube(

np.array(1.5, dtype=np.float32),
(continues on next page)

11.3. Tests 99

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

var_name='tas',
units='K',

)
expected.add_aux_coord(

iris.coords.AuxCoord(
np.array([1], dtype=np.float64),
bounds=np.array([[0, 2]], dtype=np.float64),
standard_name='time',
units=cf_units.Unit('days since 1950-01-01 00:00:00',

calendar='gregorian'),
))

expected.add_cell_method(
iris.coords.CellMethod(method='mean', coords=('time',)))

Compare the result of the computation with the expected result
print('result:', result)
print('expected result:', expected)
assert result == expected

In this test we used the decorator pytest.mark.parametrize to test two scenarios, with both lazy and realized data, with
a single test.

11.3.2 Sample data tests

The idea of adding sample data tests is to check that preprocessor functions work with realistic data. This also provides
an easy way to add regression tests, though these should preferably be implemented as unit tests instead, because using
the sample data for this purpose is slow. To add a test using the sample data, create a file tests/sample_data/
preprocessor/example_preprocessor_function/test_example_preprocessor_function.py and add the
following content:

"""Test function `esmvalcore.preprocessor.example_preprocessor_function`."""
from pathlib import Path

import esmvaltool_sample_data
import iris
import pytest

from esmvalcore.preprocessor import example_preprocessor_function

@pytest.mark.use_sample_data
def test_example_preprocessor_function():

"""Regression test to check that the computed result is as expected."""
Load an example input cube
cube = esmvaltool_sample_data.load_timeseries_cubes(mip_table='Amon')[0]

Compute the result
result = example_preprocessor_function(cube, example_argument='time')

filename = Path(__file__).with_name('example_preprocessor_function.nc')
if not filename.exists():

(continues on next page)

100 Chapter 11. Preprocessor function

https://docs.pytest.org/en/stable/parametrize.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

Create the file the expected result if it doesn't exist
iris.save(result, target=str(filename))
raise FileNotFoundError(

f'Reference data was missing, wrote new copy to {filename}')

Load the expected result cube
expected = iris.load_cube(str(filename))

Compare the result of the computation with the expected result
print('result:', result)
print('expected result:', expected)
assert result == expected

This will use a file from the sample data repository as input. The first time you run the test, the com-
puted result will be stored in the file tests/sample_data/preprocessor/example_preprocessor_function/
example_preprocessor_function.nc Any subsequent runs will re-load the data from file and check that it did not
change. Make sure the stored results are small, i.e. smaller than 100 kilobytes, to keep the size of the ESMValCore
repository small.

11.4 Using multiple datasets as input

The name of the first argument of the preprocessor function should in almost all cases be cube. Only when
implementing a preprocessor function that uses all datasets as input, the name of the first argument should be
products. If you would like to implement this type of preprocessor function, start by having a look at the exist-
ing functions, e.g. esmvalcore.preprocessor.multi_model_statistics() or esmvalcore.preprocessor.
mask_fillvalues().

11.4. Using multiple datasets as input 101

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

102 Chapter 11. Preprocessor function

CHAPTER

TWELVE

FIXING DATA

The baseline case for ESMValCore input data is CMOR fully compliant data that is read using Iris’ iris.load_raw().
ESMValCore also allows for some departures from compliance (see Customizing checker strictness). Beyond that
situation, some datasets (either model or observations) contain (known) errors that would normally prevent them from
being processed. The issues can be in the metadata describing the dataset and/or in the actual data. Typical examples
of such errors are missing or wrong attributes (e.g. attribute ‘’units” says 1e-9 but data are actually in 1e-6), missing or
mislabeled coordinates (e.g. ‘’lev” instead of ‘’plev” or missing coordinate bounds like ‘’lat_bnds”) or problems with
the actual data (e.g. cloud liquid water only instead of sum of liquid + ice as specified by the CMIP data request). As
an extreme case, some data sources simply are not NetCDF files and must go through some other data load function.
ESMValCore can apply on-the-fly fixes to such datasets when issues can be fixed automatically.

In addition, some datasets are supported in their native (i.e., non CMOR-compliant) format through fixes. This is
implemented for a set of Datasets in native format. A detailed description of how to include new native datasets is
given below.

The following sections provide details on how to design such fixes.

Note: CMORizer scripts. Support for many observational and reanalysis datasets is also possible through a priori
reformatting by CMORizer scripts in the ESMValTool, which are rather relevant for datasets of small volume

12.1 Fix structure

Fixes are Python classes stored in esmvalcore/cmor/_fixes/[PROJECT]/[DATASET].py that derive from
esmvalcore.cmor._fixes.fix.Fix and are named after the short name of the variable they fix. You can also
use the names of mip tables (e.g., Amon, Lmon, Omon, etc.) if you want the fix to be applied to all variables of that table
in the dataset or AllVars if you want the fix to be applied to the whole dataset.

Warning: Be careful to replace any - with _ in your dataset name. We need this replacement to have proper
python module names.

The fixes are automatically loaded and applied when the dataset is preprocessed. They are a special type of pre-
processor function, called by the preprocessor functions esmvalcore.preprocessor.fix_file(), esmvalcore.
preprocessor.fix_metadata(), and esmvalcore.preprocessor.fix_data().

103

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.load_raw
https://docs.esmvaltool.org/en/latest/community/dataset.html#new-dataset

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

12.2 Fixing a dataset

To illustrate the process of creating a fix we are going to construct a new one from scratch for a fictional dataset. We
need to fix a CMIPX model called PERFECT-MODEL that is reporting a missing latitude coordinate for variable tas.

12.2.1 Check the output

Next to the error message, you should see some info about the iris cube: size, coordinates. In our example it looks like
this:

air_temperature/ (K) (time: 312; altitude: 90; longitude: 180)
Dimension coordinates:

time x - -
altitude - x -
longitude - - x

Auxiliary coordinates:
day_of_month x - -
day_of_year x - -
month_number x - -
year x - -

Attributes:
{'cmor_table': 'CMIPX', 'mip': 'Amon', 'short_name': 'tas', 'frequency': 'mon'})

So now the mistake is clear: the latitude coordinate is badly named and the fix should just rename it.

12.2.2 Create the fix

We start by creating the module file. In our example the path will be esmvalcore/cmor/_fixes/CMIPX/
PERFECT_MODEL.py. If it already exists just add the class to the file, there is no limit in the number of fixes we
can have in any given file.

Then we have to create the class for the fix deriving from esmvalcore.cmor._fixes.Fix

"""Fixes for PERFECT-MODEL."""
from esmvalcore.cmor.fix import Fix

class tas(Fix):
"""Fixes for tas variable."""

Next we must choose the method to use between the ones offered by the Fix class:

• fix_file : should be used only to fix errors that prevent data loading. As a rule of thumb, you should only use
it if the execution halts before reaching the checks.

• fix_metadata : you want to change something in the cube that is not the data (e.g variable or coordinate names,
data units).

• fix_data: you need to fix the data. Beware: coordinates data values are part of the metadata.

In our case we need to rename the coordinate altitude to latitude, so we will implement the fix_metadata
method:

104 Chapter 12. Fixing data

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

"""Fixes for PERFECT-MODEL."""
from esmvalcore.cmor.fix import Fix

class tas(Fix):
"""Fixes for tas variable."""

def fix_metadata(self, cubes):
"""
Fix metadata for tas.

Fix the name of the latitude coordinate, which is called altitude
in the original file.
"""
Sometimes Iris will interpret the data as multiple cubes.
Good CMOR datasets will only show one but we support the
multiple cubes case to be able to fix the errors that are
leading to that extra cubes.
In our case this means that we can safely assume that the
tas cube is the first one
tas_cube = cubes[0]
latitude = tas_cube.coord('altitude')

Fix the names. Latitude values, units and
latitude.short_name = 'lat'
latitude.standard_name = 'latitude'
latitude.long_name = 'latitude'
return cubes

This will fix the error. The next time you run ESMValTool you will find that the error is fixed on the fly and, hopefully,
your recipe will run free of errors. The cubes argument to the fix_metadata method will contain all cubes loaded
from a single input file. Some care may need to be taken that the right cube is selected and fixed in case multiple cubes
are created. Usually this happens when a coordinate is mistakenly loaded as a cube, because the input data does not
follow the CF Conventions.

Sometimes other errors can appear after you fix the first one because they were hidden by it. In our case, the latitude
coordinate could have bad units or values outside the valid range for example. Just extend your fix to address those
errors.

12.2.3 Finishing

Chances are that you are not the only one that wants to use that dataset and variable. Other users could take advantage
of your fixes as soon as possible. Please, create a separated pull request for the fix and submit it.

It will also be very helpful if you just scan a couple of other variables from the same dataset and check if they share
this error. In case that you find that it is a general one, you can change the fix name to the corresponding mip table
name (e.g., Amon, Lmon, Omon, etc.) so it gets executed for all variables in that table in the dataset or to AllVars so it
gets executed for all variables in the dataset. If you find that this is shared only by a handful of similar vars you can just
make the fix for those new vars derive from the one you just created:

"""Fixes for PERFECT-MODEL."""
from esmvalcore.cmor.fix import Fix

class tas(Fix):
(continues on next page)

12.2. Fixing a dataset 105

https://cfconventions.org/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

"""Fixes for tas variable."""

def fix_metadata(self, cubes):
"""
Fix metadata for tas.

Fix the name of the latitude coordinate, which is called altitude
in the original file.
"""
Sometimes Iris will interpret the data as multiple cubes.
Good CMOR datasets will only show one but we support the
multiple cubes case to be able to fix the errors that are
leading to that extra cubes.
In our case this means that we can safely assume that the
tas cube is the first one
tas_cube = cubes[0]
latitude = tas_cube.coord('altitude')

Fix the names. Latitude values, units and
latitude.short_name = 'lat'
latitude.standard_name = 'latitude'
latitude.long_name = 'latitude'
return cubes

class ps(tas):
"""Fixes for ps variable."""

12.3 Common errors

The above example covers one of the most common cases: variables / coordinates that have names that do not match
the expected. But there are some others that use to appear frequently. This section describes the most common cases.

12.3.1 Bad units declared

It is quite common that a variable declares to be using some units but the data is stored in another. This can be solved
by overwriting the units attribute with the actual data units.

def fix_metadata(self, cubes):
cube.units = 'real_units'

Detecting this error can be tricky if the units are similar enough. It also has a good chance of going undetected until
you notice strange results in your diagnostic.

For the above example, it can be useful to access the variable definition and associated coordinate definitions as provided
by the CMOR table. For example:

def fix_metadata(self, cubes):
cube.units = self.vardef.units

106 Chapter 12. Fixing data

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

To learn more about what is available in these definitions, see: esmvalcore.cmor.table.VariableInfo and
esmvalcore.cmor.table.CoordinateInfo.

12.3.2 Coordinates missing

Another common error is to have missing coordinates. Usually it just means that the file does not follow the CF-
conventions and Iris can therefore not interpret it.

If this is the case, you should see a warning from the ESMValTool about discarding some cubes in the fix metadata
step. Just before that warning you should see the full list of cubes as read by Iris. If that list contains your missing
coordinate you can create a fix for this model:

def fix_metadata(self, cubes):
coord_cube = cubes.extract_strict('COORDINATE_NAME')
Usually this will correspond to an auxiliary coordinate
because the most common error is to forget adding it to the
coordinates attribute
coord = iris.coords.AuxCoord(

coord_cube.data,
var_name=coord_cube.var_name,
standard_name=coord_cube.standard_name,
long_name=coord_cube.long_name,
units=coord_cube.units,

}

It may also have bounds as another cube
coord.bounds = cubes.extract_strict('BOUNDS_NAME').data

data_cube = cubes.extract_strict('VAR_NAME')
data_cube.add_aux_coord(coord, DIMENSIONS_INDEX_TUPLE)
return [data_cube]

12.4 Customizing checker strictness

The data checker classifies its issues using four different levels of severity. From highest to lowest:

• CRITICAL: issues that most of the time will have severe consequences.

• ERROR: issues that usually lead to unexpected errors, but can be safely ignored sometimes.

• WARNING: something is not up to the standard but is unlikely to have consequences later.

• DEBUG: any info that the checker wants to communicate. Regardless of checker strictness, those will always be
reported as debug messages.

Users can have control about which levels of issues are interpreted as errors, and therefore make the checker fail or
warnings or debug messages. For this purpose there is an optional command line option –check-level that can take a
number of values, listed below from the lowest level of strictness to the highest:

• ignore: all issues, regardless of severity, will be reported as warnings. Checker will never fail. Use this at your
own risk.

• relaxed: only CRITICAL issues are treated as errors. We recommend not to rely on this mode, although it can
be useful if there are errors preventing the run that you are sure you can manage on the diagnostics or that will
not affect you.

12.4. Customizing checker strictness 107

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• default: fail if there are any CRITICAL or ERROR issues (DEFAULT); Provides a good measure of safety.

• strict: fail if there are any warnings, this is the highest level of strictness. Mostly useful for checking datasets
that you have produced, to be sure that future users will not be distracted by inoffensive warnings.

12.5 Add support for new native datasets

This section describes how to add support for additional native datasets. You can choose to host this new data source
either under a dedicated project or under project native6.

12.5.1 Configuration

An example of a configuration in config-developer.yml for projects used for native datasets is given here. Make
sure to use the option cmor_strict: false for these projects if you want to make use of Custom CMOR tables.
This allows reading arbitrary variables from native datasets.

12.5.2 Locate data

To allow ESMValCore to locate the data files, use the following steps:

• If you want to use the native6 project (recommended for datasets whose input files can be easily moved to the
usual native6 directory structure given by the rootpath in your User configuration file; this is usually the case
for native reanalysis/observational datasets):

The entry native6 of config-developer.yml should be complemented with sub-entries for input_dir and
input_file that go under a new key representing the data organization (such as MY_DATA_ORG), and these
sub-entries can use an arbitrary list of {placeholders}. Example :

native6:
...
input_dir:
default: 'Tier{tier}/{dataset}/{latestversion}/{frequency}/{short_name}'
MY_DATA_ORG: '{dataset}/{exp}/{simulation}/{version}/{type}'

input_file:
default: '*.nc'
MY_DATA_ORG: '{simulation}_*.nc'

...

To find your native data (e.g., called MYDATA) that is for example located in {rootpath}/MYDATA/amip/run1/
42-0/atm/run1_1979.nc ({rootpath} is ESMValTool’s rootpath for the project native6 defined in your
User configuration file), use the following dataset entry in your recipe

datasets:
- {project: native6, dataset: MYDATA, exp: amip, simulation: run1, version: 42-0,␣

→˓type: atm}

and make sure to use the following DRS for the project native6 in your User configuration file:

drs:
native6: MY_DATA_ORG

108 Chapter 12. Fixing data

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• If you want to use a dedicated project for your native dataset (recommended for datasets for which you cannot
control the location of the input files; this is usually the case for native model output):

A new entry for the project needs to be added to config-developer.yml. For example, for the ICON model,
create a new project ICON:

ICON:
...
input_dir:
default:

- '{exp}'
- '{exp}/outdata'

input_file:
default: '{exp}_{var_type}*.nc'

...

To find your ICON data that is for example located in files like {rootpath}/amip/
amip_atm_2d_ml_20000101T000000Z.nc ({rootpath} is ESMValTool rootpath for the project ICON
defined in your User configuration file), use the following dataset entry in your recipe:

datasets:
- {project: ICON, dataset: ICON, exp: amip}

Please note the duplication of the name ICON in project and dataset, which is necessary to comply with
ESMValTool’s data finding and CMORizing functionalities. For other native models, dataset could also refer
to a subversion of the model. Note that it is possible to predefine facets in an extra facets file. In this ICON
example, the facet var_type is predefined for many variables.

12.5.3 Fix native data

To ensure that the native dataset has the correct metadata and data (i.e., that it is CMOR-compliant), use dataset fixes.
This is where the actual CMORization takes place. For example, a native6 dataset fix for ERA5 is located here, and
the ICON fix is located here.

ESMValTool also provides a base class NativeDatasetFix that provides convenient functions useful for all native
dataset fixes. An example for its usage can be found here.

12.5.4 Extra facets for native datasets

If necessary, provide a so-called extra facets file which allows to cope e.g. with variable naming issues for
finding files or additional information that is required for the fixes. See Extra Facets and Use of extra facets in fixes for
more details on this. An example of such a file for IPSL-CM6 is given here.

12.6 Use of extra facets in fixes

Extra facets are a mechanism to provide additional information for certain kinds of data. The general approach is
described in Extra Facets. Here, we describe how they can be used in fixes to mold data into the form required by the
applicable standard. For example, if the input data is part of an observational product that delivers surface temperature
with a variable name of t2m inside a file named 2m_temperature_1950_monthly.nc, but the same variable is called tas
in the applicable standard, a fix can be created that reads the original variable from the correct file, and provides a
renamed variable to the rest of the processing chain.

12.6. Use of extra facets in fixes 109

https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/cmor/_fixes/native6/era5.py
https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/cmor/_fixes/icon/icon.py
https://github.com/ESMValGroup/ESMValCore/blob/main/esmvalcore/cmor/_fixes/icon/_base_fixes.py

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Normally, the applicable standard for variables is CMIP6.

For more details, refer to existing uses of this feature as examples, as e.g. for IPSL-CM6.

110 Chapter 12. Fixing data

CHAPTER

THIRTEEN

DERIVING A VARIABLE

The variable derivation preprocessor module allows to derive variables which are not in the CMIP standard data request
using standard variables as input. This is a special type of preprocessor function. All derivation scripts are located in
esmvalcore/preprocessor/_derive/. A typical example looks like this:

"""Derivation of variable `dummy`."""
from ._baseclass import DerivedVariableBase

class DerivedVariable(DerivedVariableBase):
"""Derivation of variable `dummy`."""

@staticmethod
def required(project):

"""Declare the variables needed for derivation."""
mip = 'fx'
if project == 'CMIP6':

mip = 'Ofx'
required = [

{'short_name': 'var_a'},
{'short_name': 'var_b', 'mip': mip, 'optional': True},

]
return required

@staticmethod
def calculate(cubes):

"""Compute `dummy`."""

`cubes` is a CubeList containing all required variables.
cube = do_something_with(cubes)

Return single cube at the end
return cube

The static function required(project) returns a list of dict containing all required variables for deriving the
derived variable. Its only argument is the project of the specific dataset. In this particular example script, the derived
variable dummy is derived from var_a and var_b. It is possible to specify arbitrary attributes for each required variable,
e.g. var_b uses the mip fx (or Ofx in the case of CMIP6) instead of the original one of dummy. Note that you
can also declare a required variable as optional=True, which allows the skipping of this particular variable during
data extraction. For example, this is useful for fx variables which are often not available for observational datasets.
Otherwise, the tool will fail if not all required variables are available for all datasets.

The actual derivation takes place in the static function calculate(cubes) which returns a single cube containing

111

https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/preprocessor/_derive

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

the derived variable. Its only argument cubes is a CubeList containing all required variables.

112 Chapter 13. Deriving a variable

Part V

Contributions are very welcome

113

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

We greatly value contributions of any kind. Contributions could include, but are not limited to documentation im-
provements, bug reports, new or improved code, scientific and technical code reviews, infrastructure improvements,
mailing list and chat participation, community help/building, education and outreach. We value the time you invest in
contributing and strive to make the process as easy as possible. If you have suggestions for improving the process of
contributing, please do not hesitate to propose them.

If you have a bug or other issue to report or just need help, please open an issue on the issues tab on the ESMValCore
github repository.

If you would like to contribute a new preprocessor function, derived variable, fix for a dataset, or another new feature,
please discuss your idea with the development team before getting started, to avoid double work and/or disappointment
later. A good way to do this is to open an issue on GitHub.

115

https://github.com/ESMValGroup/ESMValCore/issues
https://github.com/ESMValGroup/ESMValCore/issues
https://github.com/ESMValGroup/ESMValCore/issues

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

116

CHAPTER

FOURTEEN

GETTING STARTED

See Installation from source for instructions on how to set up a development installation.

New development should preferably be done in the ESMValCore GitHub repository. The default git branch is main. Use
this branch to create a new feature branch from and make a pull request against. This page offers a good introduction to
git branches, but it was written for BitBucket while we use GitHub, so replace the word BitBucket by GitHub whenever
you read it.

It is recommended that you open a draft pull request early, as this will cause CircleCI to run the unit tests, Codacy to
analyse your code, and readthedocs to build the documentation. It’s also easier to get help from other developers if
your code is visible in a pull request.

Make small pull requests, the ideal pull requests changes just a few files and adds/changes no more than 100 lines of
production code. The amount of test code added can be more extensive, but changes to existing test code should be
made sparingly.

14.1 Design considerations

When making changes, try to respect the current structure of the program. If you need to make major changes to the
structure of program to add a feature, chances are that you have either not come up with the most optimal design or the
feature is not a very good fit for the tool. Discuss your feature with the @ESMValGroup/esmvaltool-coreteam in an
issue to find a solution.

Please keep the following considerations in mind when programming:

• Changes should preferably be backward compatible.

• Apply changes gradually and change no more than a few files in a single pull request, but do make sure every
pull request in itself brings a meaningful improvement. This reduces the risk of breaking existing functionality
and making backward incompatible changes, because it helps you as well as the reviewers of your pull request
to better understand what exactly is being changed.

• Preprocessor functions are Python functions (and not classes) so they are easy to understand and implement for
scientific contributors.

• No additional CMOR checks should be implemented inside preprocessor functions. The input cube is fixed and
confirmed to follow the specification in esmvalcore/cmor/tables before applying any other preprocessor functions.
This design helps to keep the preprocessor functions and diagnostics scripts that use the preprocessed data from
the tool simple and reliable. See Project CMOR table configuration for the mapping from project in the recipe
to the relevant CMOR table.

• The ESMValCore package is based on iris. Preprocessor functions should preferably be small and just call the
relevant iris code. Code that is more involved and more broadly applicable than just in the ESMValCore, should
be implemented in iris instead.

117

https://github.com/ESMValGroup/ESMValCore
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://docs.esmvaltool.org/en/latest/community/review.html#easy-review
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/ESMValGroup/ESMValCore/issues
https://github.com/ESMValGroup/ESMValCore/tree/main/esmvalcore/cmor/tables
https://scitools-iris.readthedocs.io/en/latest/index.html#iris-docs

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Any settings in the recipe that can be checked before loading the data should be checked at the task creation
stage. This avoids that users run a recipe for several hours before finding out they made a mistake in the recipe.
No data should be processed or files written while creating the tasks.

• CMOR checks should provide a good balance between reliability of the tool and ease of use. Several levels of
strictness of the checks are available to facilitate this.

• Keep your code short and simple: we would like to make contributing as easy as possible. For example, avoid
implementing complicated class inheritance structures and boilerplate code.

• If you find yourself copy-pasting a piece of code and making minor changes to every copy, instead put the repeated
bit of code in a function that you can re-use, and provide the changed bits as function arguments.

• Be careful when changing existing unit tests to make your new feature work. You might be breaking existing
features if you have to change existing tests.

Finally, if you would like to improve the design of the tool, discuss your plans with the @ESMValGroup/esmvaltool-
coreteam to make sure you understand the current functionality and you all agree on the new design.

118 Chapter 14. Getting started

https://stackoverflow.com/questions/3992199/what-is-boilerplate-code
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

CHAPTER

FIFTEEN

CHECKLIST FOR PULL REQUESTS

To clearly communicate up front what is expected from a pull request, we have the following checklist. Please try
to do everything on the list before requesting a review. If you are unsure about something on the list, please ask the
@ESMValGroup/tech-reviewers or @ESMValGroup/science-reviewers for help by commenting on your (draft) pull
request or by starting a new discussion.

In the ESMValTool community we use pull request reviews to ensure all code and documentation contributions are of
good quality. The icons indicate whether the item will be checked during the Technical review or Scientific review.

• The new functionality is relevant and scientifically sound

• The pull request has a descriptive title and labels

• Code is written according to the code quality guidelines

• and Documentation is available

• Unit tests have been added

• Changes are backward compatible

• Changed dependencies have been added or removed correctly

• The list of authors is up to date

• The checks shown below the pull request are successful

119

https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/science-reviewers
https://github.com/ESMValGroup/ESMValTool/discussions
https://docs.esmvaltool.org/en/latest/community/review.html#reviewing
https://docs.esmvaltool.org/en/latest/community/review.html#technical-review
https://docs.esmvaltool.org/en/latest/community/review.html#scientific-review

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

120 Chapter 15. Checklist for pull requests

CHAPTER

SIXTEEN

SCIENTIFIC RELEVANCE

The proposed changes should be relevant for the larger scientific community. The implementation of new features
should be scientifically sound; e.g. the formulas used in new preprocesssor functions should be accompanied by the
relevant references and checked for correctness by the scientific reviewer. The CF Conventions as well as additional
standards imposed by CMIP should be followed whenever possible.

121

https://cfconventions.org/
https://www.wcrp-climate.org/wgcm-cmip

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

122 Chapter 16. Scientific relevance

CHAPTER

SEVENTEEN

PULL REQUEST TITLE AND LABEL

The title of a pull request should clearly describe what the pull request changes. If you need more text to describe what
the pull request does, please add it in the description. Add one or more labels to your pull request to indicate the type
of change. At least one of the following labels should be used: bug, deprecated feature, fix for dataset, preprocessor,
cmor, api, testing, documentation or enhancement.

The titles and labels of pull requests are used to compile the Changelog, therefore it is important that they are easy to
understand for people who are not familiar with the code or people in the project. Descriptive pull request titles also
makes it easier to find back what was changed when, which is useful in case a bug was introduced.

123

https://docs.github.com/en/github/managing-your-work-on-github/managing-labels#applying-labels-to-issues-and-pull-requests
https://github.com/ESMValGroup/ESMValCore/labels
https://docs.python.org/3/whatsnew/changelog.html#changelog

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

124 Chapter 17. Pull request title and label

CHAPTER

EIGHTEEN

CODE QUALITY

To increase the readability and maintainability or the ESMValCore source code, we aim to adhere to best practices and
coding standards.

We include checks for Python and yaml files, most of which are described in more detail in the sections below. This
includes checks for invalid syntax and formatting errors. Pre-commit is a handy tool that can run all of these checks
automatically just before you commit your code. It knows knows which tool to run for each filetype, and therefore
provides a convenient way to check your code.

18.1 Python

The standard document on best practices for Python code is PEP8 and there is PEP257 for code documentation. We
make use of numpy style docstrings to document Python functions that are visible on readthedocs.

To check if your code adheres to the standard, go to the directory where the repository is cloned, e.g. cd ESMValCore,
and run prospector

prospector esmvalcore/preprocessor/_regrid.py

In addition to prospector, we use flake8 to automatically check for bugs and formatting mistakes and mypy for checking
that type hints are correct. Note that type hints are completely optional, but if you do choose to add them, they should
be correct.

When you make a pull request, adherence to the Python development best practices is checked in two ways:

1. As part of the unit tests, flake8 and mypy are run by CircleCI, see the section on Tests for more information.

2. Codacy is a service that runs prospector (and other code quality tools) on changed files and reports the results.
Click the ‘Details’ link behind the Codacy check entry and then click ‘View more details on Codacy Production’
to see the results of the static code analysis done by Codacy. If you need to log in, you can do so using your
GitHub account.

The automatic code quality checks by prospector are really helpful to improve the quality of your code, but they are
not flawless. If you suspect prospector or Codacy may be wrong, please ask the @ESMValGroup/tech-reviewers by
commenting on your pull request.

Note that running prospector locally will give you quicker and sometimes more accurate results than waiting for Codacy.

Most formatting issues in Python code can be fixed automatically by running the commands

isort some_file.py

to sort the imports in the standard way using isort and

125

https://docs.esmvaltool.org/en/latest/utils.html#pre-commit
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.esmvaltool.org
http://prospector.landscape.io/
https://flake8.pycqa.org/en/latest/
https://mypy.readthedocs.io
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://flake8.pycqa.org/en/latest/
https://mypy.readthedocs.io
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.codacy.com/gh/ESMValGroup/ESMValCore/pullRequests
https://app.codacy.com/gh/ESMValGroup/ESMValCore/pullRequests
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://www.python.org/dev/peps/pep-0008/#imports
https://pycqa.github.io/isort/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

yapf -i some_file.py

to add/remove whitespace as required by the standard using yapf,

docformatter -i some_file.py

to run docformatter which helps formatting the docstrings (such as line length, spaces).

18.2 YAML

Please use yamllint to check that your YAML files do not contain mistakes. yamllint checks for valid syntax, common
mistakes like key repetition and cosmetic problems such as line length, trailing spaces, wrong indentation, etc.

18.3 Any text file

A generic tool to check for common spelling mistakes is codespell.

126 Chapter 18. Code quality

https://github.com/google/yapf
https://github.com/myint/docformatter
https://yamllint.readthedocs.io
https://pypi.org/project/codespell/

CHAPTER

NINETEEN

DOCUMENTATION

The documentation lives on docs.esmvaltool.org.

19.1 Adding documentation

The documentation is built by readthedocs using Sphinx. There are two main ways of adding documentation:

1. As written text in the directory doc. When writing reStructuredText (.rst) files, please try to limit the line
length to 80 characters and always start a sentence on a new line. This makes it easier to review changes to
documentation on GitHub.

2. As docstrings or comments in code. For Python code, only the docstrings of Python modules, classes, and
functions that are mentioned in doc/api are used to generate the online documentation. This results in the ES-
MValCore API Reference. The standard document with best practices on writing docstrings is PEP257. For the
API documentation, we make use of numpy style docstrings.

19.2 What should be documented

Functionality that is visible to users should be documented. Any documentation that is visible on readthedocs should
be well written and adhere to the standards for documentation. Examples of this include:

• The recipe

• Preprocessor functions and their use from the recipe

• Configuration options

• Installation

• Output files

• Command line interface

• Diagnostic script interfaces

• The experimental Python interface

Note that:

• For functions that compute scientific results, comments with references to papers and/or other resources as well
as formula numbers should be included.

• When making changes to/introducing a new preprocessor function, also update the preprocessor documentation.

127

https://docs.esmvaltool.org
https://docs.esmvaltool.org
https://www.sphinx-doc.org
https://github.com/ESMValGroup/ESMValCore/tree/main/doc/
https://www.sphinx-doc.org/en/main/usage/restructuredtext/basics.html
https://www.python.org/dev/peps/pep-0257/
https://github.com/ESMValGroup/ESMValCore/tree/main/doc/api
https://www.python.org/dev/peps/pep-0257/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.esmvaltool.org

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• There is no need to write complete numpy style documentation for functions that are not visible in the ESM-
ValCore API Reference chapter on readthedocs. However, adding a docstring describing what a function does is
always a good idea. For short functions, a one-line docstring is usually sufficient, but more complex functions
might require slightly more extensive documentation.

When reviewing a pull request, always check that documentation is easy to understand and available in all expected
places.

19.3 How to build and view the documentation

Whenever you make a pull request or push new commits to an existing pull request, readthedocs will automatically
build the documentation. The link to the documentation will be shown in the list of checks below your pull request.
Click ‘Details’ behind the check docs/readthedocs.org:esmvalcore to preview the documentation. If all checks
were successful, you may need to click ‘Show all checks’ to see the individual checks.

To build the documentation on your own computer, go to the directory where the repository was cloned and run

sphinx-build doc doc/build

or

sphinx-build -Ea doc doc/build

to build it from scratch.

Make sure that your newly added documentation builds without warnings or errors and looks correctly formatted.
CircleCI will build the documentation with the command:

sphinx-build -W doc doc/build

This will catch mistakes that can be detected automatically.

The configuration file for Sphinx is doc/shinx/source/conf.py.

See Integration with the ESMValCore documentation for information on how the ESMValCore documentation is inte-
grated into the complete ESMValTool project documentation on readthedocs.

When reviewing a pull request, always check that the documentation checks shown below the pull request were suc-
cessful.

128 Chapter 19. Documentation

https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://www.sphinx-doc.org
https://github.com/ESMValGroup/ESMValTool/blob/main/doc/sphinx/source/conf.py
https://docs.esmvaltool.org/en/latest/community/code_documentation.html#esmvalcore-documentation-integration

CHAPTER

TWENTY

TESTS

To check that the code works correctly, there tests available in the tests directory. We use pytest to write and run our
tests.

Contributions to ESMValCore should be covered by unit tests. Have a look at the existing tests in the tests direc-
tory for inspiration on how to write your own tests. If you do not know how to start with writing unit tests, ask the
@ESMValGroup/tech-reviewers for help by commenting on the pull request and they will try to help you. It is also
recommended that you have a look at the pytest documentation at some point when you start writing your own tests.

20.1 Running tests

To run the tests on your own computer, go to the directory where the repository is cloned and run the command

pytest

Optionally you can skip tests which require additional dependencies for supported diagnostic script languages by adding
-m 'not installation' to the previous command. To only run tests from a single file, run the command

pytest tests/unit/test_some_file.py

If you would like to avoid loading the default pytest configuration from setup.cfg because this can be a bit slow for
running just a few tests, use

pytest -c /dev/null tests/unit/test_some_file.py

Use

pytest --help

for more information on the available commands.

Whenever you make a pull request or push new commits to an existing pull request, the tests in the tests directory of
the branch associated with the pull request will be run automatically on CircleCI. The results appear at the bottom of
the pull request. Click on ‘Details’ for more information on a specific test job.

When reviewing a pull request, always check that all test jobs on CircleCI were successful.

129

https://github.com/ESMValGroup/ESMValCore/tree/main/tests
https://docs.pytest.org
https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html#aim-to-have-a-good-code-coverage
https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://docs.pytest.org
https://github.com/ESMValGroup/ESMValCore/blob/main/setup.cfg
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

20.2 Test coverage

To check which parts of your code are covered by unit tests, open the file test-reports/coverage_html/index.
html (available after running a pytest command) and browse to the relevant file.

CircleCI will upload the coverage results from running the tests to codecov and Codacy. codecov is a service that will
comment on pull requests with a summary of the test coverage. If codecov reports that the coverage has decreased,
check the report and add additional tests. Alternatively, it is also possible to view code coverage on Codacy (click the
Files tab) and CircleCI (open the tests job and click the ARTIFACTS tab). To see some of the results on CircleCI,
Codacy, or codecov, you may need to log in; you can do so using your GitHub account.

When reviewing a pull request, always check that new code is covered by unit tests and codecov reports an increased
coverage.

20.3 Sample data

New or modified preprocessor functions should preferably also be tested using the sample data. These tests are
located in tests/sample_data. Please mark new tests that use the sample data with the decorator @pytest.mark.
use_sample_data.

The ESMValTool_sample_data repository contains samples of CMIP6 data for testing ESMValCore. The ESMValTool-
sample-data package is installed as part of the developer dependencies. The size of the package is relatively small (~
100 MB), so it can be easily downloaded and distributed.

Preprocessing the sample data can be time-consuming, so some intermediate results are cached by pytest to make the
tests run faster. If you suspect the tests are failing because the cache is invalid, clear it by running

pytest --cache-clear

To avoid running the time consuming tests that use sample data altogether, run

pytest -m "not use_sample_data"

20.4 Automated testing

Whenever you make a pull request or push new commits to an existing pull request, the tests in the tests of the branch
associated with the pull request will be run automatically on CircleCI.

Every night, more extensive tests are run to make sure that problems with the installation of the tool are discovered by
the development team before users encounter them. These nightly tests have been designed to follow the installation
procedures described in the documentation, e.g. in the Installation chapter. The nightly tests are run using both CircleCI
and GitHub Actions. The result of the tests ran by CircleCI can be seen on the CircleCI project page and the result of the
tests ran by GitHub Actions can be viewed on the Actions tab of the repository (to learn more about the Github-hosted
runners, please have a look the documentation).

When opening a pull request, if you wish to run the Github Actions Test test, you can activate it via a simple comment
containing the @runGAtests tag (e.g. “@runGAtests” or “@runGAtests please run” - in effect, tagging the runGAtests
bot that will start the test automatically). This is useful to check if a certain feature that you included in the Pull Request,
and can be tested for via the test suite, works across the supported Python versions, and both on Linux and OSX. The
test is currently deactivated, so before triggering the test via comment, make sure you activate the test in the main
Actions page (click on Test via PR Comment and activate it); also and be sure to deactivate it afterwards (the Github
API still needs a bit more development, and currently it triggers the test for each comment irrespective of PR, that’s
why this needs to be activated/decativated).

130 Chapter 20. Tests

https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html#aim-to-have-a-good-code-coverage
https://app.codecov.io/gh/ESMValGroup/ESMValCore/pulls
https://app.codecov.io/gh/ESMValGroup/ESMValCore/pulls
https://app.codacy.com/gh/ESMValGroup/ESMValCore/pullRequests
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.codecov.io/gh/ESMValGroup/ESMValCore/pulls
https://github.com/ESMValGroup/ESMValCore/tree/main/tests/sample_data
https://docs.python.org/3/glossary.html#term-decorator
https://github.com/ESMValGroup/ESMValTool_sample_data
https://pypi.org/project/ESMValTool-sample-data/
https://pypi.org/project/ESMValTool-sample-data/
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore?branch=main
https://github.com/ESMValGroup/ESMValCore/actions
https://docs.github.com/en/actions/using-github-hosted-runners
https://github.com/ESMValGroup/ESMValCore/actions/workflows/run-tests.yml
https://github.com/ESMValGroup/ESMValCore/actions

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

The configuration of the tests run by CircleCI can be found in the directory .circleci, while the configuration of the tests
run by GitHub Actions can be found in the directory .github/workflows.

20.4. Automated testing 131

https://github.com/ESMValGroup/ESMValCore/blob/main/.circleci
https://github.com/ESMValGroup/ESMValCore/blob/main/.github/workflows

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

132 Chapter 20. Tests

CHAPTER

TWENTYONE

BACKWARD COMPATIBILITY

The ESMValCore package is used by many people to run their recipes. Many of these recipes are maintained in the
public ESMValTool repository, but there are also users who choose not to share their work there. While our commitment
is first and foremost to users who do share their recipes in the ESMValTool repository, we still try to be nice to all of the
ESMValCore users. When making changes, e.g. to the recipe format, the diagnostic script interface, the public Python
API , or the configuration file format, keep in mind that this may affect many users. To keep the tool user friendly, try to
avoid making changes that are not backward compatible, i.e. changes that require users to change their existing recipes,
diagnostics, configuration files, or scripts.

If you really must change the public interfaces of the tool, always discuss this with the @ESMValGroup/esmvaltool-
coreteam. Try to deprecate the feature first by issuing an ESMValCoreDeprecationWarning using the warnings
module and schedule it for removal two minor versions from the upcoming release. For example, when you deprecate
a feature in a pull request that will be included in version 2.5, that feature should be removed in version 2.7:

import warnings

from esmvalcore.exceptions import ESMValCoreDeprecationWarning

Other code

def func(x, deprecated_option=None):
"""Deprecate deprecated_option."""
if deprecated_option is not None:

deprecation_msg = (
"The option ``deprecated_option`` has been deprecated in "
"ESMValCore version 2.5 and is scheduled for removal in "
"version 2.7. Add additional text (e.g., description of "
"alternatives) here.")

warnings.warn(deprecation_msg, ESMValCoreDeprecationWarning)

Other code

Mention the version in which the feature will be removed in the deprecation message. Label the pull request with the
deprecated feature label. When deprecating a feature, please follow up by actually removing the feature in due course.

If you must make backward incompatible changes, you need to update the available recipes in ESMValTool and link the
ESMValTool pull request(s) in the ESMValCore pull request description. You can ask the @ESMValGroup/esmvaltool-
recipe-maintainers for help with updating existing recipes, but please be considerate of their time.

When reviewing a pull request, always check for backward incompatible changes and make sure they are needed and
have been discussed with the @ESMValGroup/esmvaltool-coreteam. Also, make sure the author of the pull request has
created the accompanying pull request(s) to update the ESMValTool, before merging the ESMValCore pull request.

133

https://github.com/ESMValGroup/ESMValTool
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam
https://docs.python.org/3/library/warnings.html#module-warnings
https://semver.org/
https://github.com/ESMValGroup/ESMValCore/labels/deprecated%20feature
https://github.com/orgs/ESMValGroup/teams/esmvaltool-recipe-maintainers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-recipe-maintainers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

134 Chapter 21. Backward compatibility

CHAPTER

TWENTYTWO

DEPENDENCIES

Before considering adding a new dependency, carefully check that the license of the dependency you want to add and
any of its dependencies are compatible with the Apache 2.0 license that applies to the ESMValCore. Note that GPL
version 2 license is considered incompatible with the Apache 2.0 license, while the compatibility of GPL version 3
license with the Apache 2.0 license is questionable. See this statement by the authors of the Apache 2.0 license for
more information.

When adding or removing dependencies, please consider applying the changes in the following files:

• environment.yml contains development dependencies that cannot be installed from PyPI

• setup.py contains all Python dependencies, regardless of their installation source

Note that packages may have a different name on conda-forge than on PyPI.

Several test jobs on CircleCI related to the installation of the tool will only run if you change the dependencies. These
will be skipped for most pull requests.

When reviewing a pull request where dependencies are added or removed, always check that the changes have been
applied in all relevant files.

135

https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-software.html
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://github.com/ESMValGroup/ESMValCore/blob/main/LICENSE/
https://www.apache.org/licenses/GPL-compatibility.html
https://pypi.org/
https://conda-forge.org/
https://pypi.org/
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

136 Chapter 22. Dependencies

CHAPTER

TWENTYTHREE

LIST OF AUTHORS

If you make a contribution to ESMValCore and you would like to be listed as an author (e.g. on Zenodo), please add
your name to the list of authors in CITATION.cff and generate the entry for the .zenodo.json file by running the
commands

pip install cffconvert
cffconvert --ignore-suspect-keys --outputformat zenodo --outfile .zenodo.json

Presently, this method unfortunately discards entries communities and grants from that file; please restore them manu-
ally, or alternately proceed with the addition manually

137

https://zenodo.org/record/4525749

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

138 Chapter 23. List of authors

CHAPTER

TWENTYFOUR

PULL REQUEST CHECKS

To check that a pull request is up to standard, several automatic checks are run when you make a pull request. Read
more about it in the Tests and Documentation sections. Successful checks have a green ✓ in front, a means the check
failed.

If you need help with the checks, please ask the technical reviewer of your pull request for help. Ask
@ESMValGroup/tech-reviewers if you do not have a technical reviewer yet.

If the checks are broken because of something unrelated to the current pull request, please check if there is an
open issue that reports the problem. Create one if there is no issue yet. You can attract the attention of the
@ESMValGroup/esmvaltool-coreteam by mentioning them in the issue if it looks like no-one is working on solv-
ing the problem yet. The issue needs to be fixed in a separate pull request first. After that has been merged into the
main branch and all checks on this branch are green again, merge it into your own branch to get the tests to pass.

When reviewing a pull request, always make sure that all checks were successful. If the Codacy check keeps failing,
please run prospector locally. If necessary, ask the pull request author to do the same and to address the reported issues.
See the section on code_quality for more information. Never merge a pull request with failing CircleCI or readthedocs
checks.

139

https://github.com/orgs/ESMValGroup/teams/tech-reviewers
https://github.com/orgs/ESMValGroup/teams/esmvaltool-coreteam

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

140 Chapter 24. Pull request checks

CHAPTER

TWENTYFIVE

MAKING A RELEASE

The release manager makes the release, assisted by the release manager of the previous release, or if that person is
not available, another previous release manager. Perform the steps listed below with two persons, to reduce the risk of
error.

Note: The previous release manager ensures the current release manager has the required administrative permissions
to make the release. Consider the following services: conda-forge, DockerHub, PyPI, and readthedocs.

The release of ESMValCore is tied to the release of ESMValTool. To start the procedure, ESMValCore gets released
as a release candidate to test the recipes in ESMValTool. If bugs are found during the testing phase of the release
candidate, make as many release candidates for ESMValCore as needed in order to fix them.

To make a new release of the package, be it a release candidate or the final release, follow these steps:

25.1 1. Check that all tests and builds work

• Check that the nightly test run on CircleCI was successful.

• Check that the GitHub Actions test runs were successful.

• Check that the documentation builds successfully on readthedocs.

• Check that the Docker images are building successfully.

All tests should pass before making a release (branch).

25.2 2. Create a release branch

Create a branch off the main branch and push it to GitHub. Ask someone with administrative permissions to set up
branch protection rules for it so only you and the person helping you with the release can push to it.

141

https://github.com/conda-forge/esmvalcore-feedstock
https://hub.docker.com/orgs/esmvalgroup
https://pypi.org/project/ESMValCore/
https://readthedocs.org/dashboard/esmvalcore/users/
https://circleci.com/gh/ESMValGroup/ESMValCore/tree/main
https://github.com/ESMValGroup/ESMValCore/actions
https://readthedocs.org/projects/esmvalcore/builds/
https://hub.docker.com/repository/docker/esmvalgroup/esmvalcore/builds

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

25.3 3. Increase the version number

The version number is automatically generated from the information provided by git using [setuptools-scm](https:
//pypi.org/project/setuptools-scm/), but a static version number is stored in CITATION.cff. Make sure to update the
version number and release date in CITATION.cff. See https://semver.org for more information on choosing a version
number. Make a pull request and get it merged into main and cherry pick it into the release branch.

25.4 4. Add release notes

Use the script esmvaltool/utils/draft_release_notes.py to create create a draft of the release notes. This script uses
the titles and labels of merged pull requests since the previous release. Review the results, and if anything needs
changing, change it on GitHub and re-run the script until the changelog looks acceptable. Copy the result to the file
doc/changelog.rst. Make a pull request and get it merged into main and cherry pick it into the release branch.

25.5 5. Make the (pre-)release on GitHub

Do a final check that all tests on CircleCI and GitHub Actions completed successfully. Then click the releases tab and
create the new release from the release branch (i.e. not from main).

Create a tag and tick the This is a pre-release box if working with a release candidate.

25.6 6. Create and upload the PyPI package

The package is automatically uploaded to the PyPI by a GitHub action. If has failed for some reason, build and upload
the package manually by following the instructions below.

Follow these steps to create a new Python package:

• Check out the tag corresponding to the release, e.g. git checkout tags/v2.1.0

• Make sure your current working directory is clean by checking the output of git status and by running git
clean -xdf to remove any files ignored by git.

• Install the required packages: python3 -m pip install --upgrade pep517 twine

• Build the package: python3 -m pep517.build --source --binary --out-dir dist/ . This com-
mand should generate two files in the dist directory, e.g. ESMValCore-2.3.1-py3-none-any.whl and
ESMValCore-2.3.1.tar.gz.

• Upload the package: python3 -m twine upload dist/* You will be prompted for an API token if you have
not set this up before, see here for more information.

You can read more about this in Packaging Python Projects.

142 Chapter 25. Making a release

https://pypi.org/project/setuptools-scm/
https://pypi.org/project/setuptools-scm/
https://semver.org
https://docs.esmvaltool.org/en/latest/utils.html#draft-release-notes-py
https://github.com/ESMValGroup/ESMValCore/releases
https://pypi.org/project/ESMValCore/
https://pypi.org/help/#apitoken
https://packaging.python.org/tutorials/packaging-projects/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

25.7 7. Create the Conda package

The esmvalcore package is published on the conda-forge conda channel. This is done via a pull request on the
esmvalcore-feedstock repository.

To publish a release candidate, you have to open a pull request yourself. An example for this can be found here. Make
sure to use the rc branch as the target branch for your pull request and follow all instructions given by the linter bot.
The testing of ESMValTool will be performed with the published release candidate.

For the final release, this pull request is automatically opened by a bot. An example pull request can be found here.
Follow the instructions by the bot to finalize the pull request. This step mostly contains updating dependencies that
have been changed during the last release cycle. Once approved by the feedstock maintainers they will merge the pull
request, which will in turn publish the package on conda-forge some time later. Contact the feedstock maintainers if
you want to become a maintainer yourself.

25.8 8. Check the Docker images

There are two main Docker container images available for ESMValCore on Dockerhub:

• esmvalgroup/esmvalcore:stable, built from docker/Dockerfile, this is a tag that is always the same as the
latest released version. This image is only built by Dockerhub when a new release is created.

• esmvalgroup/esmvalcore:development, built from docker/Dockerfile.dev, this is a tag that always contains
the latest conda environment for ESMValCore, including any test dependencies. It is used by CircleCI to run the
unit tests. This speeds up running the tests, as it avoids the need to build the conda environment for every test
run. This image is built by Dockerhub every time there is a new commit to the main branch on Github.

In addition to the two images mentioned above, there is an image available for every release (e.g. esmvalgroup/
esmvalcore:v2.5.0). When working on the Docker images, always try to follow the best practices.

After making the release, check that the Docker image for that release has been built correctly by

1. checking that the version tag is available on Dockerhub and the stable tag has been updated,

2. running some recipes with the stable tag Docker container, for example one recipe for Python, NCL, R, and
Julia,

3. running a recipe with a Singularity container built from the stable tag.

If there is a problem with the automatically built container image, you can fix the problem and build a new image
locally. For example, to build and upload the container image for v2.5.0 of the tool run:

git checkout v2.5.0
git clean -x
docker build -t esmvalgroup/esmvalcore:v2.5.0 . -f docker/Dockerfile
docker push esmvalgroup/esmvalcore:v2.5.0

(when making updates, you may want to add .post0, .post1, .. to the version number to avoid overwriting an older tag)
and if it is the latest release that you are updating, also run

docker tag esmvalgroup/esmvalcore:v2.5.0 esmvalgroup/esmvalcore:stable
docker push esmvalgroup/esmvalcore:stable

Note that the docker push command will overwrite the existing tags on Dockerhub, but the previous container image
will remain available as an untagged image.

25.7. 7. Create the Conda package 143

https://anaconda.org/conda-forge
https://github.com/conda-forge/esmvalcore-feedstock
https://github.com/conda-forge/esmvalcore-feedstock/pull/35
https://github.com/conda-forge/esmvalcore-feedstock/tree/rc
https://github.com/conda-forge/esmvalcore-feedstock/pull/11
https://github.com/conda-forge/esmvalcore-feedstock/blob/main/README.md#feedstock-maintainers
https://hub.docker.com/r/esmvalgroup/esmvalcore/tags
https://github.com/ESMValGroup/ESMValCore/blob/main/docker/Dockerfile
https://github.com/ESMValGroup/ESMValCore/blob/main/docker/Dockerfile.dev
https://app.circleci.com/pipelines/github/ESMValGroup/ESMValCore
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://hub.docker.com/r/esmvalgroup/esmvalcore/tags
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/push/

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

144 Chapter 25. Making a release

Part VI

ESMValCore API Reference

145

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

ESMValCore is mostly used as a commandline tool. However, it is also possibly to use (parts of) ESMValTool as a
library. This section documents the public API of ESMValCore.

147

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

148

CHAPTER

TWENTYSIX

CMOR FUNCTIONS

CMOR module.

26.1 Checking compliance

Module for checking iris cubes against their CMOR definitions.

Classes:

CMORCheck(cube, var_info[, frequency, ...]) Class used to check the CMOR-compliance of the data.
CheckLevels(value) Level of strictness of the checks.

Exceptions:

CMORCheckError Exception raised when a cube does not pass the
CMORCheck.

Functions:

cmor_check(cube, cmor_table, mip, ...) Check if cube conforms to variable's CMOR definition.
cmor_check_data(cube, cmor_table, mip, ...) Check if data conforms to variable's CMOR definition.
cmor_check_metadata(cube, cmor_table, mip, ...) Check if metadata conforms to variable's CMOR defini-

tion.

class esmvalcore.cmor.check.CMORCheck(cube, var_info, frequency=None, fail_on_error=False,
check_level=CheckLevels.DEFAULT, automatic_fixes=False)

Bases: object

Class used to check the CMOR-compliance of the data.

It can also fix some minor errors and does some minor data homogeneization:

Parameters

• cube (iris.cube.Cube:) – Iris cube to check.

• var_info (variables_info.VariableInfo) – Variable info to check.

• frequency (str) – Expected frequency for the data.

• fail_on_error (bool) – If true, CMORCheck stops on the first error. If false, it collects
all possible errors before stopping.

149

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• automatic_fixes (bool) – If True, CMORCheck will try to apply automatic fixes for any
detected error, if possible.

• check_level (CheckLevels) – Level of strictness of the checks.

frequency

Expected frequency for the data.

Type
str

Attributes:

ALTERNATIVE_GENERIC_LEV_COORDS

Methods:

check_data([logger]) Check the cube data.
check_metadata([logger]) Check the cube metadata.
has_debug_messages() Check if there are reported debug messages.
has_errors() Check if there are reported errors.
has_warnings() Check if there are reported warnings.
report(level, message, *args) Report a message from the checker.
report_critical(message, *args) Report an error.
report_debug_message(message, *args) Report a debug message.
report_debug_messages() Report detected debug messages to the given logger.
report_error(message, *args) Report a normal error.
report_errors() Report detected errors.
report_warning(message, *args) Report a warning level error.
report_warnings() Report detected warnings to the given logger.

ALTERNATIVE_GENERIC_LEV_COORDS = {'alevel': {'CMIP5': ['alt40', 'plevs'], 'CMIP6':
['alt16', 'plev3'], 'obs4MIPs': ['alt16', 'plev3']}, 'zlevel': {'CMIP3':
['pressure']}}

check_data(logger=None)
Check the cube data.

Performs all the tests that require to have the data in memory. Assumes that metadata is correct, so you
must call check_metadata prior to this.

It will also report some warnings in case of minor errors.

Parameters
logger (logging.Logger) – Given logger.

Raises
CMORCheckError – If errors are found. If fail_on_error attribute is set to True, raises as soon
as an error is detected. If set to False, it perform all checks and then raises.

check_metadata(logger=None)
Check the cube metadata.

Perform all the tests that do not require to have the data in memory.

It will also report some warnings in case of minor errors and homogenize some data:

150 Chapter 26. CMOR functions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Equivalent calendars will all default to the same name.

• Time units will be set to days since 1850-01-01

Parameters
logger (logging.Logger) – Given logger.

Raises
CMORCheckError – If errors are found. If fail_on_error attribute is set to True, raises as soon
as an error is detected. If set to False, it perform all checks and then raises.

has_debug_messages()

Check if there are reported debug messages.

Returns
True if there are pending debug messages, False otherwise.

Return type
bool

has_errors()

Check if there are reported errors.

Returns
True if there are pending errors, False otherwise.

Return type
bool

has_warnings()

Check if there are reported warnings.

Returns
True if there are pending warnings, False otherwise.

Return type
bool

report(level, message, *args)
Report a message from the checker.

Parameters

• level (CheckLevels) – Message level

• message (str) – Message to report

• args – String format args for the message

Raises
CMORCheckError – If fail on error is set, it is thrown when registering an error message

report_critical(message, *args)
Report an error.

If fail_on_error is set to True, raises automatically. If fail_on_error is set to False, stores it for later reports.

Parameters

• message (str: unicode) – Message for the error.

• *args – arguments to format the message string.

26.1. Checking compliance 151

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

report_debug_message(message, *args)
Report a debug message.

Parameters

• message (str: unicode) – Message for the debug logger.

• *args – arguments to format the message string

report_debug_messages()

Report detected debug messages to the given logger.

Parameters
logger (logging.Logger) – Given logger.

report_error(message, *args)
Report a normal error.

Parameters

• message (str: unicode) – Message for the error.

• *args – arguments to format the message string.

report_errors()

Report detected errors.

Raises
CMORCheckError – If any errors were reported before calling this method.

report_warning(message, *args)
Report a warning level error.

Parameters

• message (str: unicode) – Message for the warning.

• *args – arguments to format the message string.

report_warnings()

Report detected warnings to the given logger.

Parameters
logger (logging.Logger) – Given logger

exception esmvalcore.cmor.check.CMORCheckError

Bases: Exception

Exception raised when a cube does not pass the CMORCheck.

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class esmvalcore.cmor.check.CheckLevels(value)
Bases: IntEnum

Level of strictness of the checks.

- DEBUG

Type
Report any debug message that the checker wants to communicate.

152 Chapter 26. CMOR functions

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/enum.html#enum.IntEnum

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

- STRICT

Type
Fail if there are warnings regarding compliance of CMOR standards.

- DEFAULT

Type
Fail if cubes present any discrepancy with CMOR standards.

- RELAXED

Type
Fail if cubes present severe discrepancies with CMOR standards.

- IGNORE

Type
Do not fail for any discrepancy with CMOR standards.

Attributes:

DEBUG

DEFAULT

IGNORE

RELAXED

STRICT

DEBUG = 1

DEFAULT = 3

IGNORE = 5

RELAXED = 4

STRICT = 2

esmvalcore.cmor.check.cmor_check(cube, cmor_table, mip, short_name, frequency, check_level)
Check if cube conforms to variable’s CMOR definition.

Equivalent to calling cmor_check_metadata and cmor_check_data consecutively.

Parameters

• cube (iris.cube.Cube) – Data cube to check.

• cmor_table (str) – CMOR definitions to use.

• mip – Variable’s mip.

• short_name (str) – Variable’s short name.

• frequency (str) – Data frequency.

• check_level (enum.IntEnum) – Level of strictness of the checks.

26.1. Checking compliance 153

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.IntEnum

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

esmvalcore.cmor.check.cmor_check_data(cube, cmor_table, mip, short_name, frequency,
check_level=CheckLevels.DEFAULT)

Check if data conforms to variable’s CMOR definition.

The checks performed at this step require the data in memory.

Parameters

• cube (iris.cube.Cube) – Data cube to check.

• cmor_table (str) – CMOR definitions to use.

• mip – Variable’s mip.

• short_name (str) – Variable’s short name

• frequency (str) – Data frequency

• check_level (CheckLevels) – Level of strictness of the checks.

esmvalcore.cmor.check.cmor_check_metadata(cube, cmor_table, mip, short_name, frequency,
check_level=CheckLevels.DEFAULT)

Check if metadata conforms to variable’s CMOR definition.

None of the checks at this step will force the cube to load the data.

Parameters

• cube (iris.cube.Cube) – Data cube to check.

• cmor_table (str) – CMOR definitions to use.

• mip – Variable’s mip.

• short_name (str) – Variable’s short name.

• frequency (str) – Data frequency.

• check_level (CheckLevels) – Level of strictness of the checks.

26.2 Automatically fixing issues

Apply automatic fixes for known errors in cmorized data.

All functions in this module will work even if no fixes are available for the given dataset. Therefore is recommended
to apply them to all variables to be sure that all known errors are fixed.

Functions:

fix_data(cube, short_name, project, dataset, mip) Fix cube data if fixes add present and check it anyway.
fix_file(file, short_name, project, dataset, ...) Fix files before ESMValTool can load them.
fix_metadata(cubes, short_name, project, ...) Fix cube metadata if fixes are required and check it any-

way.

esmvalcore.cmor.fix.fix_data(cube, short_name, project, dataset, mip, frequency=None,
check_level=CheckLevels.DEFAULT, **extra_facets)

Fix cube data if fixes add present and check it anyway.

This method assumes that metadata is already fixed and checked.

154 Chapter 26. CMOR functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

This method collects all the relevant fixes for a given variable, applies them and checks resulting cube (or the
original if no fixes were needed) metadata to ensure that it complies with the standards of its project CMOR
tables.

Parameters

• cube (iris.cube.Cube) – Cube to fix

• short_name (str) – Variable’s short name

• project (str) –

• dataset (str) –

• mip (str) – Variable’s MIP

• frequency (str, optional) – Variable’s data frequency, if available

• check_level (CheckLevels) – Level of strictness of the checks. Set to default.

• **extra_facets (dict, optional) – Extra facets are mainly used for data outside of the
big projects like CMIP, CORDEX, obs4MIPs. For details, see Extra Facets.

Returns
Fixed and checked cube

Return type
iris.cube.Cube

Raises
CMORCheckError – If the checker detects errors in the data that it can not fix.

esmvalcore.cmor.fix.fix_file(file, short_name, project, dataset, mip, output_dir, **extra_facets)
Fix files before ESMValTool can load them.

This fixes are only for issues that prevent iris from loading the cube or that cannot be fixed after the cube is
loaded.

Original files are not overwritten.

Parameters

• file (str) – Path to the original file

• short_name (str) – Variable’s short name

• project (str) –

• dataset (str) –

• output_dir (str) – Output directory for fixed files

• **extra_facets (dict, optional) – Extra facets are mainly used for data outside of the
big projects like CMIP, CORDEX, obs4MIPs. For details, see Extra Facets.

Returns
Path to the fixed file

Return type
str

esmvalcore.cmor.fix.fix_metadata(cubes, short_name, project, dataset, mip, frequency=None,
check_level=CheckLevels.DEFAULT, **extra_facets)

Fix cube metadata if fixes are required and check it anyway.

26.2. Automatically fixing issues 155

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

This method collects all the relevant fixes for a given variable, applies them and checks the resulting cube (or
the original if no fixes were needed) metadata to ensure that it complies with the standards of its project CMOR
tables.

Parameters

• cubes (iris.cube.CubeList) – Cubes to fix

• short_name (str) – Variable’s short name

• project (str) –

• dataset (str) –

• mip (str) – Variable’s MIP

• frequency (str, optional) – Variable’s data frequency, if available

• check_level (CheckLevels) – Level of strictness of the checks. Set to default.

• **extra_facets (dict, optional) – Extra facets are mainly used for data outside of the
big projects like CMIP, CORDEX, obs4MIPs. For details, see Extra Facets.

Returns
Fixed and checked cube

Return type
iris.cube.Cube

Raises
CMORCheckError – If the checker detects errors in the metadata that it can not fix.

26.3 Functions for fixing issues

Functions for fixing specific issues with datasets.

Functions:

add_altitude_from_plev(cube) Add altitude coordinate from pressure level coordinate.
add_plev_from_altitude(cube) Add pressure level coordinate from altitude coordinate.

esmvalcore.cmor.fixes.add_altitude_from_plev(cube)
Add altitude coordinate from pressure level coordinate.

Parameters
cube (iris.cube.Cube) – Input cube.

Raises
ValueError – cube does not contain coordinate air_pressure.

esmvalcore.cmor.fixes.add_plev_from_altitude(cube)
Add pressure level coordinate from altitude coordinate.

Parameters
cube (iris.cube.Cube) – Input cube.

Raises
ValueError – cube does not contain coordinate altitude.

156 Chapter 26. CMOR functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.CubeList
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

26.4 Using CMOR tables

CMOR information reader for ESMValTool.

Read variable information from CMOR 2 and CMOR 3 tables and make it easily available for the other components of
ESMValTool

Classes:

CMIP3Info(cmor_tables_path[, default, ...]) Class to read CMIP3-like data request.
CMIP5Info(cmor_tables_path[, default, ...]) Class to read CMIP5-like data request.
CMIP6Info(cmor_tables_path[, default, ...]) Class to read CMIP6-like data request.
CoordinateInfo(name) Class to read and store coordinate information.
CustomInfo([cmor_tables_path]) Class to read custom var info for ESMVal.
InfoBase(default, alt_names, strict) Base class for all table info classes.
JsonInfo() Base class for the info classes.
TableInfo(*args, **kwargs) Container class for storing a CMOR table.
VariableInfo(table_type, short_name) Class to read and store variable information.

Data:

CMOR_TABLES CMOR info objects.

Functions:

get_var_info(project, mip, short_name) Get variable information.
read_cmor_tables([cfg_developer]) Read cmor tables required in the configuration.

class esmvalcore.cmor.table.CMIP3Info(cmor_tables_path, default=None, alt_names=None, strict=True)
Bases: CMIP5Info

Class to read CMIP3-like data request.

Parameters

• cmor_tables_path (str) – Path to the folder containing the Tables folder with the json
files

• default (object) – Default table to look variables on if not found

• strict (bool) – If False, will look for a variable in other tables if it can not be found in the
requested one

Methods:

get_table(table) Search and return the table info.
get_variable(table_name, short_name[, derived]) Search and return the variable info.

get_table(table)
Search and return the table info.

Parameters
table (str) – Table name

Returns
Return the TableInfo object for the requested table if found, returns None if not

26.4. Using CMOR tables 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Return type
TableInfo

get_variable(table_name, short_name, derived=False)
Search and return the variable info.

Parameters

• table_name (str) – Table name

• short_name (str) – Variable’s short name

• derived (bool, optional) – Variable is derived. Info retrieval for derived variables
always look on the default tables if variable is not find in the requested table

Returns
Return the VariableInfo object for the requested variable if found, returns None if not

Return type
VariableInfo

class esmvalcore.cmor.table.CMIP5Info(cmor_tables_path, default=None, alt_names=None, strict=True)
Bases: InfoBase

Class to read CMIP5-like data request.

Parameters

• cmor_tables_path (str) – Path to the folder containing the Tables folder with the json
files

• default (object) – Default table to look variables on if not found

• strict (bool) – If False, will look for a variable in other tables if it can not be found in the
requested one

Methods:

get_table(table) Search and return the table info.
get_variable(table_name, short_name[, derived]) Search and return the variable info.

get_table(table)
Search and return the table info.

Parameters
table (str) – Table name

Returns
Return the TableInfo object for the requested table if found, returns None if not

Return type
TableInfo

get_variable(table_name, short_name, derived=False)
Search and return the variable info.

Parameters

• table_name (str) – Table name

• short_name (str) – Variable’s short name

• derived (bool, optional) – Variable is derived. Info retrieval for derived variables
always look on the default tables if variable is not find in the requested table

158 Chapter 26. CMOR functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Returns
Return the VariableInfo object for the requested variable if found, returns None if not

Return type
VariableInfo

class esmvalcore.cmor.table.CMIP6Info(cmor_tables_path, default=None, alt_names=None, strict=True,
default_table_prefix='')

Bases: InfoBase

Class to read CMIP6-like data request.

This uses CMOR 3 json format

Parameters

• cmor_tables_path (str) – Path to the folder containing the Tables folder with the json
files

• default (object) – Default table to look variables on if not found

• strict (bool) – If False, will look for a variable in other tables if it can not be found in the
requested one

Methods:

get_table(table) Search and return the table info.
get_variable(table_name, short_name[, derived]) Search and return the variable info.

get_table(table)
Search and return the table info.

Parameters
table (str) – Table name

Returns
Return the TableInfo object for the requested table if found, returns None if not

Return type
TableInfo

get_variable(table_name, short_name, derived=False)
Search and return the variable info.

Parameters

• table_name (str) – Table name

• short_name (str) – Variable’s short name

• derived (bool, optional) – Variable is derived. Info retrieval for derived variables
always look on the default tables if variable is not find in the requested table

Returns
Return the VariableInfo object for the requested variable if found, returns None if not

Return type
VariableInfo

26.4. Using CMOR tables 159

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

esmvalcore.cmor.table.CMOR_TABLES: Dict[str, Type[InfoBase]] = {'CESM':
<esmvalcore.cmor.table.CMIP6Info object>, 'CMIP3': <esmvalcore.cmor.table.CMIP3Info
object>, 'CMIP5': <esmvalcore.cmor.table.CMIP5Info object>, 'CMIP6':
<esmvalcore.cmor.table.CMIP6Info object>, 'CORDEX': <esmvalcore.cmor.table.CMIP5Info
object>, 'EMAC': <esmvalcore.cmor.table.CMIP6Info object>, 'ICON':
<esmvalcore.cmor.table.CMIP6Info object>, 'IPSLCM': <esmvalcore.cmor.table.CMIP6Info
object>, 'OBS': <esmvalcore.cmor.table.CMIP5Info object>, 'OBS6':
<esmvalcore.cmor.table.CMIP6Info object>, 'ana4mips': <esmvalcore.cmor.table.CMIP5Info
object>, 'custom': <esmvalcore.cmor.table.CustomInfo object>, 'native6':
<esmvalcore.cmor.table.CMIP6Info object>, 'obs4MIPs': <esmvalcore.cmor.table.CMIP6Info
object>}

CMOR info objects.

Type
dict of str, obj

class esmvalcore.cmor.table.CoordinateInfo(name)
Bases: JsonInfo

Class to read and store coordinate information.

Attributes:

axis Axis
generic_lev_name Generic level name
long_name Long name
must_have_bounds Whether bounds are required on this dimension
out_name Out name
requested Values requested
standard_name Standard name
stored_direction Direction in which the coordinate increases
units Units
valid_max Maximum allowed value
valid_min Minimum allowed value
value Coordinate value
var_name Short name

Methods:

read_json(json_data) Read coordinate information from json.

axis

Axis

generic_lev_name

Generic level name

long_name

Long name

must_have_bounds

Whether bounds are required on this dimension

160 Chapter 26. CMOR functions

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

out_name

Out name

This is the name of the variable in the file

read_json(json_data)
Read coordinate information from json.

Non-present options will be set to empty

Parameters
json_data (dict) – dictionary created by the json reader containing coordinate information

requested

Values requested

standard_name

Standard name

stored_direction

Direction in which the coordinate increases

units

Units

valid_max

Maximum allowed value

valid_min

Minimum allowed value

value

Coordinate value

var_name

Short name

class esmvalcore.cmor.table.CustomInfo(cmor_tables_path=None)
Bases: CMIP5Info

Class to read custom var info for ESMVal.

Parameters
cmor_tables_path (str or None) – Full path to the table or name for the table if it is present
in ESMValTool repository

Methods:

get_table(table) Search and return the table info.
get_variable(table, short_name[, derived]) Search and return the variable info.

get_table(table)
Search and return the table info.

Parameters
table (str) – Table name

Returns
Return the TableInfo object for the requested table if found, returns None if not

26.4. Using CMOR tables 161

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Return type
TableInfo

get_variable(table, short_name, derived=False)
Search and return the variable info.

Parameters

• table (str) – Table name

• short_name (str) – Variable’s short name

• derived (bool, optional) – Variable is derived. Info retrieval for derived variables
always look on the default tables if variable is not find in the requested table

Returns
Return the VariableInfo object for the requested variable if found, returns None if not

Return type
VariableInfo

class esmvalcore.cmor.table.InfoBase(default, alt_names, strict)
Bases: object

Base class for all table info classes.

This uses CMOR 3 json format

Parameters

• default (object) – Default table to look variables on if not found

• alt_names (list[list[str]]) – List of known alternative names for variables

• strict (bool) – If False, will look for a variable in other tables if it can not be found in the
requested one

Methods:

get_table(table) Search and return the table info.
get_variable(table_name, short_name[, derived]) Search and return the variable info.

get_table(table)
Search and return the table info.

Parameters
table (str) – Table name

Returns
Return the TableInfo object for the requested table if found, returns None if not

Return type
TableInfo

get_variable(table_name, short_name, derived=False)
Search and return the variable info.

Parameters

• table_name (str) – Table name

• short_name (str) – Variable’s short name

162 Chapter 26. CMOR functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• derived (bool, optional) – Variable is derived. Info retrieval for derived variables
always look on the default tables if variable is not find in the requested table

Returns
Return the VariableInfo object for the requested variable if found, returns None if not

Return type
VariableInfo

class esmvalcore.cmor.table.JsonInfo

Bases: object

Base class for the info classes.

Provides common utility methods to read json variables

class esmvalcore.cmor.table.TableInfo(*args, **kwargs)
Bases: dict

Container class for storing a CMOR table.

Methods:

clear()

copy()

fromkeys([value]) Create a new dictionary with keys from iterable and
values set to value.

get(key[, default]) Return the value for key if key is in the dictionary,
else default.

items()

keys()

pop(k[,d]) If the key is not found, return the default if given;
otherwise, raise a KeyError.

popitem() Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] = F[k]

values()

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

26.4. Using CMOR tables 163

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D's values

class esmvalcore.cmor.table.VariableInfo(table_type, short_name)
Bases: JsonInfo

Class to read and store variable information.

Attributes:

coordinates Coordinates
dimensions List of dimensions
frequency Data frequency
long_name Long name
modeling_realm Modeling realm
positive Increasing direction
short_name Short name
standard_name Standard name
units Data units
valid_max Maximum admitted value
valid_min Minimum admitted value

Methods:

copy() Return a shallow copy of VariableInfo.
read_json(json_data, default_freq) Read variable information from json.

coordinates

Coordinates

This is a dict with the names of the dimensions as keys and CoordinateInfo objects as values.

copy()

Return a shallow copy of VariableInfo.

Returns
Shallow copy of this object

164 Chapter 26. CMOR functions

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Return type
VariableInfo

dimensions

List of dimensions

frequency

Data frequency

long_name

Long name

modeling_realm

Modeling realm

positive

Increasing direction

read_json(json_data, default_freq)
Read variable information from json.

Non-present options will be set to empty

Parameters

• json_data (dict) – dictionary created by the json reader containing variable information

• default_freq (str) – Default frequency to use if it is not defined at variable level

short_name

Short name

standard_name

Standard name

units

Data units

valid_max

Maximum admitted value

valid_min

Minimum admitted value

esmvalcore.cmor.table.get_var_info(project, mip, short_name)
Get variable information.

Parameters

• project (str) – Dataset’s project.

• mip (str) – Variable’s cmor table.

• short_name (str) – Variable’s short name.

esmvalcore.cmor.table.read_cmor_tables(cfg_developer=None)
Read cmor tables required in the configuration.

Parameters
cfg_developer (dict of str) – Parsed config-developer file

26.4. Using CMOR tables 165

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

166 Chapter 26. CMOR functions

CHAPTER

TWENTYSEVEN

FIND AND DOWNLOAD FILES FROM ESGF

This module provides the function esmvalcore.esgf.find_files() for searching for files on ESGF using the ESM-
ValTool vocabulary. It returns esmvalcore.esgf.ESGFFile objects, which have a convenient esmvalcore.esgf.
ESGFFile.download() method for downloading the files.

See ESGF configuration for instructions on configuring this module.

27.1 esmvalcore.esgf

esmvalcore.esgf.find_files(*, project, short_name, dataset, **facets)
Search for files on ESGF.

Parameters

• project (str) – Choose from CMIP3, CMIP5, CMIP6, CORDEX, or obs4MIPs.

• short_name (str) – The name of the variable.

• dataset (str) – The name of the dataset.

• **facets – Any other search facets. Values can be strings, list of strings, or ‘start_year’
and ‘end_year’ with values of type int.

Examples

Examples of how to use the search function for all supported projects.

Search for a CMIP3 dataset:

>>> search(
... project='CMIP3',
... frequency='mon',
... short_name='tas',
... dataset='cccma_cgcm3_1',
... exp='historical',
... ensemble='run1',
...)
[ESGFFile:cmip3/CCCma/cccma_cgcm3_1/historical/mon/atmos/run1/tas/v1/tas_a1_20c3m_1_
→˓cgcm3.1_t47_1850_2000.nc]

Search for a CMIP5 dataset:

167

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

>>> search(
... project='CMIP5',
... mip='Amon',
... short_name='tas',
... dataset='inmcm4',
... exp='historical',
... ensemble='r1i1p1',
...)
[ESGFFile:cmip5/output1/INM/inmcm4/historical/mon/atmos/Amon/r1i1p1/v20130207/tas_
→˓Amon_inmcm4_historical_r1i1p1_185001-200512.nc]

Search for a CMIP6 dataset:

>>> search(
... project='CMIP6',
... mip='Amon',
... short_name='tas',
... dataset='CanESM5',
... exp='historical',
... ensemble='r1i1p1f1',
...)
[ESGFFile:CMIP6/CMIP/CCCma/CanESM5/historical/r1i1p1f1/Amon/tas/gn/v20190429/tas_
→˓Amon_CanESM5_historical_r1i1p1f1_gn_185001-201412.nc]

Search for a CORDEX dataset and limit the search results to files containing data to the years in the range 1990-
2000:

>>> search(
... project='CORDEX',
... frequency='mon',
... dataset='COSMO-crCLIM-v1-1',
... short_name='tas',
... exp='historical',
... ensemble='r1i1p1',
... domain='EUR-11',
... driver='MPI-M-MPI-ESM-LR',
... start_year=1990,
... end_year=2000,
...)
[ESGFFile:cordex/output/EUR-11/CLMcom-ETH/MPI-M-MPI-ESM-LR/historical/r1i1p1/COSMO-
→˓crCLIM-v1-1/v1/mon/tas/v20191219/tas_EUR-11_MPI-M-MPI-ESM-LR_historical_r1i1p1_
→˓CLMcom-ETH-COSMO-crCLIM-v1-1_v1_mon_198101-199012.nc,
ESGFFile:cordex/output/EUR-11/CLMcom-ETH/MPI-M-MPI-ESM-LR/historical/r1i1p1/COSMO-
→˓crCLIM-v1-1/v1/mon/tas/v20191219/tas_EUR-11_MPI-M-MPI-ESM-LR_historical_r1i1p1_
→˓CLMcom-ETH-COSMO-crCLIM-v1-1_v1_mon_199101-200012.nc]

Search for a obs4MIPs dataset:

>>> search(
... project='obs4MIPs',
... frequency='mon',
... dataset='CERES-EBAF',
... short_name='rsutcs',

(continues on next page)

168 Chapter 27. Find and download files from ESGF

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

...)
[ESGFFile:obs4MIPs/NASA-LaRC/CERES-EBAF/atmos/mon/v20160610/rsutcs_CERES-EBAF_L3B_
→˓Ed2-8_200003-201404.nc]

Returns
A list of files that have been found.

Return type
list of ESGFFile

esmvalcore.esgf.download(files, dest_folder, n_jobs=4)
Download multiple ESGFFiles in parallel.

Parameters

• files (list of ESGFFile) – The files to download.

• dest_folder (Path) – The destination folder.

• n_jobs (int) – The number of files to download in parallel.

Raises
DownloadError: – Raised if one or more files failed to download.

class esmvalcore.esgf.ESGFFile(results)
Bases: object

File on the ESGF.

This is the object returned by the function esmvalcore.esgf.search().

urls

The URLs where the file can be downloaded.

Type
list of str

dataset

The name of the dataset that the file is part of.

Type
str

name

The name of the file.

Type
str

size

The size of the file in bytes.

Type
int

Methods:

download(dest_folder) Download the file.
local_file(dest_folder) Return the path to the local file after download.

27.1. esmvalcore.esgf 169

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

download(dest_folder)
Download the file.

Parameters
dest_folder (Path) – The destination folder.

Raises
DownloadError: – Raised if downloading the file failed.

Returns
The path where the file will be located after download.

Return type
Path

local_file(dest_folder)
Return the path to the local file after download.

Parameters
dest_folder (Path) – The destination folder.

Returns
The path where the file will be located after download.

Return type
Path

27.2 esmvalcore.esgf.facets

Module containing mappings from our names to ESGF names.

Data:

DATASET_MAP Cache for the mapping between recipe/filesystem and
ESGF dataset names.

FACETS Mapping between the recipe and ESGF facet names.

Functions:

create_dataset_map() Create the DATASET_MAP from recipe datasets to
ESGF dataset names.

esmvalcore.esgf.facets.DATASET_MAP = {'CMIP3': {}, 'CMIP5': {'ACCESS1-0': 'ACCESS1.0',
'ACCESS1-3': 'ACCESS1.3', 'CESM1-BGC': 'CESM1(BGC)', 'CESM1-CAM5': 'CESM1(CAM5)',
'CESM1-CAM5-1-FV2': 'CESM1(CAM5.1,FV2)', 'CESM1-FASTCHEM': 'CESM1(FASTCHEM)',
'CESM1-WACCM': 'CESM1(WACCM)', 'CSIRO-Mk3-6-0': 'CSIRO-Mk3.6.0', 'GFDL-CM2p1':
'GFDL-CM2.1', 'MRI-AGCM3-2H': 'MRI-AGCM3.2H', 'MRI-AGCM3-2S': 'MRI-AGCM3.2S',
'bcc-csm1-1': 'BCC-CSM1.1', 'bcc-csm1-1-m': 'BCC-CSM1.1(m)', 'fio-esm': 'FIO-ESM',
'inmcm4': 'INM-CM4'}, 'CMIP6': {}, 'CORDEX': {}, 'obs4MIPs': {}}

Cache for the mapping between recipe/filesystem and ESGF dataset names.

170 Chapter 27. Find and download files from ESGF

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

esmvalcore.esgf.facets.FACETS = {'CMIP3': {'dataset': 'model', 'ensemble': 'ensemble',
'exp': 'experiment', 'frequency': 'time_frequency', 'short_name': 'variable'},
'CMIP5': {'dataset': 'model', 'ensemble': 'ensemble', 'exp': 'experiment', 'mip':
'cmor_table', 'product': 'product', 'short_name': 'variable'}, 'CMIP6': {'dataset':
'source_id', 'ensemble': 'variant_label', 'exp': 'experiment_id', 'grid':
'grid_label', 'mip': 'table_id', 'short_name': 'variable'}, 'CORDEX': {'dataset':
'rcm_name', 'domain': 'domain', 'driver': 'driving_model', 'ensemble': 'ensemble',
'exp': 'experiment', 'frequency': 'time_frequency', 'short_name': 'variable'},
'obs4MIPs': {'dataset': 'source_id', 'frequency': 'time_frequency', 'short_name':
'variable'}}

Mapping between the recipe and ESGF facet names.

esmvalcore.esgf.facets.create_dataset_map()

Create the DATASET_MAP from recipe datasets to ESGF dataset names.

Run python -m esmvalcore.esgf.facets to print an up to date map.

27.2. esmvalcore.esgf.facets 171

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

172 Chapter 27. Find and download files from ESGF

CHAPTER

TWENTYEIGHT

EXCEPTIONS

Exceptions that may be raised by ESMValCore.

Exceptions:

ESMValCoreDeprecationWarning Custom deprecation warning.
InputFilesNotFound(msg) Files that are required to run the recipe have not been

found.
RecipeError(msg) Recipe contains an error.

exception esmvalcore.exceptions.ESMValCoreDeprecationWarning

Bases: UserWarning

Custom deprecation warning.

exception esmvalcore.exceptions.InputFilesNotFound(msg)
Bases: RecipeError

Files that are required to run the recipe have not been found.

exception esmvalcore.exceptions.RecipeError(msg)
Bases: Exception

Recipe contains an error.

173

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/exceptions.html#Exception

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

174 Chapter 28. Exceptions

CHAPTER

TWENTYNINE

IRIS HELPER FUNCTIONS

Auxiliary functions for iris.

Functions:

add_leading_dim_to_cube(cube, dim_coord) Add new leading dimension to cube.
date2num(date, unit[, dtype]) Convert datetime object into numeric value with re-

quested dtype.
var_name_constraint(var_name) iris.Constraint using var_name.

esmvalcore.iris_helpers.add_leading_dim_to_cube(cube, dim_coord)
Add new leading dimension to cube.

An input cube with shape (x, ..., z) will be transformed to a cube with shape (w, x, ..., z) where w is
the length of dim_coord. Note that the data is broadcasted to the new shape.

Parameters

• cube (iris.cube.Cube) – Input cube.

• dim_coord (iris.coords.DimCoord) – Dimensional coordinate that is used to describe
the new leading dimension. Needs to be 1D.

Returns
Transformed input cube with new leading dimension.

Return type
iris.cube.Cube

Raises
CoordinateMultiDimError – dim_coord is not 1D.

esmvalcore.iris_helpers.date2num(date, unit, dtype=<class 'numpy.float64'>)
Convert datetime object into numeric value with requested dtype.

This is a custom version of cf_units.Unit.date2num() that guarantees the correct dtype for the return value.

Parameters

• date (datetime.datetime or cftime.datetime) –

• unit (cf_units.Unit) –

• dtype (a numpy dtype) –

Returns
The return value of unit.date2num with the requested dtype.

175

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#module-iris
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.Constraint
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coords.html#iris.coords.DimCoord
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit.date2num
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://unidata.github.io/cftime/api.html#cftime.datetime
https://cf-units.readthedocs.io/en/latest/unit.html#cf_units.Unit

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Return type
numpy.ndarray of type dtype

esmvalcore.iris_helpers.var_name_constraint(var_name)
iris.Constraint using var_name.

Warning: Deprecated since version 2.6.0: This function has been deprecated in ESMValCore version 2.6.0
and is scheduled for removal in version 2.8.0. Please use the function iris.NameConstraint with the
argument var_name instead: this is an exact replacement.

Parameters
var_name (str) – var_name used for the constraint.

Returns
Constraint.

Return type
iris.Constraint

176 Chapter 29. Iris helper functions

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.Constraint
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.NameConstraint
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.Constraint

CHAPTER

THIRTY

PREPROCESSOR FUNCTIONS

esmvalcore.preprocessor.DEFAULT_ORDER = ('fix_file', 'load', 'derive', 'fix_metadata',
'concatenate', 'cmor_check_metadata', 'clip_timerange', 'fix_data', 'cmor_check_data',
'add_fx_variables', 'extract_time', 'extract_season', 'extract_month', 'resample_hours',
'resample_time', 'extract_levels', 'weighting_landsea_fraction', 'mask_landsea',
'mask_glaciated', 'mask_landseaice', 'regrid', 'extract_coordinate_points',
'extract_point', 'extract_location', 'mask_multimodel', 'mask_fillvalues',
'mask_above_threshold', 'mask_below_threshold', 'mask_inside_range',
'mask_outside_range', 'clip', 'rolling_window_statistics', 'extract_region',
'extract_shape', 'extract_volume', 'extract_trajectory', 'extract_transect', 'detrend',
'extract_named_regions', 'axis_statistics', 'depth_integration', 'area_statistics',
'volume_statistics', 'amplitude', 'zonal_statistics', 'meridional_statistics',
'accumulate_coordinate', 'hourly_statistics', 'daily_statistics', 'monthly_statistics',
'seasonal_statistics', 'annual_statistics', 'decadal_statistics', 'climate_statistics',
'anomalies', 'regrid_time', 'timeseries_filter', 'linear_trend', 'linear_trend_stderr',
'convert_units', 'ensemble_statistics', 'multi_model_statistics', 'bias',
'remove_fx_variables', 'save', 'cleanup')

By default, preprocessor functions are applied in this order.

Preprocessor module.

Functions:

accumulate_coordinate(cube, coordinate) Weight data using the bounds from a given coordinate.
add_fx_variables(cube, fx_variables, check_level) Load requested fx files, check with CMOR standards and

add the fx variables as cell measures or ancillary vari-
ables in the cube containing the data.

amplitude(cube, coords) Calculate amplitude of cycles by aggregating over coor-
dinates.

annual_statistics(cube[, operator]) Compute annual statistics.
anomalies(cube, period[, reference, ...]) Compute anomalies using a mean with the specified

granularity.
area_statistics(cube, operator) Apply a statistical operator in the horizontal direction.
axis_statistics(cube, axis, operator) Perform statistics along a given axis.
bias(products[, bias_type, ...]) Calculate biases.
cleanup(files[, remove]) Clean up after running the preprocessor.
climate_statistics(cube[, operator, period, ...]) Compute climate statistics with the specified granularity.
clip(cube[, minimum, maximum]) Clip values at a specified minimum and/or maximum

value.
clip_timerange(cube, timerange) Extract time range with a resolution up to seconds.
cmor_check_data(cube, cmor_table, mip, ...) Check if data conforms to variable's CMOR definition.

continues on next page

177

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Table 1 – continued from previous page
cmor_check_metadata(cube, cmor_table, mip, ...) Check if metadata conforms to variable's CMOR defini-

tion.
concatenate(cubes) Concatenate all cubes after fixing metadata.
convert_units(cube, units) Convert the units of a cube to new ones.
daily_statistics(cube[, operator]) Compute daily statistics.
decadal_statistics(cube[, operator]) Compute decadal statistics.
depth_integration(cube) Determine the total sum over the vertical component.
derive(cubes, short_name, long_name, units) Derive variable.
detrend(cube[, dimension, method]) Detrend data along a given dimension.
ensemble_statistics(products, statistics, ...) Entry point for ensemble statistics.
extract_coordinate_points(cube, definition, ...) Extract points from any coordinate with interpolation.
extract_levels(cube, levels, scheme[, ...]) Perform vertical interpolation.
extract_location(cube, location, scheme) Extract a point using a location name, with interpolation.
extract_month (cube, month) Slice cube to get only the data belonging to a specific

month.
extract_named_regions(cube, regions) Extract a specific named region.
extract_point(cube, latitude, longitude, scheme) Extract a point, with interpolation.
extract_region(cube, start_longitude, ...) Extract a region from a cube.
extract_season(cube, season) Slice cube to get only the data belonging to a specific

season.
extract_shape(cube, shapefile[, method, ...]) Extract a region defined by a shapefile.
extract_time(cube, start_year, start_month, ...) Extract a time range from a cube.
extract_trajectory(cube, latitudes, longitudes) Extract data along a trajectory.
extract_transect(cube[, latitude, longitude]) Extract data along a line of constant latitude or longi-

tude.
extract_volume(cube, z_min, z_max) Subset a cube based on a range of values in the z-

coordinate.
fix_data(cube, short_name, project, dataset, mip) Fix cube data if fixes add present and check it anyway.
fix_file(file, short_name, project, dataset, ...) Fix files before ESMValTool can load them.
fix_metadata(cubes, short_name, project, ...) Fix cube metadata if fixes are required and check it any-

way.
hourly_statistics(cube, hours[, operator]) Compute hourly statistics.
linear_trend(cube[, coordinate]) Calculate linear trend of data along a given coordinate.
linear_trend_stderr(cube[, coordinate]) Calculate standard error of linear trend along a given co-

ordinate.
load(file[, callback, ignore_warnings]) Load iris cubes from files.
mask_above_threshold(cube, threshold) Mask above a specific threshold value.
mask_below_threshold(cube, threshold) Mask below a specific threshold value.
mask_fillvalues(products, threshold_fraction) Compute and apply a multi-dataset fillvalues mask.
mask_glaciated(cube, mask_out) Mask out glaciated areas.
mask_inside_range(cube, minimum, maximum) Mask inside a specific threshold range.
mask_landsea(cube, mask_out[, ...]) Mask out either land mass or sea (oceans, seas and

lakes).
mask_landseaice(cube, mask_out) Mask out either landsea (combined) or ice.
mask_multimodel(products) Apply common mask to all datasets (using logical OR).
mask_outside_range(cube, minimum, maximum) Mask outside a specific threshold range.
meridional_statistics(cube, operator) Compute meridional statistics.
monthly_statistics(cube[, operator]) Compute monthly statistics.
multi_model_statistics(products, span, ...) Compute multi-model statistics.
regrid(cube, target_grid, scheme[, ...]) Perform horizontal regridding.
regrid_time(cube, frequency) Align time axis for cubes so they can be subtracted.

continues on next page

178 Chapter 30. Preprocessor functions

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Table 1 – continued from previous page
remove_fx_variables(cube) Remove fx variables present as cell measures or ancil-

lary variables in the cube containing the data.
resample_hours(cube, interval[, offset]) Convert x-hourly data to y-hourly by eliminating extra

timesteps.
resample_time(cube[, month, day, hour]) Change frequency of data by resampling it.
rolling_window_statistics(cube, coordinate, ...) Compute rolling-window statistics over a coordinate.
save(cubes, filename[, optimize_access, ...]) Save iris cubes to file.
seasonal_statistics(cube[, operator, seasons]) Compute seasonal statistics.
timeseries_filter(cube, window, span[, ...]) Apply a timeseries filter.
volume_statistics(cube, operator) Apply a statistical operation over a volume.
weighting_landsea_fraction(cube, area_type) Weight fields using land or sea fraction.
zonal_statistics(cube, operator) Compute zonal statistics.

esmvalcore.preprocessor.accumulate_coordinate(cube, coordinate)
Weight data using the bounds from a given coordinate.

The resulting cube will then have units given by cube_units * coordinate_units.

Parameters

• cube (iris.cube.Cube) – Data cube for the flux

• coordinate (str) – Name of the coordinate that will be used as weights.

Returns
Cube with the aggregated data

Return type
iris.cube.Cube

Raises

• ValueError – If the coordinate is not found in the cube.

• NotImplementedError – If the coordinate is multidimensional.

esmvalcore.preprocessor.add_fx_variables(cube, fx_variables, check_level)
Load requested fx files, check with CMOR standards and add the fx variables as cell measures or ancillary
variables in the cube containing the data.

Parameters

• cube (iris.cube.Cube) – Iris cube with input data.

• fx_variables (dict) – Dictionary with fx_variable information.

• check_level (CheckLevels) – Level of strictness of the checks.

Returns
Cube with added cell measures or ancillary variables.

Return type
iris.cube.Cube

esmvalcore.preprocessor.amplitude(cube, coords)
Calculate amplitude of cycles by aggregating over coordinates.

Note: The amplitude is calculated as peak-to-peak amplitude (difference between maximum and minimum
value of the signal). Other amplitude types are currently not supported.

179

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Parameters

• cube (iris.cube.Cube) – Input data.

• coords (str or list of str) – Coordinates over which is aggregated. For example, use
'year' to extract the annual cycle amplitude for each year in the data or ['day_of_year',
'year'] to extract the diurnal cycle amplitude for each individual day in the data. If the coor-
dinates are not found in cube, try to add it via iris.coord_categorisation (at the mo-
ment, this only works for the temporal coordinates day_of_month, day_of_year, hour,
month, month_fullname, month_number, season, season_number, season_year,
weekday, weekday_fullname, weekday_number or year.

Returns
Amplitudes.

Return type
iris.cube.Cube

Raises
iris.exceptions.CoordinateNotFoundError – A coordinate is not found in cube and can-
not be added via iris.coord_categorisation.

esmvalcore.preprocessor.annual_statistics(cube, operator='mean')
Compute annual statistics.

Note that this function does not weight the annual mean if uneven time periods are present. Ie, all data inside the
year are treated equally.

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

Returns
Annual statistics cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.anomalies(cube, period, reference=None, standardize=False, seasons=('DJF',
'MAM', 'JJA', 'SON'))

Compute anomalies using a mean with the specified granularity.

Computes anomalies based on daily, monthly, seasonal or yearly means for the full available period

Parameters

• cube (iris.cube.Cube) – input cube.

• period (str) – Period to compute the statistic over. Available periods: ‘full’, ‘season’,
‘seasonal’, ‘monthly’, ‘month’, ‘mon’, ‘daily’, ‘day’

• reference (list int, optional, default: None) – Period of time to use a refer-
ence, as needed for the ‘extract_time’ preprocessor function If None, all available data is
used as a reference

• standardize (bool, optional) – If True standardized anomalies are calculated

• seasons (list or tuple of str, optional) – Seasons to use if needed. Defaults to
(‘DJF’, ‘MAM’, ‘JJA’, ‘SON’)

180 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coord_categorisation.html#module-iris.coord_categorisation
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/exceptions.html#iris.exceptions.CoordinateNotFoundError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coord_categorisation.html#module-iris.coord_categorisation
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Returns
Anomalies cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.area_statistics(cube, operator)
Apply a statistical operator in the horizontal direction.

The average in the horizontal direction. We assume that the horizontal directions are [‘longitude’, ‘latutude’].

This function can be used to apply several different operations in the horizontal plane: mean, standard deviation,
median variance, minimum and maximum. These options are specified using the operator argument and the
following key word arguments:

mean Area weighted mean.
median Median (not area weighted)
std_dev Standard Deviation (not area weighted)
sum Area weighted sum.
variance Variance (not area weighted)
min: Minimum value
max Maximum value
rms Area weighted root mean square.

Parameters

• cube (iris.cube.Cube) – Input cube.

• operator (str) – The operation, options: mean, median, min, max, std_dev, sum, variance,
rms.

Returns
collapsed cube.

Return type
iris.cube.Cube

Raises

• iris.exceptions.CoordinateMultiDimError – Exception for latitude axis with dim >
2.

• ValueError – if input data cube has different shape than grid area weights

esmvalcore.preprocessor.axis_statistics(cube, axis, operator)
Perform statistics along a given axis.

Operates over an axis direction. If weights are required, they are computed using the coordinate bounds.

Parameters

• cube (iris.cube.Cube) – Input cube.

• axis (str) – Direction over where to apply the operator. Possible values are ‘x’, ‘y’, ‘z’, ‘t’.

• operator (str) – Statistics to perform. Available operators are: ‘mean’, ‘median’,
‘std_dev’, ‘sum’, ‘variance’, ‘min’, ‘max’, ‘rms’.

Returns
collapsed cube.

181

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/exceptions.html#iris.exceptions.CoordinateMultiDimError
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Return type
iris.cube.Cube

esmvalcore.preprocessor.bias(products, bias_type='absolute', denominator_mask_threshold=0.001,
keep_reference_dataset=False)

Calculate biases.

Notes

This preprocessor requires a reference dataset. For this, exactly one input dataset needs to have the facet
reference_for_bias: true defined in the recipe. In addition, all input datasets need to have identical di-
mensional coordinates. This can for example be ensured with the preprocessors esmvalcore.preprocessor.
regrid() and/or esmvalcore.preprocessor.regrid_time().

Parameters

• products (set of esmvalcore.preprocessor.PreprocessorFile) – Input datasets.
Exactly one datasets needs the facet reference_for_bias: true.

• bias_type (str, optional (default: 'absolute')) – Bias type that is calculated.
Must be one of 'absolute' (dataset - ref) or 'relative' ((dataset - ref) / ref).

• denominator_mask_threshold (float, optional (default: 1e-3)) – Threshold
to mask values close to zero in the denominator (i.e., the reference dataset) during the calcu-
lation of relative biases. All values in the reference dataset with absolute value less than
the given threshold are masked out. This setting is ignored when bias_type is set to
'absolute'. Please note that for some variables with very small absolute values (e.g.,
carbon cycle fluxes, which are usually < 10−6 kg m −2 s −1) it is absolutely essential to
change the default value in order to get reasonable results.

• keep_reference_dataset (bool, optional (default: False)) – If True, keep
the reference dataset in the output. If False, drop the reference dataset.

Returns
Output datasets.

Return type
set of esmvalcore.preprocessor.PreprocessorFile

Raises
ValueError – Not exactly one input datasets contains the facet reference_for_bias:
true; bias_type is not one of 'absolute' or 'relative'.

esmvalcore.preprocessor.cleanup(files, remove=None)
Clean up after running the preprocessor.

esmvalcore.preprocessor.climate_statistics(cube, operator='mean', period='full', seasons=('DJF',
'MAM', 'JJA', 'SON'))

Compute climate statistics with the specified granularity.

Computes statistics for the whole dataset. It is possible to get them for the full period or with the data grouped
by day, month or season

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

182 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• period (str, optional) – Period to compute the statistic over. Available periods: ‘full’,
‘season’, ‘seasonal’, ‘monthly’, ‘month’, ‘mon’, ‘daily’, ‘day’

• seasons (list or tuple of str, optional) – Seasons to use if needed. Defaults to
(‘DJF’, ‘MAM’, ‘JJA’, ‘SON’)

Returns
Monthly statistics cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.clip(cube, minimum=None, maximum=None)
Clip values at a specified minimum and/or maximum value.

Values lower than minimum are set to minimum and values higher than maximum are set to maximum.

Parameters

• cube (iris.cube.Cube) – iris cube to be clipped

• minimum (float) – lower threshold to be applied on input cube data.

• maximum (float) – upper threshold to be applied on input cube data.

Returns
clipped cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.clip_timerange(cube, timerange)
Extract time range with a resolution up to seconds.

Parameters

• cube (iris.cube.Cube) – Input cube.

• timerange (str) – Time range in ISO 8601 format.

Returns
Sliced cube.

Return type
iris.cube.Cube

Raises
ValueError – Time ranges are outside the cube’s time limits.

esmvalcore.preprocessor.cmor_check_data(cube, cmor_table, mip, short_name, frequency,
check_level=CheckLevels.DEFAULT)

Check if data conforms to variable’s CMOR definition.

The checks performed at this step require the data in memory.

Parameters

• cube (iris.cube.Cube) – Data cube to check.

• cmor_table (str) – CMOR definitions to use.

• mip – Variable’s mip.

• short_name (str) – Variable’s short name

• frequency (str) – Data frequency

183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• check_level (CheckLevels) – Level of strictness of the checks.

esmvalcore.preprocessor.cmor_check_metadata(cube, cmor_table, mip, short_name, frequency,
check_level=CheckLevels.DEFAULT)

Check if metadata conforms to variable’s CMOR definition.

None of the checks at this step will force the cube to load the data.

Parameters

• cube (iris.cube.Cube) – Data cube to check.

• cmor_table (str) – CMOR definitions to use.

• mip – Variable’s mip.

• short_name (str) – Variable’s short name.

• frequency (str) – Data frequency.

• check_level (CheckLevels) – Level of strictness of the checks.

esmvalcore.preprocessor.concatenate(cubes)
Concatenate all cubes after fixing metadata.

esmvalcore.preprocessor.convert_units(cube, units)
Convert the units of a cube to new ones.

This converts units of a cube.

Note: Allows special unit conversions which transforms one quantity to another (physically related) quantity.
These quantities are identified via their standard_name and their units (units convertible to the ones defined
are also supported). For example, this enables conversions between precipitation fluxes measured in kg m-2
s-1 and precipitation rates measured in mm day-1 (and vice versa).

Currently, the following special conversions are supported:

• precipitation_flux (kg m-2 s-1) – lwe_precipitation_rate (mm day-1)

Names in the list correspond to standard_names of the input data. Conversions are allowed from each quantity
to any other quantity given in a bullet point. The corresponding target quantity is inferred from the desired target
units. In addition, any other units convertible to the ones given are also supported (e.g., instead of mm day-1, m
s-1 is also supported).

Note that for precipitation variables, a water density of 1000 kg m-3 is assumed.

Parameters

• cube (iris.cube.Cube) – Input cube.

• units (str) – New units in udunits form.

Returns
converted cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.daily_statistics(cube, operator='mean')
Compute daily statistics.

Chunks time in daily periods and computes statistics over them;

184 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

Returns
Daily statistics cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.decadal_statistics(cube, operator='mean')
Compute decadal statistics.

Note that this function does not weight the decadal mean if uneven time periods are present. Ie, all data inside
the decade are treated equally.

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

Returns
Decadal statistics cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.depth_integration(cube)
Determine the total sum over the vertical component.

Requires a 3D cube. The z-coordinate integration is calculated by taking the sum in the z direction of the cell
contents multiplied by the cell thickness.

Parameters
cube (iris.cube.Cube) – input cube.

Returns
collapsed cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.derive(cubes, short_name, long_name, units, standard_name=None)
Derive variable.

Parameters

• cubes (iris.cube.CubeList) – Includes all the needed variables for derivation defined
in get_required().

• short_name (str) – short_name

• long_name (str) – long_name

• units (str) – units

• standard_name (str, optional) – standard_name

Returns
The new derived variable.

185

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.CubeList
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Return type
iris.cube.Cube

esmvalcore.preprocessor.detrend(cube, dimension='time', method='linear')
Detrend data along a given dimension.

Parameters

• cube (iris.cube.Cube) – input cube.

• dimension (str) – Dimension to detrend

• method (str) – Method to detrend. Available: linear, constant. See documentation of
‘scipy.signal.detrend’ for details

Returns
Detrended cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.ensemble_statistics(products, statistics, output_products, span='overlap')
Entry point for ensemble statistics.

An ensemble grouping is performed on the input products. The statistics are then computed calling the
esmvalcore.preprocessor.multi_model_statistics() module, taking the grouped products as an in-
put.

Parameters

• products (list) – Cubes (or products) over which the statistics will be computed.

• statistics (list) – Statistical metrics to be computed, e.g. [mean, max]. Choose from
the operators listed in the iris.analysis package. Percentiles can be specified like pXX.YY.

• output_products (dict) – For internal use only. A dict with statistics names as keys
and preprocessorfiles as values. If products are passed as input, the statistics cubes will be
assigned to these output products.

• span (str (default: 'overlap')) – Overlap or full; if overlap, statitstics are computed
on common time- span; if full, statistics are computed on full time spans, ignoring missing
data.

Returns
A set of output_products with the resulting ensemble statistics.

Return type
set

See also:

esmvalcore.preprocessor.multi_model_statistics(), the

esmvalcore.preprocessor.extract_coordinate_points(cube, definition, scheme)
Extract points from any coordinate with interpolation.

Multiple points can also be extracted, by supplying an array of coordinates. The resulting point cube will match
the respective coordinates to those of the input coordinates. If the input coordinate is a scalar, the dimension will
be a scalar in the output cube.

Parameters

• cube (cube) – The source cube to extract a point from.

186 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• defintion (dict(str, float or array of float)) – The coordinate - values pairs
to extract

• scheme (str) – The interpolation scheme. ‘linear’ or ‘nearest’. No default.

Returns
Returns a cube with the extracted point(s), and with adjusted latitude and longitude coordinates
(see above). If desired point outside values for at least one coordinate, this cube will have fully
masked data.

Return type
Cube

Raises
ValueError: – If the interpolation scheme is not provided or is not recognised.

esmvalcore.preprocessor.extract_levels(cube, levels, scheme, coordinate=None, rtol=1e-07, atol=None)
Perform vertical interpolation.

Parameters

• cube (iris.cube.Cube) – The source cube to be vertically interpolated.

• levels (ArrayLike) – One or more target levels for the vertical interpolation. Assumed to
be in the same S.I. units of the source cube vertical dimension coordinate. If the requested
levels are sufficiently close to the levels of the cube, cube slicing will take place instead of
interpolation.

• scheme (str) – The vertical interpolation scheme to use. Choose from ‘linear’, ‘nearest’,
‘linear_extrapolate’, ‘nearest_extrapolate’.

• coordinate (optional str) – The coordinate to interpolate. If specified, pressure levels
(if present) can be converted to height levels and vice versa using the US standard atmo-
sphere. E.g. ‘coordinate = altitude’ will convert existing pressure levels (air_pressure) to
height levels (altitude); ‘coordinate = air_pressure’ will convert existing height levels (alti-
tude) to pressure levels (air_pressure).

• rtol (float) – Relative tolerance for comparing the levels in cube to the requested levels.
If the levels are sufficiently close, the requested levels will be assigned to the cube and no
interpolation will take place.

• atol (float) – Absolute tolerance for comparing the levels in cube to the requested levels.
If the levels are sufficiently close, the requested levels will be assigned to the cube and no
interpolation will take place. By default, atol will be set to 10^-7 times the mean value of
the levels on the cube.

Returns
A cube with the requested vertical levels.

Return type
iris.cube.Cube

See also:

regrid
Perform horizontal regridding.

esmvalcore.preprocessor.extract_location(cube, location, scheme)
Extract a point using a location name, with interpolation.

Extracts a single location point from a cube, according to the interpolation scheme scheme.

187

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

The function just retrieves the coordinates of the location and then calls the extract_point preprocessor.

It can be used to locate cities and villages, but also mountains or other geographical locations.

Note: The geolocator needs a working internet connection.

Parameters

• cube (cube) – The source cube to extract a point from.

• location (str) – The reference location. Examples: ‘mount everest’, ‘romania’,’new york,
usa’

• scheme (str) – The interpolation scheme. ‘linear’ or ‘nearest’. No default.

Returns

• Returns a cube with the extracted point, and with adjusted

• latitude and longitude coordinates.

Raises

• ValueError: – If location is not supplied as a preprocessor parameter.

• ValueError: – If scheme is not supplied as a preprocessor parameter.

• ValueError: – If given location cannot be found by the geolocator.

esmvalcore.preprocessor.extract_month(cube, month)
Slice cube to get only the data belonging to a specific month.

Parameters

• cube (iris.cube.Cube) – Original data

• month (int) – Month to extract as a number from 1 to 12

Returns
data cube for specified month.

Return type
iris.cube.Cube

Raises
ValueError – if requested month is not present in the cube

esmvalcore.preprocessor.extract_named_regions(cube, regions)
Extract a specific named region.

The region coordinate exist in certain CMIP datasets. This preprocessor allows a specific named regions to be
extracted.

Parameters

• cube (iris.cube.Cube) – input cube.

• regions (str, list) – A region or list of regions to extract.

Returns
collapsed cube.

Return type
iris.cube.Cube

188 Chapter 30. Preprocessor functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Raises

• ValueError – regions is not list or tuple or set.

• ValueError – region not included in cube.

esmvalcore.preprocessor.extract_point(cube, latitude, longitude, scheme)
Extract a point, with interpolation.

Extracts a single latitude/longitude point from a cube, according to the interpolation scheme scheme.

Multiple points can also be extracted, by supplying an array of latitude and/or longitude coordinates. The result-
ing point cube will match the respective latitude and longitude coordinate to those of the input coordinates. If
the input coordinate is a scalar, the dimension will be missing in the output cube (that is, it will be a scalar).

If the point to be extracted has at least one of the coordinate point values outside the interval of the cube’s
same coordinate values, then no extrapolation will be performed, and the resulting extracted cube will have fully
masked data.

Parameters

• cube (cube) – The source cube to extract a point from.

• latitude (float, or array of float) – The latitude and longitude of the point.

• longitude (float, or array of float) – The latitude and longitude of the point.

• scheme (str) – The interpolation scheme. ‘linear’ or ‘nearest’. No default.

Returns
Returns a cube with the extracted point(s), and with adjusted latitude and longitude coordinates
(see above). If desired point outside values for at least one coordinate, this cube will have fully
masked data.

Return type
Cube

Raises
ValueError: – If the interpolation scheme is None or unrecognized.

Examples

With a cube that has the coordinates

• latitude: [1, 2, 3, 4]

• longitude: [1, 2, 3, 4]

• data values: [[[1, 2, 3, 4], [5, 6, . . .], [. . .], [. . .],
. . .]]]

>>> point = extract_point(cube, 2.5, 2.5, 'linear')
>>> point.data
array([8.5, 24.5, 40.5, 56.5])

Extraction of multiple points at once, with a nearest matching scheme. The values for 0.1 will result in masked
values, since this lies outside the cube grid.

>>> point = extract_point(cube, [1.4, 2.1], [0.1, 1.1],
... 'nearest')
>>> point.data.shape

(continues on next page)

189

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

(4, 2, 2)
>>> # x, y, z indices of masked values
>>> np.where(~point.data.mask)
(array([0, 0, 1, 1, 2, 2, 3, 3]), array([0, 1, 0, 1, 0, 1, 0, 1]),
array([1, 1, 1, 1, 1, 1, 1, 1]))
>>> point.data[~point.data.mask].data
array([1, 5, 17, 21, 33, 37, 49, 53])

esmvalcore.preprocessor.extract_region(cube, start_longitude, end_longitude, start_latitude,
end_latitude)

Extract a region from a cube.

Function that subsets a cube on a box (start_longitude, end_longitude, start_latitude, end_latitude)

Parameters

• cube (iris.cube.Cube) – input data cube.

• start_longitude (float) – Western boundary longitude.

• end_longitude (float) – Eastern boundary longitude.

• start_latitude (float) – Southern Boundary latitude.

• end_latitude (float) – Northern Boundary Latitude.

Returns
smaller cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.extract_season(cube, season)
Slice cube to get only the data belonging to a specific season.

Parameters

• cube (iris.cube.Cube) – Original data

• season (str) – Season to extract. Available: DJF, MAM, JJA, SON and all sequentially
correct combinations: e.g. JJAS

Returns
data cube for specified season.

Return type
iris.cube.Cube

Raises
ValueError – if requested season is not present in the cube

esmvalcore.preprocessor.extract_shape(cube, shapefile, method='contains', crop=True,
decomposed=False, ids=None)

Extract a region defined by a shapefile.

Note that this function does not work for shapes crossing the prime meridian or poles.

Parameters

• cube (iris.cube.Cube) – input cube.

• shapefile (str) – A shapefile defining the region(s) to extract.

190 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• method (str, optional) – Select all points contained by the shape or select a single rep-
resentative point. Choose either ‘contains’ or ‘representative’. If ‘contains’ is used, but not
a single grid point is contained by the shape, a representative point will selected.

• crop (bool, optional) – Crop the resulting cube using extract_region(). Note that data
on irregular grids will not be cropped.

• decomposed (bool, optional) – Whether or not to retain the sub shapes of the shapefile
in the output. If this is set to True, the output cube has a dimension for the sub shapes.

• ids (list(str), optional) – List of shapes to be read from the file. The ids are assigned
from the attributes ‘name’ or ‘id’ (in that priority order) if present in the file or correspond
to the reading order if not.

Returns
Cube containing the extracted region.

Return type
iris.cube.Cube

See also:

extract_region
Extract a region from a cube.

esmvalcore.preprocessor.extract_time(cube, start_year, start_month, start_day, end_year, end_month,
end_day)

Extract a time range from a cube.

Given a time range passed in as a series of years, months and days, it returns a time-extracted cube with data
only within the specified time range.

Parameters

• cube (iris.cube.Cube) – input cube.

• start_year (int) – start year

• start_month (int) – start month

• start_day (int) – start day

• end_year (int) – end year

• end_month (int) – end month

• end_day (int) – end day

Returns
Sliced cube.

Return type
iris.cube.Cube

Raises
ValueError – if time ranges are outside the cube time limits

esmvalcore.preprocessor.extract_trajectory(cube, latitudes, longitudes, number_points=2)
Extract data along a trajectory.

latitudes and longitudes are the pairs of coordinates for two points. number_points is the number of points
between the two points.

This version uses the expensive interpolate method, but it may be necceasiry for irregular grids.

191

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

If only two latitude and longitude coordinates are given, extract_trajectory will produce a cube will extrapolate
along a line between those two points, and will add number_points points between the two corners.

If more than two points are provided, then extract_trajectory will produce a cube which has extrapolated the data
of the cube to those points, and number_points is not needed.

Parameters

• cube (iris.cube.Cube) – input cube.

• latitudes (list) – list of latitude coordinates (floats).

• longitudes (list) – list of longitude coordinates (floats).

• number_points (int) – number of points to extrapolate (optional).

Returns
collapsed cube.

Return type
iris.cube.Cube

Raises
ValueError – if latitude and longitude have different dimensions.

esmvalcore.preprocessor.extract_transect(cube, latitude=None, longitude=None)
Extract data along a line of constant latitude or longitude.

Both arguments, latitude and longitude, are treated identically. Either argument can be a single float, or a pair of
floats, or can be left empty. The single float indicates the latitude or longitude along which the transect should
be extracted. A pair of floats indicate the range that the transect should be extracted along the secondairy axis.

For instance ‘extract_transect(cube, longitude=-28)’ will produce a transect along 28 West.

Also, ‘extract_transect(cube, longitude=-28, latitude=[-50, 50])’ will produce a transect along 28 West between
50 south and 50 North.

This function is not yet implemented for irregular arrays - instead try the extract_trajectory function, but note
that it is currently very slow. Alternatively, use the regrid preprocessor to regrid along a regular grid and then
extract the transect.

Parameters

• cube (iris.cube.Cube) – input cube.

• latitude (None, float or [float, float], optional) – transect latiude or range.

• longitude (None, float or [float, float], optional) – transect longitude or
range.

Returns
collapsed cube.

Return type
iris.cube.Cube

Raises

• ValueError – slice extraction not implemented for irregular grids.

• ValueError – latitude and longitude are both floats or lists; not allowed to slice on both
axes at the same time.

192 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

esmvalcore.preprocessor.extract_volume(cube, z_min, z_max)
Subset a cube based on a range of values in the z-coordinate.

Function that subsets a cube on a box (z_min, z_max) This function is a restriction of masked_cube_lonlat();
Note that this requires the requested z-coordinate range to be the same sign as the iris cube. ie, if the cube has
z-coordinate as negative, then z_min and z_max need to be negative numbers.

Parameters

• cube (iris.cube.Cube) – input cube.

• z_min (float) – minimum depth to extract.

• z_max (float) – maximum depth to extract.

Returns
z-coord extracted cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.fix_data(cube, short_name, project, dataset, mip, frequency=None,
check_level=CheckLevels.DEFAULT, **extra_facets)

Fix cube data if fixes add present and check it anyway.

This method assumes that metadata is already fixed and checked.

This method collects all the relevant fixes for a given variable, applies them and checks resulting cube (or the
original if no fixes were needed) metadata to ensure that it complies with the standards of its project CMOR
tables.

Parameters

• cube (iris.cube.Cube) – Cube to fix

• short_name (str) – Variable’s short name

• project (str) –

• dataset (str) –

• mip (str) – Variable’s MIP

• frequency (str, optional) – Variable’s data frequency, if available

• check_level (CheckLevels) – Level of strictness of the checks. Set to default.

• **extra_facets (dict, optional) – Extra facets are mainly used for data outside of the
big projects like CMIP, CORDEX, obs4MIPs. For details, see Extra Facets.

Returns
Fixed and checked cube

Return type
iris.cube.Cube

Raises
CMORCheckError – If the checker detects errors in the data that it can not fix.

esmvalcore.preprocessor.fix_file(file, short_name, project, dataset, mip, output_dir, **extra_facets)
Fix files before ESMValTool can load them.

This fixes are only for issues that prevent iris from loading the cube or that cannot be fixed after the cube is
loaded.

Original files are not overwritten.

193

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Parameters

• file (str) – Path to the original file

• short_name (str) – Variable’s short name

• project (str) –

• dataset (str) –

• output_dir (str) – Output directory for fixed files

• **extra_facets (dict, optional) – Extra facets are mainly used for data outside of the
big projects like CMIP, CORDEX, obs4MIPs. For details, see Extra Facets.

Returns
Path to the fixed file

Return type
str

esmvalcore.preprocessor.fix_metadata(cubes, short_name, project, dataset, mip, frequency=None,
check_level=CheckLevels.DEFAULT, **extra_facets)

Fix cube metadata if fixes are required and check it anyway.

This method collects all the relevant fixes for a given variable, applies them and checks the resulting cube (or
the original if no fixes were needed) metadata to ensure that it complies with the standards of its project CMOR
tables.

Parameters

• cubes (iris.cube.CubeList) – Cubes to fix

• short_name (str) – Variable’s short name

• project (str) –

• dataset (str) –

• mip (str) – Variable’s MIP

• frequency (str, optional) – Variable’s data frequency, if available

• check_level (CheckLevels) – Level of strictness of the checks. Set to default.

• **extra_facets (dict, optional) – Extra facets are mainly used for data outside of the
big projects like CMIP, CORDEX, obs4MIPs. For details, see Extra Facets.

Returns
Fixed and checked cube

Return type
iris.cube.Cube

Raises
CMORCheckError – If the checker detects errors in the metadata that it can not fix.

esmvalcore.preprocessor.hourly_statistics(cube, hours, operator='mean')
Compute hourly statistics.

Chunks time in x hours periods and computes statistics over them.

Parameters

• cube (iris.cube.Cube) – input cube.

• hours (int) – Number of hours per period. Must be a divisor of 24 (1, 2, 3, 4, 6, 8, 12)

194 Chapter 30. Preprocessor functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.CubeList
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’

Returns
Hourly statistics cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.linear_trend(cube, coordinate='time')
Calculate linear trend of data along a given coordinate.

The linear trend is defined as the slope of an ordinary linear regression.

Parameters

• cube (iris.cube.Cube) – Input data.

• coordinate (str, optional (default: 'time')) – Dimensional coordinate over
which the trend is calculated.

Returns
Trends.

Return type
iris.cube.Cube

Raises
iris.exceptions.CoordinateNotFoundError – The dimensional coordinate with the name
coordinate is not found in cube.

esmvalcore.preprocessor.linear_trend_stderr(cube, coordinate='time')
Calculate standard error of linear trend along a given coordinate.

This gives the standard error (not confidence intervals!) of the trend defined as the standard error of the estimated
slope of an ordinary linear regression.

Parameters

• cube (iris.cube.Cube) – Input data.

• coordinate (str, optional (default: 'time')) – Dimensional coordinate over
which the standard error of the trend is calculated.

Returns
Standard errors of trends.

Return type
iris.cube.Cube

Raises
iris.exceptions.CoordinateNotFoundError – The dimensional coordinate with the name
coordinate is not found in cube.

esmvalcore.preprocessor.load(file, callback=None, ignore_warnings=None)
Load iris cubes from files.

Parameters

• file (str) – File to be loaded.

• callback (callable or None, optional (default: None)) – Callback function
passed to iris.load_raw().

195

https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/exceptions.html#iris.exceptions.CoordinateNotFoundError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/exceptions.html#iris.exceptions.CoordinateNotFoundError
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.load_raw

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• ignore_warnings (list of dict or None, optional (default: None)) –
Keyword arguments passed to warnings.filterwarnings() used to ignore warnings
issued by iris.load_raw(). Each list element corresponds to one call to warnings.
filterwarnings().

Returns
Loaded cubes.

Return type
iris.cube.CubeList

Raises
ValueError – Cubes are empty.

esmvalcore.preprocessor.mask_above_threshold(cube, threshold)
Mask above a specific threshold value.

Takes a value ‘threshold’ and masks off anything that is above it in the cube data. Values equal to the threshold
are not masked.

Parameters

• cube (iris.cube.Cube) – iris cube to be thresholded.

• threshold (float) – threshold to be applied on input cube data.

Returns
thresholded cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.mask_below_threshold(cube, threshold)
Mask below a specific threshold value.

Takes a value ‘threshold’ and masks off anything that is below it in the cube data. Values equal to the threshold
are not masked.

Parameters

• cube (iris.cube.Cube) – iris cube to be thresholded

• threshold (float) – threshold to be applied on input cube data.

Returns
thresholded cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.mask_fillvalues(products, threshold_fraction, min_value=None,
time_window=1)

Compute and apply a multi-dataset fillvalues mask.

Construct the mask that fills a certain time window with missing values if the number of values in that specific
window is less than a given fractional threshold. This function is the extension of _get_fillvalues_mask and
performs the combination of missing values masks from each model (of multimodels) into a single fillvalues
mask to be applied to each model.

Parameters

• products (iris.cube.Cube) – data products to be masked.

196 Chapter 30. Preprocessor functions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.load_raw
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.CubeList
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• threshold_fraction (float) – fractional threshold to be used as argument for Aggrega-
tor. Must be between 0 and 1.

• min_value (float) – minimum value threshold; default None If default, no thresholding
applied so the full mask will be selected.

• time_window (float) – time window to compute missing data counts; default set to 1.

Returns
Masked iris cubes.

Return type
iris.cube.Cube

Raises
NotImplementedError – Implementation missing for data with higher dimensionality than 4.

esmvalcore.preprocessor.mask_glaciated(cube, mask_out)
Mask out glaciated areas.

It applies a Natural Earth mask. Note that for computational reasons only the 10 largest polygons are used for
masking.

Parameters

• cube (iris.cube.Cube) – data cube to be masked.

• mask_out (str) – “glaciated” to mask out glaciated areas

Returns
Returns the masked iris cube.

Return type
iris.cube.Cube

Raises
ValueError – Error raised if masking on irregular grids is attempted or if mask_out has a wrong
value.

esmvalcore.preprocessor.mask_inside_range(cube, minimum, maximum)

Mask inside a specific threshold range.

Takes a MINIMUM and a MAXIMUM value for the range, and masks off anything that’s between the two in the
cube data.

Parameters

• cube (iris.cube.Cube) – iris cube to be thresholded

• minimum (float) – lower threshold to be applied on input cube data.

• maximum (float) – upper threshold to be applied on input cube data.

Returns
thresholded cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.mask_landsea(cube, mask_out, always_use_ne_mask=False)
Mask out either land mass or sea (oceans, seas and lakes).

It uses dedicated ancillary variables (sftlf or sftof) or, in their absence, it applies a Natural Earth mask (land or
ocean contours). Note that the Natural Earth masks have different resolutions: 10m for land, and 50m for seas.
These are more than enough for ESMValTool purposes.

197

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Parameters

• cube (iris.cube.Cube) – data cube to be masked.

• mask_out (str) – either “land” to mask out land mass or “sea” to mask out seas.

• always_use_ne_mask (bool, optional (default: False)) – always apply Natural
Earths mask, regardless if fx files are available or not.

Warning: This option has been deprecated in ESMValCore version 2.5. To always use
Natural Earth masks, either explicitly remove all ancillary_variables from the input
cube (when this function is used directly) or specify fx_variables: null as option
for this preprocessor in the recipe (when this function is used as part of ESMValTool).

Returns
Returns the masked iris cube.

Return type
iris.cube.Cube

Raises
ValueError – Error raised if masking on irregular grids is attempted. Irregular grids are not
currently supported for masking with Natural Earth shapefile masks.

esmvalcore.preprocessor.mask_landseaice(cube, mask_out)
Mask out either landsea (combined) or ice.

Function that masks out either landsea (land and seas) or ice (Antarctica and Greenland and some wee glaciers).

It uses dedicated ancillary variables (sftgif).

Parameters

• cube (iris.cube.Cube) – data cube to be masked.

• mask_out (str) – either “landsea” to mask out landsea or “ice” to mask out ice.

Returns
Returns the masked iris cube with either land or ice masked out.

Return type
iris.cube.Cube

Raises
ValueError – Error raised if landsea-ice mask not found as an ancillary variable.

esmvalcore.preprocessor.mask_multimodel(products)
Apply common mask to all datasets (using logical OR).

Parameters
products (iris.cube.CubeList or list of PreprocessorFile) – Data prod-
ucts/cubes to be masked.

Returns
Masked data products/cubes.

Return type
iris.cube.CubeList or list of PreprocessorFile

Raises

• ValueError – Datasets have different shapes.

198 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.CubeList
https://docs.python.org/3/library/stdtypes.html#list
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.CubeList
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• TypeError – Invalid input data.

esmvalcore.preprocessor.mask_outside_range(cube, minimum, maximum)

Mask outside a specific threshold range.

Takes a MINIMUM and a MAXIMUM value for the range, and masks off anything that’s outside the two in the
cube data.

Parameters

• cube (iris.cube.Cube) – iris cube to be thresholded

• minimum (float) – lower threshold to be applied on input cube data.

• maximum (float) – upper threshold to be applied on input cube data.

Returns
thresholded cube.

Return type
iris.cube.Cube

esmvalcore.preprocessor.meridional_statistics(cube, operator)
Compute meridional statistics.

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’.

Returns
Meridional statistics cube.

Return type
iris.cube.Cube

Raises
ValueError – Error raised if computation on irregular grids is attempted. Zonal statistics not
yet implemented for irregular grids.

esmvalcore.preprocessor.monthly_statistics(cube, operator='mean')
Compute monthly statistics.

Chunks time in monthly periods and computes statistics over them;

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

Returns
Monthly statistics cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.multi_model_statistics(products, span, statistics, output_products=None,
groupby=None, keep_input_datasets=True)

Compute multi-model statistics.

199

https://docs.python.org/3/library/exceptions.html#TypeError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

This function computes multi-model statistics on a list of products, which can be instances of Cube or
PreprocessorFile. The latter is used internally by ESMValCore to store workflow and provenance infor-
mation, and this option should typically be ignored.

Apart from the time coordinate, cubes must have consistent shapes. There are two options to combine time
coordinates of different lengths, see the span argument.

Uses the statistical operators in iris.analysis, including mean, median, min, max, and std. Percentiles are
also supported and can be specified like pXX.YY (for percentile XX.YY; decimal part optional).

Notes

Some of the operators in iris.analysis require additional arguments. Except for percentiles, these operators
are currently not supported.

Parameters

• products (list) – Cubes (or products) over which the statistics will be computed.

• span (str) – Overlap or full; if overlap, statitstics are computed on common time- span; if
full, statistics are computed on full time spans, ignoring missing data.

• statistics (list) – Statistical metrics to be computed, e.g. [mean, max]. Choose from
the operators listed in the iris.analysis package. Percentiles can be specified like pXX.YY.

• output_products (dict) – For internal use only. A dict with statistics names as keys
and preprocessorfiles as values. If products are passed as input, the statistics cubes will be
assigned to these output products.

• groupby (tuple) – Group products by a given tag or attribute, e.g. (‘project’, ‘dataset’,
‘tag1’).

• keep_input_datasets (bool) – If True, the output will include the input datasets. If False,
only the computed statistics will be returned.

Returns
A dictionary of statistics cubes with statistics’ names as keys. (If input type is products, then it
will return a set of output_products.)

Return type
dict

Raises
ValueError – If span is neither overlap nor full, or if input type is neither cubes nor products.

esmvalcore.preprocessor.regrid(cube, target_grid, scheme, lat_offset=True, lon_offset=True)
Perform horizontal regridding.

Note that the target grid can be a cube (Cube), path to a cube (str), a grid spec (str) in the form of MxN, or a
dict specifying the target grid.

For the latter, the target_grid should be a dict with the following keys:

• start_longitude: longitude at the center of the first grid cell.

• end_longitude: longitude at the center of the last grid cell.

• step_longitude: constant longitude distance between grid cell centers.

• start_latitude: latitude at the center of the first grid cell.

• end_latitude: longitude at the center of the last grid cell.

200 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#module-iris.analysis
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#module-iris.analysis
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• step_latitude: constant latitude distance between grid cell centers.

Parameters

• cube (Cube) – The source cube to be regridded.

• target_grid (Cube or str or dict) – The (location of a) cube that specifies the target
or reference grid for the regridding operation.

Alternatively, a string cell specification may be provided, of the form MxN, which specifies
the extent of the cell, longitude by latitude (degrees) for a global, regular target grid.

Alternatively, a dictionary with a regional target grid may be specified (see above).

• scheme (str or dict) – The regridding scheme to perform. If both source and tar-
get grid are structured (regular or irregular), can be one of the built-in schemes linear,
linear_extrapolate, nearest, area_weighted, unstructured_nearest. Alterna-
tively, a dict that specifies generic regridding (see below).

• lat_offset (bool) – Offset the grid centers of the latitude coordinate w.r.t. the pole by
half a grid step. This argument is ignored if target_grid is a cube or file.

• lon_offset (bool) – Offset the grid centers of the longitude coordinate w.r.t. Greenwich
meridian by half a grid step. This argument is ignored if target_grid is a cube or file.

Returns
Regridded cube.

Return type
Cube

See also:

extract_levels
Perform vertical regridding.

Notes

This preprocessor allows for the use of arbitrary Iris regridding schemes, that is anything that can be passed as
a scheme to iris.cube.Cube.regrid() is possible. This enables the use of further parameters for existing
schemes, as well as the use of more advanced schemes for example for unstructured meshes. To use this func-
tionality, a dictionary must be passed for the scheme with a mandatory entry of reference in the form specified
for the object reference of the entry point data model, i.e. importable.module:object.attr. This is used as
a factory for the scheme. Any further entries in the dictionary are passed as keyword arguments to the factory.

For example, to use the familiar iris.analysis.Linear regridding scheme with a custom extrapolation mode,
use

my_preprocessor:
regrid:
target: 1x1
scheme:
reference: iris.analysis:Linear
extrapolation_mode: nanmask

To use the area weighted regridder available in esmf_regrid.schemes.ESMFAreaWeighted, make sure that
iris-esmf-regrid is installed and use

201

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/index.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube.regrid
https://packaging.python.org/en/latest/specifications/entry-points/#data-model
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/analysis.html#iris.analysis.Linear
https://iris-esmf-regrid.readthedocs.io/en/latest/_api_generated/esmf_regrid.schemes.html#esmf_regrid.schemes.ESMFAreaWeighted
https://iris-esmf-regrid.readthedocs.io/en/latest/index.html

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

my_preprocessor:
regrid:
target: 1x1
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted

Note: Note that iris-esmf-regrid is still experimental.

esmvalcore.preprocessor.regrid_time(cube, frequency)
Align time axis for cubes so they can be subtracted.

Operations on time units, time points and auxiliary coordinates so that any cube from cubes can be sub-
tracted from any other cube from cubes. Currently this function supports yearly (frequency=yr), monthly
(frequency=mon), daily (frequency=day), 6-hourly (frequency=6hr), 3-hourly (frequency=3hr) and hourly (fre-
quency=1hr) data time frequencies.

Parameters

• cube (iris.cube.Cube) – input cube.

• frequency (str) – data frequency: mon, day, 1hr, 3hr or 6hr

Returns
cube with converted time axis and units.

Return type
iris.cube.Cube

esmvalcore.preprocessor.remove_fx_variables(cube)
Remove fx variables present as cell measures or ancillary variables in the cube containing the data.

Parameters
cube (iris.cube.Cube) – Iris cube with data and cell measures or ancillary variables.

Returns
Cube without cell measures or ancillary variables.

Return type
iris.cube.Cube

esmvalcore.preprocessor.resample_hours(cube, interval, offset=0)
Convert x-hourly data to y-hourly by eliminating extra timesteps.

Convert x-hourly data to y-hourly (y > x) by eliminating the extra timesteps. This is intended to be used only
with instantaneous values.

For example:

• resample_hours(cube, interval=6): Six-hourly intervals at 0:00, 6:00, 12:00, 18:00.

• resample_hours(cube, interval=6, offset=3): Six-hourly intervals at 3:00, 9:00, 15:00, 21:00.

• resample_hours(cube, interval=12, offset=6): Twelve-hourly intervals at 6:00, 18:00.

Parameters

• cube (iris.cube.Cube) – Input cube.

• interval (int) – The period (hours) of the desired data.

• offset (int, optional) – The firs hour (hours) of the desired data.

202 Chapter 30. Preprocessor functions

https://iris-esmf-regrid.readthedocs.io/en/latest/index.html
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Returns
Cube with the new frequency.

Return type
iris.cube.Cube

Raises
ValueError: – The specified frequency is not a divisor of 24.

esmvalcore.preprocessor.resample_time(cube, month=None, day=None, hour=None)
Change frequency of data by resampling it.

Converts data from one frequency to another by extracting the timesteps that match the provided month, day
and/or hour. This is meant to be used with instantaneous values when computing statistics is not desired.

For example:

• resample_time(cube, hour=6): Daily values taken at 6:00.

• resample_time(cube, day=15, hour=6): Monthly values taken at 15th 6:00.

• resample_time(cube, month=6): Yearly values, taking in June

• resample_time(cube, month=6, day=1): Yearly values, taking 1st June

The condition must yield only one value per interval: the last two samples above will produce yearly data, but
the first one is meant to be used to sample from monthly output and the second one will work better with daily.

Parameters

• cube (iris.cube.Cube) – Input cube.

• month (int, optional) – Month to extract

• day (int, optional) – Day to extract

• hour (int, optional) – Hour to extract

Returns
Cube with the new frequency.

Return type
iris.cube.Cube

esmvalcore.preprocessor.rolling_window_statistics(cube, coordinate, operator, window_length)
Compute rolling-window statistics over a coordinate.

Parameters

• cube (iris.cube.Cube) – Input cube.

• coordinate (str) – Coordinate over which the rolling-window statistics is calculated.

• operator (str) – Select operator to apply. Available operators: 'mean', 'median',
'std_dev', 'sum', 'variance', 'min', 'max'.

• window_length (int) – Size of the window to use.

Returns
Rolling-window statistics cube.

Return type
iris.cube.Cube

Raises

203

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• iris.exceptions.CoordinateNotFoundError: – Cube does not have time coordinate.

• ValueError: – Invalid 'operator' given.

esmvalcore.preprocessor.save(cubes, filename, optimize_access='', compress=False, alias='', **kwargs)
Save iris cubes to file.

Parameters

• cubes (iterable of iris.cube.Cube) – Data cubes to be saved

• filename (str) – Name of target file

• optimize_access (str) – Set internal NetCDF chunking to favour a reading scheme

Values can be map or timeseries, which improve performance when reading the file one map
or time series at a time. Users can also provide a coordinate or a list of coordinates. In that
case the better performance will be avhieved by loading all the values in that coordinate at a
time

• compress (bool, optional) – Use NetCDF internal compression.

• alias (str, optional) – Var name to use when saving instead of the one in the cube.

Returns
filename

Return type
str

Raises
ValueError – cubes is empty.

esmvalcore.preprocessor.seasonal_statistics(cube, operator='mean', seasons=('DJF', 'MAM', 'JJA',
'SON'))

Compute seasonal statistics.

Chunks time seasons and computes statistics over them.

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

• seasons (list or tuple of str, optional) – Seasons to build. Available: (‘DJF’,
‘MAM’, ‘JJA’, SON’) (default) and all sequentially correct combinations holding every
month of a year: e.g. (‘JJAS’,’ONDJFMAM’), or less in case of prior season extraction.

Returns
Seasonal statistic cube

Return type
iris.cube.Cube

esmvalcore.preprocessor.timeseries_filter(cube, window, span, filter_type='lowpass', filter_stats='sum')
Apply a timeseries filter.

Method borrowed from iris example

Apply each filter using the rolling_window method used with the weights keyword argument. A weighted sum
is required because the magnitude of the weights are just as important as their relative sizes.

See also the iris rolling window iris.cube.Cube.rolling_window.

204 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/gallery/general/plot_SOI_filtering.html?highlight=running%20mean
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube.rolling_window

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Parameters

• cube (iris.cube.Cube) – input cube.

• window (int) – The length of the filter window (in units of cube time coordinate).

• span (int) – Number of months/days (depending on data frequency) on which weights
should be computed e.g. 2-yearly: span = 24 (2 x 12 months). Span should have same
units as cube time coordinate.

• filter_type (str, optional) – Type of filter to be applied; default ‘lowpass’. Available
types: ‘lowpass’.

• filter_stats (str, optional) – Type of statistic to aggregate on the rolling window;
default ‘sum’. Available operators: ‘mean’, ‘median’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’

Returns
cube time-filtered using ‘rolling_window’.

Return type
iris.cube.Cube

Raises

• iris.exceptions.CoordinateNotFoundError: – Cube does not have time coordinate.

• NotImplementedError: – If filter_type is not implemented.

esmvalcore.preprocessor.volume_statistics(cube, operator)
Apply a statistical operation over a volume.

The volume average is weighted according to the cell volume. Cell volume is calculated from iris’s cartography
tool multiplied by the cell thickness.

Parameters

• cube (iris.cube.Cube) – Input cube.

• operator (str) – The operation to apply to the cube, options are: ‘mean’.

Returns
collapsed cube.

Return type
iris.cube.Cube

Raises
ValueError – if input cube shape differs from grid volume cube shape.

esmvalcore.preprocessor.weighting_landsea_fraction(cube, area_type)
Weight fields using land or sea fraction.

This preprocessor function weights a field with its corresponding land or sea area fraction (value between 0 and
1). The application of this is important for most carbon cycle variables (and other land-surface outputs), which
are e.g. reported in units of kgC m-2. This actually refers to ‘per square meter of land/sea’ and NOT ‘per square
meter of gridbox’. So in order to integrate these globally or regionally one has to both area-weight the quantity
but also weight by the land/sea fraction.

Parameters

• cube (iris.cube.Cube) – Data cube to be weighted.

• area_type (str) – Use land ('land') or sea ('sea') fraction for weighting.

205

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Returns
Land/sea fraction weighted cube.

Return type
iris.cube.Cube

Raises

• TypeError – area_type is not 'land' or 'sea'.

• ValueError – Land/sea fraction variables sftlf or sftof not found.

esmvalcore.preprocessor.zonal_statistics(cube, operator)
Compute zonal statistics.

Parameters

• cube (iris.cube.Cube) – input cube.

• operator (str, optional) – Select operator to apply. Available operators: ‘mean’, ‘me-
dian’, ‘std_dev’, ‘sum’, ‘min’, ‘max’, ‘rms’.

Returns
Zonal statistics cube.

Return type
iris.cube.Cube

Raises
ValueError – Error raised if computation on irregular grids is attempted. Zonal statistics not
yet implemented for irregular grids.

206 Chapter 30. Preprocessor functions

https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/stdtypes.html#str
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/cube.html#iris.cube.Cube
https://docs.python.org/3/library/exceptions.html#ValueError

CHAPTER

THIRTYONE

EXPERIMENTAL API

This page describes the new ESMValCore API. The API module is available in the submodule esmvalcore.
experimental. The API is under development, so use at your own risk!

31.1 Configuration

This section describes the config submodule of the API (esmvalcore.experimental).

31.1.1 Config

Configuration of ESMValCore/Tool is done via the Config object. The global configuration can be imported from the
esmvalcore.experimental module as CFG:

>>> from esmvalcore.experimental import CFG
>>> CFG
Config({'auxiliary_data_dir': PosixPath('/home/user/auxiliary_data'),

'compress_netcdf': False,
'config_developer_file': None,
'config_file': PosixPath('/home/user/.esmvaltool/config-user.yml'),
'drs': {'CMIP5': 'default', 'CMIP6': 'default'},
'exit_on_warning': False,
'log_level': 'info',
'max_parallel_tasks': None,
'output_dir': PosixPath('/home/user/esmvaltool_output'),
'output_file_type': 'png',
'profile_diagnostic': False,
'remove_preproc_dir': True,
'rootpath': {'CMIP5': '~/default_inputpath',

'CMIP6': '~/default_inputpath',
'default': '~/default_inputpath'},

'save_intermediary_cubes': False)

The parameters for the user configuration file are listed here.

CFG is essentially a python dictionary with a few extra functions, similar to matplotlib.rcParams. This means that
values can be updated like this:

>>> CFG['output_dir'] = '~/esmvaltool_output'
>>> CFG['output_dir']
PosixPath('/home/user/esmvaltool_output')

207

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Notice that CFG automatically converts the path to an instance of pathlib.Path and expands the home directory. All
values entered into the config are validated to prevent mistakes, for example, it will warn you if you make a typo in the
key:

>>> CFG['output_directory'] = '~/esmvaltool_output'
InvalidConfigParameter: `output_directory` is not a valid config parameter.

Or, if the value entered cannot be converted to the expected type:

>>> CFG['max_parallel_tasks'] = ''
InvalidConfigParameter: Key `max_parallel_tasks`: Could not convert '' to int

Config is also flexible, so it tries to correct the type of your input if possible:

>>> CFG['max_parallel_tasks'] = '8' # str
>>> type(CFG['max_parallel_tasks'])
int

By default, the config is loaded from the default location (/home/user/.esmvaltool/config-user.yml). If it does
not exist, it falls back to the default values. to load a different file:

>>> CFG.load_from_file('~/my-config.yml')

Or to reload the current config:

>>> CFG.reload()

31.1.2 Session

Recipes and diagnostics will be run in their own directories. This behaviour can be controlled via the Session object.
A Session can be initiated from the global Config.

>>> session = CFG.start_session(name='my_session')

A Session is very similar to the config. It is also a dictionary, and copies all the keys from the Config. At this
moment, session is essentially a copy of CFG:

>>> print(session == CFG)
True
>>> session['output_dir'] = '~/my_output_dir'
>>> print(session == CFG) # False
False

A Session also knows about the directories where the data will stored. The session name is used to prefix the direc-
tories.

>>> session.session_dir
/home/user/my_output_dir/my_session_20201203_155821
>>> session.run_dir
/home/user/my_output_dir/my_session_20201203_155821/run
>>> session.work_dir
/home/user/my_output_dir/my_session_20201203_155821/work
>>> session.preproc_dir

(continues on next page)

208 Chapter 31. Experimental API

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

/home/user/my_output_dir/my_session_20201203_155821/preproc
>>> session.plot_dir
/home/user/my_output_dir/my_session_20201203_155821/plots

Unlike the global configuration, of which only one can exist, multiple sessions can be initiated from Config.

31.1.3 API reference

ESMValTool config module.

esmvalcore.experimental.config.CFG

ESMValCore configuration. By default this will loaded from the file ~/.esmvaltool/config-user.yml.

Classes:

Config(*args, **kwargs) ESMValTool configuration object.
Session(config[, name]) Container class for session configuration and directory

information.

class esmvalcore.experimental.config.Config(*args, **kwargs)
ESMValTool configuration object.

Do not instantiate this class directly, but use esmvalcore.experimental.CFG instead.

Methods:

load_from_file(filename) Load user configuration from the given file.
reload() Reload the config file.
start_session(name) Start a new session from this configuration object.

load_from_file(filename: Union[PathLike, str])
Load user configuration from the given file.

reload()

Reload the config file.

start_session(name: str)
Start a new session from this configuration object.

Parameters
name (str) – Name of the session.

Return type
Session

class esmvalcore.experimental.config.Session(config: dict, name: str = 'session')
Container class for session configuration and directory information.

Do not instantiate this class directly, but use CFG.start_session instead.

Parameters

• config (dict) – Dictionary with configuration settings.

• name (str) – Name of the session to initialize, for example, the name of the recipe (de-
fault=’session’).

31.1. Configuration 209

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Attributes:

config_dir Return user config directory.
main_log Return main log file.
main_log_debug Return main log debug file.
plot_dir Return plot directory.
preproc_dir Return preproc directory.
relative_main_log

relative_main_log_debug

relative_plot_dir

relative_preproc_dir

relative_run_dir

relative_work_dir

run_dir Return run directory.
session_dir Return session directory.
work_dir Return work directory.

Methods:

from_config_user(config_user) Convert config-user dict to API-compatible Session
object.

set_session_name([name]) Set the name for the session.
to_config_user() Turn the Session object into a recipe-compatible dict.

property config_dir

Return user config directory.

classmethod from_config_user(config_user: dict)→ Session
Convert config-user dict to API-compatible Session object.

For example, _recipe.Recipe._cfg.

property main_log

Return main log file.

property main_log_debug

Return main log debug file.

property plot_dir

Return plot directory.

property preproc_dir

Return preproc directory.

relative_main_log = PosixPath('run/main_log.txt')

relative_main_log_debug = PosixPath('run/main_log_debug.txt')

210 Chapter 31. Experimental API

https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

relative_plot_dir = PosixPath('plots')

relative_preproc_dir = PosixPath('preproc')

relative_run_dir = PosixPath('run')

relative_work_dir = PosixPath('work')

property run_dir

Return run directory.

property session_dir

Return session directory.

session_name: Union[str, None]

set_session_name(name: str = 'session')
Set the name for the session.

The name is used to name the session directory, e.g. session_20201208_132800/. The date is suffixed
automatically.

to_config_user()→ dict
Turn the Session object into a recipe-compatible dict.

This dict is compatible with the config-user argument in esmvalcore._recipe.Recipe.

property work_dir

Return work directory.

31.2 Recipes

This section describes the recipe submodule of the API (esmvalcore.experimental).

31.2.1 Recipe metadata

Recipe is a class that holds metadata from a recipe.

>>> Recipe('path/to/recipe_python.yml')
recipe = Recipe('Recipe Python')

Printing the recipe will give a nice overview of the recipe:

>>> print(recipe)
Recipe python

Example recipe that plots a map and timeseries of temperature.

Authors
- Bouwe Andela (NLeSC, Netherlands; https://orcid.org/0000-0001-9005-8940)
- Mattia Righi (DLR, Germany; https://orcid.org/0000-0003-3827-5950)

Maintainers
- Manuel Schlund (DLR, Germany; https://orcid.org/0000-0001-5251-0158)

(continues on next page)

31.2. Recipes 211

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

Projects
- DLR project ESMVal
- Copernicus Climate Change Service 34a Lot 2 (MAGIC) project

References
- Please acknowledge the project(s).

31.2.2 Running a recipe

To run the recipe, call the run() method.

>>> output = recipe.run()
<log messages>

By default, a new Session is automatically created, so that data are never overwritten. Data are stored in the
esmvaltool_output directory specified in the config. Sessions can also be explicitly specified.

>>> from esmvalcore.experimental import CFG
>>> session = CFG.start_session('my_session')
>>> output = recipe.run(session)
<log messages>

run() returns an dictionary of objects that can be used to inspect the output of the recipe. The output is an instance of
ImageFile or DataFile depending on its type.

For working with recipe output, see: Recipe output.

31.2.3 Running a single diagnostic or preprocessor task

The python example recipe contains 5 tasks:

Preprocessors:

• timeseries/tas_amsterdam

• timeseries/script1

• map/tas

Diagnostics:

• timeseries/tas_global

• map/script1

To run a single diagnostic or preprocessor, the name of the task can be passed as an argument to run(). If a diagnostic
is passed, all ancestors will automatically be run too.

>>> output = recipe.run('map/script1')
>>> output
map/script1:
DataFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.nc')
DataFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.nc')

(continues on next page)

212 Chapter 31. Experimental API

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

ImageFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.png')
ImageFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.png')

It is also possible to run a single preprocessor task:

>>> output = recipe.run('map/tas')
>>> output
map/tas:
DataFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.nc')
DataFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.nc')

31.2.4 API reference

Recipe metadata.

Classes:

Recipe(path) API wrapper for the esmvalcore Recipe object.

class esmvalcore.experimental.recipe.Recipe(path: PathLike)
Bases: object

API wrapper for the esmvalcore Recipe object.

This class can be used to inspect and run the recipe.

Parameters
path (pathlike) – Path to the recipe.

Attributes:

data Return dictionary representation of the recipe.
name Return the name of the recipe.

Methods:

get_output() Get output from recipe.
render([template]) Render output as html.
run([task, session]) Run the recipe.

property data: dict

Return dictionary representation of the recipe.

get_output()→ RecipeOutput
Get output from recipe.

Returns
output – Returns output of the recipe as instances of OutputFile grouped by diagnostic
task.

Return type
dict

31.2. Recipes 213

https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

property name

Return the name of the recipe.

render(template=None)
Render output as html.

template
[Template] An instance of jinja2.Template can be passed to customize the output.

run(task: Optional[str] = None, session: Optional[Session] = None)
Run the recipe.

This function loads the recipe into the ESMValCore recipe format and runs it.

Parameters

• task (str) – Specify the name of the diagnostic or preprocessor to run a single task.

• session (Session, optional) – Defines the config parameters and location where the
recipe output will be stored. If None, a new session will be started automatically.

Returns
output – Returns output of the recipe as instances of OutputItem grouped by diagnostic
task.

Return type
dict

31.3 Recipe output

This section describes the recipe_output submodule of the API (esmvalcore.experimental).

After running a recipe, output is returned by the run() method. Alternatively, it can be retrieved using the
get_output() method.

>>> recipe_output = recipe.get_output()

recipe_output is a mapping of the individual tasks and their output filenames (data and image files) with a set of
attributes describing the data.

>>> recipe_output
timeseries/script1:
DataFile('tas_amsterdam_CMIP5_CanESM2_Amon_historical_r1i1p1_tas_1850-2000.nc')
DataFile('tas_amsterdam_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000.nc')
DataFile('tas_amsterdam_MultiModelMean_Amon_tas_1850-2000.nc')
DataFile('tas_global_CMIP5_CanESM2_Amon_historical_r1i1p1_tas_1850-2000.nc')
DataFile('tas_global_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000.nc')
ImageFile('tas_amsterdam_CMIP5_CanESM2_Amon_historical_r1i1p1_tas_1850-2000.png')
ImageFile('tas_amsterdam_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000.png')
ImageFile('tas_amsterdam_MultiModelMean_Amon_tas_1850-2000.png')
ImageFile('tas_global_CMIP5_CanESM2_Amon_historical_r1i1p1_tas_1850-2000.png')
ImageFile('tas_global_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000.png')

map/script1:
DataFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.nc')
DataFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.nc')

(continues on next page)

214 Chapter 31. Experimental API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

(continued from previous page)

ImageFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.png')
ImageFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.png')

Output is grouped by the task that produced them. They can be accessed like a dictionary.

>>> task_output = recipe_output['map/script1']
>>> task_output
map/script1:
DataFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.nc')
DataFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.nc')
ImageFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.png')
ImageFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.png')

The task output has a list of files associated with them, usually image (.png) or data files (.nc). To get a list of all files,
use files().

>>> print(task_output.files)
(DataFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.nc'),
..., ImageFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.png'))

It is also possible to select the image (image_files()) files or data files (data_files()) only.

>>> for image_file in task_output.image_files:
>>> print(image_file)
ImageFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.png')
ImageFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.png')

>>> for data_file in task_output.data_files:
>>> print(data_file)
DataFile('CMIP5_CanESM2_Amon_historical_r1i1p1_tas_2000-2000.nc')
DataFile('CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_2000-2000.nc')

31.3.1 Working with output files

Output comes in two kinds, DataFile corresponds to data files in .nc format and ImageFile corresponds to plots in
.png format (see below). Both object are derived from the same base class (OutputFile) and therefore share most of
the functionality.

For example, author information can be accessed as instances of Contributor via

>>> output_file = task_output[0]
>>> output_file.authors
(Contributor('Andela, Bouwe', institute='NLeSC, Netherlands', orcid='https://orcid.org/
→˓0000-0001-9005-8940'),
Contributor('Righi, Mattia', institute='DLR, Germany', orcid='https://orcid.org/0000-
→˓0003-3827-5950'))

And associated references as instances of Reference via

>>> output_file.references
(Reference('acknow_project'),)

OutputFile also knows about associated files

31.3. Recipe output 215

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

>>> data_file.citation_file
Path('.../tas_global_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000_citation.
→˓bibtex')
>>> data_file.data_citation_file
Path('.../tas_global_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000_data_citation_
→˓info.txt')
>>> data_file.provenance_svg_file
Path('.../tas_global_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000_provenance.svg
→˓')
>>> data_file.provenance_xml_file
Path('.../tas_global_CMIP6_BCC-ESM1_Amon_historical_r1i1p1f1_tas_1850-2000_provenance.xml
→˓')

31.3.2 Working with image files

Image output uses IPython magic to plot themselves in a notebook environment.

>>> image_file = recipe_output['map/script1'].image_files[0]
>>> image_file

For example:

Using IPython.display, it is possible to show all image files.

216 Chapter 31. Experimental API

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

>>> from IPython.display import display
>>>
>>> task = recipe_output['map/script1']
>>> for image_file in task.image_files:
>>> display(image_file)

31.3.3 Working with data files

Data files can be easily loaded using xarray:

>>> data_file = recipe_output['timeseries/script1'].data_files[0]
>>> data = data_file.load_xarray()
>>> type(data)
xarray.core.dataset.Dataset

Or iris:

>>> cube = data_file.load_iris()
>>> type(cube)
iris.cube.CubeList

31.3.4 API reference

API for handing recipe output.

Classes:

DataFile(path[, attributes]) Container for data output.
DiagnosticOutput(name, task_output[, title, ...]) Container for diagnostic output.
ImageFile(path[, attributes]) Container for image output.
OutputFile(path[, attributes]) Base container for recipe output files.
RecipeOutput(task_output[, session, info]) Container for recipe output.
TaskOutput(name, files) Container for task output.

class esmvalcore.experimental.recipe_output.DataFile(path: str, attributes: Optional[dict] = None)
Bases: OutputFile

Container for data output.

Attributes:

authors List of recipe authors.
caption Return the caption of the file (fallback to path).
citation_file Return path of citation file (bibtex format).
data_citation_file Return path of data citation info (txt format).
kind

provenance_xml_file Return path of provenance file (xml format).
references List of project references.

Methods:

31.3. Recipe output 217

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

create(path[, attributes]) Construct new instances of OutputFile.
load_iris() Load data using iris.
load_xarray() Load data using xarray.

property authors: tuple

List of recipe authors.

property caption: str

Return the caption of the file (fallback to path).

property citation_file

Return path of citation file (bibtex format).

classmethod create(path: str, attributes: Optional[dict] = None)→ OutputFile
Construct new instances of OutputFile.

Chooses a derived class if suitable.

property data_citation_file

Return path of data citation info (txt format).

kind: Optional[str] = 'data'

load_iris()

Load data using iris.

load_xarray()

Load data using xarray.

property provenance_xml_file

Return path of provenance file (xml format).

property references: tuple

List of project references.

class esmvalcore.experimental.recipe_output.DiagnosticOutput(name, task_output, title=None,
description=None)

Bases: object

Container for diagnostic output.

Parameters

• name (str) – Name of the diagnostic

• title (str) – Title of the diagnostic

• description (str) – Description of the diagnostic

• task_output (list of TaskOutput) – List of task output.

class esmvalcore.experimental.recipe_output.ImageFile(path: str, attributes: Optional[dict] = None)
Bases: OutputFile

Container for image output.

Attributes:

218 Chapter 31. Experimental API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

authors List of recipe authors.
caption Return the caption of the file (fallback to path).
citation_file Return path of citation file (bibtex format).
data_citation_file Return path of data citation info (txt format).
kind

provenance_xml_file Return path of provenance file (xml format).
references List of project references.

Methods:

create(path[, attributes]) Construct new instances of OutputFile.
to_base64() Encode image as base64 to embed in a Jupyter note-

book.

property authors: tuple

List of recipe authors.

property caption: str

Return the caption of the file (fallback to path).

property citation_file

Return path of citation file (bibtex format).

classmethod create(path: str, attributes: Optional[dict] = None)→ OutputFile
Construct new instances of OutputFile.

Chooses a derived class if suitable.

property data_citation_file

Return path of data citation info (txt format).

kind: Optional[str] = 'image'

property provenance_xml_file

Return path of provenance file (xml format).

property references: tuple

List of project references.

to_base64()→ str
Encode image as base64 to embed in a Jupyter notebook.

class esmvalcore.experimental.recipe_output.OutputFile(path: str, attributes: Optional[dict] = None)
Bases: object

Base container for recipe output files.

Use OutputFile.create(path=’<path>’, attributes=attributes) to initialize a suitable subclass.

Parameters

• path (str) – Name of output file

• attributes (dict) – Attributes corresponding to the recipe output

31.3. Recipe output 219

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Attributes:

authors List of recipe authors.
caption Return the caption of the file (fallback to path).
citation_file Return path of citation file (bibtex format).
data_citation_file Return path of data citation info (txt format).
kind

provenance_xml_file Return path of provenance file (xml format).
references List of project references.

Methods:

create(path[, attributes]) Construct new instances of OutputFile.

property authors: tuple

List of recipe authors.

property caption: str

Return the caption of the file (fallback to path).

property citation_file

Return path of citation file (bibtex format).

classmethod create(path: str, attributes: Optional[dict] = None)→ OutputFile
Construct new instances of OutputFile.

Chooses a derived class if suitable.

property data_citation_file

Return path of data citation info (txt format).

kind: Optional[str] = None

property provenance_xml_file

Return path of provenance file (xml format).

property references: tuple

List of project references.

class esmvalcore.experimental.recipe_output.RecipeOutput(task_output: dict, session=None,
info=None)

Bases: Mapping

Container for recipe output.

Parameters
task_output (dict) – Dictionary with recipe output grouped by task name. Each task value is
a mapping of the filenames with the product attributes.

diagnostics

Dictionary with recipe output grouped by diagnostic.

Type
dict

220 Chapter 31. Experimental API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

info

The recipe used to create the output.

Type
RecipeInfo

session

The session used to run the recipe.

Type
Session

Methods:

from_core_recipe_output(recipe_output) Construct instance from _recipe.Recipe output.
get(k[,d])

items()

keys()

read_main_log() Read log file.
read_main_log_debug() Read debug log file.
render([template]) Render output as html.
values()

write_html() Write output summary to html document.

classmethod from_core_recipe_output(recipe_output: dict)
Construct instance from _recipe.Recipe output.

The core recipe format is not directly compatible with the API. This constructor does the following:

1. Convert config-user dict to an instance of Session

2. Converts the raw recipe dict to RecipeInfo

Parameters
recipe_output (dict) – Output from _recipe.Recipe.get_product_output

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

read_main_log()→ str
Read log file.

read_main_log_debug()→ str
Read debug log file.

render(template=None)
Render output as html.

template
[Template] An instance of jinja2.Template can be passed to customize the output.

31.3. Recipe output 221

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

values()→ an object providing a view on D's values

write_html()

Write output summary to html document.

A html file index.html gets written to the session directory.

class esmvalcore.experimental.recipe_output.TaskOutput(name: str, files: dict)
Bases: object

Container for task output.

Parameters

• name (str) – Name of the task

• files (dict) – Mapping of the filenames with the associated attributes.

Attributes:

data_files Return a tuple of data objects.
image_files Return a tuple of image objects.

Methods:

from_task(task) Create an instance of TaskOutput from a Task.

property data_files: tuple

Return a tuple of data objects.

classmethod from_task(task)→ TaskOutput
Create an instance of TaskOutput from a Task.

Where task is an instance of esmvalcore._task.BaseTask.

property image_files: tuple

Return a tuple of image objects.

31.4 Recipe Metadata

This section describes the recipe_metadata submodule of the API (esmvalcore.experimental).

31.4.1 API reference

API for recipe metadata.

Classes:

Contributor(name, institute[, orcid]) Contains contributor (author or maintainer) information.
Project(project) Use this class to acknowledge a project associated with

the recipe.
Reference(filename) Parse reference information from bibtex entries.

Exceptions:

222 Chapter 31. Experimental API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

RenderError Error during rendering of object.

class esmvalcore.experimental.recipe_metadata.Contributor(name: str, institute: str, orcid:
Optional[str] = None)

Bases: object

Contains contributor (author or maintainer) information.

Parameters

• name (str) – Name of the author, i.e. 'John Doe'

• institute (str) – Name of the institute

• orcid (str, optional) – ORCID url

Methods:

from_dict(attributes) Return an instance of Contributor from a dictionary.
from_tag(tag) Return an instance of Contributor from a tag (TAGS).

classmethod from_dict(attributes)
Return an instance of Contributor from a dictionary.

Parameters
attributes (dict) – Dictionary containing name / institute [/ orcid].

classmethod from_tag(tag: str)→ Contributor
Return an instance of Contributor from a tag (TAGS).

Parameters
tag (str) – The contributor tags are defined in the authors section in config-references.
yml.

class esmvalcore.experimental.recipe_metadata.Project(project: str)
Bases: object

Use this class to acknowledge a project associated with the recipe.

Parameters
project (str) – The project title.

Methods:

from_tag(tag) Return an instance of Project from a tag (TAGS).

classmethod from_tag(tag: str)→ Project
Return an instance of Project from a tag (TAGS).

Parameters
tag (str) – The project tags are defined in config-references.yml.

class esmvalcore.experimental.recipe_metadata.Reference(filename: str)
Bases: object

Parse reference information from bibtex entries.

Parameters
filename (str) – Name of the bibtex file.

31.4. Recipe Metadata 223

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

Raises
NotImplementedError – If the bibtex file contains more than 1 entry.

Methods:

from_tag(tag) Return an instance of Reference from a bibtex tag.
render([renderer]) Render the reference.

classmethod from_tag(tag: str)→ Reference
Return an instance of Reference from a bibtex tag.

Parameters
tag (str) – The bibtex tags resolved as esmvaltool/references/{tag}.bibtex or the
corresponding directory as defined by the diagnostics path.

render(renderer: str = 'html')→ str
Render the reference.

Parameters
renderer (str) – Choose the renderer for the string representation. Must be one of: ‘plain-
text’, ‘markdown’, ‘html’, ‘latex’

Returns
Rendered reference

Return type
str

exception esmvalcore.experimental.recipe_metadata.RenderError

Bases: BaseException

Error during rendering of object.

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

31.5 Utils

This section describes the utils submodule of the API (esmvalcore.experimental).

31.5.1 Finding recipes

One of the first thing we may want to do, is to simply get one of the recipes available in ESMValTool

If you already know which recipe you want to load, call get_recipe().

from esmvalcore.experimental import get_recipe
>>> get_recipe('examples/recipe_python')
Recipe('Recipe python')

Call the get_all_recipes() function to get a list of all available recipes.

224 Chapter 31. Experimental API

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

>>> from esmvalcore.experimental import get_all_recipes
>>> recipes = get_all_recipes()
>>> recipes
[Recipe('Recipe perfmetrics cmip5 4cds'),
Recipe('Recipe martin18grl'),
...
Recipe('Recipe wflow'),
Recipe('Recipe pcrglobwb')]

To search for a specific recipe, you can use the find()method. This takes a search query that looks through the recipe
metadata and returns any matches. The query can be a regex pattern, so you can make it as complex as you like.

>>> results = recipes.find('climwip')
[Recipe('Recipe climwip')]

The recipes are loaded in a Recipe object, which knows about the documentation, authors, project, and related refer-
ences of the recipe. It resolves all the tags, so that it knows which institute an author belongs to and which references
are associated with the recipe.

This means you can search for something like this:

>>> recipes.find('Geophysical Research Letters')
[Recipe('Recipe martin18grl'),
Recipe('Recipe climwip'),
Recipe('Recipe ecs constraints'),
Recipe('Recipe ecs scatter'),
Recipe('Recipe ecs'),
Recipe('Recipe seaice')]

31.5.2 API reference

ESMValCore utilities.

Classes:

RecipeList([iterable]) Container for recipes.

Functions:

get_all_recipes([subdir]) Return a list of all available recipes.
get_recipe(name) Get a recipe by its name.

class esmvalcore.experimental.utils.RecipeList(iterable=(), /)
Container for recipes.

Methods:

find(query) Search for recipes matching the search query or pat-
tern.

31.5. Utils 225

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

find(query: Pattern[str])
Search for recipes matching the search query or pattern.

Searches in the description, authors and project information fields. All matches are returned.

Parameters
query (str, Pattern) – String to search for, e.g. find_recipes('righi') will return
all matching that author. Can be a regex pattern.

Returns
List of recipes matching the search query.

Return type
RecipeList

esmvalcore.experimental.utils.get_all_recipes(subdir: Optional[str] = None)→ list
Return a list of all available recipes.

Parameters
subdir (str) – Sub-directory of the DIAGNOSTICS.path to look for recipes, e.g.
get_all_recipes(subdir='examples').

Returns
List of available recipes

Return type
RecipeList

esmvalcore.experimental.utils.get_recipe(name: Union[PathLike, str])→ Recipe
Get a recipe by its name.

The function looks first in the local directory, and second in the repository defined by the diagnostic path. The
recipe name can be specified with or without extension. The first match will be returned.

Parameters
name (str, pathlike) – Name of the recipe file, i.e. examples/recipe_python.yml

Returns
Instance of Recipe which can be used to inspect and run the recipe.

Return type
Recipe

Raises
FileNotFoundError – If the name cannot be resolved to a recipe file.

226 Chapter 31. Experimental API

https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#FileNotFoundError

Part VII

Changelog

227

CHAPTER

THIRTYTWO

V2.7.0RC1

32.1 Highlights

32.2 Backwards incompatible changes

TODO: add examples of how to deal with these changes

• Change default DRS for reading native ICON output (#1705) Manuel Schlund

32.3 Bug fixes

• Add support for regions stored as MultiPolygon to extract_shape preprocessor (#1670) Bouwe Andela

• Fixed type annotations for Python 3.8 (#1700) Manuel Schlund

• Core _io.concatenate() may fail due to case when one of the cubes is scalar - this fixes that (#1715) Valeriu
Predoi

32.4 Documentation

• Add Met Office Installation Method (#1692) mo-tgeddes

• Add MO-paths to config file (#1709) mo-tgeddes

• Update MO obs4MIPs paths in the user configuration file (#1734) mo-tgeddes

• Update Making a release section of the documentation (#1689) sloosvel

32.5 Improvements

• New preprocessor function ‘rolling_window_statistics’ (#1702) Liza Malinina

• Remove pytest_flake8 plugin and use flake8 instead (#1722) Valeriu Predoi

• Added CESM2 CMORizer (#1678) Manuel Schlund

• Speed up functions that use time dimension (#1713) Bouwe Andela

229

https://github.com/ESMValGroup/ESMValCore/pull/1705
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1670
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1700
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1715
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1692
https://github.com/mo-tgeddes
https://github.com/ESMValGroup/ESMValCore/pull/1709
https://github.com/mo-tgeddes
https://github.com/ESMValGroup/ESMValCore/pull/1734
https://github.com/mo-tgeddes
https://github.com/ESMValGroup/ESMValCore/pull/1689
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1702
https://github.com/malininae
https://github.com/ESMValGroup/ESMValCore/pull/1722
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1678
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1713
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

32.6 Fixes for datasets

• Refactored native model fixes by adding common base class NativeDatasetFix (#1694) Manuel Schlund

32.7 Installation

• Pin netCDF4 != 1.6.1 since that seems to throw a flurry of Segmentation Faults (#1724) Valeriu Predoi

32.8 Automatic testing

• Pin flake8<5.0.0 since Circle CI tests are failing copiously (#1698) Valeriu Predoi

• Added tests for input/output filenames for ICON and EMAC on-the-fly CMORizer (#1718) Manuel Schlund

230 Chapter 32. v2.7.0rc1

https://github.com/ESMValGroup/ESMValCore/pull/1694
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1724
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1698
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1718
https://github.com/schlunma

CHAPTER

THIRTYTHREE

V2.6.0

33.1 Highlights

• A new set of CMOR fixes is now available in order to load native EMAC model output and CMORize it on the
fly. For details, see Supported native models: EMAC.

• The version number of ESMValCore is now automatically generated using setuptools_scm, which extracts Python
package versions from git metadata.

This release includes

33.2 Deprecations

• Deprecate the function esmvalcore.var_name_constraint (#1592) Manuel Schlund. This function is scheduled
for removal in v2.8.0. Please use iris.NameConstraint with the keyword argument var_name instead: this is
an exact replacement.

33.3 Bug fixes

• Added start_year and end_year attributes to derived variables (#1547) Manuel Schlund

• Show all results on recipe results webpage (#1560) Bouwe Andela

• Regridding regular grids with similar coordinates (#1567) Tomas Lovato

• Fix timerange wildcard search when deriving variables or downloading files (#1562) sloosvel

• Fix force_derivation bug (#1627) sloosvel

• Correct build-and-deploy-on-pypi action (#1634) sloosvel

• Apply clip_timerange to time dependent fx variables (#1603) sloosvel

• Correctly handle requests.exceptions.ConnectTimeout when an ESGF index node is offline (#1638) Bouwe An-
dela

231

https://github.com/pypa/setuptools_scm/#default-versioning-scheme
https://github.com/ESMValGroup/ESMValCore/pull/1592
https://github.com/schlunma
https://scitools-iris.readthedocs.io/en/latest/generated/api/iris.html#iris.NameConstraint
https://github.com/ESMValGroup/ESMValCore/pull/1547
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1560
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1567
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValCore/pull/1562
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1627
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1634
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1603
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1638
https://github.com/bouweandela
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

33.4 CMOR standard

• Added custom CMOR tables used for EMAC CMORizer (#1599) Manuel Schlund

• Extended ICON CMORizer (#1549) Manuel Schlund

• Add CMOR check exception for a basin coord named sector (#1612) David Hohn

• Custom user-defined location for custom CMOR tables (#1625) Manuel Schlund

33.5 Containerization

• Remove update command in Dockerfile (#1630) sloosvel

33.6 Community

• Add David Hohn to contributors’ list (#1586) Valeriu Predoi

33.7 Documentation

• [Github Actions Docs] Full explanation on how to use the GA test triggered by PR comment and added docs link
for GA hosted runners (#1553) Valeriu Predoi

• Update the command for building the documentation (#1556) Bouwe Andela

• Update documentation on running the tool (#1400) Bouwe Andela

• Add support for DKRZ-Levante (#1558) Rémi Kazeroni

• Improved documentation on native dataset support (#1559) Manuel Schlund

• Tweak extract_point preprocessor: explain what it returns if one point coord outside cube and add explicit test
(#1584) Valeriu Predoi

• Update CircleCI, readthedocs, and Docker configuration (#1588) Bouwe Andela

• Remove support for Mistral in config-user.yml (#1620) Rémi Kazeroni

• Add changelog for v2.6.0rc1 (#1633) sloosvel

• Add a note on transferring permissions to the release manager (#1645) Bouwe Andela

• Add documentation on building and uploading Docker images (#1644) Bouwe Andela

• Update documentation on ESMValTool module at DKRZ (#1647) Rémi Kazeroni

• Expanded information on deprecations in changelog (#1658) Manuel Schlund

232 Chapter 33. v2.6.0

https://github.com/ESMValGroup/ESMValCore/pull/1599
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1549
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1612
https://github.com/dhohn
https://github.com/ESMValGroup/ESMValCore/pull/1625
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1630
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1586
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1553
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1556
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1400
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1558
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1559
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1584
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1588
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1620
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1633
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1645
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1644
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1647
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1658
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

33.8 Improvements

• Removed trailing whitespace in custom CMOR tables (#1564) Manuel Schlund

• Try searching multiple ESGF index nodes (#1561) Bouwe Andela

• Add CMIP6 amoc derivation case and add a test (#1577) Valeriu Predoi

• Added EMAC CMORizer (#1554) Manuel Schlund

• Improve performance of volume_statistics (#1545) sloosvel

33.9 Fixes for datasets

• Fixes of ocean variables in multiple CMIP6 datasets (#1566) Tomas Lovato

• Ensure lat/lon bounds in FGOALS-l3 atmos variables are contiguous (#1571) sloosvel

• Added AllVars fix for CMIP6’s ICON-ESM-LR (#1582) Manuel Schlund

33.10 Installation

• Removed package/meta.yml (#1540) Manuel Schlund

• Pinned iris>=3.2.1 (#1552) Manuel Schlund

• Use setuptools-scm to automatically generate the version number (#1578) Bouwe Andela

• Pin cf-units to lower than 3.1.0 to temporarily avoid changes within new version related to calendars (#1659)
Valeriu Predoi

33.11 Preprocessor

• Allowed special case for unit conversion of precipitation (kg m-2 s-1 <–> mm day-1) (#1574) Manuel Schlund

• Add general extract_coordinate_points preprocessor (#1581) sloosvel

• Add preprocessor accumulate_coordinate (#1281) Javier Vegas-Regidor

• Add axis_statistics and improve depth_integration (#1589) sloosvel

33.12 Release

• Increase version number for ESMValCore v2.6.0rc1 (#1632) sloosvel

• Update changelog and version for 2.6rc3 (#1646) sloosvel

• Add changelog for rc4 (#1662) sloosvel

33.8. Improvements 233

https://github.com/ESMValGroup/ESMValCore/pull/1564
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1561
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1577
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1554
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1545
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1566
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValCore/pull/1571
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1582
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1540
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1552
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1578
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1659
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1574
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1581
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1281
https://github.com/jvegreg
https://github.com/ESMValGroup/ESMValCore/pull/1589
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1632
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1646
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1662
https://github.com/sloosvel

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

33.13 Automatic testing

• Refresh CircleCI cache weekly (#1597) Bouwe Andela

• Use correct cache restore key on CircleCI (#1598) Bouwe Andela

• Install git and ssh before checking out code on CircleCI (#1601) Bouwe Andela

• Fetch all history in Github Action tests (#1622) sloosvel

• Test Github Actions dashboard badge from meercode.io (#1640) Valeriu Predoi

• Improve esmvalcore.esgf unit test (#1650) Bouwe Andela

33.14 Variable Derivation

• Added derivation of hfns (#1594) Manuel Schlund

234 Chapter 33. v2.6.0

https://github.com/ESMValGroup/ESMValCore/pull/1597
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1598
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1601
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1622
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1640
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1650
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1594
https://github.com/schlunma

CHAPTER

THIRTYFOUR

V2.5.0

34.1 Highlights

• The new preprocessor extract_location() can extract arbitrary locations on the Earth using the geopy pack-
age that connects to OpenStreetMap. For details, see Extract location.

• Time ranges can now be extracted using the ISO 8601 format. In addition, wildcards are allowed, which makes
the time selection much more flexible. For details, see Recipe section: Datasets.

• The new preprocessor ensemble_statistics() can calculate arbitrary statitics over all ensemble members of
a simulation. In addition, the preprocessor multi_model_statistics() now accepts the keyword groupy,
which allows the calculation of multi-model statistics over arbitrary multi-model ensembles. For details, see
Ensemble statistics and Multi-model statistics.

This release includes

34.2 Backwards incompatible changes

• Update Cordex section in config-developer.yml (#1303) francesco-cmcc. This changes the naming convention
of ESMValCore’s output files from CORDEX dataset. This only affects recipes that use CORDEX data. Most
likely, no changes in diagnostics are necessary; however, if code relies on the specific naming convention of files,
it might need to be adapted.

• Dropped Python 3.7 (#1530) Manuel Schlund. ESMValCore v2.5.0 dropped support for Python 3.7. From now
on Python >=3.8 is required to install ESMValCore. The main reason for this is that conda-forge dropped support
for Python 3.7 for OSX and arm64 (more details are given here).

34.3 Bug fixes

• Fix extract_shape when fx vars are present (#1403) sloosvel

• Added support of extra_facets to fx variables added by the preprocessor (#1399) Manuel Schlund

• Augmented input for derived variables with extra_facets (#1412) Manuel Schlund

• Correctly use masked arrays after unstructured_nearest regridding (#1414) Manuel Schlund

• Fixing the broken derivation script for XCH4 (and XCO2) (#1428) Birgit Hassler

• Ignore .pymon-journal file in test discovery (#1436) Valeriu Predoi

• Fixed bug that caused automatic download to fail in rare cases (#1442) Manuel Schlund

235

https://pypi.org/project/geopy/
https://en.wikipedia.org/wiki/ISO_8601
https://github.com/ESMValGroup/ESMValCore/pull/1303
https://github.com/francesco-cmcc
https://github.com/ESMValGroup/ESMValCore/pull/1530
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValTool/issues/2584#issuecomment-1063853630
https://github.com/ESMValGroup/ESMValCore/pull/1403
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1399
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1412
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1414
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1428
https://github.com/hb326
https://github.com/ESMValGroup/ESMValCore/pull/1436
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1442
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Add new JULIA_LOAD_PATH to diagnostic task test (#1444) Valeriu Predoi

• Fix provenance file permissions (#1468) Bouwe Andela

• Fixed usage of statistics=std_dev option in multi-model statistics preprocessors (#1478) Manuel Schlund

• Removed scalar coordinates p0 and ptop prior to merge in multi_model_statistics (#1471) Axel Lauer

• Added dataset and alias attributes to multi_model_statistics output (#1483) Manuel Schlund

• Fixed issues with multi-model-statistics timeranges (#1486) Manuel Schlund

• Fixed output messages for CMOR logging (#1494) Manuel Schlund

• Fixed clip_timerange if only a single time point is extracted (#1497) Manuel Schlund

• Fixed chunking in multi_model_statistics (#1500) Manuel Schlund

• Fixed renaming of auxiliary coordinates in multi_model_statistics if coordinates are equal (#1502) Manuel
Schlund

• Fixed timerange selection for automatic downloads (#1517) Manuel Schlund

• Fixed chunking in multi_model_statistics (#1524) Manuel Schlund

34.4 Deprecations

• Renamed vertical regridding schemes (#1429) Manuel Schlund. Old regridding schemes are supported until
v2.7.0. For details, see Vertical interpolation schemes.

34.5 Documentation

• Remove duplicate entries in changelog (#1391) Klaus Zimmermann

• Documentation on how to use HPC central installations (#1409) Valeriu Predoi

• Correct brackets in preprocessor documentation for list of seasons (#1420) Bouwe Andela

• Add Python=3.10 to package info, update Circle CI auto install and documentation for Python=3.10 (#1432)
Valeriu Predoi

• Reverted unintentional change in .zenodo.json (#1452) Manuel Schlund

• Synchronized config-user.yml with version from ESMValTool (#1453) Manuel Schlund

• Solved issues in configuration files (#1457) Manuel Schlund

• Add direct link to download conda lock file in the install documentation (#1462) Valeriu Predoi

• CITATION.cff fix and automatic validation of citation metadata (#1467) Valeriu Predoi

• Updated documentation on how to deprecate features (#1426) Manuel Schlund

• Added reference hook to conda lock in documentation install section (#1473) Valeriu Predoi

• Increased ESMValCore version to 2.5.0rc1 (#1477) Manuel Schlund

• Added changelog for v2.5.0 release (#1476) Manuel Schlund

• Increased ESMValCore version to 2.5.0rc2 (#1487) Manuel Schlund

• Added some authors to citation and zenodo files (#1488) SarahAlidoost

• Restored scipy intersphinx mapping (#1491) Manuel Schlund

236 Chapter 34. v2.5.0

https://github.com/ESMValGroup/ESMValCore/pull/1444
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1468
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1478
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1471
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/1483
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1486
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1494
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1497
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1500
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1502
https://github.com/schlunma
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1517
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1524
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1429
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1391
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1409
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1420
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1432
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1452
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1453
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1457
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1462
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1467
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1426
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1473
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1477
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1476
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1487
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1488
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValCore/pull/1491
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Increased ESMValCore version to 2.5.0rc3 (#1504) Manuel Schlund

• Fix download instructions for the MSWEP dataset (#1506) Rémi Kazeroni

• Documentation updated for the new cmorizer framework (#1417) Rémi Kazeroni

• Added tests for duplicates in changelog and removed duplicates (#1508) Manuel Schlund

• Increased ESMValCore version to 2.5.0rc4 (#1519) Manuel Schlund

• Add Github Actions Test badge in README (#1526) Valeriu Predoi

• Increased ESMValCore version to 2.5.0rc5 (#1529) Manuel Schlund

• Increased ESMValCore version to 2.5.0rc6 (#1532) Manuel Schlund

34.6 Fixes for datasets

• Added fix for AIRS v2.1 (obs4mips) (#1472) Axel Lauer

34.7 Preprocessor

• Added bias preprocessor (#1406) Manuel Schlund

• Improve error messages when a preprocessor is failing (#1408) Manuel Schlund

• Added option to explicitly not use fx variables in preprocessors (#1416) Manuel Schlund

• Add extract_location preprocessor to extract town, city, mountains etc - anything specifiable by a location (#1251)
Javier Vegas-Regidor

• Add ensemble statistics preprocessor and ‘groupby’ option for multimodel (#673) sloosvel

• Generic regridding preprocessor (#1448) Klaus Zimmermann

34.8 Automatic testing

• Add pandas as dependency :panda_face: (#1402) Valeriu Predoi

• Fixed tests for python 3.7 (#1410) Manuel Schlund

• Remove accessing .xml() cube method from test (#1419) Valeriu Predoi

• Remove flag to use pip 2020 solver from Github Action pip install command on OSX (#1357) Valeriu Predoi

• Add Python=3.10 to Github Actions and switch to Python=3.10 for the Github Action that builds the PyPi package
(#1430) Valeriu Predoi

• Pin flake8<4 to keep getting relevant error traces when tests fail with FLAKE8 issues (#1434) Valeriu Predoi

• Implementing conda lock (#1164) Valeriu Predoi

• Relocate pytest-monitor outputted database .pymon so .pymon-journal file should not be looked for by pytest
(#1441) Valeriu Predoi

• Switch to Mambaforge in Github Actions tests (#1438) Valeriu Predoi

• Turn off conda lock file creation on any push on main branch from Github Action test (#1489) Valeriu Predoi

• Add DRS path test for IPSLCM files (#1490) Stéphane Sénési

34.6. Fixes for datasets 237

https://github.com/ESMValGroup/ESMValCore/pull/1504
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1506
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1417
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1508
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1519
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1526
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1529
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1532
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1472
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/1406
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1408
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1416
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1251
https://github.com/jvegreg
https://github.com/ESMValGroup/ESMValCore/pull/673
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1448
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1402
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1410
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1419
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1357
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1430
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1434
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1164
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1441
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1438
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1489
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1490
https://github.com/senesis

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Add a test module that runs tests of iris I/O everytime we notice serious bugs there (#1510) Valeriu Predoi

• [Github Actions] Trigger Github Actions tests (run-tests.yml workflow) from a comment in a PR (#1520) Valeriu
Predoi

• Update Linux condalock file (various pull requests) github-actions[bot]

34.9 Installation

• Move nested-lookup dependency to environment.yml to be installed from conda-forge instead of PyPi (#1481)
Valeriu Predoi

• Pinned iris (#1511) Manuel Schlund

• Updated dependencies (#1521) Manuel Schlund

• Pinned iris<3.2.0 (#1525) Manuel Schlund

34.10 Improvements

• Allow to load all files, first X years or last X years in an experiment (#1133) sloosvel

• Filter tasks earlier (#1264) Javier Vegas-Regidor

• Added earlier validation for command line arguments (#1435) Manuel Schlund

• Remove profile_diagnostic from diagnostic settings and increase test coverage of _task.py (#1404) Valeriu Predoi

• Add output2 to the product extra facet of CMIP5 data (#1514) Rémi Kazeroni

• Speed up ESGF search (#1512) Bouwe Andela

238 Chapter 34. v2.5.0

https://github.com/ESMValGroup/ESMValCore/pull/1510
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1520
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1481
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1511
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1521
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1525
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1133
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1264
https://github.com/jvegreg
https://github.com/ESMValGroup/ESMValCore/pull/1435
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1404
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1514
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1512
https://github.com/bouweandela

CHAPTER

THIRTYFIVE

V2.4.0

35.1 Highlights

• ESMValCore now has the ability to automatically download missing data from ESGF. For details, see Data
Retrieval.

• ESMValCore now also can resume an earlier run. This is useful to re-use expensive preprocessor results. For
details, see Running.

This release includes

35.2 Bug fixes

• Crop on the ID-selected region(s) and not on the whole shapefile (#1151) Stef Smeets

• Add ‘comment’ to list of removed attributes (#1244) Peter Kalverla

• Speed up multimodel statistics and fix bug in peak computation (#1301) Bouwe Andela

• No longer make plots of provenance (#1307) Bouwe Andela

• No longer embed provenance in output files (#1306) Bouwe Andela

• Removed automatic addition of areacello to obs4mips datasets (#1316) Manuel Schlund

• Pin docutils <0.17 to fix bullet lists on readthedocs (#1320) Klaus Zimmermann

• Fix obs4MIPs capitalization (#1328) Bouwe Andela

• Fix Python 3.7 tests (#1330) Bouwe Andela

• Handle fx variables in extract_levels and some time operations (#1269) sloosvel

• Refactored mask regridding for irregular grids (fixes #772) (#865) Klaus Zimmermann

• Fix da.broadcast_to call when the fx cube has different shape than target data cube (#1350) Valeriu Predoi

• Add tests for _aggregate_time_fx (#1354) sloosvel

• Fix extra facets (#1360) Bouwe Andela

• Pin pip!=21.3 to avoid pypa/pip#10573 with editable installs (#1359) Klaus Zimmermann

• Add a custom date2num function to deal with changes in cftime (#1373) Klaus Zimmermann

• Removed custom version of AtmosphereSigmaFactory (#1382) Manuel Schlund

239

https://github.com/ESMValGroup/ESMValCore/pull/1151
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1244
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/1301
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1307
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1306
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1316
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1320
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1328
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1330
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1269
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/865
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1350
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1354
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1360
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1359
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1373
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1382
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

35.3 Deprecations

• Remove write_netcdf and write_plots from config-user.yml (#1300) Bouwe Andela

35.4 Documentation

• Add link to plot directory in index.html (#1256) Stef Smeets

• Work around issue with yapf not following PEP8 (#1277) Bouwe Andela

• Update the core development team (#1278) Bouwe Andela

• Update the documentation of the provenance interface (#1305) Bouwe Andela

• Update version number to first release candidate 2.4.0rc1 (#1363) Klaus Zimmermann

• Update to new ESMValTool logo (#1374) Klaus Zimmermann

• Update version number for third release candidate 2.4.0rc3 (#1384) Klaus Zimmermann

• Update changelog for 2.4.0rc3 (#1385) Klaus Zimmermann

• Update version number to final 2.4.0 release (#1389) Klaus Zimmermann

• Update changelog for 2.4.0 (#1366) Klaus Zimmermann

35.5 Fixes for datasets

• Add fix for differing latitude coordinate between historical and ssp585 in MPI-ESM1-2-HR r2i1p1f1 (#1292)
Bouwe Andela

• Add fixes for time and latitude coordinate of EC-Earth3 r3i1p1f1 (#1290) Bouwe Andela

• Apply latitude fix to all CCSM4 variables (#1295) Bouwe Andela

• Fix lat and lon bounds for FGOALS-g3 mrsos (#1289) Thomas Crocker

• Add grid fix for tos in fgoals-f3-l (#1326) sloosvel

• Add fix for CIESM pr (#1344) Bouwe Andela

• Fix DRS for IPSLCM : split attribute ‘freq’ into : ‘out’ and ‘freq’ (#1304) Stéphane Sénési - work

35.6 CMOR standard

• Remove history attribute from coords (#1276) Javier Vegas-Regidor

• Increased flexibility of CMOR checks for datasets with generic alevel coordinates (#1032) Manuel Schlund

• Automatically fix small deviations in vertical levels (#1177) Bouwe Andela

• Adding standard names to the custom tables of the rlns and rsns variables (#1386) Rémi Kazeroni

240 Chapter 35. v2.4.0

https://github.com/ESMValGroup/ESMValCore/pull/1300
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1256
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1277
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1278
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1305
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1363
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1374
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1384
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1385
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1389
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1366
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1292
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1290
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1295
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1289
https://github.com/thomascrocker
https://github.com/ESMValGroup/ESMValCore/pull/1326
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1344
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1304
https://github.com/senesis
https://github.com/ESMValGroup/ESMValCore/pull/1276
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1032
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1177
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1386
https://github.com/remi-kazeroni

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

35.7 Preprocessor

• Implemented fully lazy climate_statistics (#1194) Manuel Schlund

• Run the multimodel statistics preprocessor last (#1299) Bouwe Andela

35.8 Automatic testing

• Improving test coverage for _task.py (#514) Valeriu Predoi

• Upload coverage to codecov (#1190) Bouwe Andela

• Improve codecov status checks (#1195) Bouwe Andela

• Fix curl install in CircleCI (#1228) Javier Vegas-Regidor

• Drop support for Python 3.6 (#1200) Valeriu Predoi

• Allow more recent version of scipy (#1182) Manuel Schlund

• Speed up conda build conda_build Circle test by using mamba solver via boa (and use it for Github Actions test
too) (#1243) Valeriu Predoi

• Fix numpy deprecation warnings (#1274) Bouwe Andela

• Unpin upper bound for iris (previously was at <3.0.4) (#1275) Valeriu Predoi

• Modernize conda_install test on Circle CI by installing from conda-forge with Python 3.9 and change install
instructions in documentation (#1280) Valeriu Predoi

• Run a nightly Github Actions workflow to monitor tests memory per test (configurable for other metrics too)
(#1284) Valeriu Predoi

• Speed up tests of tasks (#1302) Bouwe Andela

• Fix upper case to lower case variables and functions for flake compliance in
tests/unit/preprocessor/_regrid/test_extract_levels.py (#1347) Valeriu Predoi

• Cleaned up a bit Github Actions workflows (#1345) Valeriu Predoi

• Update circleci jobs: renaming tests to more descriptive names and removing conda build test (#1351) Klaus
Zimmermann

• Pin iris to latest >=3.1.0 (#1341) Valeriu Predoi

35.9 Installation

• Pin esmpy to anything but 8.1.0 since that particular one changes the CPU affinity (#1310) Valeriu Predoi

35.7. Preprocessor 241

https://github.com/ESMValGroup/ESMValCore/pull/1194
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1299
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/514
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1190
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1195
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1228
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1200
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1182
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1243
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1274
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1275
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1280
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1284
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1302
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1347
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1345
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1351
https://github.com/zklaus
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1341
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1310
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

35.10 Improvements

• Add a more friendly and useful message when using default config file (#1233) Valeriu Predoi

• Replace os.walk by glob.glob in data finder (only look for data in the specified locations) (#1261) Bouwe Andela

• Machine-specific directories for auxiliary data in the config-user.yml file (#1268) Rémi Kazeroni

• Add an option to download missing data from ESGF (#1217) Bouwe Andela

• Speed up provenance recording (#1327) Bouwe Andela

• Improve results web page (#1332) Bouwe Andela

• Move institutes from config-developer.yml to default extra facets config and add wildcard support for extra facets
(#1259) Bouwe Andela

• Add support for re-using preprocessor output from previous runs (#1321) Bouwe Andela

• Log fewer messages to screen and hide stack trace for known recipe errors (#1296) Bouwe Andela

• Log ESMValCore and ESMValTool versions when running (#1263) Javier Vegas-Regidor

• Add “grid” as a tag to the output file template for CMIP6 (#1356) Klaus Zimmermann

• Implemented ICON project to read native ICON model output (#1079) Brei Soliño

242 Chapter 35. v2.4.0

https://github.com/ESMValGroup/ESMValCore/pull/1233
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1261
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1268
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1217
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1327
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1332
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1259
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1321
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1296
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1263
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1356
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1079
https://github.com/bsolino

CHAPTER

THIRTYSIX

V2.3.1

This release includes

36.1 Bug fixes

• Update config-user.yml template with correct drs entries for CEDA-JASMIN (#1184) Valeriu Predoi

• Enhancing MIROC5 fix for hfls and evspsbl (#1192) katjaweigel

• Fix alignment of daily data with inconsistent calendars in multimodel statistics (#1212) Peter Kalverla

• Pin cf-units, remove github actions test for Python 3.6 and fix test_access1_0 and test_access1_3 to use cf-units
for comparisons (#1197) Valeriu Predoi

• Fixed search for fx files when no mip is given (#1216) Manuel Schlund

• Make sure climate statistics always returns original dtype (#1237) Klaus Zimmermann

• Bugfix for regional regridding when non-integer range is passed (#1231) Stef Smeets

• Make sure area_statistics preprocessor always returns original dtype (#1239) Klaus Zimmermann

• Add “.” (dot) as allowed separation character for the time range group (#1248) Klaus Zimmermann

36.2 Documentation

• Add a link to the instructions to use pre-installed versions on HPC clusters (#1186) Rémi Kazeroni

• Bugfix release: set version to 2.3.1 (#1253) Klaus Zimmermann

36.3 Fixes for datasets

• Set circular attribute in MCM-UA-1-0 fix (#1178) sloosvel

• Fixed time coordinate of MIROC-ESM (#1188) Manuel Schlund

243

https://github.com/ESMValGroup/ESMValCore/pull/1184
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1192
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValCore/pull/1212
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/1197
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1216
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1237
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1231
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1239
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1248
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1186
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1253
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1178
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1188
https://github.com/schlunma

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

36.4 Preprocessor

• Filter warnings about collapsing multi-model dimension in multimodel statistics preprocessor function (#1215)
Bouwe Andela

• Remove fx variables before computing multimodel statistics (#1220) sloosvel

36.5 Installation

• Pin lower bound for iris to 3.0.2 (#1206) Valeriu Predoi

• Pin iris<3.0.4 to ensure we still (sort of) support Python 3.6 (#1252) Valeriu Predoi

36.6 Improvements

• Add test to verify behaviour for scalar height coord for tas in multi-model (#1209) Peter Kalverla

• Sort missing years in “No input data available for years” message (#1225) Lee de Mora

244 Chapter 36. v2.3.1

https://github.com/ESMValGroup/ESMValCore/pull/1215
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1220
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1206
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1252
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1209
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/1225
https://github.com/ledm

CHAPTER

THIRTYSEVEN

V2.3.0

This release includes

37.1 Bug fixes

• Extend preprocessor multi_model_statistics to handle data with “altitude” coordinate (#1010) Axel Lauer

• Remove scripts included with CMOR tables (#1011) Bouwe Andela

• Avoid side effects in extract_season (#1019) Javier Vegas-Regidor

• Use nearest scheme to avoid interpolation errors with masked data in regression test (#1021) Stef Smeets

• Move _get_time_bounds from preprocessor._time to cmor.check to avoid circular import with cmor module
(#1037) Valeriu Predoi

• Fix test that makes conda build fail (#1046) Valeriu Predoi

• Fix ‘positive’ attribute for rsns/rlns variables (#1051) Lukas Brunner

• Added preprocessor mask_multimodel (#767) Manuel Schlund

• Fix bug when fixing bounds after fixing longitude values (#1057) sloosvel

• Run conda build parallel AND sequential tests (#1065) Valeriu Predoi

• Add key to id_prop (#1071) Lukas Brunner

• Fix bounds after reversing coordinate values (#1061) sloosvel

• Fixed –skip-nonexistent option (#1093) Manuel Schlund

• Do not consider CMIP5 variable sit to be the same as sithick from CMIP6 (#1033) Bouwe Andela

• Improve finding date range in filenames (enforces separators) (#1145) Stéphane Sénési - work

• Review fx handling (#1147) sloosvel

• Fix lru cache decorator with explicit call to method (#1172) Valeriu Predoi

• Update _volume.py (#1174) Lee de Mora

245

https://github.com/ESMValGroup/ESMValCore/pull/1010
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/1011
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1019
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1021
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1037
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1046
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1051
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValCore/pull/767
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1057
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1065
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1071
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValCore/pull/1061
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1093
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1033
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1145
https://github.com/senesis
https://github.com/ESMValGroup/ESMValCore/pull/1147
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1172
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1174
https://github.com/ledm

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

37.2 Deprecations

37.3 Documentation

• Final changelog for 2.3.0 (#1163) Klaus Zimmermann

• Set version to 2.3.0 (#1162) Klaus Zimmermann

• Fix documentation build (#1006) Bouwe Andela

• Add labels required for linking from ESMValTool docs (#1038) Bouwe Andela

• Update contribution guidelines (#1047) Bouwe Andela

• Fix basestring references in documentation (#1106) Javier Vegas-Regidor

• Updated references master to main (#1132) Axel Lauer

• Add instructions how to use the central installation at DKRZ-Mistral (#1155) Rémi Kazeroni

37.4 Fixes for datasets

• Added fixes for various CMIP5 datasets, variable cl (3-dim cloud fraction) (#1017) Axel Lauer

• Added fixes for hybrid level coordinates of CESM2 models (#882) Manuel Schlund

• Extending LWP fix for CMIP6 models (#1049) Axel Lauer

• Add fixes for the net & up radiation variables from ERA5 (#1052) Lukas Brunner

• Add derived variable rsus (#1053) Lukas Brunner

• Supported mip-level fixes (#1095) Manuel Schlund

• Fix erroneous use of grid_latitude and grid_longitude and cleaned ocean grid fixes (#1092) Manuel Schlund

• Fix for pr of miroc5 (#1110) Rémi Kazeroni

• Ocean depth fix for cnrm_esm2_1, gfdl_esm4, ipsl_cm6a_lr datasets + mcm_ua_1_0 (#1098) Tomas Lovato

• Fix for uas variable of the MCM_UA_1_0 dataset (#1102) Rémi Kazeroni

• Fixes for sos and siconc of BCC models (#1090) Rémi Kazeroni

• Run fgco2 fix for all CESM2 models (#1108) Lisa Bock

• Fixes for the siconc variable of CMIP6 models (#1105) Rémi Kazeroni

• Fix wrong sign for land surface flux (#1113) Lisa Bock

• Fix for pr of EC_EARTH (#1116) Rémi Kazeroni

246 Chapter 37. v2.3.0

https://github.com/ESMValGroup/ESMValCore/pull/1163
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1162
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1006
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1038
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1047
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1106
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1132
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/1155
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1017
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/882
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1049
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/1052
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValCore/pull/1053
https://github.com/lukasbrunner
https://github.com/ESMValGroup/ESMValCore/pull/1095
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1092
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1110
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1098
https://github.com/tomaslovato
https://github.com/ESMValGroup/ESMValCore/pull/1102
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1090
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1108
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValCore/pull/1105
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/1113
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValCore/pull/1116
https://github.com/remi-kazeroni

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

37.5 CMOR standard

• Format cmor related files (#976) Javier Vegas-Regidor

• Check presence of time bounds and guess them if needed (#849) sloosvel

• Add custom variable “tasaga” (#1118) Lisa Bock

• Find files for CMIP6 DCPP startdates (#771) sloosvel

37.6 Preprocessor

• Update tests for multimodel statistics preprocessor (#1023) Stef Smeets

• Raise in extract_season and extract_month if result is None (#1041) Javier Vegas-Regidor

• Allow selection of shapes in extract_shape (#764) Javier Vegas-Regidor

• Add option for regional regridding to regrid preprocessor (#1034) Stef Smeets

• Load fx variables as cube cell measures / ancillary variables (#999) sloosvel

• Check horizontal grid before regridding (#507) Benjamin Müller

• Clip irregular grids (#245) Bouwe Andela

• Use native iris functions in multi-model statistics (#1150) Peter Kalverla

37.7 Notebook API (experimental)

37.8 Automatic testing

• Report coverage for tests that run on any pull request (#994) Bouwe Andela

• Install ESMValTool sample data from PyPI (#998) Javier Vegas-Regidor

• Fix tests for multi-processing with spawn method (i.e. macOSX with Python>3.8) (#1003) Barbara Vreede

• Switch to running the Github Action test workflow every 3 hours in single thread mode to observe if Sementation
Faults occur (#1022) Valeriu Predoi

• Revert to original Github Actions test workflow removing the 3-hourly test run with -n 1 (#1025) Valeriu Predoi

• Avoid stale cache for multimodel statistics regression tests (#1030) Bouwe Andela

• Add newer Python versions in OSX to Github Actions (#1035) Barbara Vreede

• Add tests for type annotations with mypy (#1042) Stef Smeets

• Run problematic cmor tests sequentially to avoid segmentation faults on CircleCI (#1064) Valeriu Predoi

• Test installation of esmvalcore from conda-forge (#1075) Valeriu Predoi

• Added additional test cases for integration tests of data_finder.py (#1087) Manuel Schlund

• Pin cf-units and fix tests (cf-units>=2.1.5) (#1140) Valeriu Predoi

• Fix failing CircleCI tests (#1167) Bouwe Andela

• Fix test failing due to fx files chosen differently on different OS’s (#1169) Valeriu Predoi

37.5. CMOR standard 247

https://github.com/ESMValGroup/ESMValCore/pull/976
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/849
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1118
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValCore/pull/771
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/1023
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1041
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/764
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1034
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/999
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/507
https://github.com/BenMGeo
https://github.com/ESMValGroup/ESMValCore/pull/245
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1150
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/994
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/998
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/1003
https://github.com/bvreede
https://github.com/ESMValGroup/ESMValCore/pull/1022
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1025
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1030
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1035
https://github.com/bvreede
https://github.com/ESMValGroup/ESMValCore/pull/1042
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1064
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1075
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1087
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/1140
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1167
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1169
https://github.com/valeriupredoi

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Compare datetimes instead of strings in _fixes/cmip5/test_access1_X.py (#1173) Valeriu Predoi

• Pin Python to 3.9 in environment.yml on CircleCI and skip mypy tests in conda build (#1176) Bouwe Andela

37.9 Installation

• Update yamale to version 3 (#1059) Klaus Zimmermann

37.10 Improvements

• Refactor diagnostics / tags management (#939) Stef Smeets

• Support multiple paths in input_dir (#1000) Javier Vegas-Regidor

• Generate HTML report with recipe output (#991) Stef Smeets

• Add timeout to requests.get in _citation.py (#1091) SarahAlidoost

• Add SYNDA drs for CMIP5 and CMIP6 (closes #582) (#583) Klaus Zimmermann

• Add basic support for variable mappings (#1124) Klaus Zimmermann

• Handle IPSL-CM6 (#1153) Stéphane Sénési - work

248 Chapter 37. v2.3.0

https://github.com/ESMValGroup/ESMValCore/pull/1173
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/1176
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/1059
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/939
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1000
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/991
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/1091
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValCore/pull/583
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1124
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/1153
https://github.com/senesis

CHAPTER

THIRTYEIGHT

V2.2.0

38.1 Highlights

ESMValCore is now using the recently released Iris 3. We acknowledge that this change may impact your work, as Iris
3 introduces several changes that are not backward-compatible, but we think that moving forward is the best decision
for the tool in the long term.

This release is also the first one including support for downloading CMIP6 data using Synda and we have also started
supporting Python 3.9. Give it a try!

This release includes

38.2 Bug fixes

• Fix path settings for DKRZ/Mistral (#852) Bouwe Andela

• Change logic for calling the diagnostic script to avoid problems with scripts where the executable bit is acciden-
tally set (#877) Bouwe Andela

• Fix overwriting in generic level check (#886) sloosvel

• Add double quotes to script args in rerun screen message when using vprof profiling (#897) Valeriu Predoi

• Simplify time handling in multi-model statistics preprocessor (#685) Peter Kalverla

• Fix links to Iris documentation (#966) Javier Vegas-Regidor

• Bugfix: Fix units for MSWEP data (#986) Stef Smeets

38.3 Deprecations

• Deprecate defining write_plots and write_netcdf in config-user file (#808) Bouwe Andela

249

https://scitools-iris.readthedocs.io/en/latest/whatsnew/3.0.html
https://github.com/ESMValGroup/ESMValCore/pull/852
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/877
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/886
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/897
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/685
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/966
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/986
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/808
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

38.4 Documentation

• Fix numbering of steps in release instructions (#838) Bouwe Andela

• Add labels to changelogs of individual versions for easy reference (#899) Klaus Zimmermann

• Make CircleCI badge specific to main branch (#902) Bouwe Andela

• Fix docker build badge url (#906) Stef Smeets

• Update github PR template (#909) Stef Smeets

• Refer to ESMValTool GitHub discussions page in the error message (#900) Bouwe Andela

• Support automatically closing issues (#922) Bouwe Andela

• Fix checkboxes in PR template (#931) Stef Smeets

• Change in config-user defaults and documentation with new location for esmeval OBS data on JASMIN (#958)
Valeriu Predoi

• Update Core Team info (#942) Axel Lauer

• Update iris documentation URL for sphinx (#964) Bouwe Andela

• Set version to 2.2.0 (#977) Javier Vegas-Regidor

• Add first draft of v2.2.0 changelog (#983) Javier Vegas-Regidor

• Add checkbox in PR template to assign labels (#985) Javier Vegas-Regidor

• Update install.rst (#848) bascrezee

• Change the order of the publication steps (#984) Javier Vegas-Regidor

• Add instructions how to use esmvaltool from HPC central installations (#841) Valeriu Predoi

38.5 Fixes for datasets

• Fixing unit for derived variable rsnstcsnorm to prevent overcorrection2 (#846) katjaweigel

• Cmip6 fix awi cm 1 1 mr (#822) mwjury

• Cmip6 fix ec earth3 veg (#836) mwjury

• Changed latitude longitude fix from Tas to AllVars. (#916) katjaweigel

• Fix for precipitation (pr) to use ERA5-Land cmorizer (#879) katjaweigel

• Cmip6 fix ec earth3 (#837) mwjury

• Cmip6_fix_fgoals_f3_l_Amon_time_bnds (#831) mwjury

• Fix for FGOALS-f3-L sftlf (#667) mwjury

• Improve ACCESS-CM2 and ACCESS-ESM1-5 fixes and add CIESM and CESM2-WACCM-FV2 fixes for cl,
clw and cli (#635) Axel Lauer

• Add fixes for cl, cli, clw and tas for several CMIP6 models (#955) Manuel Schlund

• Dataset fixes for MSWEP (#969) Stef Smeets

• Dataset fixes for: ACCESS-ESM1-5, CanESM5, CanESM5 for carbon cycle (#947) Bettina Gier

• Fixes for KIOST-ESM (CMIP6) (#904) Rémi Kazeroni

250 Chapter 38. v2.2.0

https://github.com/ESMValGroup/ESMValCore/pull/838
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/899
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/902
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/906
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/909
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/900
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/922
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/931
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/958
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/942
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/964
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/977
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/983
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/985
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/848
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValCore/pull/984
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/841
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/846
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValCore/pull/822
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/836
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/916
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValCore/pull/879
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValCore/pull/837
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/831
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/667
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/635
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/955
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/969
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/947
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValCore/pull/904
https://github.com/remi-kazeroni

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Fixes for AWI-ESM-1-1-LR (CMIP6, piControl) (#911) Rémi Kazeroni

38.6 CMOR standard

• CMOR check generic level coordinates in CMIP6 (#598) sloosvel

• Update CMIP6 tables to 6.9.33 (#919) Javier Vegas-Regidor

• Adding custom variables for tas uncertainty (#924) Lisa Bock

• Remove monotonicity coordinate check for unstructured grids (#965) Javier Vegas-Regidor

38.7 Preprocessor

• Added clip_start_end_year preprocessor (#796) Manuel Schlund

• Add support for downloading CMIP6 data with Synda (#699) Bouwe Andela

• Add multimodel tests using real data (#856) Stef Smeets

• Add plev/altitude conversion to extract_levels (#892) Axel Lauer

• Add possibility of custom season extraction. (#247) mwjury

• Adding the ability to derive xch4 (#783) Birgit Hassler

• Add preprocessor function to resample time and compute x-hourly statistics (#696) Javier Vegas-Regidor

• Fix duplication in preprocessors DEFAULT_ORDER introduced in #696 (#973) Javier Vegas-Regidor

• Use consistent precision in multi-model statistics calculation and update reference data for tests (#941) Peter
Kalverla

• Refactor multi-model statistics code to facilitate ensemble stats and lazy evaluation (#949) Peter Kalverla

• Add option to exclude input cubes in output of multimodel statistics to solve an issue introduced by #949 (#978)
Peter Kalverla

38.8 Automatic testing

• Pin cftime>=1.3.0 to have newer string formatting in and fix two tests (#878) Valeriu Predoi

• Switched miniconda conda setup hooks for Github Actions workflows (#873) Valeriu Predoi

• Add test for latest version resolver (#874) Stef Smeets

• Update codacy coverage reporter to fix coverage (#905) Niels Drost

• Avoid hardcoded year in tests and add improvement to plev test case (#921) Bouwe Andela

• Pin scipy to less than 1.6.0 until ESMValGroup/ESMValCore/issues/927 gets resolved (#928) Valeriu Predoi

• Github Actions: change time when conda install test runs (#930) Valeriu Predoi

• Remove redundant test line from test_utils.py (#935) Valeriu Predoi

• Removed netCDF4 package from integration tests of fixes (#938) Manuel Schlund

• Use new conda environment for installing ESMValCore in Docker containers (#951) Bouwe Andela

38.6. CMOR standard 251

https://github.com/ESMValGroup/ESMValCore/pull/911
https://github.com/remi-kazeroni
https://github.com/ESMValGroup/ESMValCore/pull/598
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/919
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/924
https://github.com/LisaBock
https://github.com/ESMValGroup/ESMValCore/pull/965
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/796
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/699
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/856
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/892
https://github.com/axel-lauer
https://github.com/ESMValGroup/ESMValCore/pull/247
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/783
https://github.com/hb326
https://github.com/ESMValGroup/ESMValCore/pull/696
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/973
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/941
https://github.com/Peter9192
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/949
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/978
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/878
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/873
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/874
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/905
https://github.com/nielsdrost
https://github.com/ESMValGroup/ESMValCore/pull/921
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/928
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/930
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/935
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/938
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/951
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

38.9 Notebook API (experimental)

• Implement importable config object in experimental API submodule (#868) Stef Smeets

• Add loading and running recipes to the notebook API (#907) Stef Smeets

• Add displaying and loading of recipe output to the notebook API (#957) Stef Smeets

• Add functionality to run single diagnostic task to notebook API (#962) Stef Smeets

38.10 Improvements

• Create CODEOWNERS file (#809) Javier Vegas-Regidor

• Remove code needed for Python <3.6 (#844) Bouwe Andela

• Add requests as a dependency (#850) Bouwe Andela

• Pin Python to less than 3.9 (#870) Valeriu Predoi

• Remove numba dependency (#880) Manuel Schlund

• Add Listing and finding recipes to the experimental notebook API (#901) Stef Smeets

• Skip variables that don’t have dataset or additional_dataset keys (#860) Valeriu Predoi

• Refactor logging configuration (#933) Stef Smeets

• Xco2 derivation (#913) Bettina Gier

• Working environment for Python 3.9 (pin to !=3.9.0) (#885) Valeriu Predoi

• Print source file when using config get_config_user command (#960) Valeriu Predoi

• Switch to Iris 3 (#819) Stef Smeets

• Refactor tasks (#959) Stef Smeets

• Restore task summary in debug log after #959 (#981) Bouwe Andela

• Pin pre-commit hooks (#974) Stef Smeets

• Improve error messages when data is missing (#917) Javier Vegas-Regidor

• Set remove_preproc_dir to false in default config-user (#979) Valeriu Predoi

• Move fiona to be installed from conda forge (#987) Valeriu Predoi

• Re-added fiona in setup.py (#990) Valeriu Predoi

252 Chapter 38. v2.2.0

https://github.com/ESMValGroup/ESMValCore/pull/868
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/907
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/957
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/962
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/809
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/844
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/850
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/870
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/880
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/901
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/860
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/933
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/913
https://github.com/bettina-gier
https://github.com/ESMValGroup/ESMValCore/pull/885
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/960
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/819
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/959
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/981
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/974
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/917
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/979
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/987
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/990
https://github.com/valeriupredoi

CHAPTER

THIRTYNINE

V2.1.0

This release includes

39.1 Bug fixes

• Set unit=1 if anomalies are standardized (#727) bascrezee

• Fix crash for FGOALS-g2 variables without longitude coordinate (#729) Bouwe Andela

• Improve variable alias management (#595) Javier Vegas-Regidor

• Fix area_statistics fx files loading (#798) Javier Vegas-Regidor

• Fix units after derivation (#754) Manuel Schlund

39.2 Documentation

• Update v2.0.0 release notes with final additions (#722) Bouwe Andela

• Update package description in setup.py (#725) Mattia Righi

• Add installation instructions for pip installation (#735) Bouwe Andela

• Improve config-user documentation (#740) Bouwe Andela

• Update the zenodo file with contributors (#807) Valeriu Predoi

• Improve command line run documentation (#721) Javier Vegas-Regidor

• Update the zenodo file with contributors (continued) (#810) Valeriu Predoi

39.3 Improvements

• Reduce size of docker image (#723) Javier Vegas-Regidor

• Add ‘test’ extra to installation, used by docker development tag (#733) Bouwe Andela

• Correct dockerhub link (#736) Bouwe Andela

• Create action-install-from-pypi.yml (#734) Valeriu Predoi

• Add pre-commit for linting/formatting (#766) Stef Smeets

• Run tests in parallel and when building conda package (#745) Bouwe Andela

253

https://github.com/ESMValGroup/ESMValCore/pull/727
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValCore/pull/729
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/595
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/798
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/754
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/722
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/725
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValCore/pull/735
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/740
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/807
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/721
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/810
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/723
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/733
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/736
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/734
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/766
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/745
https://github.com/bouweandela

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Readable exclude pattern for pre-commit (#770) Stef Smeets

• Github Actions Tests (#732) Valeriu Predoi

• Remove isort setup to fix formatting conflict with yapf (#778) Stef Smeets

• Fix yapf-isort import formatting conflict (Fixes #777) (#784) Stef Smeets

• Sorted output for esmvaltool recipes list (#790) Stef Smeets

• Replace vmprof with vprof (#780) Valeriu Predoi

• Update CMIP6 tables to 6.9.32 (#706) Javier Vegas-Regidor

• Default config-user path now set in config-user read function (#791) Javier Vegas-Regidor

• Add custom variable lweGrace (#692) bascrezee

• Create Github Actions workflow to build and deploy on Test PyPi and PyPi (#820) Valeriu Predoi

• Build and publish the esmvalcore package to conda via Github Actions workflow (#825) Valeriu Predoi

39.4 Fixes for datasets

• Fix cmip6 models (#629) npgillett

• Fix siconca variable in EC-Earth3 and EC-Earth3-Veg models in amip simulation (#702) Evgenia Galytska

39.5 Preprocessor

• Move cmor_check_data to early in preprocessing chain (#743) Bouwe Andela

• Add RMS iris analysis operator to statistics preprocessor functions (#747) Pep Cos

• Add surface chlorophyll concentration as a derived variable (#720) sloosvel

• Use dask to reduce memory consumption of extract_levels for masked data (#776) Valeriu Predoi

254 Chapter 39. v2.1.0

https://github.com/ESMValGroup/ESMValCore/pull/770
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/732
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/778
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/784
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/790
https://github.com/stefsmeets
https://github.com/ESMValGroup/ESMValCore/pull/780
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/706
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/791
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/692
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValCore/pull/820
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/825
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/629
https://github.com/npgillett
https://github.com/ESMValGroup/ESMValCore/pull/702
https://github.com/egalytska
https://github.com/ESMValGroup/ESMValCore/pull/743
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/747
https://github.com/pcosbsc
https://github.com/ESMValGroup/ESMValCore/pull/720
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/776
https://github.com/valeriupredoi

CHAPTER

FORTY

V2.0.0

This release includes

40.1 Bug fixes

• Fixed derivation of co2s (#594) Manuel Schlund

• Padding while cropping needs to stay within sane bounds for shapefiles that span the whole Earth (#626) Valeriu
Predoi

• Fix concatenation of a single cube (#655) Bouwe Andela

• Fix mask fx dict handling not to fail if empty list in values (#661) Valeriu Predoi

• Preserve metadata during anomalies computation when using iris cubes difference (#652) Valeriu Predoi

• Avoid crashing when there is directory ‘esmvaltool’ in the current working directory (#672) Valeriu Predoi

• Solve bug in ACCESS1 dataset fix for calendar. (#671) Peter Kalverla

• Fix the syntax for adding multiple ensemble members from the same dataset (#678) SarahAlidoost

• Fix bug that made preprocessor with fx files fail in rare cases (#670) Manuel Schlund

• Add support for string coordinates (#657) Javier Vegas-Regidor

• Fixed the shape extraction to account for wraparound shapefile coords (#319) Valeriu Predoi

• Fixed bug in time weights calculation (#695) Manuel Schlund

• Fix diagnostic filter (#713) Javier Vegas-Regidor

40.2 Documentation

• Add pandas as a requirement for building the documentation (#607) Bouwe Andela

• Document default order in which preprocessor functions are applied (#633) Bouwe Andela

• Add pointers about data loading and CF standards to documentation (#571) Valeriu Predoi

• Config file populated with site-specific data paths examples (#619) Valeriu Predoi

• Update Codacy badges (#643) Bouwe Andela

• Update copyright info on readthedocs (#668) Bouwe Andela

• Updated references to documentation (now docs.esmvaltool.org) (#675) Axel Lauer

255

https://github.com/ESMValGroup/ESMValCore/pull/594
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/626
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/655
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/661
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/652
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/672
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/671
https://github.com/Peter9192
https://github.com/ESMValGroup/ESMValCore/pull/678
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValCore/pull/670
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/657
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/319
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/695
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/713
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/607
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/633
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/571
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/619
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/643
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/668
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/675
https://github.com/axel-lauer

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• Add all European grants to Zenodo (#680) Bouwe Andela

• Update Sphinx to v3 or later (#683) Bouwe Andela

• Increase version to 2.0.0 and add release notes (#691) Bouwe Andela

• Update setup.py and README.md for use on PyPI (#693) Bouwe Andela

• Suggested Documentation changes (#690) Steve Smith

40.3 Improvements

• Reduce the size of conda package (#606) Bouwe Andela

• Add a few unit tests for DiagnosticTask (#613) Bouwe Andela

• Make ncl or R tests not fail if package not installed (#610) Valeriu Predoi

• Pin flake8<3.8.0 (#623) Valeriu Predoi

• Log warnings for likely errors in provenance record (#592) Bouwe Andela

• Unpin flake8 (#646) Bouwe Andela

• More flexible native6 default DRS (#645) Bouwe Andela

• Try to use the same python for running diagnostics as for esmvaltool (#656) Bouwe Andela

• Fix test for lower python version and add note on lxml (#659) Valeriu Predoi

• Added 1m deep average soil moisture variable (#664) bascrezee

• Update docker recipe (#603) Javier Vegas-Regidor

• Improve command line interface (#605) Javier Vegas-Regidor

• Remove utils directory (#697) Bouwe Andela

• Avoid pytest version that crashes (#707) Bouwe Andela

• Options arg in read_config_user_file now optional (#716) Javier Vegas-Regidor

• Produce a readable warning if ancestors are a string instead of a list. (#711) katjaweigel

• Pin Yamale to v2 (#718) Bouwe Andela

• Expanded cmor public API (#714) Manuel Schlund

40.4 Fixes for datasets

• Added various fixes for hybrid height coordinates (#562) Manuel Schlund

• Extended fix for cl-like variables of CESM2 models (#604) Manuel Schlund

• Added fix to convert “geopotential” to “geopotential height” for ERA5 (#640) Evgenia Galytska

• Do not fix longitude values if they are too far from valid range (#636) Javier Vegas-Regidor

256 Chapter 40. v2.0.0

https://github.com/ESMValGroup/ESMValCore/pull/680
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/683
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/691
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/693
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/690
https://github.com/ssmithClimate
https://github.com/ESMValGroup/ESMValCore/pull/606
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/613
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/610
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/623
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/592
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/646
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/645
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/656
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/659
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/664
https://github.com/bascrezee
https://github.com/ESMValGroup/ESMValCore/pull/603
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/605
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/697
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/707
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/716
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/711
https://github.com/katjaweigel
https://github.com/ESMValGroup/ESMValCore/pull/718
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/714
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/562
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/604
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/640
https://github.com/egalytska
https://github.com/ESMValGroup/ESMValCore/pull/636
https://github.com/jvegasbsc

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

40.5 Preprocessor

• Implemented concatenation of cubes with derived coordinates (#546) Manuel Schlund

• Fix derived variable ctotal calculation depending on project and standard name (#620) Valeriu Predoi

• State of the art FX variables handling without preprocessing (#557) Valeriu Predoi

• Add max, min and std operators to multimodel (#602) Javier Vegas-Regidor

• Added preprocessor to extract amplitude of cycles (#597) Manuel Schlund

• Overhaul concatenation and allow for correct concatenation of multiple overlapping datasets (#615) Valeriu Pre-
doi

• Change volume stats to handle and output masked array result (#618) Valeriu Predoi

• Area_weights for cordex in area_statistics (#631) mwjury

• Accept cubes as input in multimodel (#637) sloosvel

• Make multimodel work correctly with yearly data (#677) Valeriu Predoi

• Optimize time weights in time preprocessor for climate statistics (#684) Valeriu Predoi

• Add percentiles to multi-model stats (#679) Peter Kalverla

40.5. Preprocessor 257

https://github.com/ESMValGroup/ESMValCore/pull/546
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/620
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/557
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/602
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/597
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/615
https://github.com/valeriupredoi
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/618
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/631
https://github.com/mwjury
https://github.com/ESMValGroup/ESMValCore/pull/637
https://github.com/sloosvel
https://github.com/ESMValGroup/ESMValCore/pull/677
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/684
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/679
https://github.com/Peter9192

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

258 Chapter 40. v2.0.0

CHAPTER

FORTYONE

V2.0.0B9

This release includes

41.1 Bug fixes

• Cast dtype float32 to output from zonal and meridional area preprocessors (#581) Valeriu Predoi

41.2 Improvements

• Unpin on Python<3.8 for conda package (run) (#570) Valeriu Predoi

• Update pytest installation marker (#572) Bouwe Andela

• Remove vmrh2o (#573) Mattia Righi

• Restructure documentation (#575) Bouwe Andela

• Fix mask in land variables for CCSM4 (#579) Klaus Zimmermann

• Fix derive scripts wrt required method (#585) Klaus Zimmermann

• Check coordinates do not have repeated standard names (#558) Javier Vegas-Regidor

• Added derivation script for co2s (#587) Manuel Schlund

• Adapted custom co2s table to match CMIP6 version (#588) Manuel Schlund

• Increase version to v2.0.0b9 (#593) Bouwe Andela

• Add a method to save citation information (#402) SarahAlidoost

For older releases, see the release notes on https://github.com/ESMValGroup/ESMValCore/releases.

259

https://github.com/ESMValGroup/ESMValCore/pull/581
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/570
https://github.com/valeriupredoi
https://github.com/ESMValGroup/ESMValCore/pull/572
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/573
https://github.com/mattiarighi
https://github.com/ESMValGroup/ESMValCore/pull/575
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/579
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/585
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValCore/pull/558
https://github.com/jvegasbsc
https://github.com/ESMValGroup/ESMValCore/pull/587
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/588
https://github.com/schlunma
https://github.com/ESMValGroup/ESMValCore/pull/593
https://github.com/bouweandela
https://github.com/ESMValGroup/ESMValCore/pull/402
https://github.com/SarahAlidoost
https://github.com/ESMValGroup/ESMValCore/releases

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

260 Chapter 41. v2.0.0b9

Part VIII

Indices and tables

261

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

• genindex

• search

263

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

264

PYTHON MODULE INDEX

e
esmvalcore.cmor, 149
esmvalcore.cmor.check, 149
esmvalcore.cmor.fix, 154
esmvalcore.cmor.fixes, 156
esmvalcore.cmor.table, 157
esmvalcore.esgf.facets, 170
esmvalcore.exceptions, 173
esmvalcore.experimental.config, 209
esmvalcore.experimental.recipe, 213
esmvalcore.experimental.recipe_metadata, 222
esmvalcore.experimental.recipe_output, 217
esmvalcore.experimental.utils, 225
esmvalcore.iris_helpers, 175
esmvalcore.preprocessor, 177

265

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

266 Python Module Index

INDEX

A
accumulate_coordinate() (in module esmval-

core.preprocessor), 179
add_altitude_from_plev() (in module esmval-

core.cmor.fixes), 156
add_fx_variables() (in module esmval-

core.preprocessor), 179
add_leading_dim_to_cube() (in module esmval-

core.iris_helpers), 175
add_plev_from_altitude() (in module esmval-

core.cmor.fixes), 156
ALTERNATIVE_GENERIC_LEV_COORDS (esmval-

core.cmor.check.CMORCheck attribute),
150

amplitude() (in module esmvalcore.preprocessor), 179
annual_statistics() (in module esmval-

core.preprocessor), 180
anomalies() (in module esmvalcore.preprocessor), 180
area_statistics() (in module esmval-

core.preprocessor), 181
args (esmvalcore.cmor.check.CMORCheckError at-

tribute), 152
args (esmvalcore.experimental.recipe_metadata.RenderError

attribute), 224
authors (esmvalcore.experimental.recipe_output.DataFile

property), 218
authors (esmvalcore.experimental.recipe_output.ImageFile

property), 219
authors (esmvalcore.experimental.recipe_output.OutputFile

property), 220
axis (esmvalcore.cmor.table.CoordinateInfo attribute),

160
axis_statistics() (in module esmval-

core.preprocessor), 181

B
bias() (in module esmvalcore.preprocessor), 182

C
caption (esmvalcore.experimental.recipe_output.DataFile

property), 218

caption (esmvalcore.experimental.recipe_output.ImageFile
property), 219

caption (esmvalcore.experimental.recipe_output.OutputFile
property), 220

CFG (in module esmvalcore.experimental.config), 209
check_data() (esmvalcore.cmor.check.CMORCheck

method), 150
check_metadata() (esmval-

core.cmor.check.CMORCheck method), 150
CheckLevels (class in esmvalcore.cmor.check), 152
citation_file (esmval-

core.experimental.recipe_output.DataFile
property), 218

citation_file (esmval-
core.experimental.recipe_output.ImageFile
property), 219

citation_file (esmval-
core.experimental.recipe_output.OutputFile
property), 220

cleanup() (in module esmvalcore.preprocessor), 182
clear() (esmvalcore.cmor.table.TableInfo method), 163
climate_statistics() (in module esmval-

core.preprocessor), 182
clip() (in module esmvalcore.preprocessor), 183
clip_timerange() (in module esmval-

core.preprocessor), 183
CMIP3Info (class in esmvalcore.cmor.table), 157
CMIP5Info (class in esmvalcore.cmor.table), 158
CMIP6Info (class in esmvalcore.cmor.table), 159
cmor_check() (in module esmvalcore.cmor.check), 153
cmor_check_data() (in module esmval-

core.cmor.check), 153
cmor_check_data() (in module esmval-

core.preprocessor), 183
cmor_check_metadata() (in module esmval-

core.cmor.check), 154
cmor_check_metadata() (in module esmval-

core.preprocessor), 184
CMOR_TABLES (in module esmvalcore.cmor.table), 159
CMORCheck (class in esmvalcore.cmor.check), 149
CMORCheckError, 152
concatenate() (in module esmvalcore.preprocessor),

267

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

184
Config (class in esmvalcore.experimental.config), 209
config_dir (esmvalcore.experimental.config.Session

property), 210
Contributor (class in esmval-

core.experimental.recipe_metadata), 223
convert_units() (in module esmval-

core.preprocessor), 184
CoordinateInfo (class in esmvalcore.cmor.table), 160
coordinates (esmvalcore.cmor.table.VariableInfo at-

tribute), 164
copy() (esmvalcore.cmor.table.TableInfo method), 163
copy() (esmvalcore.cmor.table.VariableInfo method),

164
create() (esmvalcore.experimental.recipe_output.DataFile

class method), 218
create() (esmvalcore.experimental.recipe_output.ImageFile

class method), 219
create() (esmvalcore.experimental.recipe_output.OutputFile

class method), 220
create_dataset_map() (in module esmval-

core.esgf.facets), 171
CustomInfo (class in esmvalcore.cmor.table), 161

D
daily_statistics() (in module esmval-

core.preprocessor), 184
data (esmvalcore.experimental.recipe.Recipe property),

213
data_citation_file (esmval-

core.experimental.recipe_output.DataFile
property), 218

data_citation_file (esmval-
core.experimental.recipe_output.ImageFile
property), 219

data_citation_file (esmval-
core.experimental.recipe_output.OutputFile
property), 220

data_files (esmvalcore.experimental.recipe_output.TaskOutput
property), 222

DataFile (class in esmval-
core.experimental.recipe_output), 217

dataset (esmvalcore.esgf.ESGFFile attribute), 169
DATASET_MAP (in module esmvalcore.esgf.facets), 170
date2num() (in module esmvalcore.iris_helpers), 175
DEBUG (esmvalcore.cmor.check.CheckLevels attribute),

153
decadal_statistics() (in module esmval-

core.preprocessor), 185
DEFAULT (esmvalcore.cmor.check.CheckLevels attribute),

153
DEFAULT_ORDER (in module esmvalcore.preprocessor),

177

depth_integration() (in module esmval-
core.preprocessor), 185

derive() (in module esmvalcore.preprocessor), 185
detrend() (in module esmvalcore.preprocessor), 186
DiagnosticOutput (class in esmval-

core.experimental.recipe_output), 218
diagnostics (esmval-

core.experimental.recipe_output.RecipeOutput
attribute), 220

dimensions (esmvalcore.cmor.table.VariableInfo at-
tribute), 165

download() (esmvalcore.esgf.ESGFFile method), 169
download() (in module esmvalcore.esgf), 169

E
ensemble_statistics() (in module esmval-

core.preprocessor), 186
ESGFFile (class in esmvalcore.esgf), 169
esmvalcore.cmor

module, 149
esmvalcore.cmor.check

module, 149
esmvalcore.cmor.fix

module, 154
esmvalcore.cmor.fixes

module, 156
esmvalcore.cmor.table

module, 157
esmvalcore.esgf.facets

module, 170
esmvalcore.exceptions

module, 173
esmvalcore.experimental.config

module, 209
esmvalcore.experimental.recipe

module, 213
esmvalcore.experimental.recipe_metadata

module, 222
esmvalcore.experimental.recipe_output

module, 217
esmvalcore.experimental.utils

module, 225
esmvalcore.iris_helpers

module, 175
esmvalcore.preprocessor

module, 177
ESMValCoreDeprecationWarning, 173
extract_coordinate_points() (in module esmval-

core.preprocessor), 186
extract_levels() (in module esmval-

core.preprocessor), 187
extract_location() (in module esmval-

core.preprocessor), 187

268 Index

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

extract_month() (in module esmval-
core.preprocessor), 188

extract_named_regions() (in module esmval-
core.preprocessor), 188

extract_point() (in module esmval-
core.preprocessor), 189

extract_region() (in module esmval-
core.preprocessor), 190

extract_season() (in module esmval-
core.preprocessor), 190

extract_shape() (in module esmval-
core.preprocessor), 190

extract_time() (in module esmvalcore.preprocessor),
191

extract_trajectory() (in module esmval-
core.preprocessor), 191

extract_transect() (in module esmval-
core.preprocessor), 192

extract_volume() (in module esmval-
core.preprocessor), 192

F
FACETS (in module esmvalcore.esgf.facets), 170
find() (esmvalcore.experimental.utils.RecipeList

method), 225
find_files() (in module esmvalcore.esgf), 167
fix_data() (in module esmvalcore.cmor.fix), 154
fix_data() (in module esmvalcore.preprocessor), 193
fix_file() (in module esmvalcore.cmor.fix), 155
fix_file() (in module esmvalcore.preprocessor), 193
fix_metadata() (in module esmvalcore.cmor.fix), 155
fix_metadata() (in module esmvalcore.preprocessor),

194
frequency (esmvalcore.cmor.check.CMORCheck at-

tribute), 150
frequency (esmvalcore.cmor.table.VariableInfo at-

tribute), 165
from_config_user() (esmval-

core.experimental.config.Session class
method), 210

from_core_recipe_output() (esmval-
core.experimental.recipe_output.RecipeOutput
class method), 221

from_dict() (esmval-
core.experimental.recipe_metadata.Contributor
class method), 223

from_tag() (esmvalcore.experimental.recipe_metadata.Contributor
class method), 223

from_tag() (esmvalcore.experimental.recipe_metadata.Project
class method), 223

from_tag() (esmvalcore.experimental.recipe_metadata.Reference
class method), 224

from_task() (esmval-
core.experimental.recipe_output.TaskOutput

class method), 222
fromkeys() (esmvalcore.cmor.table.TableInfo method),

163

G
generic_lev_name (esmval-

core.cmor.table.CoordinateInfo attribute),
160

get() (esmvalcore.cmor.table.TableInfo method), 163
get() (esmvalcore.experimental.recipe_output.RecipeOutput

method), 221
get_all_recipes() (in module esmval-

core.experimental.utils), 226
get_output() (esmvalcore.experimental.recipe.Recipe

method), 213
get_recipe() (in module esmval-

core.experimental.utils), 226
get_table() (esmvalcore.cmor.table.CMIP3Info

method), 157
get_table() (esmvalcore.cmor.table.CMIP5Info

method), 158
get_table() (esmvalcore.cmor.table.CMIP6Info

method), 159
get_table() (esmvalcore.cmor.table.CustomInfo

method), 161
get_table() (esmvalcore.cmor.table.InfoBase method),

162
get_var_info() (in module esmvalcore.cmor.table),

165
get_variable() (esmvalcore.cmor.table.CMIP3Info

method), 158
get_variable() (esmvalcore.cmor.table.CMIP5Info

method), 158
get_variable() (esmvalcore.cmor.table.CMIP6Info

method), 159
get_variable() (esmvalcore.cmor.table.CustomInfo

method), 162
get_variable() (esmvalcore.cmor.table.InfoBase

method), 162

H
has_debug_messages() (esmval-

core.cmor.check.CMORCheck method), 151
has_errors() (esmvalcore.cmor.check.CMORCheck

method), 151
has_warnings() (esmvalcore.cmor.check.CMORCheck

method), 151
hourly_statistics() (in module esmval-

core.preprocessor), 194

I
IGNORE (esmvalcore.cmor.check.CheckLevels attribute),

153

Index 269

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

image_files (esmval-
core.experimental.recipe_output.TaskOutput
property), 222

ImageFile (class in esmval-
core.experimental.recipe_output), 218

info (esmvalcore.experimental.recipe_output.RecipeOutput
attribute), 220

InfoBase (class in esmvalcore.cmor.table), 162
InputFilesNotFound, 173
items() (esmvalcore.cmor.table.TableInfo method), 163
items() (esmvalcore.experimental.recipe_output.RecipeOutput

method), 221

J
JsonInfo (class in esmvalcore.cmor.table), 163

K
keys() (esmvalcore.cmor.table.TableInfo method), 164
keys() (esmvalcore.experimental.recipe_output.RecipeOutput

method), 221
kind (esmvalcore.experimental.recipe_output.DataFile

attribute), 218
kind (esmvalcore.experimental.recipe_output.ImageFile

attribute), 219
kind (esmvalcore.experimental.recipe_output.OutputFile

attribute), 220

L
linear_trend() (in module esmvalcore.preprocessor),

195
linear_trend_stderr() (in module esmval-

core.preprocessor), 195
load() (in module esmvalcore.preprocessor), 195
load_from_file() (esmval-

core.experimental.config.Config method),
209

load_iris() (esmval-
core.experimental.recipe_output.DataFile
method), 218

load_xarray() (esmval-
core.experimental.recipe_output.DataFile
method), 218

local_file() (esmvalcore.esgf.ESGFFile method), 170
long_name (esmvalcore.cmor.table.CoordinateInfo at-

tribute), 160
long_name (esmvalcore.cmor.table.VariableInfo at-

tribute), 165

M
main_log (esmvalcore.experimental.config.Session prop-

erty), 210
main_log_debug (esmval-

core.experimental.config.Session property),
210

mask_above_threshold() (in module esmval-
core.preprocessor), 196

mask_below_threshold() (in module esmval-
core.preprocessor), 196

mask_fillvalues() (in module esmval-
core.preprocessor), 196

mask_glaciated() (in module esmval-
core.preprocessor), 197

mask_inside_range() (in module esmval-
core.preprocessor), 197

mask_landsea() (in module esmvalcore.preprocessor),
197

mask_landseaice() (in module esmval-
core.preprocessor), 198

mask_multimodel() (in module esmval-
core.preprocessor), 198

mask_outside_range() (in module esmval-
core.preprocessor), 199

meridional_statistics() (in module esmval-
core.preprocessor), 199

modeling_realm (esmvalcore.cmor.table.VariableInfo
attribute), 165

module
esmvalcore.cmor, 149
esmvalcore.cmor.check, 149
esmvalcore.cmor.fix, 154
esmvalcore.cmor.fixes, 156
esmvalcore.cmor.table, 157
esmvalcore.esgf.facets, 170
esmvalcore.exceptions, 173
esmvalcore.experimental.config, 209
esmvalcore.experimental.recipe, 213
esmvalcore.experimental.recipe_metadata,

222
esmvalcore.experimental.recipe_output,

217
esmvalcore.experimental.utils, 225
esmvalcore.iris_helpers, 175
esmvalcore.preprocessor, 177

monthly_statistics() (in module esmval-
core.preprocessor), 199

multi_model_statistics() (in module esmval-
core.preprocessor), 199

must_have_bounds (esmval-
core.cmor.table.CoordinateInfo attribute),
160

N
name (esmvalcore.esgf.ESGFFile attribute), 169
name (esmvalcore.experimental.recipe.Recipe property),

213

O
out_name (esmvalcore.cmor.table.CoordinateInfo

270 Index

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

attribute), 160
OutputFile (class in esmval-

core.experimental.recipe_output), 219

P
plot_dir (esmvalcore.experimental.config.Session prop-

erty), 210
pop() (esmvalcore.cmor.table.TableInfo method), 164
popitem() (esmvalcore.cmor.table.TableInfo method),

164
positive (esmvalcore.cmor.table.VariableInfo at-

tribute), 165
preproc_dir (esmvalcore.experimental.config.Session

property), 210
Project (class in esmval-

core.experimental.recipe_metadata), 223
provenance_xml_file (esmval-

core.experimental.recipe_output.DataFile
property), 218

provenance_xml_file (esmval-
core.experimental.recipe_output.ImageFile
property), 219

provenance_xml_file (esmval-
core.experimental.recipe_output.OutputFile
property), 220

R
read_cmor_tables() (in module esmval-

core.cmor.table), 165
read_json() (esmvalcore.cmor.table.CoordinateInfo

method), 161
read_json() (esmvalcore.cmor.table.VariableInfo

method), 165
read_main_log() (esmval-

core.experimental.recipe_output.RecipeOutput
method), 221

read_main_log_debug() (esmval-
core.experimental.recipe_output.RecipeOutput
method), 221

Recipe (class in esmvalcore.experimental.recipe), 213
RecipeError, 173
RecipeList (class in esmvalcore.experimental.utils),

225
RecipeOutput (class in esmval-

core.experimental.recipe_output), 220
Reference (class in esmval-

core.experimental.recipe_metadata), 223
references (esmvalcore.experimental.recipe_output.DataFile

property), 218
references (esmvalcore.experimental.recipe_output.ImageFile

property), 219
references (esmvalcore.experimental.recipe_output.OutputFile

property), 220
regrid() (in module esmvalcore.preprocessor), 200

regrid_time() (in module esmvalcore.preprocessor),
202

relative_main_log (esmval-
core.experimental.config.Session attribute),
210

relative_main_log_debug (esmval-
core.experimental.config.Session attribute),
210

relative_plot_dir (esmval-
core.experimental.config.Session attribute),
210

relative_preproc_dir (esmval-
core.experimental.config.Session attribute),
211

relative_run_dir (esmval-
core.experimental.config.Session attribute),
211

relative_work_dir (esmval-
core.experimental.config.Session attribute),
211

RELAXED (esmvalcore.cmor.check.CheckLevels attribute),
153

reload() (esmvalcore.experimental.config.Config
method), 209

remove_fx_variables() (in module esmval-
core.preprocessor), 202

render() (esmvalcore.experimental.recipe.Recipe
method), 214

render() (esmvalcore.experimental.recipe_metadata.Reference
method), 224

render() (esmvalcore.experimental.recipe_output.RecipeOutput
method), 221

RenderError, 224
report() (esmvalcore.cmor.check.CMORCheck

method), 151
report_critical() (esmval-

core.cmor.check.CMORCheck method), 151
report_debug_message() (esmval-

core.cmor.check.CMORCheck method), 151
report_debug_messages() (esmval-

core.cmor.check.CMORCheck method), 152
report_error() (esmvalcore.cmor.check.CMORCheck

method), 152
report_errors() (esmval-

core.cmor.check.CMORCheck method), 152
report_warning() (esmval-

core.cmor.check.CMORCheck method), 152
report_warnings() (esmval-

core.cmor.check.CMORCheck method), 152
requested (esmvalcore.cmor.table.CoordinateInfo at-

tribute), 161
resample_hours() (in module esmval-

core.preprocessor), 202
resample_time() (in module esmval-

Index 271

ESMValTool User’s and Developer’s Guide, Release 2.7.0rc2.dev0+g71d34b38.d20221005

core.preprocessor), 203
rolling_window_statistics() (in module esmval-

core.preprocessor), 203
run() (esmvalcore.experimental.recipe.Recipe method),

214
run_dir (esmvalcore.experimental.config.Session prop-

erty), 211

S
save() (in module esmvalcore.preprocessor), 204
seasonal_statistics() (in module esmval-

core.preprocessor), 204
Session (class in esmvalcore.experimental.config), 209
session (esmvalcore.experimental.recipe_output.RecipeOutput

attribute), 221
session_dir (esmvalcore.experimental.config.Session

property), 211
session_name (esmvalcore.experimental.config.Session

attribute), 211
set_session_name() (esmval-

core.experimental.config.Session method),
211

setdefault() (esmvalcore.cmor.table.TableInfo
method), 164

short_name (esmvalcore.cmor.table.VariableInfo at-
tribute), 165

size (esmvalcore.esgf.ESGFFile attribute), 169
standard_name (esmvalcore.cmor.table.CoordinateInfo

attribute), 161
standard_name (esmvalcore.cmor.table.VariableInfo at-

tribute), 165
start_session() (esmval-

core.experimental.config.Config method),
209

stored_direction (esmval-
core.cmor.table.CoordinateInfo attribute),
161

STRICT (esmvalcore.cmor.check.CheckLevels attribute),
153

T
TableInfo (class in esmvalcore.cmor.table), 163
TaskOutput (class in esmval-

core.experimental.recipe_output), 222
timeseries_filter() (in module esmval-

core.preprocessor), 204
to_base64() (esmval-

core.experimental.recipe_output.ImageFile
method), 219

to_config_user() (esmval-
core.experimental.config.Session method),
211

U
units (esmvalcore.cmor.table.CoordinateInfo attribute),

161
units (esmvalcore.cmor.table.VariableInfo attribute),

165
update() (esmvalcore.cmor.table.TableInfo method),

164
urls (esmvalcore.esgf.ESGFFile attribute), 169

V
valid_max (esmvalcore.cmor.table.CoordinateInfo at-

tribute), 161
valid_max (esmvalcore.cmor.table.VariableInfo at-

tribute), 165
valid_min (esmvalcore.cmor.table.CoordinateInfo at-

tribute), 161
valid_min (esmvalcore.cmor.table.VariableInfo at-

tribute), 165
value (esmvalcore.cmor.table.CoordinateInfo attribute),

161
values() (esmvalcore.cmor.table.TableInfo method),

164
values() (esmvalcore.experimental.recipe_output.RecipeOutput

method), 221
var_name (esmvalcore.cmor.table.CoordinateInfo

attribute), 161
var_name_constraint() (in module esmval-

core.iris_helpers), 176
VariableInfo (class in esmvalcore.cmor.table), 164
volume_statistics() (in module esmval-

core.preprocessor), 205

W
weighting_landsea_fraction() (in module esmval-

core.preprocessor), 205
with_traceback() (esmval-

core.cmor.check.CMORCheckError method),
152

with_traceback() (esmval-
core.experimental.recipe_metadata.RenderError
method), 224

work_dir (esmvalcore.experimental.config.Session prop-
erty), 211

write_html() (esmval-
core.experimental.recipe_output.RecipeOutput
method), 222

Z
zonal_statistics() (in module esmval-

core.preprocessor), 206

272 Index

	I Getting started
	Installation
	Conda installation
	Pip installation
	Docker installation
	Singularity installation
	Installation from source
	Pre-installed versions on HPC clusters / other servers
	Installation from the conda lock file
	Creating a conda lock file

	Configuration files
	Overview
	User configuration file
	ESGF configuration
	Storing credentials in keyring
	Configuration file
	Logon
	Search

	Download statistics

	Developer configuration file
	Input file paths
	Preprocessor output files
	Project CMOR table configuration
	Custom CMOR tables
	Filter preprocessor warnings
	Configuring datasets in native format

	References configuration file
	Extra Facets
	Format of the extra facets files
	Location of the extra facets files
	Use of extra facets

	Input data
	Overview
	Data types
	CMIP data
	Observational data
	Datasets in native format
	Supported native reanalysis/observational datasets
	ERA5
	MSWEP

	Supported native models
	CESM
	EMAC
	ICON
	IPSL-CM6

	Data retrieval
	Enabling automatic downloads from the ESGF
	Setting the correct root paths
	Synda
	Explaining config-user/drs: CMIP5: or config-user/drs: CMIP6:
	Explaining config-user/rootpath:
	Dataset definitions in recipe

	Recap and example
	Data loading
	Data concatenation from multiple sources
	Use of extra facets in the datafinder

	Running
	Output
	Preprocessed datasets
	Run
	Diagnostic output
	Plots
	Settings.yml
	Metadata.yml

	II The recipe format
	Overview
	Recipe section: documentation
	Recipe section: datasets
	Recipe section: preprocessors
	Recipe section: diagnostics
	The diagnostics section defines tasks
	Ancestor tasks
	Task priority
	Variable and dataset definitions
	Diagnostic and variable specific datasets
	Running a simple diagnostic
	Passing arguments to a diagnostic script
	Running your own diagnostic
	Re-using parameters from one script to another

	Preprocessor
	Overview
	Variable derivation
	CMORization and dataset-specific fixes
	Data checking
	Dataset specific fixes

	Fx variables as cell measures or ancillary variables
	Vertical interpolation
	Schemes for vertical interpolation and extrapolation

	Weighting
	Land/sea fraction weighting

	Masking
	Introduction to masking
	Land-sea masking
	Ice masking
	Glaciated masking
	Missing values masks
	Common mask for multiple models
	Minimum, maximum and interval masking

	Horizontal regridding
	Regridding on a reference dataset grid
	Regridding on an MxN grid specification
	Regridding to a regional target grid specification
	Regridding (interpolation, extrapolation) schemes
	Built-in regridding schemes
	Generic regridding schemes

	Ensemble statistics
	Multi-model statistics
	Time manipulation
	extract_time
	extract_season
	extract_month
	hourly_statistics
	daily_statistics
	monthly_statistics
	seasonal_statistics
	annual_statistics
	decadal_statistics
	climate_statistics
	resample_time
	resample_hours
	anomalies
	regrid_time
	timeseries_filter

	Area manipulation
	extract_coordinate_points
	extract_region
	extract_named_regions
	extract_shape
	extract_point
	extract_location
	zonal_statistics
	meridional_statistics
	area_statistics

	Volume manipulation
	extract_volume
	volume_statistics
	axis_statistics
	depth_integration
	extract_transect
	extract_trajectory

	Cycles
	amplitude

	Trend
	linear_trend
	linear_trend_stderr

	Detrend
	Rolling window statistics
	Unit conversion
	convert_units
	accumulate_coordinate

	Bias
	bias

	Information on maximum memory required
	Other
	Clip

	III Diagnostic script interfaces
	Provenance
	Information provided by ESMValCore to the diagnostic script
	Information provided by the diagnostic script to ESMValCore

	IV Development
	Preprocessor function
	Lazy and real data
	Documentation
	Tests
	Unit tests
	Sample data tests

	Using multiple datasets as input

	Fixing data
	Fix structure
	Fixing a dataset
	Check the output
	Create the fix
	Finishing

	Common errors
	Bad units declared
	Coordinates missing

	Customizing checker strictness
	Add support for new native datasets
	Configuration
	Locate data
	Fix native data
	Extra facets for native datasets

	Use of extra facets in fixes

	Deriving a variable

	V Contributions are very welcome
	Getting started
	Design considerations

	Checklist for pull requests
	Scientific relevance
	Pull request title and label
	Code quality
	Python
	YAML
	Any text file

	Documentation
	Adding documentation
	What should be documented
	How to build and view the documentation

	Tests
	Running tests
	Test coverage
	Sample data
	Automated testing

	Backward compatibility
	Dependencies
	List of authors
	Pull request checks
	Making a release
	1. Check that all tests and builds work
	2. Create a release branch
	3. Increase the version number
	4. Add release notes
	5. Make the (pre-)release on GitHub
	6. Create and upload the PyPI package
	7. Create the Conda package
	8. Check the Docker images

	VI ESMValCore API Reference
	CMOR functions
	Checking compliance
	Automatically fixing issues
	Functions for fixing issues
	Using CMOR tables

	Find and download files from ESGF
	esmvalcore.esgf
	esmvalcore.esgf.facets

	Exceptions
	Iris helper functions
	Preprocessor functions
	Experimental API
	Configuration
	Config
	Session
	API reference

	Recipes
	Recipe metadata
	Running a recipe
	Running a single diagnostic or preprocessor task
	API reference

	Recipe output
	Working with output files
	Working with image files
	Working with data files
	API reference

	Recipe Metadata
	API reference

	Utils
	Finding recipes
	API reference

	VII Changelog
	v2.7.0rc1
	Highlights
	Backwards incompatible changes
	Bug fixes
	Documentation
	Improvements
	Fixes for datasets
	Installation
	Automatic testing

	v2.6.0
	Highlights
	Deprecations
	Bug fixes
	CMOR standard
	Containerization
	Community
	Documentation
	Improvements
	Fixes for datasets
	Installation
	Preprocessor
	Release
	Automatic testing
	Variable Derivation

	v2.5.0
	Highlights
	Backwards incompatible changes
	Bug fixes
	Deprecations
	Documentation
	Fixes for datasets
	Preprocessor
	Automatic testing
	Installation
	Improvements

	v2.4.0
	Highlights
	Bug fixes
	Deprecations
	Documentation
	Fixes for datasets
	CMOR standard
	Preprocessor
	Automatic testing
	Installation
	Improvements

	v2.3.1
	Bug fixes
	Documentation
	Fixes for datasets
	Preprocessor
	Installation
	Improvements

	v2.3.0
	Bug fixes
	Deprecations
	Documentation
	Fixes for datasets
	CMOR standard
	Preprocessor
	Notebook API (experimental)
	Automatic testing
	Installation
	Improvements

	v2.2.0
	Highlights
	Bug fixes
	Deprecations
	Documentation
	Fixes for datasets
	CMOR standard
	Preprocessor
	Automatic testing
	Notebook API (experimental)
	Improvements

	v2.1.0
	Bug fixes
	Documentation
	Improvements
	Fixes for datasets
	Preprocessor

	v2.0.0
	Bug fixes
	Documentation
	Improvements
	Fixes for datasets
	Preprocessor

	v2.0.0b9
	Bug fixes
	Improvements

	VIII Indices and tables
	Python Module Index
	Index

